1
|
Kaufman MJ, Meloni EG. Xenon gas as a potential treatment for opioid use disorder, alcohol use disorder, and related disorders. Med Gas Res 2025; 15:234-253. [PMID: 39812023 PMCID: PMC11918480 DOI: 10.4103/mgr.medgasres-d-24-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 09/26/2024] [Indexed: 01/16/2025] Open
Abstract
Xenon gas is considered to be a safe anesthetic and imaging agent. Research on its other potentially beneficial effects suggests that xenon may have broad efficacy for treating health disorders. A number of reviews on xenon applications have been published, but none have focused on substance use disorders. Accordingly, we review xenon effects and targets relevant to the treatment of substance use disorders, with a focus on opioid use disorder and alcohol use disorder. We report that xenon inhaled at subsedative concentrations inhibits conditioned memory reconsolidation and opioid withdrawal symptoms. We review work by others reporting on the antidepressant, anxiolytic, and analgesic properties of xenon, which could diminish negative affective states and pain. We discuss research supporting the possibility that xenon could prevent analgesic- or stress-induced opioid tolerance and, by so doing could reduce the risk of developing opioid use disorder. The rapid kinetics, favorable safety and side effect profiles, and multitargeting capability of xenon suggest that it could be used as an ambulatory on-demand treatment to rapidly attenuate maladaptive memory, physical and affective withdrawal symptoms, and pain drivers of substance use disorders when they occur. Xenon may also have human immunodeficiency virus and oncology applications because its effects relevant to substance use disorders could be exploited to target human immunodeficiency virus reservoirs, human immunodeficiency virus protein-induced abnormalities, and cancers. Although xenon is expensive, low concentrations exert beneficial effects, and gas separation, recovery, and recycling advancements will lower xenon costs, increasing the economic feasibility of its therapeutic use. More research is needed to better understand the remarkable repertoire of effects of xenon and its potential therapeutic applications.
Collapse
|
2
|
Leng S, Yang D, Li W, Liu Z, Li H. The longitudinal association between second-hand smoke exposure and maternal depression among non-smoking pregnant women in East China: A prospective birth cohort study. Public Health 2025; 244:105760. [PMID: 40378719 DOI: 10.1016/j.puhe.2025.105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/11/2025] [Accepted: 04/24/2025] [Indexed: 05/19/2025]
Abstract
OBJECTIVES Second-hand smoke (SHS) exposure during pregnancy is common and may negatively impact maternal mental health. Recent evidence on the association between SHS exposure and depression during pregnancy remains inconsistent. This study aims to examine the longitudinal association between SHS exposure and maternal depression. STUDY DESIGN A prospective birth cohort study. METHODS From October 2017 to September 2021, we conducted a prospective birth cohort study including 5311 pregnant women. We applied mixed-effects models and group-based multivariate trajectory modeling to estimate the longitudinal association between SHS exposure and depression during pregnancy. RESULTS The prevalence of depression during pregnancy was 40.61 %, 19.00 %, and 20.35 % in the first, second, and third trimesters, respectively; 50.52 % of the women were exposed to SHS during pregnancy. Compared to unexposed women, those with SHS exposure had higher odds of depression in the first (OR: 1.34, 95 % CI: 1.19-1.51), second (OR: 1.70, 95 % CI: 1.45-1.98), and third trimesters (OR: 1.71, 95 % CI: 1.47-1.99). Exposure in one, two, or three trimesters showed progressively stronger associations (ORs: 1.37, 1.89, 2.08, respectively). SHS exposure was associated with an increased trajectory of depression (OR: 1.38, 95 % CI: 1.05-1.81). The association between SHS and depression was more pronounced among unemployed mothers who had good sleep quality during pregnancy. CONCLUSIONS Exposure to SHS during pregnancy affects current and subsequent depression. Addressing SHS exposure is essential to promote mental health and improve the health outcomes of mothers and offspring.
Collapse
Affiliation(s)
- Shufang Leng
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Dongjian Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Wenlian Li
- Shanghai Jiao Tong University School of Nursing, Shanghai, China
| | - Zhiwei Liu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China.
| | - Hong Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Jiao Tong University School of Nursing, Shanghai, China.
| |
Collapse
|
3
|
Barrantes FJ. Nicotinic acetylcholine receptors in the brain. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:37-54. [PMID: 40340066 DOI: 10.1016/b978-0-443-19088-9.00004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The nicotinic acetylcholine receptor (nAChR) is the archetypal neurotransmitter receptor within the superfamily of pentameric ligand-gated ion channels (pLGICs). Typically, it mediates fast synaptic transmission in response to its endogenous ligand, acetylcholine, and can also intervene in slower signaling mechanisms via intracellular metabolic cascades in association with G-protein-coupled receptors. This review covers the structural and functional aspects of the different neuronal nAChR subtypes and their cellular and anatomic distribution in the brain. The significant progress in our knowledge on the topic derives from the successful combination of biochemical, neuroanatomic, pharmacologic, and cell biology approaches, complemented by site-directed mutagenesis, single-channel electrophysiology, and structural biophysical studies. This multipronged approach provides a comprehensive description of nAChR in health and disease, offering improved chances of success in tackling neurologic and neuropsychiatric diseases involving phenotypic alterations of nAChRs, particularly in neurodegenerative diseases.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Faculty of Medical Sciences, Pontifical Catholic University of Argentina (UCA), Buenos Aires, Argentina; National Scientific & Technological Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
4
|
White AM, Craig AJ, Richie DL, Corley C, Sadek SM, Barton HN, Gipson CD. Nicotine is an Immunosuppressant: Implications for Women's Health and Disease. J Neuroimmunol 2024; 397:578468. [PMID: 39461120 PMCID: PMC11653054 DOI: 10.1016/j.jneuroim.2024.578468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/04/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
A plethora of evidence supports that nicotine, the primary alkaloid in tobacco products that is generally accepted for maintaining use, is immunoregulatory and may function as an immunosuppressant. Women have unique experiences with use of nicotine-containing products and also undergo significant reproductive transitions throughout their lifespan which may be impacted by nicotine use. Within the extant literature, there is conflicting evidence that nicotine may confer beneficial health effects in specific disease states (e.g., in ulcerative colitis). Use prevalence of nicotine-containing products is exceptionally high in individuals presenting with some comorbid disease states that impact immune system health and can be a risk factor for the development of diseases which disproportionately impact women; however, the mechanisms underlying these relationships are largely unclear. Further, little is known regarding the impacts of nicotine's immunosuppressive effects on women's health during the menopausal transition, which is arguably an inflammatory event characterized by a pro-inflammatory peri-menopause period. Given that post-menopausal women are at a higher risk than men for the development of neurodegenerative diseases such as Alzheimer's disease and are also more vulnerable to negative health effects associated with diseases such as HIV-1 infection, it is important to understand how use of nicotine-containing products may impact the immune milieu in women. In this review, we define instances in which nicotine use confers immunosuppressive, anti-inflammatory, or pro-inflammatory effects in the context of comorbid disease states, and focus on how nicotine impacts neuroimmune signaling to maintain use. We posit that regardless of potential health benefits, nicotine use cessation should be a priority in the clinical care of women. The synthesis of this review demonstrates the importance of systematically defining the relationships between volitional nicotine use, immune system function, and comorbid disease states in women to better understand how nicotine impacts women's health and disease.
Collapse
Affiliation(s)
- Ashley M White
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Ashley J Craig
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Daryl L Richie
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Christa Corley
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Safiyah M Sadek
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Heather N Barton
- Beebe Health, Gastroenterology and Internal Medicine, Lewes, Delaware, USA
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
5
|
Power SK, Venkatesan S, Qu S, McLaurin J, Lambe EK. Enhanced prefrontal nicotinic signaling as evidence of active compensation in Alzheimer's disease models. Transl Neurodegener 2024; 13:58. [PMID: 39623428 PMCID: PMC11613856 DOI: 10.1186/s40035-024-00452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 08/22/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Cognitive reserve allows for resilience to neuropathology, potentially through active compensation. Here, we examine ex vivo electrophysiological evidence for active compensation in Alzheimer's disease (AD) focusing on the cholinergic innervation of layer 6 in prefrontal cortex. Cholinergic pathways are vulnerable to neuropathology in AD and its preclinical models, and their modulation of deep layer prefrontal cortex is essential for attention and executive function. METHODS We functionally interrogated cholinergic modulation of prefrontal layer 6 pyramidal neurons in two preclinical models: a compound transgenic AD mouse model that permits optogenetically-triggered release of endogenous acetylcholine and a transgenic AD rat model that closely recapitulates the human trajectory of AD. We then tested the impact of therapeutic interventions to further amplify the compensated responses and preserve the typical kinetic profile of cholinergic signaling. RESULTS In two AD models, we found potentially compensatory upregulation of functional cholinergic responses above non-transgenic controls after onset of pathology. To identify the locus of this enhanced cholinergic signal, we dissected key pre- and post-synaptic components with pharmacological strategies. We identified a significant and selective increase in post-synaptic nicotinic receptor signalling on prefrontal cortical neurons. To probe the additional impact of therapeutic intervention on the adapted circuit, we tested cholinergic and nicotinic-selective pro-cognitive treatments. Inhibition of acetylcholinesterase further enhanced endogenous cholinergic responses but greatly distorted their kinetics. Positive allosteric modulation of nicotinic receptors, by contrast, enhanced endogenous cholinergic responses and retained their rapid kinetics. CONCLUSIONS We demonstrate that functional nicotinic upregulation occurs within the prefrontal cortex in two AD models. Promisingly, this nicotinic signal can be further enhanced while preserving its rapid kinetic signature. Taken together, our work suggests that compensatory mechanisms are active within the prefrontal cortex that can be harnessed by nicotinic receptor positive allosteric modulation, highlighting a new direction for cognitive treatment in AD neuropathology.
Collapse
Affiliation(s)
- Saige K Power
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sridevi Venkatesan
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Sarah Qu
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - JoAnne McLaurin
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Evelyn K Lambe
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5G 1E2, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
6
|
Abdulla ZI, Mineur YS, Crouse RB, Etherington IM, Yousuf H, Na JJ, Picciotto MR. Medial prefrontal cortex acetylcholine signaling mediates the ability to learn an active avoidance response following learned helplessness training. Neuropsychopharmacology 2024; 50:488-496. [PMID: 39362985 PMCID: PMC11631976 DOI: 10.1038/s41386-024-02003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Increased brain levels of acetylcholine (ACh) have been observed in patients with depression, and increasing ACh levels pharmacologically can precipitate stress-related behaviors in humans and animals. Conversely, optimal ACh levels are required for cognition and memory. We hypothesize that excessive ACh signaling results in strengthening of negative encoding in which memory formation is aberrantly strengthened for stressful events. The medial prefrontal cortex (mPFC) is critical for both top-down control of stress-related circuits, and for encoding of sensory experiences. We therefore evaluated the role of ACh signaling in the mPFC in a learned helplessness task in which mice were exposed to repeated inescapable stressors followed by an active avoidance task. Using fiber photometry with a genetically-encoded ACh sensor, we found that ACh levels in the mPFC during exposure to inescapable stressors were positively correlated with later escape deficits in an active avoidance test in males, but not females. Consistent with these measurements, we found that both pharmacologically- and chemogenetically-induced increases in mPFC ACh levels resulted in escape deficits in both male and female mice, whereas chemogenetic inhibition of ACh neurons projecting to the mPFC improved escape performance in males, but impaired escape performance in females. These results highlight the adaptive role of ACh release in stress response, but also support the idea that sustained elevation of ACh contributes to maladaptive behaviors. Furthermore, mPFC ACh signaling may contribute to stress-based learning differentially in males and females.
Collapse
Affiliation(s)
- Zuhair I Abdulla
- Department of Psychiatry, Yale University, New Haven, CT, 06508, USA
| | - Yann S Mineur
- Department of Psychiatry, Yale University, New Haven, CT, 06508, USA
| | - Richard B Crouse
- Yale University Interdepartmental Neuroscience Program, New Haven, CT, USA
| | - Ian M Etherington
- Yale University Interdepartmental Neuroscience Program, New Haven, CT, USA
| | - Hanna Yousuf
- Department of Psychiatry, Yale University, New Haven, CT, 06508, USA
| | | | - Marina R Picciotto
- Department of Psychiatry, Yale University, New Haven, CT, 06508, USA.
- Yale University Interdepartmental Neuroscience Program, New Haven, CT, USA.
- Kavli Institute for Neuroscience at Yale, New Haven, CT, USA.
| |
Collapse
|
7
|
Thomson K, Karouta C, Ashby R. Administration of Nicotine Can Inhibit Myopic Growth in Animal Models. Invest Ophthalmol Vis Sci 2024; 65:29. [PMID: 39292451 PMCID: PMC11412605 DOI: 10.1167/iovs.65.11.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Purpose While previously investigating the mechanism by which atropine inhibits ocular growth, we observed that stimulation of nicotinic receptors can inhibit experimental myopia. This study expands on that preliminary finding and investigates the safety and efficacy of nicotinic stimulation in the inhibition of ocular growth. Methods Nicotine's ability to inhibit form-deprivation myopia (FDM), following intravitreal injection (9 chicks per group) or topical application (6 chicks per group), was investigated over three doses. The ability of nicotine to inhibit lens-induced myopia (LIM) was also tested (in 12 chicks). For ocular safety, following 4 weeks of topical treatment with nicotine (n = 10), pupillary reflex, intraocular pressure, corneal curvature/thickness, lens thickness, retinal health (retinal thickness/cell apoptosis), as well as retinal function (electroretinogram recordings) were assessed. We also examined the effects of nicotine on non-ocular autonomic functions in both chicks (n = 5) and mice (n = 5). Results Nicotine was observed to significantly inhibit the development of FDM in chicks when administered as an intravitreal injection (P < 0.05) or topical eye drops (P < 0.05), albeit not in a dose-dependent manner. Nicotine also inhibited LIM (P < 0.05) to a similar degree to that seen for FDM. Although ocular health was (for the most part) unaffected by nicotine, the highest topical dose induced a temporary reduction in cardiorespiratory output (P < 0.05). Conclusions Nicotine, administered as an intravitreal injection or topical eye drop, significantly inhibits the development of experimental myopia. Although the anti-myopic effects observed presently are interesting, the well-reported side effects (expanded on presently) and addictive properties of nicotine would preclude its clinical use.
Collapse
Affiliation(s)
- Kate Thomson
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Bruce, Canberra, Australia
| | - Cindy Karouta
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Bruce, Canberra, Australia
| | - Regan Ashby
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Bruce, Canberra, Australia
- Research School of Biology, Australian National University, Acton, Australia
| |
Collapse
|
8
|
Alkhlaif Y, Shelton KL. Stimulus mediation, specificity and impact of menthol in rats trained to discriminate puffs of nicotine e-cigarette aerosol from nicotine-free aerosol. Psychopharmacology (Berl) 2024; 241:1527-1538. [PMID: 38519818 PMCID: PMC11269472 DOI: 10.1007/s00213-024-06579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
RATIONALE It is unclear if e-cigarettes have reduced abuse liability relative to traditional cigarettes, especially when considering advanced devices which deliver nicotine more efficiently. Translatable and predictive animal models are needed to addresses this question. OBJECTIVES Our goal was to explore the subjective stimulus effects of e-cigarettes by training rats to discriminate puffs of nicotine aerosol from vehicle aerosol using an aerosol delivery system designed to model e-cigarette use patterns in humans. METHODS Rats were trained to discriminate between ten, 10 s puffs of aerosol generated from 3 mg/ml nicotine e-liquid and nicotine-free e-liquid using a food-reinforced operant procedure. Following acquisition, tests were conducted to determine the specificity of the nicotine aerosol stimulus as well as the impact to the stimulus effects of nicotine resulting from the addition of menthol to e-liquid. RESULTS Rats learned the nicotine aerosol puff vs vehicle puff discrimination in a mean of 25 training sessions. Injected nicotine fully substituted for the stimulus effects of nicotine aerosol. The stimulus effects of nicotine aerosol were blocked by the nicotinic receptor antagonist mecamylamine. The nicotinic receptor partial agonist, varenicline as well as the stimulant d-amphetamine substituted more robustly for nicotine aerosol puffs than did the NMDA antagonist, ketamine. Menthol enhanced the stimulus effects of nicotine aerosol without altering nicotine blood plasma levels. CONCLUSIONS Nicotine aerosol puffs can function as a training stimulus in rats. The stimulus effects were CNS-mediated and receptor specific. Menthol appears to enhance the stimulus effects of nicotine aerosol through a pharmacodynamic rather than pharmacokinetic mechanism.
Collapse
Affiliation(s)
- Yasmin Alkhlaif
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, 410 North 12Th Street, Room 746D, Richmond, VA, 23298-0613, USA
| | - Keith L Shelton
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, 410 North 12Th Street, Room 746D, Richmond, VA, 23298-0613, USA.
| |
Collapse
|
9
|
Riyahi J, Taslimi Z, Gelfo F, Petrosini L, Haghparast A. Trans-generational effects of parental exposure to drugs of abuse on offspring memory functions. Neurosci Biobehav Rev 2024; 160:105644. [PMID: 38548003 DOI: 10.1016/j.neubiorev.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Recent evidence reported that parental-derived phenotypes can be passed on to the next generations. Within the inheritance of epigenetic characteristics allowing the transmission of information related to the ancestral environment to the offspring, the specific case of the trans-generational effects of parental drug addiction has been extensively studied. Drug addiction is a chronic disorder resulting from complex interactions among environmental, genetic, and drug-related factors. Repeated exposures to drugs induce epigenetic changes in the reward circuitry that in turn mediate enduring changes in brain function. Addictive drugs can exert their effects trans-generally and influence the offspring of addicted parents. Although there is growing evidence that shows a wide range of behavioral, physiological, and molecular phenotypes in inter-, multi-, and trans-generational studies, transmitted phenotypes often vary widely even within similar protocols. Given the breadth of literature findings, in the present review, we restricted our investigation to learning and memory performances, as examples of the offspring's complex behavioral outcomes following parental exposure to drugs of abuse, including morphine, cocaine, cannabinoids, nicotine, heroin, and alcohol.
Collapse
Affiliation(s)
- Javad Riyahi
- Department of Cognitive and Behavioral Science and Technology in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Zahra Taslimi
- Behavioral Disorders and Substance Abuse Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Francesca Gelfo
- IRCCS Santa Lucia Foundation, Rome, Italy; Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Gao R, Schneider AM, Mulloy SM, Lee AM. Expression pattern of nicotinic acetylcholine receptor subunit transcripts in neurons and astrocytes in the ventral tegmental area and locus coeruleus. Eur J Neurosci 2024; 59:2225-2239. [PMID: 37539749 PMCID: PMC10838369 DOI: 10.1111/ejn.16109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/06/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Acetylcholine is the endogenous agonist for the neuronal nicotinic acetylcholine receptor (nAChR) system, which is involved in attention, memory, affective behaviours and substance use disorders. Brain nAChRs are highly diverse with 11 different subunits that can form multiple receptor subtypes, each with distinct receptor and pharmacological properties. Different neuronal cell types can also express different nAChR subtypes, resulting in highly complex cholinergic signalling. Identifying which nAChR subunit transcripts are expressed in cell types can provide an indication of which nAChR combinations are possible and which receptor subtypes may be most pharmacologically relevant to target. In addition to differences in expression across cell types, nAChRs also undergo changes in expression levels from adolescence to adulthood. In this study, we used fluorescent in situ hybridization to identify and quantify the expression of α4, α5, α6, β2 and β3 nAChR subunit transcripts in dopaminergic, GABAergic, glutamatergic and noradrenergic neurons and astrocytes in the ventral tegmental area (VTA) and locus coeruleus (LC) in adult and adolescent, male and female C57BL/6J mice. There were distinct differences in the pattern of nAChR subunit transcript expression between the two brain regions. LC noradrenergic neurons had high prevalence of α6, β2 and β3 expression, with very low expression of α4, suggesting the α6(non-α4)β2β3 receptor as a main subtype in these neurons. VTA astrocytes from adult mice showed greater prevalence of α5, α6, β2 and β3 transcript compared with adolescent mice. These data highlight the complex nAChR expression patterns across brain region and cell type.
Collapse
Affiliation(s)
- Runbo Gao
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Amelia M. Schneider
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarah M. Mulloy
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anna M. Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Elder TR, Turner JR. Nicotine use disorder and Neuregulin 3: Opportunities for precision medicine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 99:387-404. [PMID: 38467488 DOI: 10.1016/bs.apha.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Nicotine use disorder remains a major public health emergency despite years of trumpeting the consequences of smoking. This is likely due to the complex interplay of genetics and nicotine exposure across the lifespan of these individuals. Genetics influence all aspects of life, including complex disorders such as nicotine use disorder. This review first highlights the critical neurocircuitry underlying nicotine dependence and withdrawal, and then describes the cellular signaling mechanisms involved. Finally, current genetic, genomic, and transcriptomic evidence for new drug development of smoking cessation aids is discussed, with a focus on the Neuregulin 3 Signaling Pathway.
Collapse
Affiliation(s)
- Taylor R Elder
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, United States
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, United States.
| |
Collapse
|
12
|
Lagström O, Vestin E, Söderpalm B, Ericson M, Adermark L. Subregion specific neuroadaptations in the female rat striatum during acute and protracted withdrawal from nicotine. J Neural Transm (Vienna) 2024; 131:83-94. [PMID: 37500938 PMCID: PMC10769920 DOI: 10.1007/s00702-023-02678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Epidemiological studies and clinical observations suggest that nicotine, a major contributor of the global burden of disease, acts in a partially sex specific manner. Still, preclinical research has primarily been conducted in males. More research is thus required to define the effects displayed by nicotine on the female brain. To this end, female rats received 15 injections of either nicotine (0.36mg/kg) or saline, over a 3-week period and were then followed for up to 3 months. Behavioral effects of nicotine were assessed using locomotor activity measurements and elevated plus maze, while neurophysiological changes were monitored using ex vivo electrophysiological field potential recordings conducted in subregions of the dorsal and ventral striatum. Behavioral assessments demonstrated a robust sensitization to the locomotor stimulatory properties of nicotine, but monitored behaviors on the elevated plus maze were not affected during acute (24 h) or protracted (3 months) withdrawal. Electrophysiological recordings revealed a selective increase in excitatory neurotransmission in the nucleus accumbens shell and dorsomedial striatum during acute withdrawal. Importantly, accumbal neuroadaptations in nicotine-treated rats correlated with locomotor behavior, supporting a role for the nucleus accumbens in behavioral sensitization. While no sustained neuroadaptations were observed following 3 months withdrawal, there was an overall trend towards reduced inhibitory tone. Together, these findings suggest that nicotine produces selective transformations of striatal brain circuits that may drive specific behaviors associated with nicotine exposure. Furthermore, our observations suggest that sex-specificity should be considered when evaluating long-term effects by nicotine on the brain.
Collapse
Affiliation(s)
- Oona Lagström
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Edvin Vestin
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
13
|
Mousavi SL, Rezayof A, Alijanpour S, Delphi L, Hosseinzadeh Sahafi O. Activation of mediodorsal thalamic dopamine receptors inhibited nicotine-induced anxiety in rats: A possible role of corticolimbic NMDA neurotransmission and BDNF expression. Pharmacol Biochem Behav 2023; 232:173650. [PMID: 37778541 DOI: 10.1016/j.pbb.2023.173650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The present study aimed to evaluate the functional interaction between the dopaminergic and glutamatergic systems of the mediodorsal thalamus (MD), the ventral hippocampus (VH), and the prefrontal cortex (PFC) in nicotine-induced anxiogenic-like behaviors. Brain-derived neurotrophic factor (BDNF) level changes were measured in the targeted brain areas following the drug treatments. The percentage of time spent in the open arm (% OAT) and open arm entry (% OAE) were calculated in the elevated plus maze (EPM) to measure anxiety-related behaviors in adult male Wistar rats. Systemic administration of nicotine at a dose of 0.5 mg/kg induced an anxiogenic-like response associated with decreased BDNF levels in the hippocampus and the PFC. Intra-MD microinjection of apomorphine (0.1-0.3 μg/rat) induced an anxiogenic-like response, while apomorphine inhibited nicotine-induced anxiogenic-like behaviors associated with increased hippocampal and PFC BDNF expression levels. Interestingly, the blockade of the VH or the PFC NMDA receptors via the microinjection of D-AP5 (0.3-0.5 μg/rat) into the targeted sites reversed the inhibitory effect of apomorphine (0.5 μg/rat, intra-MD) on the nicotine response and led to the decrease of BDNF levels in the hippocampus and the PFC. Also, the microinjection of a higher dose of D-AP5 (0.5 μg/rat, intra-PFC) alone produced an anxiogenic effect. These findings suggest that the functional interaction between the MD dopaminergic D1/D2-like and the VH/PFC glutamatergic NMDA receptors may be partially involved in the anxiogenic-like effects of nicotine, likely via the alteration of BDNF levels in the hippocampus and the PFC.
Collapse
Affiliation(s)
- Seyedeh Leila Mousavi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, USA
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Sakineh Alijanpour
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Papke RL. The many enigmas of nicotine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:327-354. [PMID: 38467485 PMCID: PMC11318566 DOI: 10.1016/bs.apha.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
This review discusses the diverse effects of nicotine on the various nicotinic acetylcholine receptors of the central and peripheral nervous system and how those effects may promote the usage and addiction to tobacco products.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
15
|
Abdulla ZI, Mineur YS, Crouse RB, Etherington IM, Yousuf H, Na JJ, Picciotto MR. Acetylcholine signaling in the medial prefrontal cortex mediates the ability to learn an active avoidance response following learned helplessness training. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559126. [PMID: 37790481 PMCID: PMC10542494 DOI: 10.1101/2023.09.23.559126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Increased brain levels of acetylcholine (ACh) are observed in subsets of patients with depression and increasing ACh levels chronically can precipitate stress-related behaviors in humans and animals. Conversely, optimal ACh levels are required for cognition and memory. We hypothesize that ACh signaling is important for encoding both appetitive and stress-relevant memories, but that excessive increases in ACh result in a negative encoding bias in which memory formation of a stressful event is aberrantly strengthened, potentially contributing to the excessive focus on negative experience that could lead to depressive symptoms. The medial prefrontal cortex (mPFC) is critical to control the limbic system to filter exteroceptive cues and stress-related circuits. We therefore evaluated the role of ACh signaling in the mPFC in a learned helplessness task in which mice were exposed to repeated inescapable stressors followed by an active avoidance task. Using fiber photometry with a genetically-encoded ACh sensor, we found that ACh levels in the mPFC during exposure to inescapable stressors were positively correlated with later escape deficits in an active avoidance test in males, but not females. Consistent with these measurements, we found that both pharmacologically- and chemogenetically-induced increases in mPFC ACh levels resulted in escape deficits in both male and female mice, whereas chemogenetic inhibition of ACh neurons projecting to the mPFC improved escape performance in males, but impaired escape performance in females. These results highlight the adaptive role of ACh release in stress response, but also support the idea that sustained elevated ACh levels contribute to maladaptive behaviors. Furthermore, mPFC ACh signaling may contribute to depressive symptomology differentially in males and females.
Collapse
Affiliation(s)
- Zuhair I. Abdulla
- Department of Psychiatry, Yale University, 34 Park Street, New Haven, CT 06508, USA
| | - Yann S. Mineur
- Department of Psychiatry, Yale University, 34 Park Street, New Haven, CT 06508, USA
| | | | | | - Hanna Yousuf
- Department of Psychiatry, Yale University, 34 Park Street, New Haven, CT 06508, USA
| | | | - Marina R. Picciotto
- Department of Psychiatry, Yale University, 34 Park Street, New Haven, CT 06508, USA
- Yale University Interdepartmental Neuroscience Program
- Kavli Institute for Neuroscience at Yale
| |
Collapse
|
16
|
Medrano MC, Darlot F, Cador M, Caille S. Poor inhibitory control predicts sex-specific vulnerability to nicotine rewarding properties in mice. Psychopharmacology (Berl) 2023; 240:1973-1986. [PMID: 37439799 DOI: 10.1007/s00213-023-06418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
RATIONALE The risk of becoming addicted to tobacco varies greatly from individual to individual, raising the possibility of behavioural biomarkers capable of predicting sensitivity to nicotine reward, a crucial step in the development of nicotine addiction. Amongst all of nicotine's pharmacological properties, one of central importance is the enhancement of cognitive performances, which depend on the balance between attentional processes and inhibitory control. However, whether the cognitive enhancement effects of nicotine are predictive of sensitivity to its rewarding properties is still unknown. OBJECTIVE Using male and female mice, we investigated whether the effects of nicotine on cognitive performances are predictive of sensitivity to the rewarding properties of nicotine and, if so, whether this relationship is sex dependent. METHODS Naïve male and female mice were first assessed for their performances in both baseline conditions and following nicotine injection (0.15 and 0.30 mg/kg) in a cued-Fixed Consecutive Number task (FCNcue) measuring both optimal (attention) and premature (inhibitory control) responding. Next, all mice underwent nicotine-induced conditioned place preference (CPP) in order to evaluate inter-individual differences in response to nicotine reward (0.30 mg/kg). RESULTS Results showed that males and females benefited from the effect of nicotine as a cognitive enhancer in the FCNcue task. However, only those males displaying poor inhibitory control, namely high-impulsive animals, subsequently displayed sensitivity to nicotine reward. In females, sensitivity to nicotine reward was independent of FCNcue performances, in both basal and nicotine conditions. CONCLUSION Thus, our study suggests that poor inhibitory control and its modulation by nicotine may be a behavioural biomarker for sensitivity to nicotine reward and consequent vulnerability to nicotine addiction in males but not females.
Collapse
Affiliation(s)
| | - Florence Darlot
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Martine Cador
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Stephanie Caille
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France.
| |
Collapse
|
17
|
Yang K, McLaughlin I, Shaw JK, Quijano-Cardé N, Dani JA, De Biasi M. CHRNA5 gene variation affects the response of VTA dopaminergic neurons during chronic nicotine exposure and withdrawal. Neuropharmacology 2023; 235:109547. [PMID: 37116611 PMCID: PMC10249248 DOI: 10.1016/j.neuropharm.2023.109547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
Nicotine is the principal psychoactive component in tobacco that drives addiction through its action on neuronal nicotinic acetylcholine receptors (nAChR). The nicotinic receptor gene CHRNA5, which encodes the α5 subunit, is associated with nicotine use and dependence. In humans, the CHRNA5 missense variant rs16969968 (G > A) is associated with increased risk for nicotine dependence and other smoking-related phenotypes. In rodents, α5-containing nAChRs in dopamine (DA) neurons within the ventral tegmental area (VTA) powerfully modulate nicotine reward and reinforcement. Although the neuroadaptations caused by long-term nicotine exposure are being actively delineated at both the synaptic and behavioral levels, the contribution of α5-containing nAChRs to the cellular adaptations associated with long-term nicotine exposure remain largely unknown. To gain insight into the mechanisms behind the influence of α5-containing nAChRs and the rs16969968 polymorphism on nicotine use and dependence, we used electrophysiological approaches to examine changes in nAChR function arising in VTA neurons during chronic nicotine exposure and multiple stages of nicotine withdrawal. Our results demonstrate that CHRNA5 mutation leads to profound changes in VTA nAChR function at baseline, during chronic nicotine exposure, and during short-term and prolonged withdrawal. Whereas nAChR function was suppressed in DA neurons from WT mice undergoing withdrawal relative to drug-naïve or nicotine-drinking mice, α5-null mice exhibited an increase in nAChR function during nicotine exposure that persisted throughout 5-10 weeks of withdrawal. Re-expressing the hypofunctional rs16969968 CHRNA5 variant in α5-null VTA DA neurons did not rescue the phenotype, with α5-SNP neurons displaying a similar increased response to ACh during nicotine exposure and early stages of withdrawal. These results demonstrate the importance of VTA α5-nAChRs in the response to nicotine and implicate them in the time course of withdrawal.
Collapse
Affiliation(s)
- Kechun Yang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ian McLaughlin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jessica K Shaw
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Natalia Quijano-Cardé
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John A Dani
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Mariella De Biasi
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Vallés AS, Barrantes FJ. Nicotinic Acetylcholine Receptor Dysfunction in Addiction and in Some Neurodegenerative and Neuropsychiatric Diseases. Cells 2023; 12:2051. [PMID: 37626860 PMCID: PMC10453526 DOI: 10.3390/cells12162051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The cholinergic system plays an essential role in brain development, physiology, and pathophysiology. Herein, we review how specific alterations in this system, through genetic mutations or abnormal receptor function, can lead to aberrant neural circuitry that triggers disease. The review focuses on the nicotinic acetylcholine receptor (nAChR) and its role in addiction and in neurodegenerative and neuropsychiatric diseases and epilepsy. Cholinergic dysfunction is associated with inflammatory processes mainly through the involvement of α7 nAChRs expressed in brain and in peripheral immune cells. Evidence suggests that these neuroinflammatory processes trigger and aggravate pathological states. We discuss the preclinical evidence demonstrating the therapeutic potential of nAChR ligands in Alzheimer disease, Parkinson disease, schizophrenia spectrum disorders, and in autosomal dominant sleep-related hypermotor epilepsy. PubMed and Google Scholar bibliographic databases were searched with the keywords indicated below.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Bahía Blanca Institute of Biochemical Research (UNS-CONICET), Bahía Blanca 8000, Argentina;
| | - Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Faculty of Medical Sciences, Pontifical Catholic University of Argentina—National Scientific and Technical Research Council, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
19
|
Zhang H, Rajji TK, Selby P, Melamed O, Attwells S, Zawertailo L. Augmenting varenicline treatment with transcranial direct current stimulation (tDCS) increases smoking abstinence rates at end of treatment. Brain Stimul 2023; 16:1083-1085. [PMID: 37406928 DOI: 10.1016/j.brs.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023] Open
Affiliation(s)
- Helena Zhang
- Nicotine Dependence Service, Addictions Program, Centre for Addiction and Mental Health, Toronto, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Tarek K Rajji
- Department of Psychiatry, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Peter Selby
- Nicotine Dependence Service, Addictions Program, Centre for Addiction and Mental Health, Toronto, Canada; Department of Family and Community Medicine, Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Osnat Melamed
- Nicotine Dependence Service, Addictions Program, Centre for Addiction and Mental Health, Toronto, Canada
| | - Sophia Attwells
- Nicotine Dependence Service, Addictions Program, Centre for Addiction and Mental Health, Toronto, Canada
| | - Laurie Zawertailo
- Nicotine Dependence Service, Addictions Program, Centre for Addiction and Mental Health, Toronto, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
20
|
O'Brien BCV, Weber L, Hueffer K, Weltzin MM. SARS-CoV-2 spike ectodomain targets α7 nicotinic acetylcholine receptors. J Biol Chem 2023; 299:104707. [PMID: 37061001 PMCID: PMC10101490 DOI: 10.1016/j.jbc.2023.104707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
Virus entry into animal cells is initiated by attachment to target macromolecules located on host cells. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) trimeric spike glycoprotein targets host angiotensin converting enzyme 2 to gain cellular access. The SARS-CoV-2 glycoprotein contains a neurotoxin-like region that has sequence similarities to the rabies virus and the HIV glycoproteins, as well as to snake neurotoxins, which interact with nicotinic acetylcholine receptor (nAChR) subtypes via this region. Using a peptide of the neurotoxin-like region of SARS-CoV-2 (SARS-CoV-2 glycoprotein peptide [SCoV2P]), we identified that this area moderately inhibits α3β2, α3β4, and α4β2 subtypes, while potentiating and inhibiting α7 nAChRs. These nAChR subtypes are found in target tissues including the nose, lung, central nervous system, and immune cells. Importantly, SCoV2P potentiates and inhibits ACh-induced α7 nAChR responses by an allosteric mechanism, with nicotine enhancing these effects. Live-cell confocal microscopy was used to confirm that SCoV2P interacts with α7 nAChRs in transfected neuronal-like N2a and human embryonic kidney 293 cells. The SARS-CoV-2 ectodomain functionally potentiates and inhibits the α7 subtype with nanomolar potency. Our functional findings identify that the α7 nAChR is a target for the SARS-CoV-2 glycoprotein, providing a new aspect to our understanding of SARS-CoV-2 and host cell interactions, in addition to disease pathogenesis.
Collapse
Affiliation(s)
- Brittany C V O'Brien
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Lahra Weber
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Karsten Hueffer
- Department of Veterinary Medicine, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Maegan M Weltzin
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA.
| |
Collapse
|
21
|
Terry AV, Jones K, Bertrand D. Nicotinic acetylcholine receptors in neurological and psychiatric diseases. Pharmacol Res 2023; 191:106764. [PMID: 37044234 DOI: 10.1016/j.phrs.2023.106764] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that are widely distributed both pre- and post-synaptically in the mammalian brain. By modulating cation flux across cell membranes, neuronal nAChRs regulate neuronal excitability and the release of a variety of neurotransmitters to influence multiple physiologic and behavioral processes including synaptic plasticity, motor function, attention, learning and memory. Abnormalities of neuronal nAChRs have been implicated in the pathophysiology of neurologic disorders including Alzheimer's disease, Parkinson's disease, epilepsy, and Tourette´s syndrome, as well as psychiatric disorders including schizophrenia, depression, and anxiety. The potential role of nAChRs in a particular illness may be indicated by alterations in the expression of nAChRs in relevant brain regions, genetic variability in the genes encoding for nAChR subunit proteins, and/or clinical or preclinical observations where specific ligands showed a therapeutic effect. Over the past 25 years, extensive preclinical and some early clinical evidence suggested that ligands at nAChRs might have therapeutic potential for neurologic and psychiatric disorders. However, to date the only approved indications for nAChR ligands are smoking cessation and the treatment of dry eye disease. It has been argued that progress in nAChR drug discovery has been limited by translational gaps between the preclinical models and the human disease as well as unresolved questions regarding the pharmacological goal (i.e., agonism, antagonism or receptor desensitization) depending on the disease.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, 30912.
| | - Keri Jones
- Educational Innovation Institute, Medical College of Georgia at Augusta University, Augusta, Georgia, 30912
| | - Daniel Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222 Vésenaz, Geneva, Switzerland
| |
Collapse
|
22
|
Mineur YS, Soares AR, Etherington IM, Abdulla ZI, Picciotto MR. Pathophysiology of nAChRs: limbic circuits and related disorders. Pharmacol Res 2023; 191:106745. [PMID: 37011774 DOI: 10.1016/j.phrs.2023.106745] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Human epidemiological studies have identified links between nicotine intake and stress disorders, including anxiety, depression and PTSD. Here we review the clinical evidence for activation and desensitization of nicotinic acetylcholine receptors (nAChRs) relevant to affective disorders. We go on to describe clinical and preclinical pharmacological studies suggesting that nAChR function may be involved in the etiology of anxiety and depressive disorders, may be relevant targets for medication development, and may contribute to the antidepressant efficacy of non-nicotinic therapeutics. We then review what is known about nAChR function in a subset of limbic system areas (amygdala, hippocampus and prefrontal cortex), and how this contributes to stress-relevant behaviors in preclinical models that may be relevant to human affective disorders. Taken together, the preclinical and clinical literature point to a clear role for ACh signaling through nAChRs in regulation of behavioral responses to stress. Disruption of nAChR homeostasis is likely to contribute to the psychopathology observed in anxiety and depressive disorders. Targeting specific nAChRs may therefore be a strategy for medication development to treat these disorders or to augment the efficacy of current therapeutics.
Collapse
Affiliation(s)
| | - Alexa R Soares
- Department of Psychiatry, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA
| | - Ian M Etherington
- Department of Psychiatry, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA
| | | | | |
Collapse
|
23
|
Montes de Oca M, Laucho-Contreras ME. Smoking cessation and vaccination. Eur Respir Rev 2023; 32:220187. [PMID: 36948500 PMCID: PMC10032588 DOI: 10.1183/16000617.0187-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/08/2022] [Indexed: 03/24/2023] Open
Abstract
A significant proportion of COPD patients (∼40%) continue smoking despite knowing that they have the disease. Smokers with COPD exhibit higher levels of nicotine dependence, and have lower self-efficacy and self-esteem, which affects their ability to quit smoking. Treatment should be adapted to the needs of individual patients with different levels of tobacco dependence. The combination of counselling plus pharmacotherapy is the most effective cessation treatment for COPD. In patients with severe COPD, varenicline and bupropion have been shown to have the highest abstinence rates compared with nicotine replacement therapy. There is a lack of evidence to support that smoking cessation reduction or harm reduction strategies have benefits in COPD patients. The long-term efficacy and safety of electronic cigarettes for smoking cessation need to be evaluated in high-risk populations; therefore, it is not possible to recommend their use for smoking cessation in COPD. Future studies with the new generation of nicotine vaccines are necessary to determine their effectiveness in smokers in general and in COPD patients.
Collapse
Affiliation(s)
- Maria Montes de Oca
- School of Medicine, Universidad Central de Venezuela and Hospital Centro Médico de Caracas, Caracas, Venezuela
| | | |
Collapse
|
24
|
Barrantes FJ. Structure and function meet at the nicotinic acetylcholine receptor-lipid interface. Pharmacol Res 2023; 190:106729. [PMID: 36931540 DOI: 10.1016/j.phrs.2023.106729] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
The nicotinic acetylcholine receptor (nAChR) is a transmembrane protein that mediates fast intercellular communication in response to the endogenous neurotransmitter acetylcholine. It is the best characterized and archetypal molecule in the superfamily of pentameric ligand-gated ion channels (pLGICs). As a typical transmembrane macromolecule, it interacts extensively with its vicinal lipid microenvironment. Experimental evidence provides a wealth of information on receptor-lipid crosstalk: the nAChR exerts influence on its immediate membrane environment and conversely, the lipid moiety modulates ligand binding, affinity state transitions and gating of ion translocation functions of the receptor protein. Recent cryogenic electron microscopy (cryo-EM) studies have unveiled the occurrence of sites for phospholipids and cholesterol on the lipid-exposed regions of neuronal and electroplax nAChRs, confirming early spectroscopic and affinity labeling studies demonstrating the close contact of lipid molecules with the receptor transmembrane segments. This new data provides structural support to the postulated "lipid sensor" ability displayed by the outer ring of M4 transmembrane domains and their modulatory role on nAChR function, as we postulated a decade ago. Borrowing from the best characterized nAChR, the electroplax (muscle-type) receptor, and exploiting new structural information on the neuronal nAChR, it is now possible to achieve an improved depiction of these sites. In combination with site-directed mutagenesis, single-channel electrophysiology, and molecular dynamics studies, the new structural information delivers a more comprehensive portrayal of these lipid-sensitive loci, providing mechanistic explanations for their ability to modulate nAChR properties and raising the possibility of targetting them in disease.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, Faculty of Medical Sciences, Pontifical Catholic University of Argentina (UCA) - Argentine Scientific & Technol. Research Council (CONICET), Av. Alicia Moreau de Justo 1600, C1107AAZ Buenos Aires, Argentina.
| |
Collapse
|
25
|
Xanomeline restores endogenous nicotinic acetylcholine receptor signaling in mouse prefrontal cortex. Neuropsychopharmacology 2023; 48:671-682. [PMID: 36635596 PMCID: PMC9938126 DOI: 10.1038/s41386-023-01531-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Cholinergic synapses in prefrontal cortex are vital for attention, but this modulatory system undergoes substantial pre- and post-synaptic alterations during adulthood. To examine the integrated impact of these changes, we optophysiologically probe cholinergic synapses ex vivo, revealing a clear decline in neurotransmission in middle adulthood. Pharmacological dissection of synaptic components reveals a selective reduction in postsynaptic nicotinic receptor currents. Other components of cholinergic synapses appear stable, by contrast, including acetylcholine autoinhibition, metabolism, and excitation of postsynaptic muscarinic receptors. Pursuing strategies to strengthen cholinergic neurotransmission, we find that positive allosteric modulation of nicotinic receptors with NS9283 is effective in young adults but wanes with age. To boost nicotinic receptor availability, we harness the second messenger pathways of the preserved excitatory muscarinic receptors with xanomeline. This muscarinic agonist and cognitive-enhancer restores nicotinic signaling in older mice significantly, in a muscarinic- and PKC-dependent manner. The rescued nicotinic component regains youthful sensitivity to allosteric enhancement: treatment with xanomeline and NS9283 restores cholinergic synapses in older mice to the strength, speed, and receptor mechanism of young adults. Our results reveal a new and efficient strategy to rescue age-related nicotinic signaling deficits, demonstrating a novel pathway for xanomeline to restore cognitively-essential endogenous cholinergic neurotransmission.
Collapse
|
26
|
Calakos KC, Hillmer AT, Anderson JM, LeVasseur B, Baldassarri SR, Angarita GA, Matuskey D, Kapinos M, Zheng MQ, Huang Y, Cosgrove KP. Cholinergic system adaptations are associated with cognitive function in people recently abstinent from smoking: a (-)-[ 18F]flubatine PET study. Neuropsychopharmacology 2023; 48:683-689. [PMID: 36681758 PMCID: PMC9938267 DOI: 10.1038/s41386-023-01535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
The cholinergic system is a critical mediator of cognition in animals. People who smoke cigarettes exhibit cognitive deficits, especially during quit attempts. Few studies jointly examine the cholinergic system and cognition in people while trying to quit smoking. We used positron emission tomography (PET) brain imaging with the β2-subunit containing nicotinic acetylcholine receptor (β2*-nAChR) partial agonist radioligand (-)-[18F]flubatine and the acetylcholinesterase inhibitor physostigmine to jointly examine the cholinergic system, smoking status, and cognition. (-)-[18F]Flubatine scans and cognitive data were acquired from twenty people who recently stopped smoking cigarettes (aged 38 ± 11 years; 6 female, 14 male; abstinent 7 ± 1 days) and 27 people who never smoked cigarettes (aged 29 ± 8 years; 11 female, 16 male). A subset of fifteen recently abstinent smokers and 21 never smokers received a mid-scan physostigmine challenge to increase acetylcholine levels. Regional volume of distribution (VT) was estimated with equilibrium analysis at "baseline" and post-physostigmine. Participants completed a cognitive battery prior to (-)-[18F]flubatine injection and physostigmine administration assessing executive function (Groton Maze Learning test), verbal learning (International Shopping List test), and working memory (One Back test). Physostigmine significantly decreased cortical (-)-[18F]flubatine VT, consistent with increased cortical acetylcholine levels reducing the number of β2*-nAChR sites available for (-)-[18F]flubatine binding, at comparable magnitudes across groups (p values < 0.05). A larger magnitude of physostigmine-induced decrease in (-)-[18F]flubatine VT was significantly associated with worse executive function in people who recently stopped smoking (p values < 0.05). These findings underscore the role of the cholinergic system in early smoking cessation and highlight the importance of neuroscience-informed treatment strategies.
Collapse
Affiliation(s)
- Katina C Calakos
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Ansel T Hillmer
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Yale PET Center, Yale University, New Haven, CT, USA
| | | | - Brittany LeVasseur
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Stephen R Baldassarri
- Department of Internal Medicine, Section of Pulmonary, Critical Care Medicine, & Sleep Medicine, Yale University, New Haven, CT, USA
- Program in Addiction Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - David Matuskey
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Yale PET Center, Yale University, New Haven, CT, USA
- Department of Neurology, Yale University, New Haven, CT, USA
| | | | - Ming-Qiang Zheng
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Yale PET Center, Yale University, New Haven, CT, USA
| | - Kelly P Cosgrove
- Department of Psychiatry, Yale University, New Haven, CT, USA.
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
27
|
Chrestia JF, Turani O, Araujo NR, Hernando G, Esandi MDC, Bouzat C. Regulation of nicotinic acetylcholine receptors by post-translational modifications. Pharmacol Res 2023; 190:106712. [PMID: 36863428 DOI: 10.1016/j.phrs.2023.106712] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) comprise a family of pentameric ligand-gated ion channels widely distributed in the central and peripheric nervous system and in non-neuronal cells. nAChRs are involved in chemical synapses and are key actors in vital physiological processes throughout the animal kingdom. They mediate skeletal muscle contraction, autonomic responses, contribute to cognitive processes, and regulate behaviors. Dysregulation of nAChRs is associated with neurological, neurodegenerative, inflammatory and motor disorders. In spite of the great advances in the elucidation of nAChR structure and function, our knowledge about the impact of post-translational modifications (PTMs) on nAChR functional activity and cholinergic signaling has lagged behind. PTMs occur at different steps of protein life cycle, modulating in time and space protein folding, localization, function, and protein-protein interactions, and allow fine-tuned responses to changes in the environment. A large body of evidence demonstrates that PTMs regulate all levels of nAChR life cycle, with key roles in receptor expression, membrane stability and function. However, our knowledge is still limited, restricted to a few PTMs, and many important aspects remain largely unknown. There is thus a long way to go to decipher the association of aberrant PTMs with disorders of cholinergic signaling and to target PTM regulation for novel therapeutic interventions. In this review we provide a comprehensive overview of what is known about how different PTMs regulate nAChR.
Collapse
Affiliation(s)
- Juan Facundo Chrestia
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Ornella Turani
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Noelia Rodriguez Araujo
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Guillermina Hernando
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - María Del Carmen Esandi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, Argentina.
| |
Collapse
|
28
|
Papke RL, Stokes C. Insights Into the Differential Desensitization of α4 β2 Nicotinic Acetylcholine Receptor Isoforms Obtained With Positive Allosteric Modulation of Mutant Receptors. Mol Pharmacol 2023; 103:63-76. [PMID: 36414373 PMCID: PMC9881010 DOI: 10.1124/molpharm.122.000591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
The development of highly efficacious positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (nAChR) has proven useful in defining the ligand dependence of the conformational dynamics of α7 receptors. No such effective modulators are known to exist for the α4β2 nAChR of the brain, limiting our ability to understand the importance of desensitization for the activity profile of specific ligands. In this study, we used mutant β2 subunits that allowed the use of the α7 PAM 3a,4,5,9b-tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS) to probe the desensitizing effects of nicotinic ligands on the two forms of α4β2 receptors; high sensitivity (HS) (two α4 and three β2 subunits) and low sensitivity (LS) (three α4 and two β2 subunits). A total of 28 different ligands of 8 different categories, based on activity and selectivity, were tested for their ability to induce TQS-sensitive desensitization of HS and LS α4β2 receptors. Results confirm that HS α4β2 receptor responses are strongly limited by desensitization, by at least an order of magnitude more so than the responses of LS receptors. The activation of α4β2 receptors by the smoking-cessation drugs cytisine and varenicline is strongly limited by desensitization, as is the activation of LS receptors by the HS-selective agonists 6-[5-[(2S)-2-Azetidinylmethoxy]-3-pyridinyl]-5-hexyn-1-ol dihydrochloride and 4-(5-ethoxy-3-pyridinyl)-N-methyl-(3E)-3-buten-1-amine difumarate. The evaluation of drugs previously identified as α7-selective agonists revealed varying patterns of α4β2 cross-desensitization that were predictive of the effects of these drugs on the activation of wild-type α4β2 receptors by acetylcholine, supporting the utility of TQS-sensitive receptors for the development of focused therapeutics. SIGNIFICANCE STATEMENT: To varying degrees, ligands regulate the balance of active and desensitized states of the two forms of the primary nAChR subtypes in brain. Using mutant beta subunits, an allosteric modulator can reverse ligand-induced desensitization, revealing the differential desensitization of the receptors by specific ligands. This study shows that drugs believed to be selective for therapeutic targets may cross-desensitize other targets and that, within a class of drugs, improved specificity can be achieved by using agents that reduce such cross-desensitization.
Collapse
Affiliation(s)
- Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
| | - Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida
| |
Collapse
|
29
|
Asch RH, Hillmer AT, Baldassarri SR, Esterlis I. The metabotropic glutamate receptor 5 as a biomarker for psychiatric disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:265-310. [PMID: 36868631 DOI: 10.1016/bs.irn.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of glutamate system in the etiology and pathophysiology of psychiatric disorders has gained considerable attention in the past two decades, including dysregulation of the metabotropic glutamatergic receptor subtype 5 (mGlu5). Thus, mGlu5 may represent a promising therapeutic target for psychiatric conditions, particularly stress-related disorders. Here, we describe mGlu5 findings in mood disorders, anxiety, and trauma disorders, as well as substance use (specifically nicotine, cannabis, and alcohol use). We highlight insights gained from positron emission tomography (PET) studies, where possible, and discuss findings from treatment trials, when available, to explore the role of mGlu5 in these psychiatric disorders. Through the research evidence reviewed in this chapter, we make the argument that, not only is dysregulation of mGlu5 evident in numerous psychiatric disorders, potentially functioning as a disease "biomarker," the normalization of glutamate neurotransmission via changes in mGlu5 expression and/or modulation of mGlu5 signaling may be a needed component in treating some psychiatric disorders or symptoms. Finally, we hope to demonstrate the utility of PET as an important tool for investigating mGlu5 in disease mechanisms and treatment response.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale University, New Haven, CT, United States.
| | - Ansel T Hillmer
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Radiology and Biomedical Imaging, New Haven, CT, United States
| | - Stephen R Baldassarri
- Yale Program in Addiction Medicine, Yale University, New Haven, CT, United States; Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Irina Esterlis
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Psychology, Yale University, New Haven, CT, United States; Clinical Neurosciences Division, U.S. Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
30
|
Wollman LB, Flanigan EG, Fregosi RF. Chronic, episodic nicotine exposure alters GABAergic synaptic transmission to hypoglossal motor neurons and genioglossus muscle function at a critical developmental age. J Neurophysiol 2022; 128:1483-1500. [PMID: 36350047 PMCID: PMC9722256 DOI: 10.1152/jn.00397.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Regulation of GABAergic signaling through nicotinic acetylcholine receptor (nAChR) activation is critical for neuronal development. Here, we test the hypothesis that chronic episodic developmental nicotine exposure (eDNE) disrupts GABAergic signaling, leading to dysfunction of hypoglossal motor neurons (XIIMNs), which innervate the tongue muscles. We studied control and eDNE pups at two developmentally vulnerable age ranges: postnatal days (P)1-5 and P10-12. The amplitude and frequency of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs, mIPSCs) at baseline were not altered by eDNE at either age. In contrast, eDNE increased GABAAR-α1 receptor expression on XIIMNs and, in the older group, the postsynaptic response to muscimol (GABAA receptor agonist). Activation of nAChRs with exogenous nicotine increased the frequency of GABAergic sIPSCs in control and eDNE neurons at P1-5. By P10-12, acute nicotine increased sIPSC frequency in eDNE but not control neurons. In vivo experiments showed that the breathing-related activation of tongue muscles, which are innervated by XIIMNs, is reduced at P10-12. This effect was partially mitigated by subcutaneous muscimol, but only in the eDNE pups. Taken together, these data indicate that eDNE alters GABAergic transmission to XIIMNs at a critical developmental age, and this is expressed as reduced breathing-related drive to XIIMNs in vivo.NEW & NOTEWORTHY Here, we provide a thorough assessment of the effects of nicotine exposure on GABAergic synaptic transmission, from the cellular to the systems level. This work makes significant advances in our understanding of the impact of nicotine exposure during development on GABAergic neurotransmission within the respiratory network and the potential role this plays in the excitatory/inhibitory imbalance that is thought to be an important mechanism underlying neonatal breathing disorders, including sudden infant death syndrome.
Collapse
Affiliation(s)
- Lila Buls Wollman
- Department of Physiology, The University of Arizona, Tucson, Arizona
| | | | - Ralph F Fregosi
- Department of Physiology, The University of Arizona, Tucson, Arizona
- Department of Neuroscience, The University of Arizona, Tucson, Arizona
| |
Collapse
|
31
|
Availability of Central α4β2* Nicotinic Acetylcholine Receptors in Human Obesity. Brain Sci 2022; 12:brainsci12121648. [PMID: 36552108 PMCID: PMC9775559 DOI: 10.3390/brainsci12121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Obesity is thought to arise, in part, from deficits in the inhibitory control over appetitive behavior. Such motivational processes are regulated by neuromodulators, specifically acetylcholine (ACh), via α4β2* nicotinic ACh receptors (nAChR). These nAChR are highly enriched in the thalamus and contribute to the thalamic gating of cortico-striatal signaling, but also act on the mesoaccumbal reward system. The changes in α4β2* nAChR availability, however, have not been demonstrated in human obesity thus far. The aim of our study was, thus, to investigate whether there is altered brain α4β2* nAChR availability in individuals with obesity compared to normal-weight healthy controls. METHODS We studied 15 non-smoking individuals with obesity (body mass index, BMI: 37.8 ± 3.1 kg/m2; age: 39 ± 14 years, 9 females) and 16 normal-weight controls (non-smokers, BMI: 21.9 ± 1.7 kg/m2; age: 28 ± 7 years, 13 females) by using PET and the α4β2* nAChR selective (-)-[18F]flubatine, which was applied within a bolus-infusion protocol (294 ± 16 MBq). Volume-of-interest (VOI) analysis was performed in order to calculate the regional total distribution volume (VT). RESULTS No overall significant difference in VT between the individuals with obesity and the normal-weight volunteers was found, while the VT in the nucleus basalis of Meynert tended to be lower in the individuals with obesity (10.1 ± 2.1 versus 11.9 ± 2.2; p = 0.10), and the VT in the thalamus showed a tendency towards higher values in the individuals with obesity (26.5 ± 2.5 versus 25.9 ± 4.2; p = 0.09). CONCLUSION While these first data do not show greater brain α4β2* nAChR availability in human obesity overall, the findings of potentially aberrant α4β2* nAChR availability in the key brain regions that regulate feeding behavior merit further exploration.
Collapse
|
32
|
Mineur YS, Mose TN, Maibom KL, Pittenger ST, Soares AR, Wu H, Taylor SR, Huang Y, Picciotto MR. ACh signaling modulates activity of the GABAergic signaling network in the basolateral amygdala and behavior in stress-relevant paradigms. Mol Psychiatry 2022; 27:4918-4927. [PMID: 36050437 PMCID: PMC10718266 DOI: 10.1038/s41380-022-01749-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023]
Abstract
The balance between excitatory and inhibitory (E/I) signaling is important for maintaining homeostatic function in the brain. Indeed, dysregulation of inhibitory GABA interneurons in the amygdala has been implicated in human mood disorders. We hypothesized that acetylcholine (ACh) signaling in the basolateral amygdala (BLA) might alter E/I balance resulting in changes in stress-sensitive behaviors. We therefore measured ACh release as well as activity of calmodulin-dependent protein kinase II (CAMKII)-, parvalbumin (PV)-, somatostatin (SOM)- and vasoactive intestinal protein (VIP)-expressing neurons in the BLA of awake, behaving male mice. ACh levels and activity of both excitatory and inhibitory BLA neurons increased when animals were actively coping, and decreased during passive coping, in the light-dark box, tail suspension and social defeat. Changes in neuronal activity preceded behavioral state transitions, suggesting that BLA activity may drive the shift in coping strategy. In contrast to exposure to escapable stressors, prolonging ACh signaling with a cholinesterase antagonist changed the balance of activity among BLA cell types, significantly increasing activity of VIP neurons and decreasing activity of SOM cells, with little effect on CaMKII or PV neurons. Knockdown of α7 or β2-containing nAChR subtypes in PV and SOM, but not CaMKII or VIP, BLA neurons altered behavioral responses to stressors, suggesting that ACh signaling through nAChRs on GABA neuron subtypes contributes to stress-induced changes in behavior. These studies show that ACh modulates the GABAergic signaling network in the BLA, shifting the balance between SOM, PV, VIP and CaMKII neurons, which are normally activated coordinately during active coping in response to stress. Thus, prolonging ACh signaling, as occurs in response to chronic stress, may contribute to maladaptive behaviors by shifting the balance of inhibitory signaling in the BLA.
Collapse
Affiliation(s)
- Yann S Mineur
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Tenna N Mose
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Kathrine Lefoli Maibom
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Steven T Pittenger
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Alexa R Soares
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Hao Wu
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Seth R Taylor
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yaqing Huang
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
- Experimental Pathology Graduate Program, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA
| | - Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA.
- Interdepartmental Neuroscience Program, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT, 06508, USA.
| |
Collapse
|
33
|
Olszewski NA, Tetteh-Quarshie S, Henderson BJ. Understanding the Impact of Flavors on Vaping and Nicotine Addiction-Related Behaviors. Curr Behav Neurosci Rep 2022. [DOI: 10.1007/s40473-022-00253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Ellison-Barnes A, Galiatsatos P. Initiating Pharmacologic Treatment in Tobacco-Dependent Adults. Med Clin North Am 2022; 106:1067-1080. [PMID: 36280333 DOI: 10.1016/j.mcna.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is a strong evidence base for the use of existing pharmacotherapies to support tobacco cessation, alone or in combination, ideally with concurrent behavioral interventions. Future pharmacotherapies under development may assist in the most refractory cases. Incorporating current and future therapies into a longitudinal chronic care model for tobacco dependence will help a diverse range of patients achieve independence from nicotine addiction.
Collapse
Affiliation(s)
- Alejandra Ellison-Barnes
- The Tobacco Treatment and Cancer Screening Clinic, The Johns Hopkins Health System, Baltimore, MD, USA; Division of General Internal Medicine, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Panagis Galiatsatos
- The Tobacco Treatment and Cancer Screening Clinic, The Johns Hopkins Health System, Baltimore, MD, USA; Division of Pulmonary and Critical Care Medicine, The Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
35
|
Liu C, Tose AJ, Verharen JPH, Zhu Y, Tang LW, de Jong JW, Du JX, Beier KT, Lammel S. An inhibitory brainstem input to dopamine neurons encodes nicotine aversion. Neuron 2022; 110:3018-3035.e7. [PMID: 35921846 PMCID: PMC9509462 DOI: 10.1016/j.neuron.2022.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023]
Abstract
Nicotine stimulates the dopamine (DA) system, which is essential for its rewarding effect. Nicotine is also aversive at high doses; yet, our knowledge about nicotine's dose-dependent effects on DA circuits remains limited. Here, we demonstrate that high doses of nicotine, which induce aversion-related behavior in mice, cause biphasic inhibitory and excitatory responses in VTA DA neurons that can be dissociated by distinct projections to lateral and medial nucleus accumben subregions, respectively. Guided by computational modeling, we performed a pharmacological investigation to establish that inhibitory effects of aversive nicotine involve desensitization of α4β2 and activation of α7 nicotinic acetylcholine receptors. We identify α7-dependent activation of upstream GABA neurons in the laterodorsal tegmentum (LDT) as a key regulator of heterogeneous DA release following aversive nicotine. Finally, inhibition of LDT GABA terminals in VTA prevents nicotine aversion. Together, our findings provide a mechanistic circuit-level understanding of nicotine's dose-dependent effects on reward and aversion.
Collapse
Affiliation(s)
- Christine Liu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, California, Berkeley, CA 94720, USA
| | - Amanda J Tose
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, California, Berkeley, CA 94720, USA
| | - Jeroen P H Verharen
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, California, Berkeley, CA 94720, USA
| | - Yichen Zhu
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, California, Berkeley, CA 94720, USA
| | - Lilly W Tang
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, California, Berkeley, CA 94720, USA
| | - Johannes W de Jong
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, California, Berkeley, CA 94720, USA
| | - Jessica X Du
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, California, Berkeley, CA 94720, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, University of California Irvine, 825 Health Sciences Road, Med Sci D320, Irvine, CA 92697, USA
| | - Stephan Lammel
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, California, Berkeley, CA 94720, USA.
| |
Collapse
|
36
|
Rose JE, Behm FM, Botts TL, Botts DR, Willette PN, Vocci F, McCarty J. Novel rapid-acting sublingual nicotine tablet as a cigarette substitution strategy. Psychopharmacology (Berl) 2022; 239:2853-2862. [PMID: 35768615 DOI: 10.1007/s00213-022-06171-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
Abstract
RATIONALE Current nicotine replacement products provide a much slower onset of nicotine delivery than cigarettes, and hence are only marginally effective at supplanting cigarette smoking. Therefore, more effective forms of nicotine replacement are needed. OBJECTIVES This initial investigation characterized the pharmacokinetic (PK) and subjective effects of a novel sublingual (SL) nicotine tablet designed to deliver nicotine more rapidly to the bloodstream of smokers. METHODS Study 1 (N = 6) characterized the pharmacokinetics of a 2 mg nicotine SL tablet in comparison to an FDA-approved, marketed 2 mg nicotine lozenge. Study 2 (N = 24) assessed subjective responses of smokers to a single use of a 1 mg and 2 mg SL tablet. RESULTS Study 1 found that the time to maximum blood nicotine concentrations was significantly shorter for the SL tablet (14 min) than for the lozenge (82 min), and the initial rate of nicotine absorption was higher (0.4 ng/mL*min vs. 0.0 ng/mL*min), supporting the hypothesis that the SL tablet delivered nicotine more rapidly. Study 2 found that participants reported immediate relief of nicotine withdrawal symptoms after tablet administration, and craving reduction after the 2 mg tablet approached the degree reported for their usual brands of cigarettes (4.2 vs. 4.6 on a 7-point scale). Other subjective responses showed the tablet to be an appealing alternative to smoking. CONCLUSIONS The novel SL tablet studied shows promise as a nicotine substitution strategy for tobacco harm reduction and smoking cessation treatment. Additional studies are warranted to further investigate the potential of this new approach.
Collapse
Affiliation(s)
- Jed E Rose
- Rose Research Center, 7240 ACC Blvd., Raleigh, NC, 27617, USA.
| | | | - Tanaia L Botts
- Rose Research Center, 7240 ACC Blvd., Raleigh, NC, 27617, USA
| | - David R Botts
- Rose Research Center, 7240 ACC Blvd., Raleigh, NC, 27617, USA
| | | | - Frank Vocci
- Friends Research Institute, 1040 Park Avenue, Suite 103, Baltimore, MD, 21201, USA
| | - John McCarty
- Nicotine BRST LLC, 8250 SW 27th Avenue, Ocala, FL, 34476, USA
| |
Collapse
|
37
|
Vallés AS, Barrantes FJ. Interactions between the Nicotinic and Endocannabinoid Receptors at the Plasma Membrane. MEMBRANES 2022; 12:812. [PMID: 36005727 PMCID: PMC9414690 DOI: 10.3390/membranes12080812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Compartmentalization, together with transbilayer and lateral asymmetries, provide the structural foundation for functional specializations at the cell surface, including the active role of the lipid microenvironment in the modulation of membrane-bound proteins. The chemical synapse, the site where neurotransmitter-coded signals are decoded by neurotransmitter receptors, adds another layer of complexity to the plasma membrane architectural intricacy, mainly due to the need to accommodate a sizeable number of molecules in a minute subcellular compartment with dimensions barely reaching the micrometer. In this review, we discuss how nature has developed suitable adjustments to accommodate different types of membrane-bound receptors and scaffolding proteins via membrane microdomains, and how this "effort-sharing" mechanism has evolved to optimize crosstalk, separation, or coupling, where/when appropriate. We focus on a fast ligand-gated neurotransmitter receptor, the nicotinic acetylcholine receptor, and a second-messenger G-protein coupled receptor, the cannabinoid receptor, as a paradigmatic example.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
38
|
Rurgo S, Vaino V, Andreozzi M, Pagliaro M, Senneca P, Di Giorgio G, Efficie E, Sarnelli G, Pesce M. Predictors of abdominal pain severity in patients with constipation-prevalent irritable bowel syndrome. J Basic Clin Physiol Pharmacol 2022; 33:665-671. [PMID: 35659327 DOI: 10.1515/jbcpp-2022-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/09/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Symptoms of irritable bowel syndrome (IBS) have been associated to altered colonic motility and sensation. Smoking affects pain perception and is a risk factor in the development of post-infectious IBS, but its effect on abdominal pain and colonic transit remains to be elucidated in IBS. METHODS Forty patients with IBS-C and 28 with IBS-M were selected based on Rome IV criteria. Colonic transit time was studied and smoking habit was recorded. Presence of mild or severe abdominal pain and the prevalent pain characteristics (diffuse or localized, chronic or acute, with cramps or gradually distending) were recorded. Data were analyzed by univariate and stepwise multiple logistic regression analysis to verify the risk association between pain and all other variables. RESULTS IBS-C patients had a longer transit time in the right colon and scored more chronic pain than IBS-M patients. When severity of abdominal pain was used as discriminating factor, a significant number of subjects reporting severe pain were males and smokers (16/30 vs. 4/38 and 20/30 vs. 4/38, both ƿ<0.001). Multivariate analysis confirmed that smoking was an independent factor associated with severe abdominal pain (OR 14.3, CI 2-99, p=0.007). Smoking was not associated with colonic transit times and colonic transit was not associated with IBS symptoms' severity (both ƿ=N.S.). CONCLUSIONS Smoking was the only factor independently associated with severe abdominal pain. As smoking does not seem to affect colonic transit time, we suggest that smoking may influence visceral perception and symptoms severity in IBS patients.
Collapse
Affiliation(s)
- Sara Rurgo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Napoli, Italy
| | - Viviana Vaino
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Napoli, Italy
| | - Marta Andreozzi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Napoli, Italy
| | - Marta Pagliaro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Napoli, Italy
| | - Piera Senneca
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Napoli, Italy
| | - Gianmarco Di Giorgio
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Napoli, Italy
| | - Eleonora Efficie
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Napoli, Italy
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Napoli, Italy
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Napoli, Italy
| |
Collapse
|
39
|
Zhou Y, Zhang Z, Wang C, Lan X, Li W, Zhang M, Lao G, Wu K, Chen J, Li G, Ning Y. Predictors of 4-week antidepressant outcome in patients with first-episode major depressive disorder: An ROC curve analysis. J Affect Disord 2022; 304:59-65. [PMID: 35172174 DOI: 10.1016/j.jad.2022.02.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Pretreatment characteristics of patients, symptom and function could be associated with antidepressant treatment outcome, but its predictive ability is not adequate. Our study aimed to identify predictors of acute antidepressant efficacy in patients with first-episode Major Depressive Disorder (MDD). METHODS 187 patients with first-episode MDD were included and assessed clinical symptoms, cognitive function and global functioning using the 17-item Hamilton Depression Inventory (HAMD-17), MATRICS Consensus Cognitive Battery (MCCB) and Global Assessment of Functioning (GAF). Participants received treatment with a SSRI (escitalopram or venlafaxine) for 4 weeks. Logistic regression was used to analyze the association between patients' characteristics, symptom profiles, cognitive performance, and global functioning and the antidepressant outcome at the end of 4 weeks, and ROC curve analysis was performed for predictive accuracy with area under the receiver operating curve (AUC). RESULTS Antidepressant improvement, response and remission rate at week 4 was 87.7%, 64.7% and 42.8%, respectively. The combination of pretreatment clinical profiles, speed of processing and global functioning showed moderate discrimination of acute improvement, response and remission with AUCs of 0.863, 0.812 and 0.734, respectively. LIMITATIONS The major limitation of the present study is the study did not combine pharmacogenomics from the perspective of antidepressant drug metabolism. CONCLUSION Aside from the baseline clinical symptoms, cognitive function and global functioning could be predictors of acute treatment outcome in first episode MDD using escitalopram or venlafaxine. This relatively simple application based on clinical symptoms and function seems to be cost-effective method to identify individuals who are more likely to respond to antidepressant treatment.
Collapse
Affiliation(s)
- Yanling Zhou
- Department of Psychiatry, Department of Neurology, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhipei Zhang
- Department of Psychiatry, Department of Neurology, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Southern Medical University, Guangzhou, China
| | - ChengYu Wang
- Department of Psychiatry, Department of Neurology, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaofeng Lan
- Department of Psychiatry, Department of Neurology, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weicheng Li
- Department of Psychiatry, Department of Neurology, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Southern Medical University, Guangzhou, China
| | - Muqin Zhang
- Department of Psychiatry, Department of Neurology, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guohui Lao
- Department of Psychiatry, Department of Neurology, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Kai Wu
- Department of Psychiatry, Department of Neurology, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; School of Biomedical Sciences and Engineering, South china University of Technology, Guangzhou, China
| | - Jun Chen
- Guangdong Institute of Medical Instruments, Guangzhou, China
| | - Guixiang Li
- Guangdong Institute of Medical Instruments, Guangzhou, China
| | - Yuping Ning
- Department of Psychiatry, Department of Neurology, Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Southern Medical University, Guangzhou, China.
| |
Collapse
|
40
|
Le Foll B, Piper ME, Fowler CD, Tonstad S, Bierut L, Lu L, Jha P, Hall WD. Tobacco and nicotine use. Nat Rev Dis Primers 2022; 8:19. [PMID: 35332148 DOI: 10.1038/s41572-022-00346-w] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 01/04/2023]
Abstract
Tobacco smoking is a major determinant of preventable morbidity and mortality worldwide. More than a billion people smoke, and without major increases in cessation, at least half will die prematurely from tobacco-related complications. In addition, people who smoke have a significant reduction in their quality of life. Neurobiological findings have identified the mechanisms by which nicotine in tobacco affects the brain reward system and causes addiction. These brain changes contribute to the maintenance of nicotine or tobacco use despite knowledge of its negative consequences, a hallmark of addiction. Effective approaches to screen, prevent and treat tobacco use can be widely implemented to limit tobacco's effect on individuals and society. The effectiveness of psychosocial and pharmacological interventions in helping people quit smoking has been demonstrated. As the majority of people who smoke ultimately relapse, it is important to enhance the reach of available interventions and to continue to develop novel interventions. These efforts associated with innovative policy regulations (aimed at reducing nicotine content or eliminating tobacco products) have the potential to reduce the prevalence of tobacco and nicotine use and their enormous adverse impact on population health.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada.
- Departments of Family and Community Medicine, Psychiatry, Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Megan E Piper
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- University of Wisconsin Center for Tobacco Research and Intervention, Madison, WI, USA
| | - Christie D Fowler
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
| | - Serena Tonstad
- Section for Preventive Cardiology, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lin Lu
- Institute of Mental Health, Peking University Sixth Hospital, Peking University, Beijing, China
- National Institute on Drug Dependence, Peking University Health Science Center, Beijing, China
| | - Prabhat Jha
- Centre for Global Health Research, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Wayne D Hall
- National Centre for Youth Substance Use Research, The University of Queensland, St Lucia, Queensland, Australia
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
41
|
Zhang W, Lin H, Zou M, Yuan Q, Huang Z, Pan X, Zhang W. Nicotine in Inflammatory Diseases: Anti-Inflammatory and Pro-Inflammatory Effects. Front Immunol 2022; 13:826889. [PMID: 35251010 PMCID: PMC8895249 DOI: 10.3389/fimmu.2022.826889] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
As an anti-inflammatory alkaloid, nicotine plays dual roles in treating diseases. Here we reviewed the anti-inflammatory and pro-inflammatory effects of nicotine on inflammatory diseases, including inflammatory bowel disease, arthritis, multiple sclerosis, sepsis, endotoxemia, myocarditis, oral/skin/muscle inflammation, etc., mainly concerning the administration methods, different models, therapeutic concentration and duration, and relevant organs and tissues. According to the data analysis from recent studies in the past 20 years, nicotine exerts much more anti-inflammatory effects than pro-inflammatory ones, especially in ulcerative colitis, arthritis, sepsis, and endotoxemia. On the other hand, in oral inflammation, nicotine promotes and aggravates some diseases such as periodontitis and gingivitis, especially when there are harmful microorganisms in the oral cavity. We also carefully analyzed the nicotine dosage to determine its safe and effective range. Furthermore, we summarized the molecular mechanism of nicotine in these inflammatory diseases through regulating immune cells, immune factors, and the vagus and acetylcholinergic anti-inflammatory pathways. By balancing the “beneficial” and “harmful” effects of nicotine, it is meaningful to explore the effective medical value of nicotine and open up new horizons for remedying acute and chronic inflammation in humans.
Collapse
Affiliation(s)
- Wenji Zhang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hui Lin
- Department of Radiation Oncology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mingmin Zou
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qinghua Yuan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhenrui Huang
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoying Pan
- Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Xiaoying Pan, ; Wenjuan Zhang,
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Xiaoying Pan, ; Wenjuan Zhang,
| |
Collapse
|
42
|
Letsinger AC, Gu Z, Yakel JL. α7 nicotinic acetylcholine receptors in the hippocampal circuit: taming complexity. Trends Neurosci 2022; 45:145-157. [PMID: 34916082 PMCID: PMC8914277 DOI: 10.1016/j.tins.2021.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/04/2021] [Accepted: 11/19/2021] [Indexed: 02/03/2023]
Abstract
Cholinergic innervation of the hippocampus uses the neurotransmitter acetylcholine (ACh) to coordinate neuronal circuit activity while simultaneously influencing the function of non-neuronal cell types. The α7 nicotinic ACh receptor (nAChR) subtype is highly expressed throughout the hippocampus, has the highest calcium permeability compared with other subtypes of nAChRs, and is of high therapeutic interest due to its association with a variety of neurological disorders and neurodegenerative diseases. In this review, we synthesize research describing α7 nAChR properties, function, and relationship to cognitive dysfunction within the hippocampal circuit and highlight approaches to help improve therapeutic development.
Collapse
Affiliation(s)
- Ayland C. Letsinger
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Mail Drop F2-08, P.O. Box 12233, Durham, NC, 27709, USA
| | - Zhenglin Gu
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Mail Drop F2-08, P.O. Box 12233, Durham, NC, 27709, USA
| | - Jerrel L. Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Mail Drop F2-08, P.O. Box 12233, Durham, NC, 27709, USA,Corresponding Author,
| |
Collapse
|
43
|
Shankar K, Ambroggi F, George O. Microstructural meal pattern analysis reveals a paradoxical acute increase in food intake after nicotine despite its long-term anorexigenic effects. Psychopharmacology (Berl) 2022; 239:807-818. [PMID: 35129671 PMCID: PMC8891107 DOI: 10.1007/s00213-022-06071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/23/2022] [Indexed: 10/27/2022]
Abstract
RATIONALE Nicotine consumption in both human and animal studies has been strongly associated with changes in feeding-related behaviors and metabolism. The current dogma is that nicotine is an anorexic agent that decreases food intake and increases metabolism, leading to decreased body weight gain. However, there are conflicting reports about the acute effects of nicotine on hunger in humans. No study has reported nicotine-induced decreases in food intake within minutes of consumption, suggesting that our understanding of the pharmacological effects of nicotine on appetite and feeding may be incorrect. OBJECTIVES The aim of this study was to elucidate effects of acute nicotine intake on feeding and drinking behavior. METHODS Adult male Wistar rats were trained to intravenously self-administer nicotine. Microstructural and macrostructural behavioral analyses were employed to look at changes in food and water intake at different timescales. RESULTS At the macrostructural level (hours to days), nicotine decreased body weight gain, decreased feeding, and was associated with increases in feeding and body weight gain during abstinence. At the microstructural level (seconds to minutes), nicotine increased feeding and drinking behavior during the first 5 min after nicotine self-administration. This effect was also observed in animals that passively received nicotine, but the effect was not observed in animals that self-administered saline or passively received saline. CONCLUSIONS These results challenge the notion that the initial pharmacological effect of nicotine is anorexigenic and paradoxically suggest that an acute increase in food intake minutes after exposure to nicotine may contribute to the long-term anorexigenic effects of nicotine.
Collapse
Affiliation(s)
- Kokila Shankar
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 USA ,grid.266100.30000 0001 2107 4242Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - Frederic Ambroggi
- grid.5399.60000 0001 2176 4817Laboratoire de Neurosciences Cognitives, CNRS, Aix-Marseilles Université, 3, place Victor-Hugo, 13331 cedex 3 Marseille, France
| | - Olivier George
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
44
|
Precision treatment with nicotine in autosomal dominant sleep-related hypermotor epilepsy (ADSHE): An observational study of clinical outcome and serum cotinine levels in 17 patients. Epilepsy Res 2021; 178:106792. [PMID: 34763266 DOI: 10.1016/j.eplepsyres.2021.106792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE To report the clinical outcome of nicotine exposure in patients with autosomal dominant sleep-related hypermotor epilepsy (ADSHE), along with serum concentrations of the major nicotine metabolite cotinine. METHODS We recruited 17 ADSHE patients with CHRNA4 mutations (12 with p.S280F and 5 with p.L291 dup). Clinical characteristics were collected from hospital records. A telephone interview was performed on the use and seizure-reducing effect of nicotine applying a six-point rating scale from "none" to very good". Serum concentrations of cotinine were measured in 14 nicotine users. RESULTS All patients but one had ever used nicotine. Nine had used snuff; seven were current users. Eleven had used transdermal nicotine; nine were current users. Seven reported long-lasting seizure control, all used nicotine, four transdermal nicotine and three snuff. In 78% of patients using continuous transdermal nicotine, the effect was rated as good or very good. Cotinine concentrations were 453 ± 196 (mean ± SD) nmol/l in seven patients using transdermal nicotine only vs. 1241 ± 494 nmol/l in seven using other forms of nicotine. No correlation with seizure control was found. Three patients experienced improvement with transdermal delivery compared to snuff. CONCLUSION This is the hitherto largest observational study supporting a favorable effect of nicotine in this specific seizure disorder. Better seizure control from transdermal nicotine compared to only day-time consumption suggests benefit from exposure throughout the night. According to current clinical experience, patients with uncontrolled ADSHE harboring relevant mutations should be offered precision treatment with transdermal nicotine.
Collapse
|
45
|
Havermans A, Zwart EP, Cremers HWJM, van Schijndel MDM, Constant RS, Mešković M, Worutowicz LX, Pennings JLA, Talhout R, van der Ven LTM, Heusinkveld HJ. Exploring Neurobehaviour in Zebrafish Embryos as a Screening Model for Addictiveness of Substances. TOXICS 2021; 9:toxics9100250. [PMID: 34678946 PMCID: PMC8539716 DOI: 10.3390/toxics9100250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 12/04/2022]
Abstract
Tobacco use is the leading cause of preventable death worldwide and is highly addictive. Nicotine is the main addictive compound in tobacco, but less is known about other components and additives that may contribute to tobacco addiction. The zebrafish embryo (ZFE) has been shown to be a good model to study the toxic effects of chemicals on the neurological system and thus may be a promising model to study behavioral markers of nicotine effects, which may be predictive for addictiveness. We aimed to develop a testing protocol to study nicotine tolerance in ZFE using a locomotion test with light-dark transitions as behavioral trigger. Behavioral experiments were conducted using three exposure paradigms: (1) Acute exposure to determine nicotine’s effect and potency. (2) Pre-treatment with nicotine dose range followed by a single dose of nicotine, to determine which pre-treatment dose is sufficient to affect the potency of acute nicotine. (3) Pre-treatment with a single dose combined with acute exposure to a dose range to confirm the hypothesized decreased potency of the acute nicotine exposure. These exposure paradigms showed that (1) acute nicotine exposure decreased ZFE activity in response to dark conditions in a dose-dependent fashion; (2) pre-treatment with increasing concentrations dose-dependently reversed the effect of acute nicotine exposure; and (3) a fixed pre-treatment dose of nicotine induced a decreased potency of the acute nicotine exposure. This effect supported the induction of tolerance to nicotine by the pre-treatment, likely through neuroadaptation. The interpretation of these effects, particularly in view of prediction of dependence and addictiveness, and suitability of the ZFE model to test for such effects of other compounds than nicotine, are discussed.
Collapse
|
46
|
More S, Benford D, Hougaard Bennekou S, Bampidis V, Bragard C, Halldorsson T, Hernandez‐Jerez A, Koutsoumanis K, Lambré C, Machera K, Mullins E, Nielsen SS, Schlatter J, Schrenk D, Turck D, Tarazona J, Younes M. Opinion on the impact of non-monotonic dose responses on EFSA's human health risk assessments. EFSA J 2021; 19:e06877. [PMID: 34712366 PMCID: PMC8528485 DOI: 10.2903/j.efsa.2021.6877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This Opinion assesses the biological relevance of the non-monotonic dose responses (NMDR) identified in a previous EFSA External Report (Beausoleil et al., 2016) produced under GP/EFSA/SCER/2014/01 and the follow-up probabilistic assessment (Chevillotte et al., 2017a,b), focusing on the in vivo data sets fulfilling most of the checkpoints of the visual/statistical-based analysis identified in Beausoleil et al. (2016). The evaluation was completed with cases discussed in EFSA assessments and the update of the scientific literature. Observations of NMDR were confirmed in certain studies and are particularly relevant for receptor-mediated effects. Based on the results of the evaluation, the Opinion proposes an approach to be applied during the risk assessment process when apparent non-monotonicity is observed, also providing advice on specific elements to be considered to facilitate the assessment of NMDR in EFSA risk assessments. The proposed approach was applied to two case studies, Bisphenol A and bis(2-ethylhexyl phthalate (DEHP) and these evaluations are reported in dedicated annexes. Considering the potential impact of NMDRs in regulatory risk assessment, the Scientific Committee recommends a concerted international effort on developing internationally agreed guidance and harmonised frameworks for identifying and addressing NMDRs in the risk assessment process.
Collapse
|
47
|
Lee AM, Mansuri MS, Wilson RS, Lam TT, Nairn AC, Picciotto MR. Sex Differences in the Ventral Tegmental Area and Nucleus Accumbens Proteome at Baseline and Following Nicotine Exposure. Front Mol Neurosci 2021; 14:657064. [PMID: 34335180 PMCID: PMC8317211 DOI: 10.3389/fnmol.2021.657064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
Sex differences in behaviors relevant to nicotine addiction have been observed in rodent models and human subjects. Behavioral, imaging, and epidemiological studies also suggest underlying sex differences in mesolimbic dopamine signaling pathways. In this study we evaluated the proteome in the ventral tegmental area (VTA) and nucleus accumbens (NAc) shell in male and female mice. Experimental groups included two mouse strains (C3H/HeJ and C57BL/6J) at baseline, a sub-chronic, rewarding regimen of nicotine in C3H/HeJ mice, and chronic nicotine administration and withdrawal in C57BL/6J mice. Isobaric labeling with a TMT 10-plex system, sample fractionation, and tandem mass spectrometry were used to quantify changes in protein abundance. In C3H/HeJ mice, similar numbers of proteins were differentially regulated between sexes at baseline compared with within each sex after sub-chronic nicotine administration. In C57BL/6J mice, there were significantly greater numbers of proteins differentially regulated between sexes at baseline compared with within each sex after chronic nicotine administration and withdrawal. Despite differences by sex, strain, and nicotine exposure parameters, glial fibrillary acidic protein (GFAP) and dopamine and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32, Ppp1r1b) were repeatedly identified as significantly altered proteins, especially in the VTA. Further, network analyses showed sex- and nicotine-dependent regulation of a number of signaling pathways, including dopaminergic signaling. Sub-chronic nicotine exposure in female mice increased proteins related to dopaminergic signaling in the NAc shell but decreased them in the VTA, whereas the opposite pattern was observed in male mice. In contrast, dopaminergic signaling pathways were similarly upregulated in both male and female VTA after chronic nicotine and withdrawal. Overall, this study identifies significant sex differences in the proteome of the mesolimbic system, at baseline and after nicotine reward or withdrawal, which may help explain differential trajectories and susceptibility to nicotine addiction in males and females.
Collapse
Affiliation(s)
- Angela M Lee
- Department of Psychiatry, Yale University, New Haven, CT, United States.,Yale Interdepartmental Neuroscience Program, New Haven, CT, United States
| | - Mohammad Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, New Haven, CT, United States.,Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, United States
| | - Rashaun S Wilson
- Yale/NIDA Neuroproteomics Center, New Haven, CT, United States.,Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, United States.,W.M Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT, United States
| | - TuKiet T Lam
- Yale/NIDA Neuroproteomics Center, New Haven, CT, United States.,Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, United States.,W.M Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT, United States
| | - Angus C Nairn
- Department of Psychiatry, Yale University, New Haven, CT, United States.,Yale/NIDA Neuroproteomics Center, New Haven, CT, United States
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, New Haven, CT, United States.,Yale Interdepartmental Neuroscience Program, New Haven, CT, United States
| |
Collapse
|
48
|
Kunas SL, Hilbert K, Yang Y, Richter J, Hamm A, Wittmann A, Ströhle A, Pfleiderer B, Herrmann MJ, Lang T, Lotze M, Deckert J, Arolt V, Wittchen HU, Straube B, Kircher T, Gerlach AL, Lueken U. The modulating impact of cigarette smoking on brain structure in panic disorder: a voxel-based morphometry study. Soc Cogn Affect Neurosci 2021; 15:849-859. [PMID: 32734299 PMCID: PMC7543937 DOI: 10.1093/scan/nsaa103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/17/2020] [Accepted: 07/15/2020] [Indexed: 11/13/2022] Open
Abstract
Cigarette smoking increases the likelihood of developing anxiety disorders, among them panic disorder (PD). While brain structures altered by smoking partly overlap with morphological changes identified in PD, the modulating impact of smoking as a potential confounder on structural alterations in PD has not yet been addressed. In total, 143 PD patients (71 smokers) and 178 healthy controls (62 smokers) participated in a multicenter magnetic resonance imaging (MRI) study. T1-weighted images were used to examine brain structural alterations using voxel-based morphometry in a priori defined regions of the defensive system network. PD was associated with gray matter volume reductions in the amygdala and hippocampus. This difference was driven by non-smokers and absent in smoking subjects. Bilateral amygdala volumes were reduced with increasing health burden (neither PD nor smoking > either PD or smoking > both PD and smoking). As smoking can narrow or diminish commonly observed structural abnormalities in PD, the effect of smoking should be considered in MRI studies focusing on patients with pathological forms of fear and anxiety. Future studies are needed to determine if smoking may increase the risk for subsequent psychopathology via brain functional or structural alterations.
Collapse
Affiliation(s)
- Stefanie L Kunas
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin 10117, Germany.,Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Kevin Hilbert
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Yunbo Yang
- Department of Psychiatry and Psychotherapy and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg 35037, Germany
| | - Jan Richter
- Department of Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald 17489, Germany
| | - Alfons Hamm
- Department of Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald 17489, Germany
| | - André Wittmann
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Bettina Pfleiderer
- Department of Clinical Radiology, University of Münster, Münster 48149, Germany
| | - Martin J Herrmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, University of Würzburg, Würzburg 97080, Germany
| | - Thomas Lang
- Christoph-Dornier-Foundation for Clinical Psychology, Bremen 28359, Germany.,Department of Psychiatry and Psychotherapy, University of Hamburg, Hamburg 20146, Germany
| | - Martin Lotze
- Functional Imaging Unit, Institute for Diagnostic Radiology and Neuroradiology, University of Greifswald, Greifswald 17489, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, University of Würzburg, Würzburg 97080, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster 48149, Germany
| | - Hans-Ulrich Wittchen
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden 01069, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg 35037, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg 35037, Germany
| | - Alexander L Gerlach
- Department of Psychiatry and Psychotherapy and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg 35037, Germany
| | - Ulrike Lueken
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin 10117, Germany
| |
Collapse
|
49
|
Cytisine and cytisine derivatives. More than smoking cessation aids. Pharmacol Res 2021; 170:105700. [PMID: 34087351 DOI: 10.1016/j.phrs.2021.105700] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
Cytisine, a natural bioactive compound that is mainly isolated from plants of the Leguminosae family (especially the seeds of Laburnum anagyroides), has been marketed in central and eastern Europe as an aid in the clinical management of smoking cessation for more than 50 years. Its main targets are neuronal nicotinic acetylcholine receptors (nAChRs), and pre-clinical studies have shown that its interactions with various nAChR subtypes located in different areas of the central and peripheral nervous systems are neuroprotective, have a wide range of biological effects on nicotine and alcohol addiction, regulate mood, food intake and motor activity, and influence the autonomic and cardiovascular systems. Its relatively rigid conformation makes it an attractive template for research of new derivatives. Recent studies of structurally modified cytisine have led to the development of new compounds and for some of them the biological activities are mediated by still unidentified targets other than nAChRs, whose mechanisms of action are still being investigated. The aim of this review is to describe and discuss: 1) the most recent pre-clinical results obtained with cytisine in the fields of neurological and non-neurological diseases; 2) the effects and possible mechanisms of action of the most recent cytisine derivatives; and 3) the main areas warranting further research.
Collapse
|
50
|
Fisher ML, Pauly JR, Froeliger B, Turner JR. Translational Research in Nicotine Addiction. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039776. [PMID: 32513669 DOI: 10.1101/cshperspect.a039776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While commendable strides have been made in reducing smoking initiation and improving smoking cessation rates, current available smoking cessation treatment options are still only mildly efficacious and show substantial interindividual variability in their therapeutic responses. Therefore, the primary goal of preclinical research has been to further the understanding of the neural substrates and genetic influences involved in nicotine's effects and reassess potential drug targets. Pronounced advances have been made by investing in new translational approaches and placing more emphasis on bridging the gap between human and rodent models of dependence. Functional neuroimaging studies have identified key brain structures involved with nicotine-dependence phenotypes such as craving, impulsivity, withdrawal symptoms, and smoking cessation outcomes. Following up with these findings, rodent-modeling techniques have made it possible to dissect the neural circuits involved in these motivated behaviors and ascertain mechanisms underlying nicotine's interactive effects on brain structure and function. Likewise, translational studies investigating single-nucleotide polymorphisms (SNPs) within the cholinergic, dopaminergic, and opioid systems have found high levels of involvement of these neurotransmitter systems in regulating the reinforcing aspects of nicotine in both humans and mouse models. These findings and coordinated efforts between human and rodent studies pave the way for future work determining gene by drug interactions and tailoring treatment options to each individual smoker.
Collapse
Affiliation(s)
- Miranda L Fisher
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| | - James R Pauly
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| | - Brett Froeliger
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky 40536-0596, USA
| |
Collapse
|