1
|
Bosteder KD, Arnold D, Gillespie J, Chand N, Merkle S, McCorkle M, Bennett M, Sikka S, Dubiel R, Driver S, Swank C. Physiological and perceptual demand of gait training on inpatient physiotherapists. Clin Rehabil 2025:2692155251334286. [PMID: 40267293 DOI: 10.1177/02692155251334286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
ObjectiveTo describe the physiological and perceptual demand among physiotherapists delivering gait training interventions using usual care and overground robotic exoskeleton approaches for patients with neurological injuries during inpatient rehabilitation.DesignSingle-centre, prospective observational study.SettingInpatient Rehabilitation Hospital.ParticipantsPhysiotherapists trained in neurorehabilitation.InterventionPhysiotherapists conducted two gait training sessions (one usual care and one overground robotic exoskeleton) while physiological and perceptual demand was assessed.Main measuresPhysiological (oxygen consumption, metabolic equivalents and heart rate) and perceptual demand were measured using a wearable metabolic system and the National Aeronautics and Space Administration Task Load Index, respectively.ResultsPhysiotherapists (n = 4) were female, median (min-max) age = 35(34-44) years, non-Hispanic, 50% White, with 11(5-19) years of experience. Physiological demand was lower in overground robotic exoskeleton than usual care in oxygen consumption [13.5(11.3-15.3) versus 16.4(13.5-18.6) millilitres of oxygen/minute/kilogramme of body mass], metabolic equivalents [3.9(3.2-4.4) versus 4.7(3.8-5.3)], average heart rate [111(90-136) versus 119(103-145) beats per minute], peak heart rate [121(101-149) versus 149(116-162) beats per minute] and recovery heart rate [113(88-148) versus 123(105-161) beats per minute]. Perceptual demand was lower in overground robotic exoskeleton than usual care in mental [7(5-16) versus 12(6-17)], physical [10(8-12) versus 16.5(14-21)] and temporal demand [3.5(1-9) versus 12.5(2-16)], performance [5(3-16) versus 11(4-17)], effort [9(6-15) versus 16.5(13-17)] and frustration [3(1-7) versus 5.5(3-8)].ConclusionsDelivery of overground robotic exoskeleton gait training was associated with lower physiological and perceptual demand compared to usual care gait training in patients with neurological injuries during inpatient rehabilitation. Identifying modalities with low demand may reduce physiotherapist burnout and workplace injuries.
Collapse
Affiliation(s)
| | - Dannae Arnold
- Baylor Scott & White Research Institute, Dallas, TX, USA
- Baylor Scott & White Institute for Rehabilitation, Dallas, TX, USA
| | - Jaime Gillespie
- Baylor Scott & White Research Institute, Dallas, TX, USA
- Baylor Scott & White Institute for Rehabilitation, Dallas, TX, USA
| | - Neha Chand
- Baylor Scott & White Research Institute, Dallas, TX, USA
| | | | - Megan McCorkle
- Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Monica Bennett
- Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Seema Sikka
- Baylor Scott & White Institute for Rehabilitation, Dallas, TX, USA
| | - Rosemary Dubiel
- Baylor Scott & White Institute for Rehabilitation, Dallas, TX, USA
| | - Simon Driver
- Baylor Scott & White Research Institute, Dallas, TX, USA
- Baylor Scott & White Institute for Rehabilitation, Dallas, TX, USA
| | - Chad Swank
- Baylor Scott & White Research Institute, Dallas, TX, USA
- Baylor Scott & White Institute for Rehabilitation, Dallas, TX, USA
| |
Collapse
|
2
|
Livolsi C, Conti R, Ciapetti T, Guanziroli E, Fridriksson T, Alexandersson Á, Trigili E, Giovacchini F, Lova RM, Esquenazi A, Molteni F, Crea S, Vitiello N. Bilateral hip exoskeleton assistance enables faster walking in individuals with chronic stroke-related gait impairments. Sci Rep 2025; 15:2017. [PMID: 39814856 PMCID: PMC11735669 DOI: 10.1038/s41598-025-86343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
Millions of individuals surviving a stroke have lifelong gait impairments that reduce their personal independence and quality of life. Reduced walking speed is one of the major problems limiting community mobility and reintegration. Previous studies have shown positive effect of robot-assisted gait training utilizing hip exoskeletons for individuals with gait impairments due to a stroke, leading to increased walking speed in post-treatment compared to pre-treatment assessments. However, no evidence emerged of a significant increasing in walking speed attributable to device usage compared to walking without the device. In this pilot investigation, we observed that hip flexion/extension assistance delivered by a portable bilateral powered hip exoskeleton increased overground self-selected walking speed by 20.2 ± 5.0% on average among six chronic post-stroke survivors. When comparing walking with and without the hip exoskeleton within the same experimental session, the observed speed increment resulted in statistically and clinically meaningful improvement (0.14 ± 0.03 m/s > minimal clinically important difference, p = 0.015). The increased walking speed was the result of a higher self-selected cadence and longer step length both on the paretic and nonparetic limbs. By facilitating gait, a bilateral hip exoskeleton could be a viable technology for extending locomotor mobility and facilitating gait training of individuals affected by post-stroke hemiparesis.
Collapse
Affiliation(s)
- Chiara Livolsi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy.
| | | | | | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Lecco, Italy
| | | | | | - Emilio Trigili
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | - Alberto Esquenazi
- Department of PM&R, Jefferson Moss-Magee Rehabilitation, Elkins Park, PA, USA
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Lecco, Italy
| | - Simona Crea
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Florence, Italy
| | - Nicola Vitiello
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy.
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Florence, Italy.
| |
Collapse
|
3
|
Patarini F, Tamburella F, Pichiorri F, Mohebban S, Bigioni A, Ranieri A, Di Tommaso F, Tagliamonte NL, Serratore G, Lorusso M, Ciaramidaro A, Cincotti F, Scivoletto G, Mattia D, Toppi J. On the role of visual feedback and physiotherapist-patient interaction in robot-assisted gait training: an eye-tracking and HD-EEG study. J Neuroeng Rehabil 2024; 21:211. [PMID: 39627867 PMCID: PMC11616173 DOI: 10.1186/s12984-024-01504-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Treadmill based Robotic-Assisted Gait Training (t-RAGT) provides for automated locomotor training to help the patient achieve a physiological gait pattern, reducing the physical effort required by therapist. By introducing the robot as a third agent to the traditional one-to-one physiotherapist-patient (Pht-Pt) relationship, the therapist might not be fully aware of the patient's motor performance. This gap has been bridged by the integration in rehabilitation robots of a visual FeedBack (FB) that informs about patient's performance. Despite the recognized importance of FB in t-RAGT, the optimal role of the therapist in the complex patient-robot interaction is still unclear. This study aimed to describe whether the type of FB combined with different modalities of Pht's interaction toward Pt would affect the patients' visual attention and emotional engagement during t-RAGT. METHODS Ten individuals with incomplete Spinal Cord Injury (C or D ASIA Impairment Scale level) were assessed using eye-tracking (ET) and high-density EEG during seven t-RAGT sessions with Lokomat where (i) three types of visual FB (chart, emoticon and game) and (ii) three levels of Pht-Pt interaction (low, medium and high) were randomly combined. ET metrics (fixations and saccades) were extracted for each of the three defined areas of interest (AoI) (monitor, Pht and surrounding) and compared among the different experimental conditions (FB, Pht-Pt interaction level). The EEG spectral activations in theta and alpha bands were reconstructed for each FB type applying Welch periodogram to data localised in the whole grey matter volume using sLORETA. RESULTS We found an effect of FB type factor on all the ET metrics computed in the three AoIs while the factor Pht-Pt interaction level also combined with FB type showed an effect only on the ET metrics calculated in Pht and surrounding AoIs. Neural activation in brain regions crucial for social cognition resulted for high Pht-Pt interaction level, while activation of the insula was found during low interaction, independently on the FB used. CONCLUSIONS The type of FB and the way in which Pht supports the patients both have a strong impact on patients' engagement and should be considered in the design of a t-RAGT-based rehabilitation session.
Collapse
Affiliation(s)
- Francesca Patarini
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto, 25, 00185, Rome, Italy
- Neuroelectrical Imaging and Brain Computer Interface Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Federica Tamburella
- Department of Life Sciences, Health and Health Professions, Link Campus University Rome, Rome, Italy
- Laboratory of Robotic Neurorehabilitation, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Floriana Pichiorri
- Neuroelectrical Imaging and Brain Computer Interface Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Shiva Mohebban
- Neuroelectrical Imaging and Brain Computer Interface Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Alessandra Bigioni
- Laboratory of Robotic Neurorehabilitation, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Andrea Ranieri
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto, 25, 00185, Rome, Italy
- Neuroelectrical Imaging and Brain Computer Interface Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Nevio Luigi Tagliamonte
- Laboratory of Robotic Neurorehabilitation, IRCCS Fondazione Santa Lucia, Rome, Italy
- Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giada Serratore
- Laboratory of Robotic Neurorehabilitation, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Matteo Lorusso
- Laboratory of Robotic Neurorehabilitation, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Angela Ciaramidaro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
- Center of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Febo Cincotti
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto, 25, 00185, Rome, Italy
| | - Giorgio Scivoletto
- Laboratory of Robotic Neurorehabilitation, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Donatella Mattia
- Neuroelectrical Imaging and Brain Computer Interface Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Jlenia Toppi
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto, 25, 00185, Rome, Italy.
- Neuroelectrical Imaging and Brain Computer Interface Lab, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
4
|
Gillespie J, Trammell M, Ochoa C, Driver S, Callender L, Dubiel R, Swank C. Feasibility of overground exoskeleton gait training during inpatient rehabilitation after severe acquired brain injury. Brain Inj 2024; 38:459-466. [PMID: 38369861 DOI: 10.1080/02699052.2024.2317259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVE To describe the safety, feasibility, and tolerability of overground exoskeleton gait training (OEGT) integrated into clinical practice for patients after severe acquired brain injury (ABI). SETTING Inpatient rehabilitation hospital. PARTICIPANTS Eligible patients with severe ABI met the following criteria: age > 18, medically stable, met exoskeleton frame limitations, and a score of ≤ 3 on the motor function portion of the Coma Recovery Scale - Revised (CRS-R). Presence of consciousness disorder was not exclusionary. DESIGN Prospective observational study. MAIN MEASURES Outcomes examined safety (adverse events), feasibility (session count and barriers to session completion), and tolerability of OEGT (session metrics and heart rate). RESULTS Ten patients with ABI completed 10.4 ± 4.8 OEGT sessions with no adverse events. Barriers to session completion included clinical focus on prioritized interventions. Sessions [median up time = 17 minutes, (IQR: 7); walk time = 13 minutes, (IQR: 9); step count = 243, (IQR: 161); device assist = 74, (IQR: 28.0)] were primarily spent in Very Light to Light heart rate intensities [89%, (IQR: 42%) and 9%, (IQR: 33%), respectively]. CONCLUSION OEGT incorporated into the rehabilitation plan of care during inpatient rehabilitation after severe ABI was observed to be safe, feasible, and tolerable. However, intentional steps must be taken to facilitate patient safety.
Collapse
Affiliation(s)
- Jaime Gillespie
- Physical Medicine and Rehabilitation, Baylor Scott and White Institute for Rehabilitation, Dallas, Texas, USA
| | - Molly Trammell
- Physical Medicine and Rehabilitation, Baylor Scott and White Institute for Rehabilitation, Dallas, Texas, USA
| | - Christa Ochoa
- Physical Medicine and Rehabilitation, Baylor Scott and White Research Institute, Dallas, Texas, USA
| | - Simon Driver
- Physical Medicine and Rehabilitation, Baylor Scott and White Research Institute, Dallas, Texas, USA
| | - Librada Callender
- Physical Medicine and Rehabilitation, Baylor Scott and White Research Institute, Dallas, Texas, USA
| | - Rosemary Dubiel
- Physical Medicine and Rehabilitation, Baylor Scott and White Institute for Rehabilitation, Dallas, Texas, USA
| | - Chad Swank
- Physical Medicine and Rehabilitation, Baylor Scott and White Institute for Rehabilitation, Dallas, Texas, USA
- Physical Medicine and Rehabilitation, Baylor Scott and White Research Institute, Dallas, Texas, USA
| |
Collapse
|
5
|
Kóra S, Bíró A, Prontvai N, Androsics M, Drotár I, Prukner P, Haidegger T, Széphelyi K, Tollár J. Investigation of the Effectiveness of the Robotic ReStore Soft Exoskeleton in the Development of Early Mobilization, Walking, and Coordination of Stroke Patients: A Randomized Clinical Trial. ROBOTICS 2024; 13:44. [DOI: 10.3390/robotics13030044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Medical robotics nowadays can prevent, treat, or alleviate numerous severe conditions, including the dire consequences of stroke. Our objective was to determine the effect of employing a robotic soft exoskeleton in therapy on the development of the early mobilization, gait, and coordination in stroke patients. The ReStore™ Soft Exo-Suit, a wearable exosuit developed by a leading company with exoskeleton technology, was utilized. It is a powered, lightweight device intended for use in stroke rehabilitation for people with lower limb disability. We performed a randomized clinical intervention, using a before–after trial design in a university hospital setting. A total of 48 patients with a history of stroke were included, of whom 39 were randomized and 30 completed the study. Interventions: Barthel Index and modified Rankin scale (mRS) patients were randomly assigned to a non-physical intervention control (n = 9 of 39 completed, 30 withdrew before baseline testing), or to a high-intensity agility program (15 sessions, 5 weeks, n = 30 completed). The main focus of assessment was on the Modified Rankin Scale. Additionally, we evaluated secondary factors including daily life functionality, five dimensions of health-related quality of life, the Beck depression inventory, the 6 min walk test (6MWT), the Berg Balance Scale (BBS), and static balance (center of pressure). The Robot-Assisted Gait Therapy (ROB/RAGT) program led to significant improvements across various measures, including a 37% improvement in Barthel Index scores, a 56% increase in 10 m walking speed, and a 68% improvement in 6 min walking distance, as well as notable enhancements in balance and stability. Additionally, the intervention group demonstrated significant gains in all these aspects compared to the control group. In conclusion, the use of robotic therapy can be beneficial in stroke rehabilitation. These devices support the restoration and improvement of movement in various ways and contribute to restoring balance and stability.
Collapse
Affiliation(s)
- Szilvia Kóra
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7600 Pécs, Hungary
- Digital Development Center, Széchenyi István University, 9000 Győr, Hungary
| | - Adrienn Bíró
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7600 Pécs, Hungary
- Somogy County Móricz Kaposi Teaching Hospital, 7400 Kaposvár, Hungary
| | - Nándor Prontvai
- Somogy County Móricz Kaposi Teaching Hospital, 7400 Kaposvár, Hungary
| | - Mónika Androsics
- Somogy County Móricz Kaposi Teaching Hospital, 7400 Kaposvár, Hungary
| | - István Drotár
- Digital Development Center, Széchenyi István University, 9000 Győr, Hungary
| | - Péter Prukner
- Digital Development Center, Széchenyi István University, 9000 Győr, Hungary
| | - Tamás Haidegger
- Austrian Center for Medical Innovation and Technology, Viktor-Kalpan-str. 2, 2700 Wiener Neustadt, Austria
- University Research and Innovation Center (EKIK), Óbuda University, Bécsi út 96/B, 1034 Budapest, Hungary
| | - Klaudia Széphelyi
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7600 Pécs, Hungary
| | - József Tollár
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7600 Pécs, Hungary
- Digital Development Center, Széchenyi István University, 9000 Győr, Hungary
- Somogy County Móricz Kaposi Teaching Hospital, 7400 Kaposvár, Hungary
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pécs Medical School, 7600 Pécs, Hungary
| |
Collapse
|
6
|
Postol N, Barton J, Wakely L, Bivard A, Spratt NJ, Marquez J. "Are we there yet?" expectations and experiences with lower limb robotic exoskeletons: a qualitative evaluation of the therapist perspective. Disabil Rehabil 2024; 46:1023-1030. [PMID: 36861846 DOI: 10.1080/09638288.2023.2183992] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/11/2023] [Accepted: 02/18/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE Lower limb robotic exoskeletons can assist movement, however, clinical uptake in neurorehabilitation is limited. The views and experiences of clinicians are pivotal to the successful clinical implementation of emerging technologies. This study investigates therapist perspectives of the clinical use and future role of this technology in neurorehabilitation. METHODS Australian and New Zealand-based therapists with lower limb exoskeleton experience were recruited to complete an online survey and semi-structured interview. Survey data were transposed into tables and interviews transcribed verbatim. Qualitative data collection and analysis were guided by qualitative content analysis and interview data were thematically analysed. RESULTS Five participants revealed that the use of exoskeletons to deliver therapy involves the interplay of human elements - experiences and perspectives of use, and mechanical elements - the device itself. Two overarching themes emerged: the "journey", with subthemes of clinical reasoning and user experience; and the "vehicle" with design features and cost as subthemes, to explore the question "Are we there yet?" CONCLUSION Therapists expressed positive and negative perspectives from their experiences with exoskeletons, giving suggestions for design features, marketing input, and cost to enhance future use. Therapists are optimistic that this journey will see lower limb exoskeletons integral to rehabilitation service delivery.
Collapse
Affiliation(s)
- Nicola Postol
- University of Newcastle, College of Health, Medicine and Wellbeing, Callghan, Australia
- Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton, Australia
| | - Julia Barton
- University of Newcastle, College of Health, Medicine and Wellbeing, Callghan, Australia
| | - Luke Wakely
- Department of Rural Health, University of Newcastle, Callghan, Australia
- Hunter New England Local Health District, New Lambton, Australia
| | - Andrew Bivard
- University of Newcastle, College of Health, Medicine and Wellbeing, Callghan, Australia
- Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton, Australia
- University of Melbourne, School of Medicine, Dentistry and Public Health, Melbourne, Australia
| | - Neil J Spratt
- University of Newcastle, College of Health, Medicine and Wellbeing, Callghan, Australia
- Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton, Australia
- Hunter New England Local Health District, New Lambton, Australia
| | - Jodie Marquez
- University of Newcastle, College of Health, Medicine and Wellbeing, Callghan, Australia
- Centre for Brain and Mental Health, Hunter Medical Research Institute, New Lambton, Australia
| |
Collapse
|
7
|
Arnold D, Gillespie J, Bennett M, Callender L, Sikka S, Hamilton R, Driver S, Swank C. Clinical Delivery of Overground Exoskeleton Gait Training in Persons With Spinal Cord Injury Across the Continuum of Care: A Retrospective Analysis. Top Spinal Cord Inj Rehabil 2024; 30:74-86. [PMID: 38433740 PMCID: PMC10906371 DOI: 10.46292/sci23-00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Background After spinal cord injury (SCI), inpatient rehabilitation begins and continues through outpatient therapy. Overground exoskeleton gait training (OEGT) has been shown to be feasible in both settings, yet its use as an intervention across the continuum has not yet been reported. Objectives This study describes OEGT for patients with SCI across the continuum and its effects on clinical outcomes. Methods Medical records of patients with SCI who completed at least one OEGT session during inpatient and outpatient rehabilitation from 2018 to 2021 were retrospectively reviewed. Demographic data, Walking Index for Spinal Cord Injury-II (WISCI-II) scores, and OEGT session details (frequency, "walk" time, "up" time, and step count) were extracted. Results Eighteen patients [male (83%), White (61%), aged 37.4 ± 15 years, with tetraplegia (50%), American Spinal Injury Association Impairment Scale A (28%), B (22%), C (39%), D (11%)] completed OEGT sessions (motor complete, 18.2 ± 10.3; motor incomplete, 16.7 ± 7.7) over approximately 18 weeks (motor complete, 15.1 ± 6.4; motor incomplete, 19.0 ± 8.2). Patients demonstrated improved OEGT session tolerance on device metrics including "walk" time (motor complete, 7:51 ± 4:42 to 24:50 ± 9:35 minutes; motor incomplete, 12:16 ± 6:01 to 20:01 ± 08:05 minutes), "up" time (motor complete, 16:03 ± 7:41 to 29:49 ± 12:44 minutes; motor incomplete, 16:38 ± 4:51 to 23:06 ± 08:50 minutes), and step count (motor complete, 340 ± 295.9 to 840.2 ± 379.4; motor incomplete, 372.3 ± 225.2 to 713.2 ± 272). Across therapy settings, patients with motor complete SCI experienced improvement in WISCI-II scores from 0 ± 0 at inpatient admission to 3 ± 4.6 by outpatient discharge, whereas the motor incomplete group demonstrated a change of 0.2 ± 0.4 to 9.0 ± 6.4. Conclusion Patients completed OEGT across the therapy continuum. Patients with motor incomplete SCI experienced clinically meaningful improvements in walking function.
Collapse
Affiliation(s)
- Dannae Arnold
- Baylor Scott and White Research Institute, Dallas, Texas
- Baylor Scott and White Institute for Rehabilitation, Dallas, Texas
| | - Jaime Gillespie
- Baylor Scott and White Research Institute, Dallas, Texas
- Baylor Scott and White Institute for Rehabilitation, Dallas, Texas
| | - Monica Bennett
- Baylor Scott and White Research Institute, Dallas, Texas
| | | | - Seema Sikka
- Baylor Scott and White Institute for Rehabilitation, Dallas, Texas
| | - Rita Hamilton
- Baylor Scott and White Institute for Rehabilitation, Dallas, Texas
| | - Simon Driver
- Baylor Scott and White Institute for Rehabilitation, Dallas, Texas
| | - Chad Swank
- Baylor Scott and White Research Institute, Dallas, Texas
- Baylor Scott and White Institute for Rehabilitation, Dallas, Texas
| |
Collapse
|
8
|
Cumplido-Trasmonte C, Barquín-Santos E, Gor-García-Fogeda MD, Plaza-Flores A, García-Varela D, Ibáñez-Herrán L, Alted-González C, Díaz-Valles P, López-Pascua C, Castrillo-Calvillo A, Molina-Rueda F, Fernández R, García-Armada E. Modularity Implications of an Overground Exoskeleton on Plantar Pressures, Strength, and Spasticity in Persons with Acquired Brain Injury. SENSORS (BASEL, SWITZERLAND) 2024; 24:1435. [PMID: 38474971 DOI: 10.3390/s24051435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
This study explored the effects of a modular overground exoskeleton on plantar pressure distribution in healthy individuals and individuals with Acquired Brain Injury (ABI). The research involved 21 participants, including ABI patients and healthy controls, who used a unique exoskeleton with adaptable modular configurations. The primary objective was to assess how these configurations, along with factors such as muscle strength and spasticity, influenced plantar pressure distribution. The results revealed significant differences in plantar pressures among participants, strongly influenced by the exoskeleton's modularity. Notably, significant distinctions were found between ABI patients and healthy individuals. Configurations with two modules led to increased pressure in the heel and central metatarsus regions, whereas configurations with four modules exhibited higher pressures in the metatarsus and hallux regions. Future research should focus on refining and customizing rehabilitation technologies to meet the diverse needs of ABI patients, enhancing their potential for functional recovery.
Collapse
Affiliation(s)
- Carlos Cumplido-Trasmonte
- International Doctoral School, Rey Juan Carlos University, 28922 Madrid, Spain
- Marsi Bionics SL, 28521 Madrid, Spain
| | | | - María Dolores Gor-García-Fogeda
- Marsi Bionics SL, 28521 Madrid, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain
| | | | | | | | | | - Paola Díaz-Valles
- Spanish National Reference Centre for Brain Injury (CEADAC), 28034 Madrid, Spain
| | | | | | - Francisco Molina-Rueda
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain
| | - Roemi Fernández
- Centre for Automation and Robotics (CAR), CSIC-UPM, Ctra. Campo Real km 0.2-La Poveda-Arganda del Rey, 28500 Madrid, Spain
| | | |
Collapse
|
9
|
Zhu Z, Liu L, Zhang W, Jiang C, Wang X, Li J. Design and motion control of exoskeleton robot for paralyzed lower limb rehabilitation. Front Neurosci 2024; 18:1355052. [PMID: 38456145 PMCID: PMC10918848 DOI: 10.3389/fnins.2024.1355052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction Patients suffering from limb movement disorders require more complete rehabilitation treatment, and there is a huge demand for rehabilitation exoskeleton robots. Flexible and reliable motion control of exoskeleton robots is very important for patient rehabilitation. Methods This paper proposes a novel exoskeleton robotic system for lower limb rehabilitation. The designed lower limb rehabilitation exoskeleton robot mechanism is mainly composed of the hip joint mechanism, the knee joint mechanism and the ankle joint mechanism. The forces and motion of the exoskeleton robot were analyzed in detail to determine its design parameters. The robot control system was developed to implement closed-loop position control and trajectory planning control of each joint mechanism. Results Multiple experiments and tests were carried out to verify robot's performance and practicality. In the robot angular response experiments, the joint mechanism could quickly adjust to different desired angles, including 15°, 30°, 45°, and 60°. In the trajectory tracking experiments, the exoskeleton robot could complete tracking movements of typical actions such as walking, standing up, sitting down, go upstairs and go downstairs, with a maximum tracking error of ±5°. Robotic wearing tests on normal people were performed to verify the assistive effects of the lower limb rehabilitation exoskeleton at different stages. Discussion The experimental results indicated that the exoskeleton robot has excellent reliability and practicality. The application of this exoskeleton robotic system will help paralyzed patients perform some daily movements and sports.
Collapse
Affiliation(s)
- Zhiyong Zhu
- College of Automation, Nanjing University of Posts and Telecommunications, Nanjing, China
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Lingyan Liu
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Wenbin Zhang
- College of Computer Science and Software Engineering, Hohai University, Nanjing, Jiangsu, China
| | - Cong Jiang
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Xingsong Wang
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Jie Li
- College of Automation, Nanjing University of Posts and Telecommunications, Nanjing, China
| |
Collapse
|
10
|
Lee J, Akbas T, Sulzer J. Hip and Knee Joint Kinematics Predict Quadriceps Hyperreflexia in People with Post-stroke Stiff-Knee Gait. Ann Biomed Eng 2023; 51:1965-1974. [PMID: 37133540 PMCID: PMC11003447 DOI: 10.1007/s10439-023-03217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Wearable assistive technology for the lower extremities has shown great promise towards improving gait function in people with neuromuscular injuries. But common secondary impairments, such as hypersensitive stretch reflexes or hyperreflexia, have been often neglected. Incorporation of biomechanics into the control loop could improve individualization and avoid hyperreflexia. However, adding hyperreflexia prediction to the control loop would require expensive or complex measurement of muscle fiber characteristics. In this study, we explore a clinically accessible biomechanical predictor set that can accurately predict rectus femoris (RF) reaction after knee flexion assistance in pre-swing by a powered orthosis. We examined a total of 14 gait parameters based on gait kinematic, kinetic, and simulated muscle-tendon states from 8 post-stroke individuals with Stiff-Knee gait (SKG) wearing a knee exoskeleton robot. We independently performed both parametric and non-parametric variable selection approaches using machine learning regression techniques. Both models revealed the same four kinematic variables relevant to knee and hip joint motions were sufficient to effectively predict RF hyperreflexia. These results suggest that control of knee and hip kinematics may be a more practical method of incorporating quadriceps hyperreflexia into the exoskeleton control loop than the more complex acquisition of muscle fiber properties.
Collapse
Affiliation(s)
- Jeonghwan Lee
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX, USA
| | | | - James Sulzer
- Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center and Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
11
|
Chang WH, Kim TW, Kim HS, Hanapiah FA, Kim DH, Kim DY. Exoskeletal wearable robot on ambulatory function in patients with stroke: a protocol for an international, multicentre, randomised controlled study. BMJ Open 2023; 13:e065298. [PMID: 37567748 PMCID: PMC10423773 DOI: 10.1136/bmjopen-2022-065298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
INTRODUCTION The purpose of this study is to determine the effect of overground gait training using an exoskeletal wearable robot (exoskeleton) on the recovery of ambulatory function in patients with subacute stroke. We also investigate the assistive effects of an exoskeleton on ambulatory function in patients with subacute stroke. METHODS AND ANALYSIS This study is an international, multicentre, randomised controlled study at five institutions with a total of 150 patients with subacute stroke. Participants will be randomised into two groups (75 patients in the robot-assisted gait training (RAGT) group and 75 patients in the control group). The gait training will be performed with a total of 20 sessions (60 min/session); 5 sessions a week for 4 weeks. The RAGT group will receive 30 min of gait training using an exoskeleton (ANGEL LEGS M20, Angel Robotics) and 30 min of conventional gait training, while the control group will receive 60 min conventional gait training. In all the patients, the functional assessments such as ambulation, motor and balance will be evaluated before and after the intervention. Follow-up monitoring will be performed to verify whether the patient can walk without physical assistance for 3 months. The primary outcome is the improvement of the Functional Ambulatory Category after the gait training. The functional assessments will also be evaluated immediately after the last training session in the RAGT group to assess the assistive effects of an exoskeletal wearable robot. This trial will provide evidence on the effects of an exoskeleton to improve and assist ambulatory function in patients with subacute stroke. ETHICS AND DISSEMINATION This protocol has been approved by the Institutional Review Board of each hospital and conforms to the Declaration of Helsinki. The results will be disseminated through publication. TRIAL REGISTRATION NUMBER Protocol was registered at ClinicalTrials.gov (NCT05157347) on 15 December 2021 and CRIS (KCT0006815) on 19 November 2021.
Collapse
Affiliation(s)
- Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (the Republic of)
| | - Tae-Woo Kim
- National Traffic Injury Rehabilitation Hospital, Gyeonggi-do, Korea (the Republic of)
| | - Hyoung Seop Kim
- Department of Physical Medicine and Rehabilitation, National Health Insurance Service Ilsan Hospital, Goyang, Korea (the Republic of)
| | | | - Dae Hyun Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea (the Republic of)
| | - Deog Young Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| |
Collapse
|
12
|
Gillespie J, Arnold D, Trammell M, Bennett M, Ochoa C, Driver S, Callender L, Sikka S, Dubiel R, Swank C. Utilization of overground exoskeleton gait training during inpatient rehabilitation: a descriptive analysis. J Neuroeng Rehabil 2023; 20:102. [PMID: 37542322 PMCID: PMC10401799 DOI: 10.1186/s12984-023-01220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/16/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Overground exoskeleton gait training (OEGT) after neurological injury is safe, feasible, and may yield positive outcomes. However, no recommendations exist for initiation, progression, or termination of OEGT. This retrospective study highlights the clinical use and decision-making of OEGT within the physical therapy plan of care for patients after neurological injury during inpatient rehabilitation. METHODS The records of patients admitted to inpatient rehabilitation after stroke, spinal cord injury, or traumatic brain injury who participated in at least one OEGT session were retrospectively reviewed. Session details were analyzed to illustrate progress and included: "up" time, "walk" time, step count, device assistance required for limb swing, and therapist-determined settings. Surveys were completed by therapists responsible for OEGT sessions to illuminate clinical decision-making. RESULTS On average, patients demonstrated progressive tolerance for OEGT over successive sessions as shown by increasing time upright and walking, step count, and decreased assistance required by the exoskeleton. Therapists place preference on using OEGT with patients with more functional dependency and assess feedback from the patient and device to determine when to change settings. OEGT is terminated when other gait methods yield higher step repetitions or intensities, or to prepare for discharge. CONCLUSION Our descriptive retrospective data suggests that patients after neurological injury may benefit from OEGT during inpatient rehabilitation. As no guidelines exist, therapists' clinical decisions are currently based on a combination of knowledge of motor recovery and experience. Future efforts should aim to develop evidence-based recommendations to facilitate functional recovery after neurological injury by leveraging OEGT.
Collapse
Affiliation(s)
- Jaime Gillespie
- Baylor Scott and White Institute for Rehabilitation, 909 N. Washington Ave., Dallas, TX, 75246, USA.
| | - Dannae Arnold
- Baylor Scott and White Institute for Rehabilitation, 909 N. Washington Ave., Dallas, TX, 75246, USA
| | - Molly Trammell
- Baylor Scott and White Institute for Rehabilitation, 909 N. Washington Ave., Dallas, TX, 75246, USA
| | - Monica Bennett
- Baylor Scott and White Research Institute, 3434 Live Oak St., Dallas, TX, 75204, USA
| | - Christa Ochoa
- Baylor Scott and White Research Institute, 909 N. Washington Ave., Dallas, TX, 75246, USA
| | - Simon Driver
- Baylor Scott and White Research Institute, 3434 Live Oak St., Dallas, TX, 75204, USA
| | - Librada Callender
- Baylor Scott and White Research Institute, 909 N. Washington Ave., Dallas, TX, 75246, USA
| | - Seema Sikka
- Baylor Scott and White Institute for Rehabilitation, 909 N. Washington Ave., Dallas, TX, 75246, USA
| | - Rosemary Dubiel
- Baylor Scott and White Institute for Rehabilitation, 909 N. Washington Ave., Dallas, TX, 75246, USA
| | - Chad Swank
- Baylor Scott and White Research Institute and Baylor Scott and White Institute for Rehabilitation, 909 N. Washington Ave., Dallas, TX, 75246, USA
| |
Collapse
|
13
|
Craven BC, Cirnigliaro CM, Carbone LD, Tsang P, Morse LR. The Pathophysiology, Identification and Management of Fracture Risk, Sublesional Osteoporosis and Fracture among Adults with Spinal Cord Injury. J Pers Med 2023; 13:966. [PMID: 37373955 DOI: 10.3390/jpm13060966] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The prevention of lower extremity fractures and fracture-related morbidity and mortality is a critical component of health services for adults living with chronic spinal cord injury (SCI). METHODS Established best practices and guideline recommendations are articulated in recent international consensus documents from the International Society of Clinical Densitometry, the Paralyzed Veterans of America Consortium for Spinal Cord Medicine and the Orthopedic Trauma Association. RESULTS This review is a synthesis of the aforementioned consensus documents, which highlight the pathophysiology of lower extremity bone mineral density (BMD) decline after acute SCI. The role and actions treating clinicians should take to screen, diagnose and initiate the appropriate treatment of established low bone mass/osteoporosis of the hip, distal femur or proximal tibia regions associated with moderate or high fracture risk or diagnose and manage a lower extremity fracture among adults with chronic SCI are articulated. Guidance regarding the prescription of dietary calcium, vitamin D supplements, rehabilitation interventions (passive standing, functional electrical stimulation (FES) or neuromuscular electrical stimulation (NMES)) to modify bone mass and/or anti-resorptive drug therapy (Alendronate, Denosumab, or Zoledronic Acid) is provided. In the event of lower extremity fracture, the need for timely orthopedic consultation for fracture diagnosis and interprofessional care following definitive fracture management to prevent health complications (venous thromboembolism, pressure injury, and autonomic dysreflexia) and rehabilitation interventions to return the individual to his/her pre-fracture functional abilities is emphasized. CONCLUSIONS Interprofessional care teams should use recent consensus publications to drive sustained practice change to mitigate fracture incidence and fracture-related morbidity and mortality among adults with chronic SCI.
Collapse
Affiliation(s)
- Beverley Catharine Craven
- KITE Research Institute, 520 Sutherland Dr, Toronto, ON M4G 3V9, Canada
- Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Christopher M Cirnigliaro
- Department of Veterans Affairs Rehabilitation, Research, and Development Service, Spinal Cord Damage Research Center, Bronx, NY 10468, USA
| | - Laura D Carbone
- Department of Medicine: Rheumatology, Medical College of Georgia, Augusta University, 1120 15th St, Augusta, GA 30912, USA
| | - Philemon Tsang
- KITE Research Institute, 520 Sutherland Dr, Toronto, ON M4G 3V9, Canada
| | - Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota, 500 Harvard St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
14
|
Karunakaran KK, Pamula SD, Bach CP, Legelen E, Saleh S, Nolan KJ. Lower extremity robotic exoskeleton devices for overground ambulation recovery in acquired brain injury-A review. Front Neurorobot 2023; 17:1014616. [PMID: 37304666 PMCID: PMC10249611 DOI: 10.3389/fnbot.2023.1014616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/27/2023] [Indexed: 06/13/2023] Open
Abstract
Acquired brain injury (ABI) is a leading cause of ambulation deficits in the United States every year. ABI (stroke, traumatic brain injury and cerebral palsy) results in ambulation deficits with residual gait and balance deviations persisting even after 1 year. Current research is focused on evaluating the effect of robotic exoskeleton devices (RD) for overground gait and balance training. In order to understand the device effectiveness on neuroplasticity, it is important to understand RD effectiveness in the context of both downstream (functional, biomechanical and physiological) and upstream (cortical) metrics. The review identifies gaps in research areas and suggests recommendations for future research. We carefully delineate between the preliminary studies and randomized clinical trials in the interpretation of existing evidence. We present a comprehensive review of the clinical and pre-clinical research that evaluated therapeutic effects of RDs using various domains, diagnosis and stage of recovery.
Collapse
Affiliation(s)
- Kiran K. Karunakaran
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers—New Jersey Medical School, Newark, NJ, United States
- Research Staff Children's Specialized Hospital New Brunswick, New Brunswick, NJ, United States
| | - Sai D. Pamula
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
| | - Caitlyn P. Bach
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
| | - Eliana Legelen
- Department of Psychology, Montclair State University, Montclair, NJ, United States
| | - Soha Saleh
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers—New Jersey Medical School, Newark, NJ, United States
| | - Karen J. Nolan
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, United States
- Department of Physical Medicine and Rehabilitation, Rutgers—New Jersey Medical School, Newark, NJ, United States
- Research Staff Children's Specialized Hospital New Brunswick, New Brunswick, NJ, United States
| |
Collapse
|
15
|
Hasson CJ, Manczurowsky J, Collins EC, Yarossi M. Neurorehabilitation robotics: how much control should therapists have? Front Hum Neurosci 2023; 17:1179418. [PMID: 37250692 PMCID: PMC10213717 DOI: 10.3389/fnhum.2023.1179418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Robotic technologies for rehabilitating motor impairments from neurological injuries have been the focus of intensive research and capital investment for more than 30 years. However, these devices have failed to convincingly demonstrate greater restoration of patient function compared to conventional therapy. Nevertheless, robots have value in reducing the manual effort required for physical therapists to provide high-intensity, high-dose interventions. In most robotic systems, therapists remain outside the control loop to act as high-level supervisors, selecting and initiating robot control algorithms to achieve a therapeutic goal. The low-level physical interactions between the robot and the patient are handled by adaptive algorithms that can provide progressive therapy. In this perspective, we examine the physical therapist's role in the control of rehabilitation robotics and whether embedding therapists in lower-level robot control loops could enhance rehabilitation outcomes. We discuss how the features of many automated robotic systems, which can provide repeatable patterns of physical interaction, may work against the goal of driving neuroplastic changes that promote retention and generalization of sensorimotor learning in patients. We highlight the benefits and limitations of letting therapists physically interact with patients through online control of robotic rehabilitation systems, and explore the concept of trust in human-robot interaction as it applies to patient-robot-therapist relationships. We conclude by highlighting several open questions to guide the future of therapist-in-the-loop rehabilitation robotics, including how much control to give therapists and possible approaches for having the robotic system learn from therapist-patient interactions.
Collapse
Affiliation(s)
- Christopher J. Hasson
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Institute for Experiential Robotics, Northeastern University, Boston, MA, United States
| | - Julia Manczurowsky
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA, United States
| | - Emily C. Collins
- Institute for Experiential Robotics, Northeastern University, Boston, MA, United States
| | - Mathew Yarossi
- Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA, United States
- Institute for Experiential Robotics, Northeastern University, Boston, MA, United States
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
16
|
Cumplido-Trasmonte C, Molina-Rueda F, Puyuelo-Quintana G, Plaza-Flores A, Hernández-Melero M, Barquín-Santos E, Destarac-Eguizabal MA, García-Armada E. Satisfaction analysis of overground gait exoskeletons in people with neurological pathology. a systematic review. J Neuroeng Rehabil 2023; 20:47. [PMID: 37072823 PMCID: PMC10111693 DOI: 10.1186/s12984-023-01161-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 03/30/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND People diagnosed with neurological pathology may experience gait disorders that affect their quality of life. In recent years, research has been carried out on a variety of exoskeletons in this population. However, the satisfaction perceived by the users of these devices is not known. Therefore, the objective of the present study is to evaluate the satisfaction perceived by users with neurological pathology (patients and professionals) after the use of overground exoskeletons. METHODS A systematic search of five electronic databases was conducted. In order to be included in this review for further analysis, the studies had to meet the following criteria: [1] the study population was people diagnosed with neurological pathology; [2] the exoskeletons had to be overground and attachable to the lower limbs; and [3]: the studies were to include measures assessing either patient or therapist satisfaction with the exoskeletons. RESULTS Twenty-three articles were selected, of which nineteen were considered clinical trials. Participants diagnosed with stroke (n = 165), spinal cord injury (SCI) (n = 102) and multiple sclerosis (MS) (n = 68). Fourteen different overground exoskeleton models were analysed. Fourteen different methods of assessing patient satisfaction with the devices were found, and three ways to evaluate it in therapists. CONCLUSION Users' satisfaction with gait overground exoskeletons in stroke, SCI and MS seems to show positive results in safety, efficacy and comfort of the devices. However, the worst rated aspects and therefore those that should be optimized from the users' point of view are ease of adjustment, size and weight, and ease of use.
Collapse
Affiliation(s)
- C Cumplido-Trasmonte
- Centre for Automation and Robotics (CAR), CSIC-UPM, Ctra Campo Real km 0.2 - La Poveda- Arganda del Rey, Madrid, 28500, Spain.
- International Doctoral School, Rey Juan Carlos University, Madrid, 28922, Spain.
| | - F Molina-Rueda
- Department of Physical Therapy, Physical Medicine and Rehabilitation, Rey Juan Carlos University, Madrid, Spain
| | - G Puyuelo-Quintana
- International Doctoral School, Rey Juan Carlos University, Madrid, 28922, Spain
- Marsi Bionics S.L., Madrid, Spain
| | - A Plaza-Flores
- Centre for Automation and Robotics (CAR), CSIC-UPM, Ctra Campo Real km 0.2 - La Poveda- Arganda del Rey, Madrid, 28500, Spain
- Marsi Bionics S.L., Madrid, Spain
- Polytechnic University of Madrid, Madrid, Spain
| | - M Hernández-Melero
- Centre for Automation and Robotics (CAR), CSIC-UPM, Ctra Campo Real km 0.2 - La Poveda- Arganda del Rey, Madrid, 28500, Spain
| | | | | | - E García-Armada
- Centre for Automation and Robotics (CAR), CSIC-UPM, Ctra Campo Real km 0.2 - La Poveda- Arganda del Rey, Madrid, 28500, Spain.
| |
Collapse
|
17
|
Robot-Assisted Gait Training with Trexo Home: Users, Usage and Initial Impacts. CHILDREN 2023; 10:children10030437. [PMID: 36979997 PMCID: PMC10047646 DOI: 10.3390/children10030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/26/2023]
Abstract
Robotic gait training has the potential to improve secondary health conditions for people with severe neurological impairment. The purpose of this study was to describe who is using the Trexo robotic gait trainer, how much training is achieved in the home and community, and what impacts are observed after the initial month of use. In this prospective observational single-cohort study, parent-reported questionnaires were collected pre- and post-training. Of the 70 participants, the median age was 7 years (range 2 to 24), 83% had CP, and 95% did not walk for mobility. Users trained 2–5 times/week. After the initial month, families reported a significant reduction in sleep disturbance (p = 0.0066). Changes in bowel function, positive affect, and physical activity were not statistically significant. These findings suggest that families with children who have significant mobility impairments can use a robotic gait trainer frequently in a community setting and that sleep significantly improves within the first month of use. This intervention holds promise as a novel strategy to impact multi-modal impairments for this population. Future work should include an experimental study design over a longer training period to begin to understand the relationship between training volume and its full potential.
Collapse
|
18
|
Livolsi C, Conti R, Guanziroli E, Friðriksson Þ, Alexandersson Á, Kristjánsson K, Esquenazi A, Molino Lova R, Romo D, Giovacchini F, Crea S, Molteni F, Vitiello N. An impairment-specific hip exoskeleton assistance for gait training in subjects with acquired brain injury: a feasibility study. Sci Rep 2022; 12:19343. [PMID: 36369462 PMCID: PMC9652374 DOI: 10.1038/s41598-022-23283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
This study was designed to investigate the feasibility and the potential effects on walking performance of a short gait training with a novel impairment-specific hip assistance (iHA) through a bilateral active pelvis orthosis (APO) in patients with acquired brain injury (ABI). Fourteen subjects capable of independent gait and exhibiting mild-to-moderate gait deficits, due to an ABI, were enrolled. Subjects presenting deficit in hip flexion and/or extension were included and divided into two groups based on the presence (group A, n = 6) or absence (group B, n = 8) of knee hyperextension during stance phase of walking. Two iHA-based profiles were developed for the groups. The protocol included two overground gait training sessions using APO, and two evaluation sessions, pre and post training. Primary outcomes were pre vs. post-training walking distance and steady-state speed in the 6-min walking test. Secondary outcomes were self-selected speed, joint kinematics and kinetics, gait symmetry and forward propulsion, assessed through 3D gait analysis. Following the training, study participants significantly increased the walked distance and average steady-state speed in the 6-min walking tests, both when walking with and without the APO. The increased walked distance surpassed the minimal clinically important difference for groups A and B, (respectively, 42 and 57 m > 34 m). In group A, five out of six subjects had decreased knee hyperextension at the post-training session (on average the peak of the knee extension angle was reduced by 36%). Knee flexion during swing phase increased, by 16% and 31%, for A and B groups respectively. Two-day gait training with APO providing iHA was effective and safe in improving walking performance and knee kinematics in ABI survivors. These preliminary findings suggest that this strategy may be viable for subject-specific post-ABI gait rehabilitation.
Collapse
Affiliation(s)
- Chiara Livolsi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy.
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy.
| | | | - Eleonora Guanziroli
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Lecco, Italy
| | | | | | | | - Alberto Esquenazi
- Department of PM&R, MossRehab and Einstein Healthcare Network, Elkins Park, PA, USA
| | | | | | | | - Simona Crea
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Florence, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Costa Masnaga, Lecco, Italy
| | - Nicola Vitiello
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Florence, Italy
| |
Collapse
|
19
|
The Outcomes of Robotic Rehabilitation Assisted Devices Following Spinal Cord Injury and the Prevention of Secondary Associated Complications. Medicina (B Aires) 2022; 58:medicina58101447. [PMID: 36295607 PMCID: PMC9611825 DOI: 10.3390/medicina58101447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Spinal cord injuries (SCIs) have major consequences on the patient’s health and life. Voluntary muscle paralysis caused by spinal cord damage affects the patient’s independence. Following SCI, an irreversible motor and sensory deficit occurs (spasticity, muscle paralysis, atrophy, pain, gait disorders, pain). This pathology has implications on the whole organism: on the osteoarticular, muscular, cardiovascular, respiratory, gastrointestinal, genito-urinary, skin, metabolic disorders, and neuro-psychic systems. The rehabilitation process for a subject having SCIs can be considered complex, since the pathophysiological mechanism and biochemical modifications occurring at the level of spinal cord are not yet fully elucidated. This review aims at evaluating the impact of robotic-assisted rehabilitation in subjects who have suffered SCI, both in terms of regaining mobility as a major dysfunction in patients with SCI, but also in terms of improving overall fitness and cardiovascular function, respiratory function, as well as the gastrointestinal system, bone density and finally the psychosocial issues, based on multiple clinical trials, and pilot studies. The researched literature in the topic revealed that in order to increase the chances of neuro-motor recovery and to obtain satisfactory results, the combination of robotic therapy, a complex recovery treatment and specific medication is one of the best decisions. Furthermore, the use of these exoskeletons facilitates better/greater autonomy for patients, as well as optimal social integration.
Collapse
|
20
|
Rodriguez Tapia G, Doumas I, Lejeune T, Previnaire JG. Wearable powered exoskeletons for gait training in tetraplegia: a systematic review on feasibility, safety and potential health benefits. Acta Neurol Belg 2022; 122:1149-1162. [DOI: 10.1007/s13760-022-02011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/16/2022] [Indexed: 11/01/2022]
|
21
|
Abstract
The exoskeleton is often regarded as a tool for rehabilitation and assistance of human movement. The control schemes were conventionally implemented by developing accurate physical and kinematic models, which often lack robustness to external variational disturbing forces. This paper presents a virtual neuromuscular control for robotic ankle exoskeleton standing balance. The robustness of the proposed method was improved by applying a specific virtual neuromuscular model to estimate the desired ankle torques for ankle exoskeleton standing balance control. In specialty, the proposed control method has two key components, including musculoskeletal mechanics and neural control. A simple version of the ankle exoskeleton was designed, and three sets of comparative experiments were carried out. The experimentation results demonstrated that the proposed virtual neuromuscular control could effectively reduce the wearer’s lower limb muscle activation, and improve the robustness of the different external disturbances.
Collapse
|
22
|
Bulea TC, Sharma N, Sikdar S, Su H. Editorial: Next Generation User-Adaptive Wearable Robots. Front Robot AI 2022; 9:920655. [PMID: 35899075 PMCID: PMC9311481 DOI: 10.3389/frobt.2022.920655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Thomas C. Bulea
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, United States
- *Correspondence: Thomas C. Bulea,
| | - Nitin Sharma
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC, United States
| | - Siddhartha Sikdar
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
- Center for Adaptive Systems of Brain-Body Interactions, George Mason University, Fairfax, VA, United States
| | - Hao Su
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
23
|
Fang Y, Orekhov G, Lerner ZF. Adaptive ankle exoskeleton gait training demonstrates acute neuromuscular and spatiotemporal benefits for individuals with cerebral palsy: A pilot study. Gait Posture 2022; 95:256-263. [PMID: 33248858 PMCID: PMC8110598 DOI: 10.1016/j.gaitpost.2020.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 10/05/2020] [Accepted: 11/04/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Gait abnormalities from neuromuscular conditions like cerebral palsy (CP) limit mobility and negatively affect quality of life. Increasing walking speed and stride length are essential clinical goals in the treatment of gait disorders from CP. RESEARCH QUESTION How does over-ground gait training with an untethered ankle exoskeleton providing adaptive assistance affect mobility-related spatiotemporal outcomes and lower-extremity muscle activity in people with CP? METHODS A diverse cohort of individuals with CP (n = 6, age 9-31, Gross Motor Function Classification System Level I - III) completed four over-ground training sessions (98 ± 17 min of assisted walking) and received pre- and post-training assessments. On both assessments, participants walked over-ground with and without the exoskeleton while we recorded spatiotemporal outcomes and muscle activity. We used two-tailed paired t-tests to compare all parameters pre- and post-training, and between assisted and unassisted conditions. RESULTS Following training, walking speed increased 0.24 m/s (p = 0.006) and stride length increased 0.17 m (p = 0.013) during unassisted walking, while walking speed increased 0.28 m/s (p = 0.023) and stride length increased 0.15 m (p = 0.002) during exoskeleton-assisted walking. Exoskeleton training improved stride-to-stride repeatability of soleus and vastus lateralis muscle activation by up to 51 % (p ≤ 0.046), while the amount of integrated stance-phase muscle activity was similar across visits and conditions. Relative to baseline, post-training walking with the exoskeleton resulted in a soleus activity pattern that was 39 % more similar to the typical pattern from unimpaired individuals (p < 0.001). SIGNIFICANCE This study demonstrates acute spatiotemporal and neuromuscular benefits from over-ground training with adaptive ankle exoskeleton assistance, and provides rationale for completion of a longer randomized controlled training protocol.
Collapse
Affiliation(s)
- Ying Fang
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Greg Orekhov
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Zachary F. Lerner
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ 86011, USA,Department of Orthopedics, the University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| |
Collapse
|
24
|
van der Kooij H, Fricke SS, Veld RCV, Prieto AV, Keemink AQL, Schouten AC, van Asseldonk EHF. Identification of Hip and Knee Joint Impedance During the Swing Phase of Walking. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1203-1212. [PMID: 35503817 DOI: 10.1109/tnsre.2022.3172497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Knowledge on joint impedance during walking in various conditions is relevant for clinical decision-making and the development of robotic gait trainers, leg prostheses, leg orthotics and wearable exoskeletons. Whereas ankle impedance during walking has been experimentally assessed, knee and hip joint impedance during walking have not been identified yet. Here we developed and evaluated a lower limb perturbator to identify hip, knee and ankle joint impedance during treadmill walking. The lower limb perturbator (LOPER) consists of an actuator connected to the thigh via rods. The LOPER allows to apply force perturbations to a free-hanging leg, while standing on the contralateral leg, with a bandwidth of up to 39 Hz. While walking in minimal impedance mode, the interaction forces between LOPER and the thigh were low (<5 N) and the effect on the walking pattern was smaller than the within-subject variability during normal walking. Using a non-linear multibody dynamical model of swing leg dynamics, the hip, knee and ankle joint impedance were estimated at three time points during the swing phase for nine subjects walking at a speed of 0.5 m/s. The identified model was well able to predict the experimental responses for the hip and knee, since the mean variance accounted (VAF) for was 99% and 96%, respectively. The ankle lacked a consistent response and the mean VAF of the model fit was only 77%, and therefore the estimated ankle impedance was not reliable. The averaged across-subjects stiffness varied between the three time points within 34-66 and 0-3.5 Nm/rad Nm/rad for the hip and knee joint respectively. The damping varied between 1.9-4.6 and 0.02-0.14 Nms/rad Nms/rad for hip and knee respectively. The developed LOPER has a negligible effect on the unperturbed walking pattern and allows to identify hip and knee impedance during the swing phase.
Collapse
|
25
|
Design Approaches of an Exoskeleton for Human Neuromotor Rehabilitation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
This paper addresses a design for an exoskeleton used for human locomotion purposes in cases of people with neuromotor disorders. The reason for starting this research was given by the development of some intelligent systems for walking recovery involved in a new therapy called stationary walking therapy. This therapy type will be used in this research case, through a robotic system specially designed for functional walking recovery. Thus, the designed robotic system structure will have a patient lifting/positioning mechanism, a special exoskeleton equipped with sensors and actuators, a treadmill for walking, and a command and control unit. The exoskeleton’s lower limbs will have six orthotic devices. Thus, the exoskeleton’s lower limbs’ motions and orthoses angle variations will be generated by healthy human subjects on the treadmill with the possibility of memorizing these specific motions for obtaining one complete gait cycle. After this, the memorized motions will be performed to a patient with neuromotor disorders for walking recovery programs. The design core is focused on two planar-parallel mechanisms implemented at the knee and ankle joints of each leg’s exoskeleton. Thus, numerical simulations for the design process were carried out to validate the engineering feasibility of the proposed leg exoskeleton.
Collapse
|
26
|
Forte G, Leemhuis E, Favieri F, Casagrande M, Giannini AM, De Gennaro L, Pazzaglia M. Exoskeletons for Mobility after Spinal Cord Injury: A Personalized Embodied Approach. J Pers Med 2022; 12:380. [PMID: 35330380 PMCID: PMC8954494 DOI: 10.3390/jpm12030380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Endowed with inherent flexibility, wearable robotic technologies are powerful devices that are known to extend bodily functionality to assist people with spinal cord injuries (SCIs). However, rather than considering the specific psychological and other physiological needs of their users, these devices are specifically designed to compensate for motor impairment. This could partially explain why they still cannot be adopted as an everyday solution, as only a small number of patients use lower-limb exoskeletons. It remains uncertain how these devices can be appropriately embedded in mental representations of the body. From this perspective, we aimed to highlight the homeostatic role of autonomic and interoceptive signals and their possible integration in a personalized experience of exoskeleton overground walking. To ensure personalized user-centered robotic technologies, optimal robotic devices should be designed and adjusted according to the patient's condition. We discuss how embodied approaches could emerge as a means of overcoming the hesitancy toward wearable robots.
Collapse
Affiliation(s)
- Giuseppe Forte
- Dipartimento di Psicologia, “Sapienza” Università di Roma, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (A.M.G.); (L.D.G.); (M.P.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Erik Leemhuis
- Dipartimento di Psicologia, “Sapienza” Università di Roma, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (A.M.G.); (L.D.G.); (M.P.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Francesca Favieri
- Dipartimento di Psicologia, “Sapienza” Università di Roma, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (A.M.G.); (L.D.G.); (M.P.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Maria Casagrande
- Dipartimento di Psicologia Dinamica, Clinica e Salute, Università di Rome “Sapienza”, Via Degli Apuli 1, 00185 Rome, Italy;
| | - Anna Maria Giannini
- Dipartimento di Psicologia, “Sapienza” Università di Roma, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (A.M.G.); (L.D.G.); (M.P.)
| | - Luigi De Gennaro
- Dipartimento di Psicologia, “Sapienza” Università di Roma, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (A.M.G.); (L.D.G.); (M.P.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Mariella Pazzaglia
- Dipartimento di Psicologia, “Sapienza” Università di Roma, Via dei Marsi 78, 00185 Rome, Italy; (E.L.); (A.M.G.); (L.D.G.); (M.P.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| |
Collapse
|
27
|
Adaptive Adjustment Strategy for Walking Characteristics of Single-Legged Exoskeleton Robots. MACHINES 2022. [DOI: 10.3390/machines10020134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to achieve the normal walking of hemiplegic patients, this paper proposes a single-legged exoskeleton robot according to the bionics principle, and presents an adaptive adjustment strategy for walking characteristics. The least square regression analysis is used to fit the angle data of healthy leg joints by cubic polynomials, and then the parametric design of the fitted curve is carried out to obtain the influence of the user’s stride frequency and stride length on the joint angle, so that the gait of the exoskeleton can be adjusted in real time according to the stride length and stride frequency of the healthy leg to realize normal walking. In order to verify the effectiveness of the adaptive adjustment strategy proposed in this paper, the angle of leg joints under normal gait is collected in advance. In addition, an adult male is chosen as the subject to walk on the horizontal ground wearing the single-legged exoskeleton as the experiment. The experimental results show that the designed exoskeleton is reasonable, and the adaptive adjustment strategy proposed in this paper can make the exoskeleton adapt well and follow the gait of healthy legs to achieve a more natural walking state.
Collapse
|
28
|
Sharifi M, Mehr JK, Mushahwar VK, Tavakoli M. Adaptive CPG-Based Gait Planning With Learning-Based Torque Estimation and Control for Exoskeletons. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3105996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Almutairi SM, Swank C, Wang-Price SS, Gao F, Medley A. Walking with and without a robotic exoskeleton in people with incomplete spinal cord injury compared to a typical gait pattern. NeuroRehabilitation 2021; 49:585-596. [PMID: 34542041 DOI: 10.3233/nre-210187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Robotic exoskeleton (RE) enables individuals with lower extremity weakness or paralysis to stand and walk in a stereotypical pattern. OBJECTIVE Examine whether people with chronic incomplete spinal cord injury (SCI) demonstrate a more typical gait pattern when walking overground in a RE than when walking without. METHODS Motion analysis system synchronized with a surface electromyographic (EMG) was used to obtain temporospatial gait parameters, lower extremity kinematics, and muscle activity in ambulatory individuals with SCI and healthy adults. RESULTS Temporospatial parameters and kinematics for participants with SCI (n = 12; age 41.4±12.5 years) with and without RE were significantly different than a typical gait (healthy adults: n = 15; age 26.2±8.3 years). EMG amplitudes during the stance phase of a typical gait were similar to those with SCI with and without RE, except the right rectus femoris (p = 0.005) and left gluteus medius (p = 0.014) when participants with SCI walked with RE. EMG amplitudes of participants with SCI during the swing phase were significantly greater compared to those of a typical gait, except for left medial hamstring with (p = 0.025) and without (p = 0.196) RE. CONCLUSIONS First-time walking in a RE does not appear to produce a typical gait pattern in people with incomplete SCI.
Collapse
Affiliation(s)
- Sattam M Almutairi
- Department of Physical Therapy, College of Medical Rehabilitation, Qassim University, Buraydah, Saudi Arabia
| | - Chad Swank
- Baylor Scott & White Institute for Rehabilitation, Dallas, USA
| | | | - Fan Gao
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, USA
| | - Ann Medley
- School of Physical Therapy, Texas Woman's University, Dallas, USA
| |
Collapse
|
30
|
Abstract
For the rapidly growing aging demographic worldwide, robotic training methods could be impactful towards improving balance critical for everyday life. Here, we investigated the hypothesis that non-bodyweight supportive (nBWS) overground robotic balance training would lead to improvements in balance performance and balance confidence in older adults. Sixteen healthy older participants (69.7 ± 6.7 years old) were trained while donning a harness from a distinctive NaviGAITor robotic system. A control group of 11 healthy participants (68.7 ± 5.0 years old) underwent the same training but without the robotic system. Training included 6 weeks of standing and walking tasks while modifying: (1) sensory information (i.e., with and without vision (eyes-open/closed), with more and fewer support surface cues (hard or foam surfaces)) and (2) base-of-support (wide, tandem and single-leg standing exercises). Prior to and post-training, balance ability and balance confidence were assessed via the balance error scoring system (BESS) and the Activities specific Balance Confidence (ABC) scale, respectively. Encouragingly, results showed that balance ability improved (i.e., BESS errors significantly decreased), particularly in the nBWS group, across nearly all test conditions. This result serves as an indication that robotic training has an impact on improving balance for healthy aging individuals.
Collapse
|
31
|
Porciuncula F, Baker TC, Arumukhom Revi D, Bae J, Sloutsky R, Ellis TD, Walsh CJ, Awad LN. Targeting Paretic Propulsion and Walking Speed With a Soft Robotic Exosuit: A Consideration-of-Concept Trial. Front Neurorobot 2021; 15:689577. [PMID: 34393750 PMCID: PMC8356079 DOI: 10.3389/fnbot.2021.689577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Soft robotic exosuits can facilitate immediate increases in short- and long-distance walking speeds in people with post-stroke hemiparesis. We sought to assess the feasibility and rehabilitative potential of applying propulsion-augmenting exosuits as part of an individualized and progressive training program to retrain faster walking and the underlying propulsive strategy. Methods: A 54-yr old male with chronic hemiparesis completed five daily sessions of Robotic Exosuit Augmented Locomotion (REAL) gait training. REAL training consists of high-intensity, task-specific, and progressively challenging walking practice augmented by a soft robotic exosuit and is designed to facilitate faster walking by way of increased paretic propulsion. Repeated baseline assessments of comfortable walking speed over a 2-year period provided a stable baseline from which the effects of REAL training could be elucidated. Additional outcomes included paretic propulsion, maximum walking speed, and 6-minute walk test distance. Results: Comfortable walking speed was stable at 0.96 m/s prior to training and increased by 0.30 m/s after training. Clinically meaningful increases in maximum walking speed (Δ: 0.30 m/s) and 6-minute walk test distance (Δ: 59 m) were similarly observed. Improvements in paretic peak propulsion (Δ: 2.80 %BW), propulsive power (Δ: 0.41 W/kg), and trailing limb angle (Δ: 6.2 degrees) were observed at comfortable walking speed (p's < 0.05). Likewise, improvements in paretic peak propulsion (Δ: 4.63 %BW) and trailing limb angle (Δ: 4.30 degrees) were observed at maximum walking speed (p's < 0.05). Conclusions: The REAL training program is feasible to implement after stroke and capable of facilitating rapid and meaningful improvements in paretic propulsion, walking speed, and walking distance.
Collapse
Affiliation(s)
- Franchino Porciuncula
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA, United States
| | - Teresa C. Baker
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA, United States
| | - Dheepak Arumukhom Revi
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA, United States
| | - Jaehyun Bae
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States
- Apple Inc., Cupertino, CA, United States
| | - Regina Sloutsky
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA, United States
| | - Terry D. Ellis
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA, United States
| | - Conor J. Walsh
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States
| | - Louis N. Awad
- Paulson School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, United States
- Neuromotor Recovery Laboratory, Department of Physical Therapy, College of Health and Rehabilitation Sciences, Sargent College, Boston University, Boston, MA, United States
| |
Collapse
|
32
|
Lonini L, Shawen N, Hoppe-Ludwig S, Deems-Dluhy S, Mummidisetty CK, Eisenberg Y, Jayaraman A. Combining Accelerometer and GPS Features to Evaluate Community Mobility in Knee Ankle Foot Orthoses (KAFO) Users. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1386-1393. [PMID: 34252030 PMCID: PMC8363134 DOI: 10.1109/tnsre.2021.3096434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Orthotic and assistive devices such as knee ankle foot orthoses (KAFO), come in a variety of forms and fits, with several levels of available features that could help users perform daily activities more naturally. However, objective data on the actual use of these devices outside of the research lab is usually not obtained. Such data could enhance traditional lab-based outcome measures and inform clinical decision-making when prescribing new orthotic and assistive technology. Here, we link data from a GPS unit and an accelerometer mounted on the orthotic device to quantify its usage in the community and examine the correlations with clinical metrics. We collected data from 14 individuals over a period of 2 months as they used their personal KAFO first, and then a novel research KAFO; for each device we quantified number of steps, cadence, time spent at community locations and time wearing the KAFO at those locations. Sensor-derived metrics showed that mobility patterns differed widely between participants (mean steps: 591.3, SD =704.2). The novel KAFO generally enabled participants to walk faster during clinical tests ( ∆6 Minute-Walk-Test=71.5m, p=0.006). However, some participants wore the novel device less often despite improved performance on these clinical measures, leading to poor correlation between changes in clinical outcome measures and changes in community mobility ( ∆6 Minute-Walk-Test - ∆ Community Steps: r=0.09, p=0.76). Our results suggest that some traditional clinical outcome measures may not be associated with the actual wear time of an assistive device in the community, and obtaining personalized data from real-world use through wearable technology is valuable.
Collapse
|
33
|
Song S, Collins SH. Optimizing Exoskeleton Assistance for Faster Self-Selected Walking. IEEE Trans Neural Syst Rehabil Eng 2021; 29:786-795. [PMID: 33877982 DOI: 10.1109/tnsre.2021.3074154] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Self-selected walking speed is an important aspect of mobility. Exoskeletons can increase walking speed, but the mechanisms behind these changes and the upper limits on performance are unknown. Human-in-the-loop optimization is a technique for identifying exoskeleton characteristics that maximize the benefits of assistance, which has been critical to achieving large improvements in energy economy. In this study, we used human-in-the-loop optimization to test whether large improvements in self-selected walking speed are possible through ankle exoskeleton assistance. Healthy participants (N =10) were instructed to walk at a comfortable speed on a self-paced treadmill while wearing tethered ankle exoskeletons. An algorithm sequentially applied different patterns of exoskeleton torque and estimated the speed-optimal pattern, which was then evaluated in separate trials. With torque optimized for speed, participants walked 42% faster than in normal shoes (1.83 ms-1 vs. 1.31 ms-1; Tukey HSD, p = 4 ×10-8 ), with speed increases ranging from 6% to 91%. Participants walked faster with speed-optimized torque than with torque optimized for energy consumption (1.55 ms-1) or torque chosen to induce slow walking (1.18 ms-1). Gait characteristics with speed-optimized torque were highly variable across participants, and changes in metabolic cost of transport ranged from a 31% decrease to a 78% increase, with a decrease of 2% on average. These results demonstrate that ankle exoskeletons can facilitate large increases in self-selected walking speed, which could benefit older adults and others with reduced walking speed.
Collapse
|
34
|
Kose KC, Ozgoren MK, Tekce F, Doner N. Design and kinematic analysis of a novel rehabilitative robotic walking simulation device. Proc Inst Mech Eng H 2021; 235:770-779. [PMID: 33794689 DOI: 10.1177/09544119211006502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper presents an original rehabilitative robotic walking simulation device. As a novel feature, it can duplicate the walking motion of the feet completely by including the motion of the metatarsophalangeal joints as well. It is also adjustable to different foot sizes and gait parameters such as speed, step length, and foot elevation. The presented device comprises two identical mechanisms that simulate the right and left feet. Each mechanism is designed as a planar parallel manipulator with three degrees of freedom and thus its platform (i.e. foot plate) can duplicate the sagittal-plane motion of a foot completely. A prototype of the device is already built, patented, and tested by several people, two of whom are physiotherapists. In the paper, the inverse and forward kinematic analyses of each parallel manipulator are also presented. The inverse kinematic analysis is carried out based on a typical gait cycle data of a healthy person gathered from the related literature. The results of the inverse kinematic analysis are then used as reference trajectory data in testing the device with different healthy people at different speeds.
Collapse
Affiliation(s)
- Kemal Cem Kose
- Mechanical Engineering Department, Kutahya Dumlupinar University, Kutahya, Turkey
| | - M Kemal Ozgoren
- Mechanical Engineering Department, Middle East Technical University, Ankara, Turkey
| | - Ferzende Tekce
- Informatics Department, Kutahya Dumlupinar University, Kutahya, Turkey
| | - Nimeti Doner
- Mechanical Engineering Department, Gazi University, Ankara, Turkey
| |
Collapse
|
35
|
Ezaki S, Kadone H, Kubota S, Abe T, Shimizu Y, Tan CK, Miura K, Hada Y, Sankai Y, Koda M, Suzuki K, Yamazaki M. Analysis of Gait Motion Changes by Intervention Using Robot Suit Hybrid Assistive Limb (HAL) in Myelopathy Patients After Decompression Surgery for Ossification of Posterior Longitudinal Ligament. Front Neurorobot 2021; 15:650118. [PMID: 33867965 PMCID: PMC8044802 DOI: 10.3389/fnbot.2021.650118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is a hyperostonic condition in which the posterior longitudinal ligament becomes thick and loses its flexibility, resulting in ectopic ossification and severe neurologic deficit (Matsunaga and Sakou, 2012). It commonly presents with myelopathy and radiculopathy and with myelopathy progression motor disorders and balance disorders can appear. Even after appropriate surgical decompression, some motor impairments often remain. The Hybrid Assistive Limb (HAL) is a wearable powered suit designed to assist and support the user's voluntary control of hip and knee joint motion by detecting bioelectric signals from the skin surface and force/pressure sensors in the shoes during movement. In the current study, the HAL intervention was applied to 15 patients diagnosed with OPLL who presented with myelopathy after decompression surgery (6 acute and 9 chronic stage). Following the HAL intervention, there were significant improvements in gait speed, cadence, stride length, in both acute and chronic groups. Joint angle analysis of the lower limbs showed that range of motion (ROM) of hip and knee joints in acute group, and also ROM of hip joint and toe-lift during swing in chronic group increased significantly. ROM of knee joint became closer to healthy gait in both groups. Electromyography analysis showed that hamstrings activity in the late swing phase increased significantly for acute patients. Immidiate effect from HAL session was also observed. EMG of vastus medialis were decreased except chronic 7th session and EMG of gastrocnemius were decreased except acute 7th session, which suggests the patients were learning to walk with lesser knee-hypertension during the sessions. After all, double knee action appeared in both acute and chronic groups after the HAL intervention, rather than knee hyper-extension which is a common gait impairment in OPLL. We consider that these improvements lead to a smoother and healthier gait motion.
Collapse
Affiliation(s)
- Seioh Ezaki
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba, Japan
| | - Hideki Kadone
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan
| | - Shigeki Kubota
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba, Japan
| | - Tetsuya Abe
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba, Japan
| | - Yukiyo Shimizu
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan.,Department of Rehabilitation Medicine, University of Tsukuba, Tsukuba, Japan
| | - Chun Kwang Tan
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan
| | - Kousei Miura
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba, Japan
| | - Yasushi Hada
- Department of Rehabilitation Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshiyuki Sankai
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan.,Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan
| | - Masao Koda
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba, Japan.,Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan
| | - Kenji Suzuki
- Center for Cybernics Research, University of Tsukuba, Tsukuba, Japan.,Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
36
|
Kim SK, Park D, Yoo B, Shim D, Choi JO, Choi TY, Park ES. Overground Robot-Assisted Gait Training for Pediatric Cerebral Palsy. SENSORS 2021; 21:s21062087. [PMID: 33809758 PMCID: PMC8002375 DOI: 10.3390/s21062087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022]
Abstract
The untethered exoskeletal robot provides patients with the freest and realistic walking experience by assisting them based on their intended movement. However, few previous studies have reported the effect of robot-assisted gait training (RAGT) using wearable exoskeleton in children with cerebral palsy (CP). This pilot study evaluated the effect of overground RAGT using an untethered torque-assisted exoskeletal wearable robot for children with CP. Three children with bilateral spastic CP were recruited. The robot generates assistive torques according to gait phases automatically detected by force sensors: flexion torque during the swing phase and extension torque during the stance phase at hip and knee joints. The overground RAGT was conducted for 17~20 sessions (60 min per session) in each child. The evaluation was performed without wearing a robot before and after the training to measure (1) the motor functions using the gross motor function measure and the pediatric balance scale and (2) the gait performance using instrumented gait analysis, the 6-min walk test, and oxygen consumption measurement. All three participants showed improvement in gross motor function measure after training. Spatiotemporal parameters of gait analysis improved in participant P1 (9-year-old girl, GMFCS II) and participant P2 (13-year-old boy, GMFCS III). In addition, they walked faster and farther with lower oxygen consumption during the 6-min walk test after the training. Although participant P3 (16-year-old girl, GMFCS IV) needed the continuous help of a therapist for stepping at baseline, she was able to walk with the platform walker independently after the training. Overground RAGT using a torque-assisted exoskeletal wearable robot seems to be promising for improving gross motor function, walking speed, gait endurance, and gait efficiency in children with CP. In addition, it was safe and feasible even for children with severe motor impairment (GMFCS IV).
Collapse
Affiliation(s)
- Seung Ki Kim
- Department and Rehabilitation Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, 363 Dongbaekjukjeon-daero, Giheung-gu, Yongin-si 16995, Korea;
| | - Dongho Park
- Department and Research Institute of Rehabilitation Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (D.P.); (B.Y.); (D.S.); (J.-O.C.); (T.Y.C.)
| | - Beomki Yoo
- Department and Research Institute of Rehabilitation Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (D.P.); (B.Y.); (D.S.); (J.-O.C.); (T.Y.C.)
| | - Dain Shim
- Department and Research Institute of Rehabilitation Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (D.P.); (B.Y.); (D.S.); (J.-O.C.); (T.Y.C.)
| | - Joong-On Choi
- Department and Research Institute of Rehabilitation Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (D.P.); (B.Y.); (D.S.); (J.-O.C.); (T.Y.C.)
| | - Tae Young Choi
- Department and Research Institute of Rehabilitation Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (D.P.); (B.Y.); (D.S.); (J.-O.C.); (T.Y.C.)
| | - Eun Sook Park
- Department and Research Institute of Rehabilitation Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; (D.P.); (B.Y.); (D.S.); (J.-O.C.); (T.Y.C.)
- Correspondence: ; Tel.: +82-2-2228-3712
| |
Collapse
|
37
|
Panizzolo FA, Cimino S, Pettenello E, Belfiore A, Petrone N, Marcolin G. Effect of a passive hip exoskeleton on walking distance in neurological patients. Assist Technol 2021; 34:527-532. [PMID: 33481693 DOI: 10.1080/10400435.2021.1880494] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Severe neurodegenerative diseases such as Parkinson's disease or multiple sclerosis and acute events like stroke, spinal cord injuries, or other related pathologies have been shown to negatively impact the central and peripheral nervous systems, thus causing severe impairments to mobility. The development and utilization of exoskeletons as rehabilitation devices have shown good potential for improving patients' gait function. Ten older adults (age: 68.9 ± 9.2 yrs; height: 1.65 ± 0.08 m; mass: 71.6 ± 11.0 kg) affected by neurological diseases impacting their gait function completed a 10-session gait training protocol where they walked for 10 minutes wearing a passive exoskeleton assisting hip flexion, namely, Exoband. Results showed that participants walked a significantly longer distance in the last session of training with respect to the first session (453.1 ± 178.8 m vs 392.4 ± 135.1 m, respectively). This study indicates the potential of Exoband as an effective tool for gait rehabilitation in patients with neurological diseases. Wearable, lightweight, and low-cost devices such as the one involved in this work have the potential to improve walking distance in patients.
Collapse
Affiliation(s)
| | - S Cimino
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | | | - A Belfiore
- Centro Medico di Fisioterapia, Padova, Italy
| | - N Petrone
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - G Marcolin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
38
|
Tan K, Koyama S, Sakurai H, Teranishi T, Kanada Y, Tanabe S. Wearable robotic exoskeleton for gait reconstruction in patients with spinal cord injury: A literature review. J Orthop Translat 2021; 28:55-64. [PMID: 33717982 PMCID: PMC7930505 DOI: 10.1016/j.jot.2021.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/25/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives Wearable robotic exoskeletons (WREs) have been globally developed to achieve gait reconstruction in patients with spinal cord injury (SCI). The present study aimed to enable evidence-based decision-making in selecting the optimal WRE according to residual motor function and to provide a new perspective on further development of appropriate WREs. Methods The current review was conducted by searching PubMed, Web of Science, and Google Scholar for relevant studies published from April 2015 to February 2020. Selected studies were analysed with a focus on the participants’ neurological level of SCI, amount of training (number of training sessions and duration of the total training period), gait speed and endurance achieved, and subgroup exploration of the number of persons for assistance and the walking aid used among patients with cervical level injury. Results A total of 28 articles (nine using Ekso, three using Indego, ten using ReWalk, one using REX, five using Wearable Power-Assist Locomotor) involving 228 patients were included in the analysis. Across all WREs, T6 was the most frequently reported level of SCI. The amount of training showed a wide distribution (number of training sessions: 2–230 sessions [30–120 min per session]; duration of the total training period: 1–24 weeks [1–5 times per week]). The mean gait speed was 0.31 m/s (standard deviation [SD] 0.14), and the mean distance on the 6-min walking test as a measure of endurance was 108.9 m (SD 46.7). The subgroup exploration aimed at patients with cervical level injury indicated that 59.2% of patients were able to ambulate with no physical assistance and several patients used a walker as a walking aid. Conclusion The number of cervical level injury increased, as compared to the number previously indicated by a prior similar review. Training procedure was largely different among studies. Further improvement based on gait performance is required for use and dissemination in daily life. The translational potential of this article The present review reveals the current state of the clinical effectiveness of WREs for gait reconstruction in patients with SCI, contributing to evidence-based device application and further development.
Collapse
Affiliation(s)
- Koki Tan
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Soichiro Koyama
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Hiroaki Sakurai
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Toshio Teranishi
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Yoshikiyo Kanada
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
- Corresponding author.
| |
Collapse
|
39
|
Hwang SH, Sun DI, Han J, Kim WS. Gait pattern generation algorithm for lower-extremity rehabilitation–exoskeleton robot considering wearer’s condition. INTEL SERV ROBOT 2021. [DOI: 10.1007/s11370-020-00346-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Plaza A, Hernandez M, Puyuelo G, Garces E, Garcia E. Wearable rehabilitation exoskeletons of the lower limb: analysis of versatility and adaptability. Disabil Rehabil Assist Technol 2020; 18:392-406. [PMID: 33332159 DOI: 10.1080/17483107.2020.1858976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To analyse the versatility and adaptability of commercially available exoskeletons for mobility assistance and their adaptation to diverse pathologies through a review of clinical trials in robotic lower limb training. DATA SOURCES A computer-aided search in bibliographic databases (PubMed and Web of Science) of clinical trials published up to September 2020 was done. METHODS To be selected for detailed review, clinical trials had to meet the following criteria: (1) a protocol was designed and approved, (2) participants were people with pathologies, and (3) the trials were not a single case study. Clinical trial data were collected, extracted, and analysed, considering: objectives, trial participants, number of sessions, pathologies involved, and conclusions. RESULTS The search resulted in 312 potentially relevant studies of seven commercial exoskeletons, of which 135 passed the preliminary screening; and 69 studies were finally selected. Of the 69 clinical trials included in the review about 50% involved Spinal Cord Injury participants, while roughly 25% focussed on stroke and two trials corresponded to patients with both disorders. The rest were composed of neurological diseases and trauma disorders. CONCLUSIONS The use of a single wearable robot for different medical conditions in various diseases is a challenge. Based on this comparative, the properties of the exoskeletons that improve the working ability with different pathologies and patient conditions have been evaluated. Suggestions were made for developing a new lower-limb exoskeleton based on various modules with a distributed control system to improve versatility in wearable technology for different gait pattern progression.Implications for rehabilitationWearable robotic exoskeletons for gait assistance have been analysed from the perspective of adaptation to different diseases.This paper emphasizes the importance of personalized therapies and adaptive assistive technology.Suggestions were made for a new modular exoskeleton capable of addressing the issue of low versatility characterizing currently wearable assistive technology.
Collapse
Affiliation(s)
- Alberto Plaza
- Marsi Bionics S.L, Madrid, Spain.,Centro de Automática y Robótica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Mar Hernandez
- Centro de Automática y Robótica, Consejo Superior de Investigaciones Científicas (CSIC-UPM), Madrid, Spain
| | - Gonzalo Puyuelo
- Marsi Bionics S.L, Madrid, Spain.,Escuela de Doctorado, Universidad Rey Juan Carlos, Madrid, Spain
| | | | - Elena Garcia
- Centro de Automática y Robótica, Consejo Superior de Investigaciones Científicas (CSIC-UPM), Madrid, Spain
| |
Collapse
|
41
|
Kinetic Gait Changes after Robotic Exoskeleton Training in Adolescents and Young Adults with Acquired Brain Injury. Appl Bionics Biomech 2020; 2020:8845772. [PMID: 33193810 PMCID: PMC7641681 DOI: 10.1155/2020/8845772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/11/2020] [Accepted: 10/08/2020] [Indexed: 11/18/2022] Open
Abstract
Background Acquired brain injury (ABI) is one of the leading causes of motor deficits in children and adults and often results in motor control and balance impairments. Motor deficits include abnormal loading and unloading, increased double support time, decreased walking speed, control, and coordination. These deficits lead to diminished functional ambulation and reduced quality of life. Robotic exoskeletons (RE) for motor rehabilitation can provide the user with consistent, symmetrical, goal-directed repetition of movement, as well as balance and stability. Purpose The goal of this preliminary prospective before and after study is to evaluate the therapeutic effect of RE training on the loading/unloading and spatial-temporal characteristics in adolescents and young adults with chronic ABI. Method Seven participants diagnosed with ABI between the ages of 14 and 27 years participated in the study. All participants received twelve 45 minute sessions of RE gait training. The bilateral loading (linearity of loading and rate of loading), speed, step length, swing time, stance time, and total time were collected using Zeno™ walkway (ProtoKinetics, Havertown, PA, USA) before and after RE training. Results Results from the study showed improved step length, speed, and an overall progression towards healthy bilateral loading, with linearity of loading showing a significant therapeutic effect (p < 0.05). Conclusion These preliminary results suggest that high dose, repetitive, consistent gait training using RE has the potential to induce recovery of function in adolescents and young adults diagnosed with ABI.
Collapse
|
42
|
Ehrlich-Jones L, Crown DS, Kinnett-Hopkins D, Field-Fote E, Furbish C, Mummidisetty CK, Bond RA, Forrest G, Jayaraman A, Heinemann AW. Clinician Perceptions of Robotic Exoskeletons for Locomotor Training After Spinal Cord Injury: A Qualitative Approach. Arch Phys Med Rehabil 2020; 102:203-215. [PMID: 33171130 DOI: 10.1016/j.apmr.2020.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To describe the experiences of clinicians who have used robotic exoskeletons in their practice and acquire information that can guide clinical decisions and training strategies related to robotic exoskeletons. DESIGN Qualitative, online survey study, and 4 single-session focus groups followed by thematic analysis to define themes. SETTING Focus groups were conducted at 3 regional rehabilitation hospitals and 1 Veteran's Administration (VA) Medical Center. PARTICIPANTS Clinicians (N=40) reported their demographic characteristics and clinical experience using robotic exoskeletons. Twenty-nine clinicians participated in focus groups at regional hospitals that use robotic exoskeletons, as well as 1 VA Medical Center. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURE Clinicians' preferences, experiences, training strategies, and clinical decisions on how robotic exoskeleton devices are used with Veterans and civilians with spinal cord injury. RESULTS Clinicians had an average of 3 years of experience using exoskeletons in clinical and research settings. Major themes emerging from focus group discussions included appropriateness of patient goals, patient selection criteria, realistic patient expectations, patient and caregiver training for use of exoskeletons, perceived benefits, preferences regarding specific exoskeletons, and device limitations and therapy recommendations. CONCLUSIONS Clinicians identified benefits of exoskeleton use including decreased physical burden and fatigue while maximizing patient mobility, increased safety of clinicians and patients, and expanded device awareness and preferences. Suitability of exoskeletons for patients with various characteristics and managing expectations were concerns. Clinicians identified research opportunities as technology continues to advance toward safer, lighter, and hands-free devices.
Collapse
Affiliation(s)
- Linda Ehrlich-Jones
- Shirley Ryan AbilityLab, Center for Rehabilitation Outcomes Research, Chicago, IL; Northwestern University Feinberg School of Medicine, Department of Physical Medicine & Rehabilitation, Chicago, IL.
| | - Deborah S Crown
- Shirley Ryan AbilityLab, Center for Rehabilitation Outcomes Research, Chicago, IL
| | - Dominique Kinnett-Hopkins
- Northwestern University Feinberg School of Medicine, Department of Physical Medicine & Rehabilitation, Chicago, IL
| | - Edelle Field-Fote
- Shepherd Center, Spinal Cord Injury Research, Atlanta, GA; Emory University, Division of Physical Therapy, Atlanta, GA
| | - Cathy Furbish
- Shepherd Center, Spinal Cord Injury Research, Atlanta, GA
| | - Chaithanya K Mummidisetty
- Northwestern University Feinberg School of Medicine, Department of Physical Medicine & Rehabilitation, Chicago, IL
| | - Rachel A Bond
- Shirley Ryan AbilityLab, Center for Rehabilitation Outcomes Research, Chicago, IL
| | - Gail Forrest
- Kessler Foundation, Center for Spinal Stimulation, East Hanover, NJ; Rutgers New Jersey Medical School, Newark, NJ
| | - Arun Jayaraman
- Northwestern University Feinberg School of Medicine, Department of Physical Medicine & Rehabilitation, Chicago, IL
| | - Allen W Heinemann
- Northwestern University Feinberg School of Medicine, Department of Physical Medicine & Rehabilitation, Chicago, IL
| |
Collapse
|
43
|
Zhang L, Wang H. FTY720 in CNS injuries: Molecular mechanisms and therapeutic potential. Brain Res Bull 2020; 164:75-82. [DOI: 10.1016/j.brainresbull.2020.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/23/2020] [Accepted: 08/15/2020] [Indexed: 12/25/2022]
|
44
|
Bass A, Aubertin-Leheudre M, Vincent C, Karelis AD, Morin SN, McKerral M, Duclos C, Gagnon DH. Effects of an Overground Walking Program With a Robotic Exoskeleton on Long-Term Manual Wheelchair Users With a Chronic Spinal Cord Injury: Protocol for a Self-Controlled Interventional Study. JMIR Res Protoc 2020; 9:e19251. [PMID: 32663160 PMCID: PMC7545333 DOI: 10.2196/19251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND In wheelchair users with a chronic spinal cord injury (WUSCI), prolonged nonactive sitting time and reduced physical activity-typically linked to this mode of mobility-contribute to the development or exacerbation of cardiorespiratory, musculoskeletal, and endocrine-metabolic health complications that are often linked to increased risks of chronic pain or psychological morbidity. Limited evidence suggests that engaging in a walking program with a wearable robotic exoskeleton may be a promising physical activity intervention to counter these detrimental health effects. OBJECTIVE This study's overall goals are as follows: (1) to determine the effects of a 16-week wearable robotic exoskeleton-assisted walking program on organic systems, functional capacities, and multifaceted psychosocial factors and (2) to determine self-reported satisfaction and perspectives with regard to the intervention and the device. METHODS A total of 20 WUSCI, who have had their injuries for more than 18 months, will complete an overground wearable robotic exoskeleton-assisted walking program (34 sessions; 60 min/session) supervised by a physiotherapist over a 16-week period (one to three sessions/week). Data will be collected 1 month prior to the program, at the beginning, and at the end as well as 2 months after completing the program. Assessments will characterize sociodemographic characteristics; anthropometric parameters; sensorimotor impairments; pain; lower extremity range of motion and spasticity; wheelchair abilities; cardiorespiratory fitness; upper extremity strength; bone architecture and mineral density at the femur, tibia, and radius; total and regional body composition; health-related quality of life; and psychological health. Interviews and an online questionnaire will be conducted to measure users' satisfaction levels and perspectives at the end of the program. Differences across measurement times will be verified using appropriate parametric or nonparametric analyses of variance for repeated measures. RESULTS This study is currently underway with active recruitment in Montréal, Québec, Canada. Results are expected in the spring of 2021. CONCLUSIONS The results from this study will be essential to guide the development, implementation, and evaluation of future evidence-based wearable robotic exoskeleton-assisted walking programs offered in the community, and to initiate a reflection regarding the use of wearable robotic exoskeletons during initial rehabilitation following a spinal cord injury. TRIAL REGISTRATION ClinicalTrials.gov NCT03989752; https://clinicaltrials.gov/ct2/show/NCT03989752. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/19251.
Collapse
Affiliation(s)
- Alec Bass
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Centre Intégré Universitaire de Santé et Services Sociaux du Centre-Sud-de-l'Île-de-Montréal, Montréal, QC, Canada
| | | | - Claude Vincent
- Department of Rehabilitation, Faculty of Medicine, Université Laval, Québec, QC, Canada
- Centre for Interdisciplinary Research in Rehabilitation and Social Integration, Québec, QC, Canada
| | - Antony D Karelis
- Department of Exercise Science, Université du Québec à Montréal, Montréal, QC, Canada
| | - Suzanne N Morin
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Michelle McKerral
- Departement of Psychology, Faculty of Arts and Sciences, Université de Montréal, Montréal, QC, Canada
| | - Cyril Duclos
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Centre Intégré Universitaire de Santé et Services Sociaux du Centre-Sud-de-l'Île-de-Montréal, Montréal, QC, Canada
| | - Dany H Gagnon
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal, Centre Intégré Universitaire de Santé et Services Sociaux du Centre-Sud-de-l'Île-de-Montréal, Montréal, QC, Canada
| |
Collapse
|
45
|
Peng Z, Luo R, Huang R, Yu T, Hu J, Shi K, Cheng H. Data-Driven Optimal Assistance Control of a Lower Limb Exoskeleton for Hemiplegic Patients. Front Neurorobot 2020; 14:37. [PMID: 32719595 PMCID: PMC7347968 DOI: 10.3389/fnbot.2020.00037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/19/2020] [Indexed: 11/16/2022] Open
Abstract
More recently, lower limb exoskeletons (LLE) have gained considerable interests in strength augmentation, rehabilitation, and walking assistance scenarios. For walking assistance, the LLE is expected to control the affected leg to track the unaffected leg's motion naturally. A critical issue in this scenario is that the exoskeleton system needs to deal with unpredictable disturbance from the patient, and the controller has the ability to adapt to different wearers. To this end, a novel data-driven optimal control (DDOC) strategy is proposed to adapt different hemiplegic patients with unpredictable disturbances. The interaction relation between two lower limbs of LLE and the leg of patient's unaffected side are modeled in the context of leader-follower framework. Then, the walking assistance control problem is transformed into an optimal control problem. A policy iteration (PI) algorithm is utilized to obtain the optimal controller. To improve the online adaptation to different patients, an actor-critic neural network (AC/NN) structure of the reinforcement learning (RL) is employed to learn the optimal controller on the basis of PI algorithm. Finally, experiments both on a simulation environment and a real LLE system are conducted to verify the effectiveness of the proposed walking assistance control method.
Collapse
Affiliation(s)
- Zhinan Peng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Rui Luo
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Rui Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiangping Hu
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Kecheng Shi
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
46
|
Awad LN, Kudzia P, Revi DA, Ellis TD, Walsh CJ. Walking faster and farther with a soft robotic exosuit: Implications for post-stroke gait assistance and rehabilitation. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2020; 1:108-115. [PMID: 33748765 PMCID: PMC7971412 DOI: 10.1109/ojemb.2020.2984429] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Soft robotic exosuits can improve the mechanics and energetics of walking after stroke. Building on this prior work, we evaluated the effects of the first prototype of a portable soft robotic exosuit. METHODS Exosuit-induced changes in the overground walking speed, distance, and energy expenditure of individuals post-stroke were evaluated statistically with alpha set to 0.05 and compared to minimal clinically important difference scores. RESULTS Compared to baseline walking without the exosuit worn, the <5kg exosuit did not substantially modify walking speed, distance, or energy expenditure when worn unpowered. In contrast, when the exosuit was powered on to provide an average 22.87±0.58 %bodyweight of plantarflexor force assistance during the paretic limb's stance phase and assist the paretic dorsiflexors during swing phase to reduce drop-foot, study participants walked a median 0.14±0.06 m/s faster during the 10-meter walk test and traveled 32±8 m farther during the six minute walk test. CONCLUSIONS Individuals post-stroke can leverage the paretic plantarflexor and dorsiflexor assistance provided by soft robotic exosuits to achieve clinically-meaningful increases in speed and distance.
Collapse
Affiliation(s)
- Louis N. Awad
- College of Health and Rehabilitation Sciences: Sargent CollegeBoston UniversityBostonMA02215USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityCambridgeMA02138USA
| | - Pawel Kudzia
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityCambridgeMA02138USA
| | - Dheepak Arumukhom Revi
- College of Health and Rehabilitation Sciences: Sargent CollegeBoston UniversityBostonMA02215USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityCambridgeMA02138USA
| | - Terry D. Ellis
- College of Health and Rehabilitation Sciences: Sargent CollegeBoston UniversityBostonMA02215USA
| | - Conor J. Walsh
- College of Health and Rehabilitation Sciences: Sargent CollegeBoston UniversityBostonMA02215USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityCambridgeMA02138USA
| |
Collapse
|
47
|
Swank C, Almutairi S, Wang-Price S, Gao F. Immediate kinematic and muscle activity changes after a single robotic exoskeleton walking session post-stroke. Top Stroke Rehabil 2020; 27:503-515. [PMID: 32077382 DOI: 10.1080/10749357.2020.1728954] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Robotic Exoskeletons (EKSO) are novel technology for retraining common gait dysfunction in people post-stroke. EKSO's capability to influence gait characteristics post-stroke is unknown. Objectives: To compare temporospatial, kinematic, and muscle activity gait characteristics before and after a single EKSO session and examine kinematic symmetry between involved and uninvolved limbs. Methods: Participants post-stroke walked under two conditions: pre-EKSO, and immediately post-EKSO. A 10-camera motion capture system synchronized with 6 force plates was used to obtain temporospatial and kinematic gait characteristics from 5 walking trials of 9 meters at a self-selected speed. Surface EMG activity was obtained from bilateral gluteus medius, rectus femoris, medial hamstrings, tibialis anterior, and soleus muscles. Wilcoxon Signed Rank tests were used to analyze differences pre- and post-EKSO. Single EKSO session consisted of 22.3±6.8 minutes total time (walk time=7.2±1.5 minutes) with 250±40 steps. Results: Six ambulatory (Functional Ambulation Category, range=4-5) adults (3 female; 44.7±14.6 years) with chronic stroke (4.5±1.9 years post-stroke) participated. No significant differences were observed for temporospatial gait characteristics. Muscle activity was significantly less post-EKSO in the involved leg rectus femoris during swing phase (p=0.028). Ankle dorsiflexion range of motion on the involved leg post-EKSO was significantly less during stance phase (p=0.046). Differences between involved and uninvolved joint range of motion symmetry were found pre-EKSO but not post-EKSO in swing phase hip flexion and stance phase knee flexion and knee extension. Conclusions: EKSO training appears capable of altering gait in people with chronic stroke and a viable intervention to reduce gait dysfunction post-stroke.
Collapse
Affiliation(s)
- Chad Swank
- Department of Rehabilitation Research, Baylor Scott & White Institute for Rehabilitation , Dallas, TX, USA
| | - Sattam Almutairi
- College of Medical Rehabilitation, Qassim University , Buraydah, Saudi Arabia
| | - Sharon Wang-Price
- School of Physical Therapy, Texas Woman's University , Dallas, TX, USA
| | - Fan Gao
- Department of Kinesiology and Health Promotion, College of Education, University of Kentucky , Lexington, KY, USA
| |
Collapse
|
48
|
Akbas T, Sulzer J. Musculoskeletal simulation framework for impairment-based exoskeletal assistance post-stroke. IEEE Int Conf Rehabil Robot 2020; 2019:1185-1190. [PMID: 31374790 DOI: 10.1109/icorr.2019.8779564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Assistive technology for the lower extremities has shown great promise towards improving gait function in people following neuromuscular injuries. However, our previous work assisting knee flexion torque in post-stroke Stiff-Knee gait found that augmenting strength can induce secondary complications such as spasticity due to stretching of the rectus femoris. In this work we explore whether we could have obtained improved knee flexion but avoided a spastic response by simulating combinations of hip and knee flexion torques using musculoskeletal modeling and simulation. We explore previously collected data on a case-by-case basis to determine individual-specific quadriceps reflex thresholds based on estimated rectus femoris muscle fiber stretch velocities. We then implemented a forward simulation framework to identify the subject-specific hip-knee assistance prescription to improve knee range of motion without initiating a spastic response. The obtained subject-specific assistive prescription informs the development of new gait assistance strategies for post-stroke gait and could be extended to other neuromuscular gait impairments.
Collapse
|
49
|
Meyer JT, Schrade SO, Lambercy O, Gassert R. User-centered Design and Evaluation of Physical Interfaces for an Exoskeleton for Paraplegic Users. IEEE Int Conf Rehabil Robot 2020; 2019:1159-1166. [PMID: 31374786 DOI: 10.1109/icorr.2019.8779527] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Over the last decade, the use of wearable exoskeletons for human locomotion assistance has become more feasible. The VariLeg powered lower limb robotic exoskeleton is an example of such systems, potentially enabling paraplegic users to perform upright activities of daily living. The acceptance of this type of robotic assistive technologies is often still affected by limited usability, in particular regarding the physical interface between the exoskeleton and the user (here referred to as pilot). In this study, we proposed and evaluated a novel pilot attachment system (PAS), which was designed based on user-centered design with experienced paraplegic exoskeleton users. Subjective assessments to compare usability aspects of the initial and the redesigned physical interfaces were conducted with two paraplegic and five healthy pilots. The redesigned PAS showed a 45% increase in the system usability scale (SUS), normalized to the PAS of a commercial exoskeleton assessed in the same manner. Pain rating scales assessed with healthy pilots indicated an increased comfort using the redesigned PAS while performing several activities of daily living. Overall, an improvement in usability relative to the initial PAS was achieved through intensified user evaluation and individual needs assessments. Hence, a user-centered design of physical body-machine interfaces has the potential to positively influence the usability and acceptance of lower limb exoskeletons for paraplegic users.
Collapse
|
50
|
|