1
|
O'Mahony C, Hidalgo-Lanussa O, Barreto GE. Unveiling FOXO3's metabolic contribution to menopause and Alzheimer's disease. Exp Gerontol 2025; 200:112679. [PMID: 39778695 DOI: 10.1016/j.exger.2025.112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
The increasing prevalence of Alzheimer's disease (AD) calls for a comprehensive exploration of its complex etiology, with a focus on sex-specific vulnerability, particularly the heightened susceptibility observed in postmenopausal women. Neurometabolic alterations during the endocrine transition emerge as early indicators of AD pathology, including reduced glucose metabolism and increased amyloid-beta (Aβ) deposition. The fluctuating endocrine environment, marked by declining estradiol levels and reduced estrogen receptor beta (ERβ) activity, further exacerbates this process. In this context, here we explore the potential of forkhead box O3 (FOXO3) as a critical mediator linking metabolic disturbances to hormonal decline. We propose that FOXO3 plays a key role in the intersection of menopause and AD, given its dysregulation in both AD patients and postmenopausal women, modulating cellular metabolism through interactions with the AMPK/AKT/PI3K pathways. This relationship highlights the intersection between hormonal changes and increased AD susceptibility. This review aims to open a discussion on FOXO3's contribution to the metabolic dysregulation seen in menopause and its impact on the progression of AD. Understanding the functional role of FOXO3 in menopause-associated metabolic changes could lead to targeted therapeutic strategies, offering novel insights for managing for this condition.
Collapse
Affiliation(s)
- Christopher O'Mahony
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Oscar Hidalgo-Lanussa
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland.
| |
Collapse
|
2
|
Yin L, Tang H, Qu J, Jia Y, Zhang Q, Wang X. Chemerin regulates glucose and lipid metabolism by changing mitochondrial structure and function associated with androgen/androgen receptor. Am J Physiol Endocrinol Metab 2024; 326:E869-E887. [PMID: 38775724 DOI: 10.1152/ajpendo.00104.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 06/07/2024]
Abstract
The adipokine chemerin contributes to exercise-induced improvements in glucose and lipid metabolism; however, the underlying mechanism remains unclear. We aimed to confirm the impact of reduced chemerin expression on exercise-induced improvement in glycolipid metabolism in male diabetic (DM) mice through exogenous chemerin administration. Furthermore, the underlying mechanism of chemerin involved in changes in muscle mitochondria function mediated by androgen/androgen receptor (AR) was explored by generating adipose-specific and global chemerin knockout (adipo-chemerin-/- and chemerin-/-) mice. DM mice were categorized into the DM, exercised DM (EDM), and EDM + chemerin supplementation groups. Adipo-chemerin-/- and chemerin-/- mice were classified in the sedentary or exercised groups and fed either a normal or high-fat diet. Exercise mice underwent a 6-wk aerobic exercise regimen. The serum testosterone and chemerin levels, glycolipid metabolism indices, mitochondrial function, and protein levels involved in mitochondrial biogenesis and dynamics were measured. Notably, exogenous chemerin reversed exercise-induced improvements in glycolipid metabolism, AR protein levels, mitochondrial biogenesis, and mitochondrial fusion in DM mice. Moreover, adipose-specific chemerin knockout improved glycolipid metabolism, enhanced exercise-induced increases in testosterone and AR levels in exercised mice, and alleviated the detrimental effects of a high-fat diet on mitochondrial morphology, biogenesis, and dynamics. Finally, similar improvements in glucose metabolism (but not lipid metabolism), mitochondrial function, and mitochondrial dynamics were observed in chemerin-/- mice. In conclusion, decreased chemerin levels affect exercise-induced improvements in glycolipid metabolism in male mice by increasing mitochondrial number and function, likely through changes in androgen/AR signaling.NEW & NOTEWORTHY Decreased chemerin levels affect exercise-induced improvements in glycolipid metabolism in male mice by increasing mitochondrial number and function, which is likely mediated by androgen/androgen receptor expression. This study is the first to report the regulatory mechanism of chemerin in muscle mitochondria.
Collapse
Affiliation(s)
- Lijun Yin
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
- School of Sport, Shenzhen University, Shenzhen, People's Republic of China
| | - Hongtai Tang
- Department of Burns, Changhai Hospital, Shanghai, People's Republic of China
| | - Jing Qu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Yi Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Qilong Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Xiaohui Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Silva RH, Lopes-Silva LB, Cunha DG, Becegato M, Ribeiro AM, Santos JR. Animal Approaches to Studying Risk Factors for Parkinson's Disease: A Narrative Review. Brain Sci 2024; 14:156. [PMID: 38391730 PMCID: PMC10887213 DOI: 10.3390/brainsci14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Despite recent efforts to search for biomarkers for the pre-symptomatic diagnosis of Parkinson's disease (PD), the presence of risk factors, prodromal signs, and family history still support the classification of individuals at risk for this disease. Human epidemiological studies are useful in this search but fail to provide causality. The study of well-known risk factors for PD in animal models can help elucidate mechanisms related to the disease's etiology and contribute to future prevention or treatment approaches. This narrative review aims to discuss animal studies that investigated four of the main risk factors and/or prodromal signs related to PD: advanced age, male sex, sleep alterations, and depression. Different databases were used to search the studies, which were included based on their relevance to the topic. Although still in a reduced number, such studies are of great relevance in the search for evidence that leads to a possible early diagnosis and improvements in methods of prevention and treatment.
Collapse
Affiliation(s)
- R H Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - L B Lopes-Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - D G Cunha
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - M Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - A M Ribeiro
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Department of Biosciences, Universidade Federal de São Paulo, Santos 11015-020, SP, Brazil
| | - J R Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana 49500-000, SE, Brazil
| |
Collapse
|
4
|
Bourque M, Morissette M, Di Paolo T. Neuroactive steroids and Parkinson's disease: Review of human and animal studies. Neurosci Biobehav Rev 2024; 156:105479. [PMID: 38007170 DOI: 10.1016/j.neubiorev.2023.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/13/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
The greater prevalence and incidence of Parkinson's disease (PD) in men suggest a beneficial effect of sex hormones. Neuroactive steroids have neuroprotective activities thus offering interesting option for disease-modifying therapy for PD. Neuroactive steroids are also neuromodulators of neurotransmitter systems and may thus help to control PD symptoms and side effect of dopamine medication. Here, we review the effect on sex hormones (estrogen, androgen, progesterone and its metabolites) as well as androstenediol, pregnenolone and dehydroepiandrosterone) in human studies and in animal models of PD. The effect of neuroactive steroids is reviewed by considering sex and hormonal status to help identify specifically for women and men with PD what might be a preventive approach or a symptomatic treatment. PD is a complex disease and the pathogenesis likely involves multiple cellular processes. Thus it might be useful to target different cellular mechanisms that contribute to neuronal loss and neuroactive steroids provide therapeutics options as they have multiple mechanisms of action.
Collapse
Affiliation(s)
- Mélanie Bourque
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada
| | - Marc Morissette
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada
| | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705, Boulevard Laurier, Québec G1V4G2, Canada; Faculté de pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec G1V 0A6, Canada.
| |
Collapse
|
5
|
Yin L, Qi S, Zhu Z. Advances in mitochondria-centered mechanism behind the roles of androgens and androgen receptor in the regulation of glucose and lipid metabolism. Front Endocrinol (Lausanne) 2023; 14:1267170. [PMID: 37900128 PMCID: PMC10613047 DOI: 10.3389/fendo.2023.1267170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
An increasing number of studies have reported that androgens and androgen receptors (AR) play important roles in the regulation of glucose and lipid metabolism. Impaired glucose and lipid metabolism and the development of obesity-related diseases have been found in either hypogonadal men or male rodents with androgen deficiency. Exogenous androgens supplementation can effectively improve these disorders, but the mechanism by which androgens regulate glucose and lipid metabolism has not been fully elucidated. Mitochondria, as powerhouses within cells, are key organelles influencing glucose and lipid metabolism. Evidence from both pre-clinical and clinical studies has reported that the regulation of glucose and lipid metabolism by androgens/AR is strongly associated with the impact on the content and function of mitochondria, but few studies have systematically reported the regulatory effect and the molecular mechanism. In this paper, we review the effect of androgens/AR on mitochondrial content, morphology, quality control system, and function, with emphases on molecular mechanisms. Additionally, we discuss the sex-dimorphic effect of androgens on mitochondria. This paper provides a theoretical basis for shedding light on the influence and mechanism of androgens on glucose and lipid metabolism and highlights the mitochondria-based explanation for the sex-dimorphic effect of androgens on glucose and lipid metabolism.
Collapse
Affiliation(s)
- Lijun Yin
- School of Sport, Shenzhen University, Shenzhen, China
| | - Shuo Qi
- School of Sport Health, Shandong Sport University, Jinan, China
| | - Zhiqiang Zhu
- School of Sport, Shenzhen University, Shenzhen, China
| |
Collapse
|
6
|
Xie Y, Chen S, Guo Z, Tian Y, Hong X, Feng P, Xie Q, Yu Q. Down-regulation of Lon protease 1 lysine crotonylation aggravates mitochondrial dysfunction in polycystic ovary syndrome. MedComm (Beijing) 2023; 4:e396. [PMID: 37817894 PMCID: PMC10560969 DOI: 10.1002/mco2.396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent reproductive endocrine disorder, with metabolic abnormalities and ovulation disorders. The post-translational modifications (PTMs) are functionally relevant and strengthen the link between metabolism and cellular functions. Lysine crotonylation is a newly identified PTM, the function of which in PCOS has not yet been reported. To explore the molecular mechanisms of crotonylation involved in the abnormalities of metabolic homeostasis and oocyte maturation in PCOS, by using liquid chromatography-tandem mass spectrometry analysis, we constructed a comprehensive map of crotonylation modifications in ovarian tissue of PCOS-like mouse model established by dehydroepiandrosterone induction. The crotonylation levels of proteins involved in metabolic processes were significantly decreased in PCOS ovaries compared to control samples. Further investigation showed that decrotonylation of Lon protease 1 (LONP1) at lysine 390 was associated with mitochondrial dysfunction in PCOS. Moreover, LONP1 crotonylation levels in PCOS were correlated with ovarian tissue oxidative stress levels, androgen levels, and oocyte development. Consistently, down-regulation of LONP1 and LONP1 crotonylation levels were also observed in the blood samples of PCOS patients. Collectively, our study revealed a mechanism by which the decrotonylation of LONP1 may attenuate its activity and alter follicular microenvironment to affect oocyte maturation in PCOS.
Collapse
Affiliation(s)
- Yuan Xie
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Shuwen Chen
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Zaixin Guo
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Ying Tian
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Xinyu Hong
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Penghui Feng
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| | - Qiu Xie
- Department of Medical Research CenterState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Science and Peking Union Medical CollegeBeijingChina
| | - Qi Yu
- Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetric & Gynecologic DiseasesState Key Laboratory for Complex Severe and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegePeking Union Medical College Hospital (Dongdan Campus)BeijingChina
| |
Collapse
|
7
|
Zhu J, Zhou Y, Jin B, Shu J. Role of estrogen in the regulation of central and peripheral energy homeostasis: from a menopausal perspective. Ther Adv Endocrinol Metab 2023; 14:20420188231199359. [PMID: 37719789 PMCID: PMC10504839 DOI: 10.1177/20420188231199359] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Estrogen plays a prominent role in regulating and coordinating energy homeostasis throughout the growth, development, reproduction, and aging of women. Estrogen receptors (ERs) are widely expressed in the brain and nearly all tissues of the body. Within the brain, central estrogen via ER regulates appetite and energy expenditure and maintains cell glucose metabolism, including glucose transport, aerobic glycolysis, and mitochondrial function. In the whole body, estrogen has shown beneficial effects on weight control, fat distribution, glucose and insulin resistance, and adipokine secretion. As demonstrated by multiple in vitro and in vivo studies, menopause-related decline of circulating estrogen may induce the disturbance of metabolic signals and a significant decrease in bioenergetics, which could trigger an increased incidence of late-onset Alzheimer's disease, type 2 diabetes mellitus, hypertension, and cardiovascular diseases in postmenopausal women. In this article, we have systematically reviewed the role of estrogen and ERs in body composition and lipid/glucose profile variation occurring with menopause, which may provide a better insight into the efficacy of hormone therapy in maintaining energy metabolic homeostasis and hold a clue for development of novel therapeutic approaches for target tissue diseases.
Collapse
Affiliation(s)
- Jing Zhu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yier Zhou
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Bihui Jin
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jing Shu
- Reproductive Medicine Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
8
|
Barreto GE, Gonzalez J, Ramírez D. Network pharmacology and topological analysis on tibolone metabolites and their molecular mechanisms in traumatic brain injury. Biomed Pharmacother 2023; 165:115089. [PMID: 37418975 DOI: 10.1016/j.biopha.2023.115089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023] Open
Abstract
Traumatic brain injury (TBI) is a pathology of great social impact, affecting millions of people worldwide. Despite the scientific advances to improve the management of TBI in recent years, we still do not have a specific treatment that controls the inflammatory process after mechanical trauma. The discovery and implementation of new treatments is a long and expensive process, making the repurpose of approved drugs for other pathologies a clinical interest. Tibolone is a drug in use for the treatment of symptoms associated with menopause and has been shown to have a broad spectrum of actions by regulating estrogen, androgen and progesterone receptors, whose activation exerts potent anti-inflammatory and antioxidant effects. In the present study, we aimed to investigate the therapeutic potential of the tibolone metabolites 3α-Hydroxytibolone, 3β-Hydroxytibolone, and Δ4-Tibolone as a possible therapy in TBI using network pharmacology and network topology analysis. Our results demonstrate that the estrogenic component mediated by the α and β metabolites can regulate synaptic transmission and cell metabolism, while the Δ metabolite may be involved in modulating the post-TBI inflammatory process. We identified several molecular targets, including KDR, ESR2, AR, NR3C1, PPARD, and PPARA, which are known to play critical roles in the pathogenesis of TBI. Tibolone metabolites were predicted to regulate the expression of key genes involved in oxidative stress, inflammation, and apoptosis. Overall, the repurposing of tibolone as a neuroprotective treatment for TBI holds promise for future clinical trials. However, further studies are needed to confirm its efficacy and safety in TBI patients.
Collapse
Affiliation(s)
- George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| | - Janneth Gonzalez
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
9
|
McGovern AJ, González J, Ramírez D, Barreto GE. Identification of HMGCR, PPGARG and prohibitin as potential druggable targets of dihydrotestosterone for treatment against traumatic brain injury using system pharmacology. Int Immunopharmacol 2022; 108:108721. [PMID: 35344815 DOI: 10.1016/j.intimp.2022.108721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traumatic Brain Injury (TBI) has long-term devastating effects for which there is no accurate and effective treatment for inflammation and chronic oxidative stress. As a disease that affects multiple signalling pathways, the search for a drug with a broader spectrum of pharmacological action is of clinical interest. The fact that endocrine disruption (e.g hypogonadism) has been observed in TBI patients suggests that endogenous therapy with testosterone, or its more androgenic derivative, dihydrotestosterone (DHT), may attenuate, at least in part, the TBI-induced inflammation, but the underlying molecular mechanisms by which this occurs are still not completely clear. AIMS AND METHODS In this study, the main aim was to investigate proteins that may be related to the pathophysiological mechanism of TBI and also be pharmacological targets of DHT in order to explore a possible therapy with this androgen using network pharmacology. RESULTS AND CONCLUSIONS We identified 2.700 proteins related to TBI and 1.567 that are potentially molecular targets of DHT. Functional enrichment analysis showed that steroid (p-value: 2.1-22), lipid metabolism (p-value: 2.8-21) and apoptotic processes (p-value: 5.2-21) are mainly altered in TBI. Furthermore, being mitochondrion an organelle involved on these molecular processes we next identified that out of 32 mitochondrial-related proteins 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), peroxisome proliferator activated receptor gamma (PPGARG) and prohibitin are those found highly regulated in the network and potential targets of DHT in TBI. In conclusion, the identification of these cellular nodes may prove to be essential as targets of DHT for therapy against post-TBI inflammation.
Collapse
Affiliation(s)
- Andrew J McGovern
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
10
|
Shaw GA. Mitochondria as the target for disease related hormonal dysregulation. Brain Behav Immun Health 2021; 18:100350. [PMID: 34746877 PMCID: PMC8554460 DOI: 10.1016/j.bbih.2021.100350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play an important role in the synthesis of steroid hormones, including the sex hormone estrogen. Sex-specific regulation of these hormones is important for phenotypic development and downstream, sex-specific activational effects in both brain and behavior. First, mitochondrial contribution to the synthesis of estrogen, followed by a discussion of the signaling interactions between estrogen and the mitochondria will be reviewed. Next, disorders with an established sex difference related to aging, mood, and cognition will be examined. Finally, review of mitochondria as a biomarker of disease and data supporting efforts in targeting mitochondria as a therapeutic target for the amelioration of these disorders will be discussed. Taken together, this review aims to assess the influence of E2 on mitochondrial function within the brain via exploration of E2-ER interactions within neural mitochondria and how they may act to influence the development and presentation of neurodegenerative and neurocognitive diseases with known sex differences.
Collapse
Affiliation(s)
- Gladys A. Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
11
|
Chappell NR, Zhou B, Hosseinzadeh P, Schutt A, Gibbons WE, Blesson CS. Hyperandrogenemia alters mitochondrial structure and function in the oocytes of obese mouse with polycystic ovary syndrome. ACTA ACUST UNITED AC 2021; 2:101-112. [PMID: 34458875 DOI: 10.1016/j.xfss.2020.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Capsule Hyperandrogenemia in an obese PCOS mouse model results in altered glucose/insulin metabolism and mitochondrial structure and function in the oocytes, in part explaining adverse outcomes and inheritance patterns seen in PCOS. Objective To study the oocyte quality by means of mitochondrial structure and function in a well-established classic PCOS mouse model. Design Animal study using an obese PCOS mouse model compared with control. Setting Animal research facility in a tertiary care university hospital setting. Animals C57/B6J mice. Intervention Three week old mice had subdermal implants of DHT controlled release pellet or placebo for 90 days. Main Outcome Measures The mouse model was validated by performing glucose tolerance test, HbA1c levels, body weight and estrous cycle analyses. Oocytes were subsequently isolated and were used to investigate mitochondrial membrane potential, oxidative stress, lipid peroxidation, ATP production, mtDNA copy number, transcript abundance, histology and electron microscopy. Results Results showed glucose intolerance and hyperinsulinemia along with dysregulated estrus cycle. Analysis of the oocytes demonstrated impaired inner mitochondrial membrane function, increased ATP production and mtDNA copy number, altered RNA transcript abundance and aberrant ovarian histology. Electron microscopy of the oocytes showed severely impaired mitochondrial ultrastructure. Conclusion The obese PCOS mouse model shows a decreased oocyte quality related to impaired mitochondrial function.
Collapse
Affiliation(s)
- Neil R Chappell
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Beth Zhou
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Pardis Hosseinzadeh
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Amy Schutt
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children's Hospital, Houston, Texas 77030, USA
| | - William E Gibbons
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Chellakkan S Blesson
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine and Family Fertility Center, Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
12
|
Bakian AV, Huber RS, Scholl L, Renshaw PF, Kondo D. Dietary creatine intake and depression risk among U.S. adults. Transl Psychiatry 2020; 10:52. [PMID: 32066709 PMCID: PMC7026167 DOI: 10.1038/s41398-020-0741-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/19/2022] Open
Abstract
Creatine monohydrate is actively being researched for its antidepressant effects, yet little is known about the link between dietary creatine and depression risk. This study examines the association between dietary creatine and depression in U.S. adults, using data from the 2005 to 2012 National Health and Nutrition Examination Survey (NHANES). Patient health questionnaire, dietary creatine intake and covariates were obtained on 22,692 NHANES participants ≥20 years of age. Depression prevalence was calculated within quartiles of dietary creatine intake. Adjusted logistic regression models were formulated to determine the relationship between dietary creatine intake and depression risk. Additional covariates included income to poverty ratio, race/ethnicity, sex, age, education level, body mass index, healthcare access, smoking status, physical activity, and antidepressant/anxiolytic medication use. Models were further stratified by sex, age group, and antidepressant/anxiolytic medication use. Depression prevalence was 10.23/100 persons (95% CI: 8.64-11.83) among NHANES participants in the lowest quartile of dietary creatine intake compared with 5.98/100 persons (95% CI: 4.97-6.98) among participants in the highest quartile (p < 0.001). An inverse association was measured between dietary creatine and depression (adjusted odds ratio (AOR) = 0.68, 95% CI: 0.52-0.88). Dietary creatine's negative association with depression was strongest in females (AOR = 0.62, 95% CI: 0.40-0.98), participants aged 20-39 years (AOR = 0.52, 95% CI: 0.34-0.79) and participants not taking antidepressant/anxiolytic medication (AOR = 0.58, 95% CI: 0.43-0.77). Study results indicate a significant negative relationship between dietary creatine and depression in a nationally representative adult cohort. Further research is warranted to investigate the role creatine plays in depression, particularly among women and across the lifespan.
Collapse
Affiliation(s)
- Amanda V. Bakian
- grid.223827.e0000 0001 2193 0096Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Rebekah S. Huber
- grid.223827.e0000 0001 2193 0096Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Lindsay Scholl
- grid.223827.e0000 0001 2193 0096Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT USA
| | - Perry F. Renshaw
- grid.223827.e0000 0001 2193 0096Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT USA ,The Rocky Mountain Veterans Integrated Service Network 19 Mental Illness Research, Education, and Clinical Centers of Excellence, Salt Lake City, UT USA
| | - Douglas Kondo
- grid.223827.e0000 0001 2193 0096Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT USA ,The Rocky Mountain Veterans Integrated Service Network 19 Mental Illness Research, Education, and Clinical Centers of Excellence, Salt Lake City, UT USA
| |
Collapse
|
13
|
Bagheri H, Ghasemi F, Barreto GE, Rafiee R, Sathyapalan T, Sahebkar A. Effects of curcumin on mitochondria in neurodegenerative diseases. Biofactors 2020; 46:5-20. [PMID: 31580521 DOI: 10.1002/biof.1566] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases (NDs) result from progressive deterioration of selectively susceptible neuron populations in different central nervous system (CNS) regions. NDs are classified in accordance with the primary clinical manifestations (e.g., parkinsonism, dementia, or motor neuron disease), the anatomic basis of neurodegeneration (e.g., frontotemporal degenerations, extrapyramidal disorders, or spinocerebellar degenerations), and fundamental molecular abnormalities (e.g., mutations, mitochondrial dysfunction, and its related molecular alterations). NDs include the Alzheimer disease and Parkinson disease, among others. There is a growing evidence that mitochondrial dysfunction and its related mutations in the form of oxidative/nitrosative stress and neurotoxic compounds play major roles in the pathogenesis of various NDs. Curcumin, a polyphenol and nontoxic compound, obtained from turmeric, has been shown to have a therapeutic beneficial effect in various disorders especially on the CNS cells. It has been shown that curcumin has considerable neuro- and mitochondria-protective properties against broad-spectrum neurotoxic compounds and diseases/injury-associating NDs. In this article, we have reviewed the various effects of curcumin on mitochondrial dysfunction in NDs.
Collapse
Affiliation(s)
- Hossein Bagheri
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Rouhullah Rafiee
- Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|