1
|
Garcia SB, Schlotter AP, Pereira D, Recupero AJ, Polleux F, Hammond LA. RESPAN: A Deep Learning Pipeline for Accurate and Automated Restoration, Segmentation, and Quantification of Dendritic Spines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.06.597812. [PMID: 38895232 PMCID: PMC11185717 DOI: 10.1101/2024.06.06.597812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Quantification of dendritic spines is essential for studying synaptic connectivity, yet most current approaches require manual adjustments or the combination of multiple software tools for optimal results. Here, we present Restoration Enhanced SPine And Neuron Analysis (RESPAN), an open-source pipeline integrating state-of-the-art deep learning for image restoration, segmentation, and analysis in an easily deployable, user-friendly interface. Leveraging content-aware restoration to enhance signal, contrast, and isotropic resolution further enhances RESPAN's robust detection of spines, dendritic branches, and soma across a wide variety of samples, including challenging datasets such as those from live imaging and in vivo 2-photon microscopy with limited signal. Extensive validation against expert annotations and comparison with other software demonstrates RESPAN's superior accuracy and reproducibility across multiple imaging modalities. RESPAN offers significant improvements in usability over currently available approaches, streamlining and democratizing access to a combination of advanced capabilities through an accessible resource for the neuroscience community.
Collapse
Affiliation(s)
- Sergio B. Garcia
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Alexa P. Schlotter
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | | | - Aleksandra J. Recupero
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Franck Polleux
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Luke A. Hammond
- Department of Neurology, The Ohio State University, Wexner Medical School, Columbus, Ohio, USA
- Lead contact
| |
Collapse
|
2
|
Barrantes FJ. Cognitive synaptopathy: synaptic and dendritic spine dysfunction in age-related cognitive disorders. Front Aging Neurosci 2024; 16:1476909. [PMID: 39420927 PMCID: PMC11484076 DOI: 10.3389/fnagi.2024.1476909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Cognitive impairment is a leading component of several neurodegenerative and neurodevelopmental diseases, profoundly impacting on the individual, the family, and society at large. Cognitive pathologies are driven by a multiplicity of factors, from genetic mutations and genetic risk factors, neurotransmitter-associated dysfunction, abnormal connectomics at the level of local neuronal circuits and broader brain networks, to environmental influences able to modulate some of the endogenous factors. Otherwise healthy older adults can be expected to experience some degree of mild cognitive impairment, some of which fall into the category of subjective cognitive deficits in clinical practice, while many neurodevelopmental and neurodegenerative diseases course with more profound alterations of cognition, particularly within the spectrum of the dementias. Our knowledge of the underlying neuropathological mechanisms at the root of this ample palette of clinical entities is far from complete. This review looks at current knowledge on synaptic modifications in the context of cognitive function along healthy ageing and cognitive dysfunction in disease, providing insight into differential diagnostic elements in the wide range of synapse alterations, from those associated with the mild cognitive changes of physiological senescence to the more profound abnormalities occurring at advanced clinical stages of dementia. I propose the term "cognitive synaptopathy" to encompass the wide spectrum of synaptic pathologies associated with higher brain function disorders.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Pontifical Catholic University of Argentina (UCA), Argentine Scientific and Technological Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Cauzzo S, Bruno E, Boulet D, Nazac P, Basile M, Callara AL, Tozzi F, Ahluwalia A, Magliaro C, Danglot L, Vanello N. A modular framework for multi-scale tissue imaging and neuronal segmentation. Nat Commun 2024; 15:4102. [PMID: 38778027 PMCID: PMC11111705 DOI: 10.1038/s41467-024-48146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The development of robust tools for segmenting cellular and sub-cellular neuronal structures lags behind the massive production of high-resolution 3D images of neurons in brain tissue. The challenges are principally related to high neuronal density and low signal-to-noise characteristics in thick samples, as well as the heterogeneity of data acquired with different imaging methods. To address this issue, we design a framework which includes sample preparation for high resolution imaging and image analysis. Specifically, we set up a method for labeling thick samples and develop SENPAI, a scalable algorithm for segmenting neurons at cellular and sub-cellular scales in conventional and super-resolution STimulated Emission Depletion (STED) microscopy images of brain tissues. Further, we propose a validation paradigm for testing segmentation performance when a manual ground-truth may not exhaustively describe neuronal arborization. We show that SENPAI provides accurate multi-scale segmentation, from entire neurons down to spines, outperforming state-of-the-art tools. The framework will empower image processing of complex neuronal circuitries.
Collapse
Affiliation(s)
- Simone Cauzzo
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy.
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy.
| | - Ester Bruno
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - David Boulet
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Core Facility, 75014, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane traffic and diseased brain, 75014, Paris, France
| | - Paul Nazac
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane traffic and diseased brain, 75014, Paris, France
| | - Miriam Basile
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Alejandro Luis Callara
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Federico Tozzi
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Arti Ahluwalia
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Chiara Magliaro
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Lydia Danglot
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Core Facility, 75014, Paris, France.
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane traffic and diseased brain, 75014, Paris, France.
| | - Nicola Vanello
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy.
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy.
| |
Collapse
|
4
|
Dubey V, Dixit AB, Tripathi M, Sarat Chandra P, Banerjee J. Quantification of Neuronal Dendritic Spine Density and Lengths of Apical and Basal Dendrites in Temporal Lobe Structures Using Golgi-Cox Staining. Methods Mol Biol 2024; 2761:57-66. [PMID: 38427229 DOI: 10.1007/978-1-0716-3662-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The objective of this chapter is to provide an overview of the methods used to investigate the connectivity and structure of the nervous system. These methods allow neuronal cells to be categorized according to their location, shape, and connections to other cells. The Golgi-Cox staining gives a thorough picture of all significant neuronal structures found in the brain that may be distinguished from one another. The most significant characteristic is its three-dimensional integrity since all neuronal structures may be followed continuously from one part to the next. Successions of sections of the brain's neurons are seen with the Golgi stain. The Golgi method is used to serially segment chosen brain parts, and the resulting neurons are produced from those sections.
Collapse
Affiliation(s)
- Vivek Dubey
- Department of Biophysics, AIIMS, New Delhi, India
| | | | | | | | | |
Collapse
|
5
|
Zecevic D. Electrical properties of dendritic spines. Biophys J 2023; 122:4303-4315. [PMID: 37837192 PMCID: PMC10698282 DOI: 10.1016/j.bpj.2023.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023] Open
Abstract
Dendritic spines are small protrusions that mediate most of the excitatory synaptic transmission in the brain. Initially, the anatomical structure of spines has suggested that they serve as isolated biochemical and electrical compartments. Indeed, following ample experimental evidence, it is now widely accepted that a significant physiological role of spines is to provide biochemical compartmentalization in signal integration and plasticity in the nervous system. In contrast to the clear biochemical role of spines, their electrical role is uncertain and is currently being debated. This is mainly because spines are small and not accessible to conventional experimental methods of electrophysiology. Here, I focus on reviewing the literature on the electrical properties of spines, including the initial morphological and theoretical modeling studies, indirect experimental approaches based on measurements of diffusional resistance of the spine neck, indirect experimental methods using two-photon uncaging of glutamate on spine synapses, optical imaging of intracellular calcium concentration changes, and voltage imaging with organic and genetically encoded voltage-sensitive probes. The interpretation of evidence from different preparations obtained with different methods has yet to reach a consensus, with some analyses rejecting and others supporting an electrical role of spines in regulating synaptic signaling. Thus, there is a need for a critical comparison of the advantages and limitations of different methodological approaches. The only experimental study on electrical signaling monitored optically with adequate sensitivity and spatiotemporal resolution using voltage-sensitive dyes concluded that mushroom spines on basal dendrites of cortical pyramidal neurons in brain slices have no electrical role.
Collapse
Affiliation(s)
- Dejan Zecevic
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
6
|
von Bohlen Und Halbach O. Neurotrophic Factors and Dendritic Spines. ADVANCES IN NEUROBIOLOGY 2023; 34:223-254. [PMID: 37962797 DOI: 10.1007/978-3-031-36159-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines are highly dynamic structures that play important roles in neuronal plasticity. The morphologies and the numbers of dendritic spines are highly variable, and this diversity is correlated with the different morphological and physiological features of this neuronal compartment. Dendritic spines can change their morphology and number rapidly, allowing them to adapt to plastic changes. Neurotrophic factors play important roles in the brain during development. However, these factors are also necessary for a variety of processes in the postnatal brain. Neurotrophic factors, especially members of the neurotrophin family and the ephrin family, are involved in the modulation of long-lasting effects induced by neuronal plasticity by acting on dendritic spines, either directly or indirectly. Thereby, the neurotrophic factors play important roles in processes attributed, for example, to learning and memory.
Collapse
|
7
|
Heck N, Santos MD. Dendritic Spines in Learning and Memory: From First Discoveries to Current Insights. ADVANCES IN NEUROBIOLOGY 2023; 34:311-348. [PMID: 37962799 DOI: 10.1007/978-3-031-36159-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The central nervous system is composed of neural ensembles, and their activity patterns are neural correlates of cognitive functions. Those ensembles are networks of neurons connected to each other by synapses. Most neurons integrate synaptic signal through a remarkable subcellular structure called spine. Dendritic spines are protrusions whose diverse shapes make them appear as a specific neuronal compartment, and they have been the focus of studies for more than a century. Soon after their first description by Ramón y Cajal, it has been hypothesized that spine morphological changes could modify neuronal connectivity and sustain cognitive abilities. Later studies demonstrated that changes in spine density and morphology occurred in experience-dependent plasticity during development, and in clinical cases of mental retardation. This gave ground for the assumption that dendritic spines are the particular locus of cerebral plasticity. With the discovery of synaptic long-term potentiation, a research program emerged with the aim to establish whether dendritic spine plasticity could explain learning and memory. The development of live imaging methods revealed on the one hand that dendritic spine remodeling is compatible with learning process and, on the other hand, that their long-term stability is compatible with lifelong memories. Furthermore, the study of the mechanisms of spine growth and maintenance shed new light on the rules of plasticity. In behavioral paradigms of memory, spine formation or elimination and morphological changes were found to correlate with learning. In a last critical step, recent experiments have provided evidence that dendritic spines play a causal role in learning and memory.
Collapse
Affiliation(s)
- Nicolas Heck
- Laboratory Neurosciences Paris Seine, Sorbonne Université, Paris, France.
| | - Marc Dos Santos
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
8
|
Priel A, Dai XQ, Chen XZ, Scarinci N, Cantero MDR, Cantiello HF. Electrical recordings from dendritic spines of adult mouse hippocampus and effect of the actin cytoskeleton. Front Mol Neurosci 2022; 15:769725. [PMID: 36090255 PMCID: PMC9453158 DOI: 10.3389/fnmol.2022.769725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 07/26/2022] [Indexed: 11/28/2022] Open
Abstract
Dendritic spines (DS) are tiny protrusions implicated in excitatory postsynaptic responses in the CNS. To achieve their function, DS concentrate a high density of ion channels and dynamic actin networks in a tiny specialized compartment. However, to date there is no direct information on DS ionic conductances. Here, we used several experimental techniques to obtain direct electrical information from DS of the adult mouse hippocampus. First, we optimized a method to isolate DS from the dissected hippocampus. Second, we used the lipid bilayer membrane (BLM) reconstitution and patch clamping techniques and obtained heretofore unavailable electrical phenotypes on ion channels present in the DS membrane. Third, we also patch clamped DS directly in cultured adult mouse hippocampal neurons, to validate the electrical information observed with the isolated preparation. Electron microscopy and immunochemistry of PDS-95 and NMDA receptors and intrinsic actin networks confirmed the enrichment of the isolated DS preparation, showing open and closed DS, and multi-headed DS. The preparation was used to identify single channel activities and “whole-DS” electrical conductance. We identified NMDA and Ca2+-dependent intrinsic electrical activity in isolated DS and in situ DS of cultured adult mouse hippocampal neurons. In situ recordings in the presence of local NMDA, showed that individual DS intrinsic electrical activity often back-propagated to the dendrite from which it sprouted. The DS electrical oscillations were modulated by changes in actin cytoskeleton dynamics by addition of the F-actin disrupter agent, cytochalasin D, and exogenous actin-binding proteins. The data indicate that DS are elaborate excitable electrical devices, whose activity is a functional interplay between ion channels and the underlying actin networks. The data argue in favor of the active contribution of individual DS to the electrical activity of neurons at the level of both the membrane conductance and cytoskeletal signaling.
Collapse
Affiliation(s)
- Avner Priel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Xiao-Qing Dai
- Department of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Xing-Zhen Chen
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Noelia Scarinci
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - María del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| | - Horacio F. Cantiello
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET) - Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
- *Correspondence: Horacio F. Cantiello,
| |
Collapse
|
9
|
Walker CK, Greathouse KM, Liu E, Muhammad HM, Boros BD, Freeman CD, Seo JV, Herskowitz JH. Comparison of Golgi-Cox and Intracellular Loading of Lucifer Yellow for Dendritic Spine Density and Morphology Analysis in the Mouse Brain. Neuroscience 2022; 498:1-18. [PMID: 35752428 PMCID: PMC9420811 DOI: 10.1016/j.neuroscience.2022.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Dendritic spines are small protrusions on dendrites that serve as the postsynaptic site of the majority of excitatory synapses. These structures are important for normal synaptic transmission, and alterations in their density and morphology have been documented in various disease states. Over 130 years ago, Ramón y Cajal used Golgi-stained tissue sections to study dendritic morphology. Despite the array of technological advances, including iontophoretic microinjection of Lucifer yellow (LY) fluorescent dye, Golgi staining continues to be one of the most popular approaches to visualize dendritic spines. Here, we compared dendritic spine density and morphology among pyramidal neurons in layers 2/3 of the mouse medial prefrontal cortex (mPFC) and pyramidal neurons in hippocampal CA1 using three-dimensional digital reconstructions of (1) brightfield microscopy z-stacks of Golgi-impregnated dendrites and (2) confocal microscopy z-stacks of LY-filled dendrites. Analysis of spine density revealed that the LY microinjection approach enabled detection of approximately three times as many spines as the Golgi staining approach in both brain regions. Spine volume measurements were larger using Golgi staining compared to LY microinjection in both mPFC and CA1. Spine length was mostly comparable between techniques in both regions. In the mPFC, head diameter was similar for Golgi staining and LY microinjection. However, in CA1, head diameter was approximately 50% smaller on LY-filled dendrites compared to Golgi staining. These results indicate that Golgi staining and LY microinjection yield different spine density and morphology measurements, with Golgi staining failing to detect dendritic spines and overestimating spine size.
Collapse
Affiliation(s)
- Courtney K Walker
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| | - Kelsey M Greathouse
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| | - Evan Liu
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| | - Hamad M Muhammad
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| | - Benjamin D Boros
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| | - Cameron D Freeman
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| | - Jung Vin Seo
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| | - Jeremy H Herskowitz
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA.
| |
Collapse
|
10
|
Ponce-Regalado MD, Pérez-Sánchez G, Rojas-Espinosa O, Arce-Paredes P, Girón-Peréz MI, Pavón-Romero L, Becerril-Villanueva E. NeuroImmunoEndocrinology: A brief historic narrative. J Leukoc Biol 2022; 112:97-114. [PMID: 35098580 DOI: 10.1002/jlb.5mr1221-287r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although no precise moment or unique event marks its birth, neuroimmunoendocrinology arguably shares a great deal of history with other medical and biologic disciplines. It originated from empirical observations and suppositions that failed to prevail upon the existing axioms. Despite the widespread resistance to embracing novel ideas, the seeming defeats inspired visionary researchers. Those pioneers managed to systematize the emerging knowledge and were able to contribute to science with real foundations. In consequence, new concepts and ideas arose in physiology, anatomy, endocrinology and early immunology. Together, they gave rise to a budding approach on the integration between the nervous, immune and endocrine systems. Then, neuroimmunoendocrinology emerged as a discipline integrating an intricate system with multidirectional functions and interactions that allow for responding to internal and external threats. Such response is mediated by cytokines, hormones and neurotransmitters, involved in different physiologic mechanisms of the organism homeostasis. Neuroimmunoendocrinology is no longer an area of scientific skepticism; on the contrary, it has cemented its position as a biomedical discipline worldwide for the past 70 years. Now, it offers a better understanding of pathologic processes.
Collapse
Affiliation(s)
- María Dolores Ponce-Regalado
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara Centro Universitario de los Altos Av, Tepatitlán de Morelos, Jalisco, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratory of Psychoimmunology, National Institute of Psychiatry "Ramón de la Fuente", Mexico City, Mexico
| | - Oscar Rojas-Espinosa
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Patricia Arce-Paredes
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - M Iván Girón-Peréz
- Laboratorio de Inmunotoxicología, Secretaría de Investigación y Posgrado Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico
| | - Lenin Pavón-Romero
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara Centro Universitario de los Altos Av, Tepatitlán de Morelos, Jalisco, Mexico
| | - Enrique Becerril-Villanueva
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara Centro Universitario de los Altos Av, Tepatitlán de Morelos, Jalisco, Mexico
| |
Collapse
|
11
|
A Novel Estimation Method for the Counting of Dendritic Spines. J Neurosci Methods 2021; 368:109454. [PMID: 34952089 DOI: 10.1016/j.jneumeth.2021.109454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Since Cajal's visualisations of the synaptic spine, this feature of the neuron has been of interest to neuroscientists and has been investigated usually in reference to degeneration or proliferation of dendrites and their neurons. Synaptic spine measurement often forms a critical element of any study investigating neuronal morphology. However, the way researchers have counted spines hasn't changed for almost a century. Some of the currently used legacy methods fail to accommodate obscured pisnes or factor-in visibility differences between histological stains. NEW METHOD Here we investigate the neuronal dendrite and its synaptic spines, and reveal that using confocal or bright-field technologies may in fact obfuscate spine counts. A mathematical model is developed for the distribution of synaptic spines within the rat, that should, by nature of the formula and the impartiality of probability quotients, be applied to estimate the number of synaptic spines across any length of dendrite that has protrusions within any species. RESULTS Using this estimation method, we show that, depending on the method of image capture, there are in fact more spines present than typically counted on lengths of dendrite, something that may have biased morphological studies in the past. COMPARISON WITH EXISTING METHODS This new estimation method has been collapsed down into an easy-to-use free website. With input of only four fields, we provide the researcher with a more accurate estimation of the amount of spines on a length of dendrite. This was made possible by fluorescing a Golgi stain and comparing two-photon, bright-field and confocal images. CONCLUSIONS An easy web-based resource has been made available to use this new method for spine calculation. Using this method improves the validity of spine measurement and provides a means to review previously published work.
Collapse
|
12
|
Walker CK, Herskowitz JH. Dendritic Spines: Mediators of Cognitive Resilience in Aging and Alzheimer's Disease. Neuroscientist 2021; 27:487-505. [PMID: 32812494 PMCID: PMC8130863 DOI: 10.1177/1073858420945964] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cognitive resilience is often defined as the ability to remain cognitively normal in the face of insults to the brain. These insults can include disease pathology, such as plaques and tangles associated with Alzheimer's disease, stroke, traumatic brain injury, or other lesions. Factors such as physical or mental activity and genetics may contribute to cognitive resilience, but the neurobiological underpinnings remain ill-defined. Emerging evidence suggests that dendritic spine structural plasticity is one plausible mechanism. In this review, we highlight the basic structure and function of dendritic spines and discuss how spine density and morphology change in aging and Alzheimer's disease. We note evidence that spine plasticity mediates resilience to stress, and we tackle dendritic spines in the context of cognitive resilience to Alzheimer's disease. Finally, we examine how lifestyle and genetic factors may influence dendritic spine plasticity to promote cognitive resilience before discussing evidence for actin regulatory kinases as therapeutic targets for Alzheimer's disease.
Collapse
Affiliation(s)
- Courtney K. Walker
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| | - Jeremy H. Herskowitz
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| |
Collapse
|
13
|
Leterrier C. A Pictorial History of the Neuronal Cytoskeleton. J Neurosci 2021; 41:11-27. [PMID: 33408133 PMCID: PMC7786211 DOI: 10.1523/jneurosci.2872-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Affiliation(s)
- Christophe Leterrier
- Aix Marseille Université, Centre National de la Recherche Scientifique, INP Unité Mixte de Recherche 7051, NeuroCyto, Marseille 13005, France
| |
Collapse
|
14
|
Zhang JW, Tabassum S, Jiang JX, Long C. Optimized Golgi-Cox Staining Validated in the Hippocampus of Spared Nerve Injury Mouse Model. Front Neuroanat 2020; 14:585513. [PMID: 33240049 PMCID: PMC7680754 DOI: 10.3389/fnana.2020.585513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022] Open
Abstract
Golgi-Cox staining has been used extensively in neuroscience. Despite its unique ability to identify neuronal interconnections and neural processes, its lack of consistency and time-consuming nature reduces its appeal to researchers. Here, using a spared nerve injury (SNI) mouse model and control mice, we present a modified Golgi-Cox staining protocol that can stain mouse hippocampal neurons within 8 days. In this improved procedure, the mouse brain was fixed with 4% paraformaldehyde and then stored in a modified Golgi-Cox solution at 37 ± 2°C. The impregnation period was reduced from 5–14 days to 36–48 h. Brain slices prepared in this way could be preserved long-term at –80°C for up to 8 weeks. In addition to minimizing frequently encountered problems and reducing the time required to conduct the method, our modified protocol maintained, and even improved, the quality of traditional Golgi-Cox staining as applied to hippocampal neuronal morphology in SNI mice.
Collapse
Affiliation(s)
- Jia-Wei Zhang
- Panyu Central Hospital, South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Guangzhou, China
| | - Sidra Tabassum
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jin-Xiang Jiang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Cheng Long
- Panyu Central Hospital, South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Guangzhou, China.,School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
15
|
Modelling dendritic spines with the finite element method, investigating the impact of geometry on electric and calcic responses. J Math Biol 2020; 81:517-547. [PMID: 32691098 DOI: 10.1007/s00285-020-01517-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 05/21/2020] [Indexed: 10/23/2022]
Abstract
Understanding the relationship between shape and function of dendritic spines is an elusive topic. Several modelling approaches have been used to investigate the interplay between spine geometry, calcium diffusion and electric signalling. We here use a second order finite element method to solve the Poisson-Nernst-Planck equations and describe electrodiffusion in dendritic spines. With this, we obtain relationships between dendritic geometry and calcic as well as electric responses to synaptic events. Our findings support the hypothesis that spine geometry plays a role shaping the electrical responses to synaptic events. Our method was also able to reveal the fine scale distribution of calcium in spines with irregular shapes.
Collapse
|
16
|
de Beer F, Petzer JP, Petzer A. Monoamine oxidase inhibition by selected dye compounds. Chem Biol Drug Des 2020; 95:355-367. [PMID: 31834986 DOI: 10.1111/cbdd.13654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/19/2019] [Accepted: 12/07/2019] [Indexed: 11/28/2022]
Abstract
Monoamine oxidase (MAO) is an important drug target as the MAO isoforms play key roles in neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, as well as in neuropsychiatric diseases such as depression. Methylene blue is an inhibitor of MAO-A, while azure B, the major metabolite of methylene blue, and various other structural analogues retain the ability to inhibit MAO-A. Based on this, the present study evaluated 22 dyes, many of which are structurally related to methylene blue, as potential inhibitors of human MAO-A and MAO-B. The results highlighted three dye compounds as good potency competitive and reversible MAO inhibitors, and which exhibit higher MAO inhibition than methylene blue: acridine orange, oxazine 170 and Darrow red. Acridine orange was found to be a MAO-A specific inhibitor (IC50 = 0.017 μM), whereas oxazine 170 is a MAO-B specific inhibitor (IC50 = 0.0065 μM). Darrow red was found to be a non-specific MAO inhibitor (MAO-A, IC50 = 0.059 μM; MAO-B, IC50 = 0.065 μM). These compounds may be advanced for further testing and preclinical development, or be used as possible lead compounds for the future design of MAO inhibitors.
Collapse
Affiliation(s)
- Franciska de Beer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Jacobus P Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Anél Petzer
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom, South Africa
| |
Collapse
|
17
|
Poberezhnyi VI, Marchuk OV, Shvidyuk OS, Petrik IY, Logvinov OS. Fundamentals of the modern theory of the phenomenon of "pain" from the perspective of a systematic approach. Neurophysiological basis. Part 1: A brief presentation of key subcellular and cellular ctructural elements of the central nervous system. PAIN MEDICINE 2019. [DOI: 10.31636/pmjua.v3i4.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The phenomenon of “pain” is a psychophysiological phenomenon that is actualized in the mind of a person as a result of the systemic response of his body to certain external and internal stimuli. The heart of the corresponding mental processes is certain neurophysiological processes, which in turn are caused by a certain form of the systemic structural and functional organization of the central nervous system (CNS). Thus, the systemic structural and functional organization of the central nervous system of a person, determining the corresponding psychophysiological state in a specific time interval, determines its psycho-emotional states or reactions manifested by the pain phenomenon. The nervous system of the human body has a hierarchical structure and is a morphologically and functionally complete set of different, interconnected, nervous and structural formations. The basis of the structural formations of the nervous system is nervous tissue. It is a system of interconnected differentials of nerve cells, neuroglia and glial macrophages, providing specific functions of perception of stimulation, excitation, generation of nerve impulses and its transmission. The neuron and each of its compartments (spines, dendrites, catfish, axon) is an autonomous, plastic, active, structural formation with complex computational properties. One of them – dendrites – plays a key role in the integration and processing of information. Dendrites, due to their morphology, provide neurons with unique electrical and plastic properties and cause variations in their computational properties. The morphology of dendrites: 1) determines – a) the number and type of contacts that a particular neuron can form with other neurons; b) the complexity, diversity of its functions; c) its computational operations; 2) determines – a) variations in the computational properties of a neuron (variations of the discharges between bursts and regular forms of pulsation); b) back distribution of action potentials. Dendritic spines can form synaptic connection – one of the main factors for increasing the diversity of forms of synaptic connections of neurons. Their volume and shape can change over a short period of time, and they can rotate in space, appear and disappear by themselves. Spines play a key role in selectively changing the strength of synaptic connections during the memorization and learning process. Glial cells are active participants in diffuse transmission of nerve impulses in the brain. Astrocytes form a three-dimensional, functionally “syncytia-like” formation, inside of which there are neurons, thus causing their specific microenvironment. They and neurons are structurally and functionally interconnected, based on which their permanent interaction occurs. Oligodendrocytes provide conditions for the generation and transmission of nerve impulses along the processes of neurons and play a significant role in the processes of their excitation and inhibition. Microglial cells play an important role in the formation of the brain, especially in the formation and maintenance of synapses. Thus, the CNS should be considered as a single, functionally “syncytia-like”, structural entity. Because the three-dimensional distribution of dendritic branches in space is important for determining the type of information that goes to a neuron, it is necessary to consider the three-dimensionality of their structure when analyzing the implementation of their functions.
Collapse
|
18
|
Bentivoglio M, Cotrufo T, Ferrari S, Tesoriero C, Mariotto S, Bertini G, Berzero A, Mazzarello P. The Original Histological Slides of Camillo Golgi and His Discoveries on Neuronal Structure. Front Neuroanat 2019; 13:3. [PMID: 30833889 PMCID: PMC6388087 DOI: 10.3389/fnana.2019.00003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/11/2019] [Indexed: 11/13/2022] Open
Abstract
The metallic impregnation invented by Camillo Golgi in 1873 has allowed the visualization of individual neurons in their entirety, leading to a breakthrough in the knowledge on the structure of the nervous system. Professor of Histology and of General Pathology, Golgi worked for decades at the University of Pavia, leading a very active laboratory. Unfortunately, most of Golgi's histological preparations are lost. The present contribution provides an account of the original slides on the nervous system from Golgi's laboratory available nowadays at the Golgi Museum and Historical Museum of the University of Pavia. Knowledge on the organization of the nervous tissue at the time of Golgi's observations is recalled. Notes on the equipment of Golgi's laboratory and the methodology Golgi used for his preparations are presented. Images of neurons from his slides (mostly from hippocampus, neocortex and cerebellum) are here shown for the first time together with some of Golgi's drawings. The sections are stained with the Golgi impregnation and Cajal stain. Golgi-impregnated sections are very thick (some more than 150 μm) and require continuous focusing during the microscopic observation. Heterogeneity of neuronal size and shape, free endings of distal dendritic arborizations, axonal branching stand out at the microscopic observation of Golgi-impregnated sections and in Golgi's drawings, and were novel findings at his time. Golgi also pointed out that the axon only originates from cell bodies, representing a constant and distinctive feature of nerve cells which distinguishes them from glia, and subserving transmission at a distance. Dendritic spines can be seen in some cortical neurons, although Golgi, possibly worried about artifacts, did not identify them. The puzzling intricacy of fully impregnated nervous tissue components offered to the first microscopic observations still elicit nowadays the emotion Golgi must have felt looking at his slides.
Collapse
Affiliation(s)
- Marina Bentivoglio
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy.,National Institute of Neuroscience (INN), Verona, Italy
| | - Tiziana Cotrufo
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Sergio Ferrari
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Tesoriero
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Sara Mariotto
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Giuseppe Bertini
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | | | - Paolo Mazzarello
- Golgi Museum, University Museum System of Pavia, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
19
|
An update on the Golgi staining technique improving cerebellar cell type specificity. Histochem Cell Biol 2019; 151:327-341. [PMID: 30607497 DOI: 10.1007/s00418-018-01766-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2018] [Indexed: 02/02/2023]
Abstract
The detailed morphological characterization of single cells was a major breakthrough in neuroscience during the turn of the twentieth century, enabling Ramon y Cajal to postulate the neuron doctrine. Even after 150 years, single cell analysis is an intriguing goal, newly motivated by the finding that autism might be caused by intricate and discreet changes in cerebellar morphology. Besides new single labelling technologies, the Golgi staining technique is still in use due to its whole cell labelling characteristics, its superior contrast performance over other methods and its apparent randomness of staining cells within a whole tissue block. However, the specificity and whole cell labelling of Golgi staining are also disputed controversially, and the method still has a poor reputation for being time consuming and needing high expenditures. We demonstrate here, how a classical Golgi technique can be adapted for staining different cerebellar cell types using a time-saving and efficient protocol, enabling the identification of the detailed morphological characteristics of single cells.
Collapse
|
20
|
Torres MD, Garcia O, Tang C, Busciglio J. Dendritic spine pathology and thrombospondin-1 deficits in Down syndrome. Free Radic Biol Med 2018; 114:10-14. [PMID: 28965914 PMCID: PMC7185223 DOI: 10.1016/j.freeradbiomed.2017.09.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 11/27/2022]
Abstract
Abnormal dendritic spine structure and function is one of the most prominent features associated with neurodevelopmental disorders including Down syndrome (DS). Defects in both spine morphology and spine density may underlie alterations in neuronal and synaptic plasticity, ultimately affecting cognitive ability. Here we briefly examine the role of astrocytes in spine alterations and more specifically the involvement of astrocyte-secreted thrombospondin 1 (TSP-1) deficits in spine and synaptic pathology in DS.
Collapse
Affiliation(s)
- Maria D Torres
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), and Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, CA 92697, United States
| | - Octavio Garcia
- Facultad de Psicología, Universidad Nacional Autónoma de México, 04510 Coyoacán, Ciudad de México, México
| | - Cindy Tang
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), and Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, CA 92697, United States
| | - Jorge Busciglio
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), and Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, CA 92697, United States.
| |
Collapse
|
21
|
Chen X, Zhang X, Zhong Q, Sun Q, Peng J, Gong H, Yuan J. Simultaneous acquisition of neuronal morphology and cytoarchitecture in the same Golgi-stained brain. BIOMEDICAL OPTICS EXPRESS 2018; 9:230-244. [PMID: 29359099 PMCID: PMC5772577 DOI: 10.1364/boe.9.000230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 05/14/2023]
Abstract
Acquiring an accurate orientation reference is a prerequisite for precisely analysing the morphological features of Golgi-stained neurons in the whole brain. However, the same reflective imaging contrast of Golgi staining for morphology and Nissl staining for cytoarchitecture leads to the failure of distinguishing soma morphology and simultaneously co-locate cytoarchitecture. Here, we developed the dual-mode micro-optical sectioning tomography (dMOST) method to simultaneously image the reflective and fluorescent signals in three dimensions. We evaluated the feasibility of real-time fluorescent counterstaining on Golgi-stained brain tissue. With our system, we acquired whole-brain data sets of physiological and pathological Golgi-stained mouse model brains with fluorescence-labelled anatomical annotation at single-neuron resolution. We also obtained the neuronal morphology of macaque monkey brain tissue using this method. The results show that real-time acquisition of the co-located cytoarchitecture reference in the same brain greatly facilitates the precise morphological analysis of Golgi-stained neurons.
Collapse
Affiliation(s)
- Xiao Chen
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaoyu Zhang
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qiuyuan Zhong
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qingtao Sun
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jie Peng
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Gong
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jing Yuan
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
22
|
Petrosyan TR, Ter-Markosyan AS, Hovsepyan AS. Detection of Ca(2+)-dependent acid phosphatase activity identifies neuronal integrity in damaged rat central nervous system after application of bacterial melanin. Neural Regen Res 2016; 11:1147-52. [PMID: 27630700 PMCID: PMC4994459 DOI: 10.4103/1673-5374.187055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The study aims to confirm the neuroregenerative effects of bacterial melanin (BM) on central nervous system injury using a special staining method based on the detection of Ca(2+)-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12) or unilateral rubrospinal tract transection at the cervical level (C3-4) (group II; n = 12). In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup) and the remaining six rats were intramuscularly injected with saline (saline subgroup). Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca(2+)-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca(2+)-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system.
Collapse
|
23
|
Castro JB, Gould TJ. Neuro at the Nanoscale: Diffraction-Unlimited Imaging with STED Nanoscopy. J Histochem Cytochem 2015; 63:897-907. [PMID: 26392517 DOI: 10.1369/0022155415610169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/20/2015] [Indexed: 01/29/2023] Open
Abstract
Recent breakthroughs in fluorescence microscopy have pushed spatial resolution well beyond the classical limit imposed by diffraction. As a result, the field of nanoscopy has emerged, and diffraction-unlimited resolution is becoming increasingly common in biomedical imaging applications. In this review, we recap the principles behind STED nanoscopy that allow imaging beyond the diffraction limit, and highlight both historical and recent advances made in the field of neuroscience as a result of this technology.
Collapse
Affiliation(s)
- Jason B Castro
- Department of Psychology and Program in Neuroscience , Bates College, Lewiston, Maine.(JBC)
| | - Travis J Gould
- Department of Physics & Astronomy, Bates College, Lewiston, Maine. (TJG)
| |
Collapse
|
24
|
Frankfurt M, Luine V. The evolving role of dendritic spines and memory: Interaction(s) with estradiol. Horm Behav 2015; 74:28-36. [PMID: 25993604 PMCID: PMC4573337 DOI: 10.1016/j.yhbeh.2015.05.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/21/2015] [Accepted: 05/11/2015] [Indexed: 11/16/2022]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". Memory processing is presumed to depend on synaptic plasticity, which appears to have a role in mediating the acquisition, consolidation, and retention of memory. We have studied the relationship between estrogen, recognition memory, and dendritic spine density in the hippocampus and medial prefrontal cortex, areas critical for memory, across the lifespan in female rodents. The present paper reviews the literature on dendritic spine plasticity in mediating both short and long term memory, as well as the decreased memory that occurs with aging and Alzheimer's disease. It also addresses the role of acute and chronic estrogen treatments in these processes.
Collapse
Affiliation(s)
- Maya Frankfurt
- Department of Science Education, Hofstra-North Shore LIJ School of Medicine, USA.
| | | |
Collapse
|
25
|
Dall'Oglio A, Dutra ACL, Moreira JE, Rasia-Filho AA. The human medial amygdala: structure, diversity, and complexity of dendritic spines. J Anat 2015. [PMID: 26218827 DOI: 10.1111/joa.12358] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The medial nucleus of the amygdala (Me) is a component of the neural circuit for the interpretation of multimodal sensory stimuli and the elaboration of emotions and social behaviors in primates. We studied the presence, distribution, diverse shape, and connectivity of dendritic spines in the human Me of adult postmortem men. Data were obtained from the five types of multipolar neurons found in the Me using an adapted Golgi method and light microscopy, the carbocyanine DiI fluorescent dye and confocal microscopy, and transmission electron microscopy. Three-dimensional reconstruction of spines showed a continuum of shapes and sizes, with the spines either lying isolated or forming clusters. These dendritic spines were classified as stubby/wide, thin, mushroom-like, ramified or with an atypical morphology including intermediate shapes, double spines, and thorny excrescences. Pleomorphic spines were found from proximal to distal dendritic branches suggesting potential differences for synaptic processing, strength, and plasticity in the Me neurons. Furthermore, the human Me has large and thin spines with a gemmule appearance, spinules, and filopodium. The ultrastructural data showed dendritic spines forming monosynaptic or multisynaptic contacts at the spine head and neck, and with asymmetric or symmetric characteristics. Additional findings included en passant, reciprocal, and serial synapses in the Me. Complex long-necked thin spines were observed in this subcortical area. These new data reveal the diversity of the dendritic spines in the human Me likely involved with the integration and processing of local synaptic inputs and with functional implications in physiological and various neuropathological conditions.
Collapse
Affiliation(s)
- Aline Dall'Oglio
- Department of Basic Sciences/Physiology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Ana Carolina L Dutra
- Department of Basic Sciences/Physiology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Jorge E Moreira
- Laboratory of Synaptic Structure, Departments of Pathology and Forensic Medicine and Neuroscience and Behavior, Ribeirão Preto School of Medicine, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| |
Collapse
|
26
|
The ROR2 tyrosine kinase receptor regulates dendritic spine morphogenesis in hippocampal neurons. Mol Cell Neurosci 2015; 67:22-30. [DOI: 10.1016/j.mcn.2015.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 05/03/2015] [Accepted: 05/19/2015] [Indexed: 11/19/2022] Open
|
27
|
Maiti P, Manna J, McDonald MP. Merging advanced technologies with classical methods to uncover dendritic spine dynamics: A hot spot of synaptic plasticity. Neurosci Res 2015; 96:1-13. [PMID: 25728560 DOI: 10.1016/j.neures.2015.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 01/08/2023]
Abstract
The structure of dendritic spines determines synaptic efficacy, a plastic process that mediates information processing in the vertebrate nervous system. Aberrant spine morphology, including alterations in shape, size, and number, are common in different brain diseases. Because of this, accurate and unbiased characterization of dendritic spine structure is vital to our ability to explore and understand their involvement in neuronal development, synaptic plasticity, and synaptic failure in neurological diseases. Investigators have attempted to elucidate the precise structure and function of dendritic spines for more than a hundred years, but their fundamental role in synaptic plasticity and neurological diseases remains elusive. Limitations and ambiguities in imaging techniques have exacerbated the challenges of acquiring accurate information about spines and spine features. However, recent advancements in molecular biology, protein engineering, immuno-labeling techniques, and the use of super-resolution nano-microscopy along with powerful image analysis software have provided a better understanding of dendritic spine architecture. Here we describe the pros and cons of the classical staining techniques used to study spine morphology, and the alteration of dendritic spines in various neuropathological conditions. Finally, we highlight recent advances in super-resolved nanoscale microscopy, and their potentials and pitfalls when used to explore dendritic spine dynamics.
Collapse
Affiliation(s)
- Panchanan Maiti
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Jayeeta Manna
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Michael P McDonald
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
28
|
|
29
|
Tan AM. Dendritic spine dysgenesis in neuropathic pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:385-408. [PMID: 25744680 DOI: 10.1016/bs.pmbts.2014.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The failure of neuropathic pain to abate even years after trauma suggests that adverse changes to synaptic function must exist in a chronic pathological state in nociceptive pathways. The chronicity of neuropathic pain therefore underscores the importance of understanding the contribution of dendritic spines--micron-sized postsynaptic structures that represent modifiable sites of synaptic contact. Historically, dendritic spines have been of great interest to the learning and memory field. More recent evidence points to the exciting implication that abnormal dendritic spine structure following disease or injury may represent a "molecular memory" for maintaining chronic pain. Dendritic spine dysgenesis in dorsal horn neurons contributes to nociceptive hyperexcitability associated with neuropathic pain, as demonstrated in multiple pain models, i.e., spinal cord injury, peripheral nerve injury, diabetic neuropathy, and thermal burn injury. Because of the relationship between dendritic spine structure and neuronal function, a thorough investigation of dendritic spine behavior in the spinal cord is a unique opportunity to better understand the mechanisms of sensory dysfunction after injury or disease. At a conceptual level, a spinal memory mechanism that engages dendritic spine remodeling would also contribute to a broad range of intractable neurological conditions. Molecules involved in regulating dendritic spine plasticity may offer novel targets for the development of effective and durable therapies for neurological disease.
Collapse
Affiliation(s)
- Andrew Michael Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut, USA; Hopkins School, New Haven, Connecticut, USA.
| |
Collapse
|
30
|
Sau Wan Lai C. Intravital imaging of dendritic spine plasticity. INTRAVITAL 2015; 3:e944439. [PMID: 28243511 DOI: 10.4161/21659087.2014.984504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 11/19/2022]
Abstract
Dendritic spines are the postsynaptic part of most excitatory synapses in the mammalian brain. Recent works have suggested that the structural and functional plasticity of dendritic spines have been associated with information coding and memories. Advances in imaging and labeling techniques enable the study of dendritic spine dynamics in vivo. This perspective focuses on intravital imaging studies of dendritic spine plasticity in the neocortex. I will introduce imaging tools for studying spine dynamics and will further review current findings on spine structure and function under various physiological and pathological conditions.
Collapse
Affiliation(s)
- Cora Sau Wan Lai
- Department of Physiology; Li Ka Shing Faculty of Medicine; The University of Hong Kong ; Pokfulam, Hong Kong SAR
| |
Collapse
|
31
|
Malanowski S, Craver CF. The spine problem: finding a function for dendritic spines. Front Neuroanat 2014; 8:95. [PMID: 25309340 PMCID: PMC4159972 DOI: 10.3389/fnana.2014.00095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/24/2014] [Indexed: 11/13/2022] Open
Abstract
Why do neurons have dendritic spines? This question-the heart of what Yuste calls "the spine problem"-presupposes that why-questions of this sort have scientific answers: that empirical findings can favor or count against claims about why neurons have spines. Here we show how such questions can receive empirical answers. We construe such why-questions as questions about how spines make a difference to the behavior of some mechanism that we take to be significant. Why-questions are driven fundamentally by the effort to understand how some item, such as the dendritic spine, is situated in the causal structure of the world (the causal nexus). They ask for a filter on that busy world that allows us to see a part's individual contribution to a mechanism, independent of everything else going on. So understood, answers to why-questions can be assessed by testing the claims these answers make about the causal structure of a mechanism. We distinguish four ways of making a difference to a mechanism (necessary, modulatory, component, background condition), and we sketch their evidential requirements. One consequence of our analysis is that there are many spine problems and that any given spine problem might have many acceptable answers.
Collapse
Affiliation(s)
- Sarah Malanowski
- Department of Philosophy, Washington University in St. Louis St. Louis, MO, USA
| | - Carl F Craver
- Department of Philosophy, Washington University in St. Louis St. Louis, MO, USA
| |
Collapse
|
32
|
Analysis of morphological changes as a key method in studying psychiatric animal models. Cell Tissue Res 2013; 354:41-50. [PMID: 23334194 PMCID: PMC3785701 DOI: 10.1007/s00441-012-1547-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/05/2012] [Indexed: 12/26/2022]
Abstract
A major interest in the analysis of animal models of psychiatric diseases is their underlying cellular pathology and to gain information regarding whether pharmacological treatments, genetic differences or an altered environment exert an impact upon the brain morphology or on the morphology or activity of single neurones. In this review, several key methods will be introduced that allow the analysis of morphological changes that are frequently observed in psychiatric animal models. An overview of the techniques that enable dendritic arborisation, alterations in dendritic spines and changes in fibre densities to be analysed are described. Moreover, methods for the analysis of adult neurogenesis and neurodegeneration and for the analysis of neuronal activity in fixed brain tissue are described. An important step during the analysis of morphological changes is the estimation of the number of stained cells. Since conventional cell counting methods have several limitations, two different approaches that permit an estimate of the number of stained cells within three-dimensional tissue are also discussed.
Collapse
|
33
|
Luine VN, Frankfurt M. Estrogens facilitate memory processing through membrane mediated mechanisms and alterations in spine density. Front Neuroendocrinol 2012; 33:388-402. [PMID: 22981654 PMCID: PMC3496031 DOI: 10.1016/j.yfrne.2012.07.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/20/2012] [Accepted: 07/19/2012] [Indexed: 01/27/2023]
Abstract
Estrogens exert sustained, genomically mediated effects on memory throughout the female life cycle, but here we review new studies documenting rapid effects of estradiol on memory, which are exerted through membrane-mediated mechanisms. Use of recognition memory tasks in rats shows that estrogens enhance memory consolidation within 1h. 17α-Estradiol is more potent than 17β-estradiol, and the dose response relationship between estrogens and memory is an inverted U shape. Use of specific estrogen receptor (ER) agonists suggests mediation by an ERβ-like membrane receptor. Enhanced memory is associated with increased spine density and altered noradrenergic activity in the medial prefrontal cortex and hippocampus within 30 min of administration. The environmental chemical, bisphenol-A, rapidly antagonizes enhancements in memory in both sexes possibly through actions on spines. Thus, estradiol and related compounds exert rapid alterations in cognition through non-genomic mechanisms, a finding which may provide a basis for better understanding and treating memory impairments.
Collapse
Affiliation(s)
- Victoria N Luine
- Department of Psychology, Hunter College of CUNY, New York, NY 10065, USA.
| | | |
Collapse
|
34
|
Dendritic spines: from structure to in vivo function. EMBO Rep 2012; 13:699-708. [PMID: 22791026 DOI: 10.1038/embor.2012.102] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/22/2012] [Indexed: 12/19/2022] Open
Abstract
Dendritic spines arise as small protrusions from the dendritic shaft of various types of neuron and receive inputs from excitatory axons. Ever since dendritic spines were first described in the nineteenth century, questions about their function have spawned many hypotheses. In this review, we introduce understanding of the structural and biochemical properties of dendritic spines with emphasis on components studied with imaging methods. We then explore advances in in vivo imaging methods that are allowing spine activity to be studied in living tissue, from super-resolution techniques to calcium imaging. Finally, we review studies on spine structure and function in vivo. These new results shed light on the development, integration properties and plasticity of spines.
Collapse
|
35
|
Mancuso JJ, Chen Y, Li X, Xue Z, Wong STC. Methods of dendritic spine detection: from Golgi to high-resolution optical imaging. Neuroscience 2012; 251:129-40. [PMID: 22522468 DOI: 10.1016/j.neuroscience.2012.04.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 12/18/2022]
Abstract
Dendritic spines, the bulbous protrusions that form the postsynaptic half of excitatory synapses, are one of the most prominent features of neurons and have been imaged and studied for over a century. In that time, changes in the number and morphology of dendritic spines have been correlated to the developmental process as well as the pathophysiology of a number of neurodegenerative diseases. Due to the sheer scale of synaptic connectivity in the brain, work to date has merely scratched the surface in the study of normal spine function and pathology. This review will highlight traditional approaches to the imaging of dendritic spines and newer approaches made possible by advances in microscopy, protein engineering, and image analysis. The review will also describe recent work that is leading researchers toward the possibility of a systematic and comprehensive study of spine anatomy throughout the brain.
Collapse
Affiliation(s)
- J J Mancuso
- Department of Systems Medicine and Bioengineering, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA; Ting Tsung and Wei Fong Chao Center for Bioinformatics Research and Imaging in Neurosciences, USA
| | | | | | | | | |
Collapse
|
36
|
Dumitriu D, Rodriguez A, Morrison JH. High-throughput, detailed, cell-specific neuroanatomy of dendritic spines using microinjection and confocal microscopy. Nat Protoc 2011; 6:1391-411. [PMID: 21886104 DOI: 10.1038/nprot.2011.389] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Morphological features such as size, shape and density of dendritic spines have been shown to reflect important synaptic functional attributes and potential for plasticity. Here we describe in detail a protocol for obtaining detailed morphometric analysis of spines using microinjection of fluorescent dyes, high-resolution confocal microscopy, deconvolution and image analysis with NeuronStudio. Recent technical advancements include better preservation of tissue, resulting in prolonged ability to microinject, and algorithmic improvements that compensate for the residual z-smear inherent in all optical imaging. Confocal imaging parameters were probed systematically to identify both optimal resolution and the highest efficiency. When combined, our methods yield size and density measurements comparable to serial section transmission electron microscopy in a fraction of the time. An experiment containing three experimental groups with eight subjects each can take as little as 1 month if optimized for speed, or approximately 4-5 months if the highest resolution and morphometric detail is sought.
Collapse
Affiliation(s)
- Dani Dumitriu
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA.
| | | | | |
Collapse
|
37
|
A deconvolution method to improve automated 3D-analysis of dendritic spines: application to a mouse model of Huntington’s disease. Brain Struct Funct 2011; 217:421-34. [DOI: 10.1007/s00429-011-0340-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/23/2011] [Indexed: 12/27/2022]
|
38
|
Oz M, Lorke DE, Hasan M, Petroianu GA. Cellular and molecular actions of Methylene Blue in the nervous system. Med Res Rev 2011; 31:93-117. [PMID: 19760660 DOI: 10.1002/med.20177] [Citation(s) in RCA: 247] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methylene Blue (MB), following its introduction to biology in the 19th century by Ehrlich, has found uses in various areas of medicine and biology. At present, MB is the first line of treatment in methemoglobinemias, is used frequently in the treatment of ifosfamide-induced encephalopathy, and is routinely employed as a diagnostic tool in surgical procedures. Furthermore, recent studies suggest that MB has beneficial effects in Alzheimer's disease and memory improvement. Although the modulation of the cGMP pathway is considered the most significant effect of MB, mediating its pharmacological actions, recent studies indicate that it has multiple cellular and molecular targets. In the majority of cases, biological effects and clinical applications of MB are dictated by its unique physicochemical properties including its planar structure, redox chemistry, ionic charges, and light spectrum characteristics. In this review article, these physicochemical features and the actions of MB on multiple cellular and molecular targets are discussed with regard to their relevance to the nervous system.
Collapse
Affiliation(s)
- Murat Oz
- Integrative Neuroscience Section, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, Maryland 21224, USA.
| | | | | | | |
Collapse
|
39
|
Dendritic spines and development: towards a unifying model of spinogenesis--a present day review of Cajal's histological slides and drawings. Neural Plast 2011; 2010:769207. [PMID: 21584262 PMCID: PMC3091278 DOI: 10.1155/2010/769207] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 11/14/2010] [Indexed: 12/21/2022] Open
Abstract
Dendritic spines receive the majority of excitatory connections in the central nervous system, and, thus, they are key structures in the regulation of neural activity. Hence, the cellular and molecular mechanisms underlying their generation and plasticity, both during development and in adulthood, are a matter of fundamental and practical interest. Indeed, a better understanding of these mechanisms should provide clues to the development of novel clinical therapies. Here, we present original results obtained from high-quality images of Cajal's histological preparations, stored at the Cajal Museum (Instituto Cajal, CSIC), obtained using extended focus imaging, three-dimensional reconstruction, and rendering. Based on the data available in the literature regarding the formation of dendritic spines during development and our results, we propose a unifying model for dendritic spine development.
Collapse
|
40
|
Michmizos D, Koutsouraki E, Asprodini E, Baloyannis S. Synaptic Plasticity: A Unifying Model to Address Some Persisting Questions. Int J Neurosci 2011; 121:289-304. [DOI: 10.3109/00207454.2011.556283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
41
|
Schirmer RH, Adler H, Pickhardt M, Mandelkow E. "Lest we forget you--methylene blue...". Neurobiol Aging 2011; 32:2325.e7-16. [PMID: 21316815 DOI: 10.1016/j.neurobiolaging.2010.12.012] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/10/2010] [Accepted: 12/21/2010] [Indexed: 01/07/2023]
Abstract
Methylene blue (MB), the first synthetic drug, has a 120-year-long history of diverse applications, both in medical treatments and as a staining reagent. In recent years there was a surge of interest in MB as an antimalarial agent and as a potential treatment of neurodegenerative disorders such as Alzheimer's disease (AD), possibly through its inhibition of the aggregation of tau protein. Here we review the history and medical applications of MB, with emphasis on recent developments.
Collapse
Affiliation(s)
- R Heiner Schirmer
- Center of Biochemistry (BZH), University of Heidelberg, Heidelberg, Germany
| | | | | | | |
Collapse
|
42
|
Garcia-Lopez P, Garcia-Marin V, Freire M. The histological slides and drawings of cajal. Front Neuroanat 2010; 4:9. [PMID: 20339483 PMCID: PMC2845060 DOI: 10.3389/neuro.05.009.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 02/05/2010] [Indexed: 12/23/2022] Open
Abstract
Ramón y Cajal's studies in the field of neuroscience provoked a radical change in the course of its history. For this reason he is considered as the father of modern neuroscience. Some of his original preparations are housed at the Cajal Museum (Cajal Institute, CSIC, Madrid, Spain). In this article, we catalogue and analyse more than 4,500 of Cajal's histological preparations, the same preparations he used during his scientific career. Furthermore, we catalogued Cajal's original correspondence, both manuscripts and personal letters, drawings and plates. This is the first time anyone has compiled an account of Cajal's enormous scientific production, offering some curious insights into his work and his legacy.
Collapse
Affiliation(s)
- Pablo Garcia-Lopez
- Instituto Cajal, Consejo Superior de Investigaciones CientíficasMadrid, Spain
- School of Visual of ArtsNew York, NY, USA
| | - Virginia Garcia-Marin
- Instituto Cajal, Consejo Superior de Investigaciones CientíficasMadrid, Spain
- Laboratorio de Circuitos Corticales, Centro de Tecnología Biomédica,Universidad Politécnica de MadridMadrid, Spain
| | - Miguel Freire
- Instituto Cajal, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
43
|
Dendritic vulnerability in neurodegenerative disease: insights from analyses of cortical pyramidal neurons in transgenic mouse models. Brain Struct Funct 2010; 214:181-99. [PMID: 20177698 DOI: 10.1007/s00429-010-0244-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 02/05/2010] [Indexed: 12/27/2022]
Abstract
In neurodegenerative disorders, such as Alzheimer's disease, neuronal dendrites and dendritic spines undergo significant pathological changes. Because of the determinant role of these highly dynamic structures in signaling by individual neurons and ultimately in the functionality of neuronal networks that mediate cognitive functions, a detailed understanding of these changes is of paramount importance. Mutant murine models, such as the Tg2576 APP mutant mouse and the rTg4510 tau mutant mouse have been developed to provide insight into pathogenesis involving the abnormal production and aggregation of amyloid and tau proteins, because of the key role that these proteins play in neurodegenerative disease. This review showcases the multidimensional approach taken by our collaborative group to increase understanding of pathological mechanisms in neurodegenerative disease using these mouse models. This approach includes analyses of empirical 3D morphological and electrophysiological data acquired from frontal cortical pyramidal neurons using confocal laser scanning microscopy and whole-cell patch-clamp recording techniques, combined with computational modeling methodologies. These collaborative studies are designed to shed insight on the repercussions of dystrophic changes in neocortical neurons, define the cellular phenotype of differential neuronal vulnerability in relevant models of neurodegenerative disease, and provide a basis upon which to develop meaningful therapeutic strategies aimed at preventing, reversing, or compensating for neurodegenerative changes in dementia.
Collapse
|
44
|
Abstract
Dendritic spines are the postsynaptic components of most excitatory synapses in the mammalian brain. Spines accumulate rapidly during early postnatal development and undergo a substantial loss as animals mature into adulthood. In past decades, studies have revealed that the number and size of dendritic spines are regulated by a variety of gene products and environmental factors, underscoring the dynamic nature of spines and their importance to brain plasticity. Recently, in vivo time-lapse imaging of dendritic spines in the cerebral cortex suggests that, although spines are highly plastic during development, they are remarkably stable in adulthood, and most of them last throughout life. Therefore, dendritic spines may provide a structural basis for lifelong information storage, in addition to their well-established role in brain plasticity. Because dendritic spines are the key elements for information acquisition and retention, understanding how spines are formed and maintained, particularly in the intact brain, will likely provide fundamental insights into how the brain possesses the extraordinary capacity to learn and to remember.
Collapse
Affiliation(s)
- D Harshad Bhatt
- Molecular Neurobiology Program, The Helen and Martin Kimmel Center for Biology and Medicine at Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
45
|
von Bohlen Und Halbach O. Structure and function of dendritic spines within the hippocampus. Ann Anat 2009; 191:518-31. [PMID: 19783417 DOI: 10.1016/j.aanat.2009.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
Abstract
Most excitatory input in the hippocampus impinges on dendritic spines. Therefore, the dendritic spines are likely to be of major importance for neural processing. The morphology of dendritic spines is very diverse and changes in spine size as well as in their density are thought to reflect changes in the strength of synaptic transmission. Thus, alterations in dendritic spine densities or shape are suspected to be morphological manifestations of psychopathological, pathophysiological, physiological and/or behavioural changes. However, in spite of a long history of research, the specific function of dendritic spines within the hippocampal formation is still not well understood. This review will shed light on the hippocampal dendritic spines, their ultrastructure and morphology, as well as their supposed roles in neuronal plasticity and in certain mental illnesses.
Collapse
Affiliation(s)
- Oliver von Bohlen Und Halbach
- Institute of Anatomy and Cell Biology, Ernst-Moritz-Arndt-University of Greifswald, Friedrich-Loeffler-Str. 23c, 17487 Greifswald, Germany.
| |
Collapse
|
46
|
Anderson K, Bones B, Robinson B, Hass C, Lee H, Ford K, Roberts TA, Jacobs B. The morphology of supragranular pyramidal neurons in the human insular cortex: a quantitative Golgi study. Cereb Cortex 2009; 19:2131-44. [PMID: 19126800 DOI: 10.1093/cercor/bhn234] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although the primate insular cortex has been studied extensively, a comprehensive investigation of its neuronal morphology has yet to be completed. To that end, neurons from 20 human subjects (10 males and 10 females; N = 600) were selected from the secondary gyrus brevis, precentral gyrus, and postcentral gyrus of the left insula. The secondary gyrus brevis was generally more complex in terms of dendritic/spine extent than either the precentral or postcentral insular gyri, which is consistent with the posterior-anterior gradient of dendritic complexity observed in other cortical regions. The male insula had longer, spinier dendrites than the female insula, potentially reflecting sex differences in interoception. In comparing the current insular data with regional dendritic data quantified from other Brodmann's areas (BAs), insular total dendritic length (TDL) was less than the TDL of high integration cortices (BA6beta, 10, 11, 39), but greater than the TDL of low integration cortices (BA3-1-2, 4, 22, 44). Insular dendritic spine number was significantly greater than both low and high integration regions. Overall, the insula had spinier, but shorter neurons than did high integration cortices, and thus may represent a specialized type of heteromodal cortex, one that integrates crude multisensory information crucial to interoceptive processes.
Collapse
Affiliation(s)
- Kaeley Anderson
- Laboratory of Quantitative Neuromorphology, Psychology, Colorado College, 14 E. Cache La Poudre, Colorado Springs, CO 80903, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sjöström PJ, Rancz EA, Roth A, Häusser M. Dendritic excitability and synaptic plasticity. Physiol Rev 2008; 88:769-840. [PMID: 18391179 DOI: 10.1152/physrev.00016.2007] [Citation(s) in RCA: 432] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Most synaptic inputs are made onto the dendritic tree. Recent work has shown that dendrites play an active role in transforming synaptic input into neuronal output and in defining the relationships between active synapses. In this review, we discuss how these dendritic properties influence the rules governing the induction of synaptic plasticity. We argue that the location of synapses in the dendritic tree, and the type of dendritic excitability associated with each synapse, play decisive roles in determining the plastic properties of that synapse. Furthermore, since the electrical properties of the dendritic tree are not static, but can be altered by neuromodulators and by synaptic activity itself, we discuss how learning rules may be dynamically shaped by tuning dendritic function. We conclude by describing how this reciprocal relationship between plasticity of dendritic excitability and synaptic plasticity has changed our view of information processing and memory storage in neuronal networks.
Collapse
Affiliation(s)
- P Jesper Sjöström
- Wolfson Institute for Biomedical Research and Department of Physiology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|