1
|
Antal M. Molecular Anatomy of Synaptic and Extrasynaptic Neurotransmission Between Nociceptive Primary Afferents and Spinal Dorsal Horn Neurons. Int J Mol Sci 2025; 26:2356. [PMID: 40076973 PMCID: PMC11900602 DOI: 10.3390/ijms26052356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Sensory signals generated by peripheral nociceptors are transmitted by peptidergic and nonpeptidergic nociceptive primary afferents to the superficial spinal dorsal horn, where their central axon terminals establish synaptic contacts with secondary sensory spinal neurons. In the case of suprathreshold activation, the axon terminals release glutamate into the synaptic cleft and stimulate postsynaptic spinal neurons by activating glutamate receptors located on the postsynaptic membrane. When overexcitation is evoked by peripheral inflammation, neuropathy or pruritogens, peptidergic nociceptive axon terminals may corelease various neuropeptides, neurotrophins and endomorphin, together with glutamate. However, in contrast to glutamate, neuropeptides, neurotrophins and endomorphin are released extrasynaptically. They diffuse from the site of release and modulate the function of spinal neurons via volume transmission, activating specific extrasynaptic receptors. Thus, the released neuropeptides, neurotrophins and endomorphin may evoke excitation, disinhibition or inhibition in various spinal neuronal populations, and together with glutamate, induce overall overexcitation, called central sensitization. In addition, the synaptic and extrasynaptic release of neurotransmitters is subjected to strong retrograde control mediated by various retrogradely acting transmitters, messengers, and their presynaptic receptors. Moreover, the composition of this complex chemical apparatus is heavily dependent on the actual patterns of nociceptive primary afferent activation in the periphery. This review provides an overview of the complexity of this signaling apparatus, how nociceptive primary afferents can activate secondary sensory spinal neurons via synaptic and volume transmission in the superficial spinal dorsal horn, and how these events can be controlled by presynaptic mechanisms.
Collapse
Affiliation(s)
- Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
2
|
Starobova H, Alshammari A, Winkler IG, Vetter I. The role of the neuronal microenvironment in sensory function and pain pathophysiology. J Neurochem 2024; 168:3620-3643. [PMID: 36394416 DOI: 10.1111/jnc.15724] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
The high prevalence of pain and the at times low efficacy of current treatments represent a significant challenge to healthcare systems worldwide. Effective treatment strategies require consideration of the diverse pathophysiologies that underlie various pain conditions. Indeed, our understanding of the mechanisms contributing to aberrant sensory neuron function has advanced considerably. However, sensory neurons operate in a complex dynamic microenvironment that is controlled by multidirectional interactions of neurons with non-neuronal cells, including immune cells, neuronal accessory cells, fibroblasts, adipocytes, and keratinocytes. Each of these cells constitute and control the microenvironment in which neurons operate, inevitably influencing sensory function and the pathology of pain. This review highlights the importance of the neuronal microenvironment for sensory function and pain, focusing on cellular interactions in the skin, nerves, dorsal root ganglia, and spinal cord. We discuss the current understanding of the mechanisms by which neurons and non-neuronal cells communicate to promote or resolve pain, and how this knowledge could be used for the development of mechanism-based treatments.
Collapse
Affiliation(s)
- Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ammar Alshammari
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Ingrid G Winkler
- Mater Research Institute, The University of Queensland, Queensland, South Brisbane, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| |
Collapse
|
3
|
Hung 洪瑋辰 WC, Chen 陳志成 CC, Yen 嚴震東 CT, Min 閔明源 MY. Presynaptic Enhancement of Transmission from Nociceptors Expressing Nav1.8 onto Lamina-I Spinothalamic Tract Neurons by Spared Nerve Injury in Mice. eNeuro 2024; 11:ENEURO.0087-24.2024. [PMID: 39256039 PMCID: PMC11391502 DOI: 10.1523/eneuro.0087-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Alteration of synaptic function in the dorsal horn (DH) has been implicated as a cellular substrate for the development of neuropathic pain, but certain details remain unclear. In particular, the lack of information on the types of synapses that undergo functional changes hinders the understanding of disease pathogenesis from a synaptic plasticity perspective. Here, we addressed this issue by using optogenetic and retrograde tracing ex vivo to selectively stimulate first-order nociceptors expressing Nav1.8 (NRsNav1.8) and record the responses of spinothalamic tract neurons in spinal lamina I (L1-STTNs). We found that spared nerve injury (SNI) increased excitatory postsynaptic currents (EPSCs) in L1-STTNs evoked by photostimulation of NRsNav1.8 (referred to as Nav1.8-STTN EPSCs). This effect was accompanied by a significant change in the failure rate and paired-pulse ratio of synaptic transmission from NRsNav1.8 to L1-STTN and in the frequency (not amplitude) of spontaneous EPSCs recorded in L1-STTNs. However, no change was observed in the ratio of AMPA to NMDA receptor-mediated components of Nav1.8-STTN EPSCs or in the amplitude of unitary EPSCs constituting Nav1.8-STTN EPSCs recorded with extracellular Ca2+ replaced by Sr2+ In addition, there was a small increase (approximately 10%) in the number of L1-STTNs showing immunoreactivity for phosphorylated extracellular signal-regulated kinases in mice after SNI compared with sham. Similarly, only a small percentage of L1-STTNs showed a lower action potential threshold after SNI. In conclusion, our results show that SNI induces presynaptic modulation at NRNav1.8 (consisting of both peptidergic and nonpeptidergic nociceptors) synapses on L1-STTNs forming the lateral spinothalamic tract.
Collapse
Affiliation(s)
- Wei-Chen Hung 洪瑋辰
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Centre, National Taiwan University, Taipei 10617, Taiwan
| | | | - Cheng-Tung Yen 嚴震東
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Centre, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Yuan Min 閔明源
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Centre, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Safronov BV, Szucs P. Novel aspects of signal processing in lamina I. Neuropharmacology 2024; 247:109858. [PMID: 38286189 DOI: 10.1016/j.neuropharm.2024.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
The most superficial layer of the spinal dorsal horn, lamina I, is a key element of the nociceptive processing system. It contains different types of projection neurons (PNs) and local-circuit neurons (LCNs) whose functional roles in the signal processing are poorly understood. This article reviews recent progress in elucidating novel anatomical features and physiological properties of lamina I PNs and LCNs revealed by whole-cell recordings in ex vivo spinal cord. This article is part of the Special Issue on "Ukrainian Neuroscience".
Collapse
Affiliation(s)
- Boris V Safronov
- Neuronal Networks Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Peter Szucs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Neuroscience Research Group, Debrecen, Hungary
| |
Collapse
|
5
|
Luz LL, Lima S, Fernandes EC, Kokai E, Gomori L, Szucs P, Safronov BV. Contralateral Afferent Input to Lumbar Lamina I Neurons as a Neural Substrate for Mirror-Image Pain. J Neurosci 2023; 43:3245-3258. [PMID: 36948583 PMCID: PMC10162462 DOI: 10.1523/jneurosci.1897-22.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023] Open
Abstract
Mirror-image pain arises from pathologic alterations in the nociceptive processing network that controls functional lateralization of the primary afferent input. Although a number of clinical syndromes related to dysfunction of the lumbar afferent system are associated with the mirror-image pain, its morphophysiological substrate and mechanism of induction remain poorly understood. Therefore, we used ex vivo spinal cord preparation of young rats of both sexes to study organization and processing of the contralateral afferent input to the neurons in the major spinal nociceptive projection area Lamina I. We show that decussating primary afferent branches reach contralateral Lamina I, where 27% of neurons, including projection neurons, receive monosynaptic and/or polysynaptic excitatory drive from the contralateral Aδ-fibers and C-fibers. All these neurons also received ipsilateral input, implying their involvement in the bilateral information processing. Our data further show that the contralateral Aδ-fiber and C-fiber input is under diverse forms of inhibitory control. Attenuation of the afferent-driven presynaptic inhibition and/or disinhibition of the dorsal horn network increased the contralateral excitatory drive to Lamina I neurons and its ability to evoke action potentials. Furthermore, the contralateral Aβδ-fibers presynaptically control ipsilateral C-fiber input to Lamina I neurons. Thus, these results show that some lumbar Lamina I neurons are wired to the contralateral afferent system whose input, under normal conditions, is subject to inhibitory control. A pathologic disinhibition of the decussating pathways can open a gate controlling contralateral information flow to the nociceptive projection neurons and, thus, contribute to induction of hypersensitivity and mirror-image pain.SIGNIFICANCE STATEMENT We show that contralateral Aδ-afferents and C-afferents supply lumbar Lamina I neurons. The contralateral input is under diverse forms of inhibitory control and itself controls the ipsilateral input. Disinhibition of decussating pathways increases nociceptive drive to Lamina I neurons and may cause induction of contralateral hypersensitivity and mirror-image pain.
Collapse
Affiliation(s)
- Liliana L Luz
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| | - Susana Lima
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| | - Elisabete C Fernandes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| | - Eva Kokai
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Lidia Gomori
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
| | - Peter Szucs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen H-4032, Hungary
- ELKH-DE Neuroscience Research Group, Debrecen H-4032, Hungary
| | - Boris V Safronov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| |
Collapse
|
6
|
Li J, Serafin EK, Baccei ML. Intrinsic and synaptic properties of adult mouse spinoperiaqueductal gray neurons and the influence of neonatal tissue damage. Pain 2023; 164:905-917. [PMID: 36149785 PMCID: PMC10033328 DOI: 10.1097/j.pain.0000000000002787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The periaqueductal gray (PAG) represents a key target of projection neurons residing in the spinal dorsal horn. In comparison to lamina I spinoparabrachial neurons, little is known about the intrinsic and synaptic properties governing the firing of spino-PAG neurons, or whether such activity is modulated by neonatal injury. In this study, this issue was addressed using ex vivo whole-cell patch clamp recordings from lamina I spino-PAG neurons in adult male and female FVB mice after hindpaw incision at postnatal day (P)3. Spino-PAG neurons were classified as high output, medium output, or low output based on their action potential discharge after dorsal root stimulation. The high-output subgroup exhibited prevalent spontaneous burst firing and displayed initial burst or tonic patterns of intrinsic firing, whereas low-output neurons showed little spontaneous activity. Interestingly, the level of dorsal root-evoked firing significantly correlated with the resting potential and membrane resistance but not with the strength of primary afferent-mediated glutamatergic drive. Neonatal incision failed to alter the pattern of monosynaptic sensory input, with most spino-PAG neurons receiving direct connections from low-threshold C-fibers. Furthermore, primary afferent-evoked glutamatergic input and action potential discharge in adult spino-PAG neurons were unaltered by neonatal surgical injury. Finally, Hebbian long-term potentiation at sensory synapses, which significantly increased afferent-evoked firing, was similar between P3-incised and naive littermates. Collectively, these data suggest that the functional response of lamina I spino-PAG neurons to sensory input is largely governed by their intrinsic membrane properties and appears resistant to the persistent influence of neonatal tissue damage.
Collapse
Affiliation(s)
- Jie Li
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | | | | |
Collapse
|
7
|
Krotov V, Agashkov K, Romanenko S, Halaidych O, Andrianov Y, Safronov BV, Belan P, Voitenko N. Elucidating afferent-driven presynaptic inhibition of primary afferent input to spinal laminae I and X. Front Cell Neurosci 2023; 16:1029799. [PMID: 36713779 PMCID: PMC9874151 DOI: 10.3389/fncel.2022.1029799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/14/2022] [Indexed: 01/13/2023] Open
Abstract
Although spinal processing of sensory information greatly relies on afferent-driven (AD) presynaptic inhibition (PI), our knowledge about how it shapes peripheral input to different types of nociceptive neurons remains insufficient. Here we examined the AD-PI of primary afferent input to spinal neurons in the marginal layer, lamina I, and the layer surrounding the central canal, lamina X; two nociceptive-processing regions with similar patterns of direct supply by Aδ- and C-afferents. Unmyelinated C-fibers were selectively activated by electrical stimuli of negative polarity that induced an anodal block of myelinated Aβ/δ-fibers. Combining this approach with the patch-clamp recording in an ex vivo spinal cord preparation, we found that attenuation of the AD-PI by the anodal block of Aβ/δ-fibers resulted in the appearance of new mono- and polysynaptic C-fiber-mediated excitatory postsynaptic current (EPSC) components. Such homosegmental Aβ/δ-AD-PI affected neurons in the segment of the dorsal root entrance as well as in the adjacent rostral segment. In their turn, C-fibers from the L5 dorsal root induced heterosegmental AD-PI of the inputs from the L4 Aδ- and C-afferents to the neurons in the L4 segment. The heterosegmental C-AD-PI was reciprocal since the L4 C-afferents inhibited the L5 Aδ- and C-fiber inputs, as well as some direct L5 Aβ-fiber inputs. Moreover, the C-AD-PI was found to control the spike discharge in spinal neurons. Given that the homosegmental Aβ/δ-AD-PI and heterosegmental C-AD-PI affected a substantial percentage of lamina I and X neurons, we suggest that these basic mechanisms are important for shaping primary afferent input to the neurons in the spinal nociceptive-processing network.
Collapse
Affiliation(s)
- Volodymyr Krotov
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine,Department of Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine,*Correspondence: Volodymyr Krotov,
| | - Kirill Agashkov
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Sergii Romanenko
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Oleh Halaidych
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Yaroslav Andrianov
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Boris V. Safronov
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal,Neuronal Networks Group, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Pavel Belan
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine,Department of Biomedicine and Neuroscience, Kyiv Academic University, Kyiv, Ukraine
| | - Nana Voitenko
- Department of Sensory Signaling, Bogomoletz Institute of Physiology, Kyiv, Ukraine,Department of Biomedicine and Neuroscience, Kyiv Academic University, Kyiv, Ukraine,Dobrobut Academy Medical School, Kyiv, Ukraine
| |
Collapse
|
8
|
Krotov V, Agashkov K, Krasniakova M, Safronov BV, Belan P, Voitenko N. Segmental and descending control of primary afferent input to the spinal lamina X. Pain 2022; 163:2014-2020. [PMID: 35297816 PMCID: PMC9339045 DOI: 10.1097/j.pain.0000000000002597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Despite being involved in a number of functions, such as nociception and locomotion, spinal lamina X remains one of the least studied central nervous system regions. Here, we show that Aδ- and C-afferent inputs to lamina X neurons are presynaptically inhibited by homo- and heterosegmental afferents as well as by descending fibers from the corticospinal tract, dorsolateral funiculus, and anterior funiculus. Activation of descending tracts suppresses primary afferent-evoked action potentials and also elicits excitatory (mono- and polysynaptic) and inhibitory postsynaptic responses in lamina X neurons. Thus, primary afferent input to lamina X is subject to both spinal and supraspinal control being regulated by at least 5 distinct pathways.
Collapse
Affiliation(s)
- Volodymyr Krotov
- Departments of Sensory Signaling and
- Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | | | | | - Boris V. Safronov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Pavel Belan
- Molecular Biophysics, Bogomoletz Institute of Physiology, Kyiv, Ukraine
- Kyiv Academic University, Kyiv, Ukraine
| | - Nana Voitenko
- Departments of Sensory Signaling and
- Kyiv Academic University, Kyiv, Ukraine
- Private Institution Dobrobut Academy, Kyiv, Ukraine
| |
Collapse
|
9
|
Pre-Synaptic GABAA in NaV1.8+ Primary Afferents Is Required for the Development of Punctate but Not Dynamic Mechanical Allodynia following CFA Inflammation. Cells 2022; 11:cells11152390. [PMID: 35954234 PMCID: PMC9368720 DOI: 10.3390/cells11152390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/27/2023] Open
Abstract
Hypersensitivity to mechanical stimuli is a cardinal symptom of neuropathic and inflammatory pain. A reduction in spinal inhibition is generally considered a causal factor in the development of mechanical hypersensitivity after injury. However, the extent to which presynaptic inhibition contributes to altered spinal inhibition is less well established. Here, we used conditional deletion of GABAA in NaV1.8-positive sensory neurons (Scn10aCre;Gabrb3fl/fl) to manipulate selectively presynaptic GABAergic inhibition. Behavioral testing showed that the development of inflammatory punctate allodynia was mitigated in mice lacking pre-synaptic GABAA. Dorsal horn cellular circuits were visualized in single slices using stimulus-tractable dual-labelling of c-fos mRNA for punctate and the cognate c-Fos protein for dynamic mechanical stimulation. This revealed a substantial reduction in the number of cells activated by punctate stimulation in mice lacking presynaptic GABAA and an approximate 50% overlap of the punctate with the dynamic circuit, the relative percentage of which did not change following inflammation. The reduction in dorsal horn cells activated by punctate stimuli was equally prevalent in parvalbumin- and calretinin-positive cells and across all laminae I–V, indicating a generalized reduction in spinal input. In peripheral DRG neurons, inflammation following complete Freund’s adjuvant (CFA) led to an increase in axonal excitability responses to GABA, suggesting that presynaptic GABA effects in NaV1.8+ afferents switch from inhibition to excitation after CFA. In the days after inflammation, presynaptic GABAA in NaV1.8+ nociceptors constitutes an “open gate” pathway allowing mechanoreceptors responding to punctate mechanical stimulation access to nociceptive dorsal horn circuits.
Collapse
|
10
|
You HJ, Lei J, Pertovaara A. Thalamus: The 'promoter' of endogenous modulation of pain and potential therapeutic target in pathological pain. Neurosci Biobehav Rev 2022; 139:104745. [PMID: 35716873 DOI: 10.1016/j.neubiorev.2022.104745] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/11/2022] [Indexed: 11/25/2022]
Abstract
More recently, the thalamic mediodorsal (MD) and ventromedial (VM) nuclei have been revealed to be functioned as 'nociceptive discriminator' in discriminating noxious and innocuous peripheral afferents, and exhibits distinct different descending controls of nociception. Of particularly importance, the function of thalamic nuclei in engaging descending modulation of nociception is 'silent' or inactive during the physiological state as well as in condition exposed to insufficient noxious stimulation. Once initiation by sufficient noxious or innocuous C-afferents associated with temporal and spatial summation, the thalamic MD and VM nuclei exhibit salient, different effects: facilitation and inhibition, on noxious mechanically and heat evoked nociception, respectively. Based on series of experimental evidence, we here summarize a novel hypothesis involving thalamic MD and VM nuclei functioned as 'promoter' in initiating descending facilitation and inhibition of pain with specific spatiotemporal characteristics. We further hypothesize that clinical remedy in targeting thalamic VM nucleus by enhancing its activities in recruiting inhibition alone or decreasing thalamic MD nucleus induced facilitation may provide promising way in effectively control of pathological pain.
Collapse
Affiliation(s)
- Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, PR China.
| | - Jing Lei
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, PR China
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, POB 63, Helsinki 00014, Finland
| |
Collapse
|
11
|
Fernandes EC, Carlos-Ferreira J, Luz LL, Safronov BV. Presynaptic Interactions between Trigeminal and Cervical Nociceptive Afferents Supplying Upper Cervical Lamina I Neurons. J Neurosci 2022; 42:3587-3598. [PMID: 35318285 PMCID: PMC9053849 DOI: 10.1523/jneurosci.0025-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 11/21/2022] Open
Abstract
Cervical and trigeminal afferents innervate neighboring cranial territories, and their convergence on upper cervical dorsal horn neurons provides a potential substrate for pain referral in primary headache syndromes. Lamina I neurons are central to this mechanism, as they relay convergent nociceptive input to supraspinal pain centers. Unfortunately, little is known about the interactions between trigeminal and cervical afferents supplying Lamina I neurons. Here, we used rats of both sexes to show that cervical and trigeminal afferents interact via presynaptic inhibition, where monosynaptic inputs to Lamina I neurons undergo unidirectional as well as reciprocal presynaptic control. This means that afferent-driven presynaptic inhibition shapes the way trigeminal and cervical Aδ-fiber and C-fiber input reaches Lamina I projection neurons (PNs) and local-circuit neurons (LCNs). We propose that this inhibition provides a feedforward control of excitatory drive to Lamina I neurons that regulates their convergent and cervical-specific or trigeminal-specific processing modes. As a consequence, disruption of the trigeminal and cervical afferent-driven presynaptic inhibition may contribute to development of primary headache syndromes.SIGNIFICANCE STATEMENT Cervical and trigeminal afferents innervate neighboring cranial territories, and their convergence on upper cervical dorsal horn neurons provides a potential substrate for pain referral in primary headache syndromes. Lamina I neurons are central to this mechanism as they relay convergent nociceptive input to supraspinal pain centers. Here, we show that cervical and trigeminal afferents interact via presynaptic inhibition, where inputs to Lamina I neurons undergo unidirectional as well as reciprocal control. The afferent-driven presynaptic inhibition shapes the trigeminocervical Aδ-fiber and C-fiber input to Lamina I neurons. This inhibition provides control of excitatory drive to Lamina I neurons that regulates their convergent and cervical-specific or trigeminal-specific processing modes. Disruption of this control may contribute to development of primary headache syndromes.
Collapse
Affiliation(s)
- Elisabete C Fernandes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| | - José Carlos-Ferreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| | - Liliana L Luz
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| | - Boris V Safronov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto 4200-135, Portugal
| |
Collapse
|
12
|
Gradwell MA, Boyle KA, Browne TJ, Bell AM, Leonardo J, Peralta Reyes FS, Dickie AC, Smith KM, Callister RJ, Dayas CV, Hughes DI, Graham BA. Diversity of inhibitory and excitatory parvalbumin interneuron circuits in the dorsal horn. Pain 2022; 163:e432-e452. [PMID: 34326298 PMCID: PMC8832545 DOI: 10.1097/j.pain.0000000000002422] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/03/2022]
Abstract
ABSTRACT Parvalbumin-expressing interneurons (PVINs) in the spinal dorsal horn are found primarily in laminae II inner and III. Inhibitory PVINs play an important role in segregating innocuous tactile input from pain-processing circuits through presynaptic inhibition of myelinated low-threshold mechanoreceptors and postsynaptic inhibition of distinct spinal circuits. By comparison, relatively little is known of the role of excitatory PVINs (ePVINs) in sensory processing. Here, we use neuroanatomical and optogenetic approaches to show that ePVINs comprise a larger proportion of the PVIN population than previously reported and that both ePVIN and inhibitory PVIN populations form synaptic connections among (and between) themselves. We find that these cells contribute to neuronal networks that influence activity within several functionally distinct circuits and that aberrant activity of ePVINs under pathological conditions is well placed to contribute to the development of mechanical hypersensitivity.
Collapse
Affiliation(s)
- Mark A. Gradwell
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Kieran A. Boyle
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tyler J. Browne
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - Andrew M. Bell
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jacklyn Leonardo
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Fernanda S. Peralta Reyes
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Allen C. Dickie
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kelly M. Smith
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert J. Callister
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - Christopher V. Dayas
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - David I. Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brett A. Graham
- Faculty of Health, School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| |
Collapse
|
13
|
Middleton SJ, Perez-Sanchez J, Dawes JM. The structure of sensory afferent compartments in health and disease. J Anat 2021; 241:1186-1210. [PMID: 34528255 PMCID: PMC9558153 DOI: 10.1111/joa.13544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022] Open
Abstract
Primary sensory neurons are a heterogeneous population of cells able to respond to both innocuous and noxious stimuli. Like most neurons they are highly compartmentalised, allowing them to detect, convey and transfer sensory information. These compartments include specialised sensory endings in the skin, the nodes of Ranvier in myelinated axons, the cell soma and their central terminals in the spinal cord. In this review, we will highlight the importance of these compartments to primary afferent function, describe how these structures are compromised following nerve damage and how this relates to neuropathic pain.
Collapse
Affiliation(s)
- Steven J Middleton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Chen L, Wang X, Zhang X, Wan H, Su Y, He W, Xie Y, Jing X. Electroacupuncture and Moxibustion-Like Stimulation Relieves Inflammatory Muscle Pain by Activating Local Distinct Layer Somatosensory Afferent Fibers. Front Neurosci 2021; 15:695152. [PMID: 34335169 PMCID: PMC8319633 DOI: 10.3389/fnins.2021.695152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022] Open
Abstract
Recent studies have shown that both superficial and deep acupuncture produced clinically relevant and persistent effect on chronic pain, and several subtypes of somatic primary afferents played critical roles in acupuncture and moxibustion analgesia. However, which kind of primary afferents in the superficial and deep tissue of the acupoint is activated by acupuncture or moxibustion to relieve pain persistently remains unclear. The aim of this study is to investigate the roles of distinct peripheral afferents in different layers of the tissue (muscle or skin) in the acupoint for pain relief. Muscular A-fibers activated by deep electroacupuncture (dEA) with lower intensity (approximately 1 mA) persistently alleviated inflammatory muscle pain. Meanwhile, cutaneous C-nociceptors excited by noxious moxibustion-like stimulation (MS) and topical application of capsaicin (CAP) on local acupoint area produced durable analgesic effect. Additionally, spontaneous activity of C-fibers caused by muscular inflammation was also inhibited by dEA and CAP. Furthermore, decreases in pain behavior induced by dEA disappeared after deep A-fibers were demyelinated by cobra venom, whereas CAP failed to relieve pain following cutaneous denervation. Collectively, these results indicate that dEA and MS ameliorate inflammatory muscle pain through distinct primary afferents in different layers of somatic tissue; the former is achieved by activating muscular A-fibers, while the latter is mediated by activating cutaneous C-fibers.
Collapse
Affiliation(s)
- Lizhen Chen
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoning Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongye Wan
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yangshuai Su
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei He
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yikuan Xie
- School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Xianghong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Perreault T, Fernández-de-las-Peñas C, Cummings M, Gendron BC. Needling Interventions for Sciatica: Choosing Methods Based on Neuropathic Pain Mechanisms-A Scoping Review. J Clin Med 2021; 10:2189. [PMID: 34069357 PMCID: PMC8158699 DOI: 10.3390/jcm10102189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Sciatica is a condition often accompanied by neuropathic pain (NP). Acupuncture and dry needling are common treatments for pain, and the current literature supports acupuncture as an effective treatment for sciatica. However, it is unknown if the mechanisms of NP are considered in the delivery of needling interventions for sciatica. Our objective was to assess the efficacy and the effectiveness of needling therapies, to identify common needling practices and to investigate if NP mechanisms are considered in the treatment of sciatica. A scoping review of the literature on needling interventions for sciatica and a review of the literature on mechanisms related to NP and needling interventions were performed. Electronic literature searches were conducted on PubMed, MEDLINE, CINAHL and Cochrane Database of Systematic Reviews from inception to August, 2020 to identify relevant papers. Reference lists of included papers were also manually screened and a related-articles search through PubMed was performed on all included articles. Mapping of the results included description of included studies, summary of results, and identification of gaps in the existing literature. Ten articles were included. All studies used acupuncture for the treatment of sciatica, no studies on dry needling were identified. Current evidence supports the efficacy and effectiveness of acupuncture for sciatica, however, no studies considered underlying NP mechanisms in the acupuncture approach for sciatica and the rationale for using acupuncture was inconsistent among trials. This review reveals that neuropathic pain mechanisms are not routinely considered in needling approaches for patients with sciatica. Studies showed acupuncture to be an effective treatment for sciatic pain, however, further research is warranted to explore if needling interventions for sciatica and NP would be more effective if NP mechanisms are considered.
Collapse
Affiliation(s)
- Thomas Perreault
- Northern New England Spine Center, Department of Physical Therapy, Wentworth Douglass Hospital, Dover, NH 03820, USA;
| | - César Fernández-de-las-Peñas
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28922 Alcorcón, Madrid, Spain
- Cátedra Institucional en Docencia, Clínica e Investigación en Fisioterapia: Terapia Manual, Punción Seca y Ejercicio Terapéutico, Universidad Rey Juan Carlos, 28922 Alcorcón, Madrid, Spain
| | - Mike Cummings
- British Medical Acupuncture Society, London WC1N 3HR, UK;
| | - Barry C. Gendron
- Northern New England Spine Center, Department of Physical Medicine and Rehabilitation, Musculoskeletal Health and Rehabilitation, Wentworth Douglass Hospital, Dover, NH 03820, USA;
| |
Collapse
|
16
|
Processing of trigeminocervical nociceptive afferent input by neuronal circuity in the upper cervical lamina I. Pain 2021; 163:362-375. [PMID: 33990106 DOI: 10.1097/j.pain.0000000000002342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/07/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Afferents from the C2 spinal nerve (SN) and trigeminal nerve (TN) innervate neighboring cranial territories, and their convergence on the upper cervical dorsal horn neurons represents neural substrate of pain referral in primary headache disorders. Unfortunately, little is known about trigeminocervical input to the major spinal nociceptive projection area lamina I. Here, we used ex vivo brainstem-cervical cord preparation for the visually guided whole-cell recording from the upper cervical lamina I neurons. We show that 50% of them receive convergent monosynaptic input from both nerves, whereas 35% and 11% of neurons receive specific supply from the C2 SN and TN, respectively. Altogether, 10 distinct patterns of synaptic input from the C2 SN and TN to lamina I neurons could be identified. Although stimulation of both nerves evoked excitatory/inhibitory responses, more numerous pure inhibitory inputs arose from the TN. We show that cervical and trigeminal nociceptors converge on to lamina I projection and inhibitory neurons. Thus, trigeminocervical input in lamina I is processed in both nerve-specific and convergent circuitries. Afferent convergence on to inhibitory interneurons serves as a feedforward mechanism balancing excitatory drive to projection neurons. Disruption of this balance may cause pain in primary headache syndromes.
Collapse
|
17
|
Gallina A, Abboud J, Blouin JS. A task-relevant experimental pain model to target motor adaptation. J Physiol 2021; 599:2401-2417. [PMID: 33638152 DOI: 10.1113/jp281145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/22/2021] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Motor adaptation is thought to be a strategy to avoid pain. Current experimental pain models do not allow for consistent modulation of pain perception depending on movement. We showed that low-frequency sinusoidal stimuli delivered at painful intensity result in minimal habituation of pain perception (over 60 s) and minimal stimulation artefacts on electromyographic signals. When the amplitude of the low-frequency sinusoidal stimuli was modulated based on the vertical force participants applied to the ground with their right leg while standing upright, we demonstrated a strong association between perceived pain and motor adaptation. By enabling task-relevant modulation of perceived pain intensity and the recording electromyographic signals during electrical painful stimulation, our novel pain model will permit direct experimental testing of the relationship between pain and motor adaptation. ABSTRACT Contemporary pain adaptation theories predict that motor adaptation occurs to limit pain. Current experimental pain models, however, do not allow for pain intensity modulation according to one's posture or movements. We developed a task-relevant experimental pain model using low-frequency sinusoidal electrical stimuli applied over the infrapatellar fat pad. In fourteen participants, we compared perceived pain habituation and stimulation-induced artefacts in vastus medialis electromyographic recordings elicited by sinusoidal (4, 10, 20 and 50 Hz) and square electrical waveforms delivered at constant peak stimulation amplitude. Next, we simulated a clinical condition where perceived knee pain intensity is proportional to the load applied on the leg by controlling sinusoidal current amplitude (4 Hz) according to the vertical force the participants applied with their right leg to the ground while standing upright. Pain ratings habituated over a 60 s period for 50 Hz sinusoidal and square waveforms but not for low-frequency sinusoidal stimuli (P < 0.001). EMG filters removed most stimulation artefacts for low-frequency sinusoidal stimuli (4 Hz). While balancing upright, participants' pain ratings were correlated with the force applied by the right leg (R2 = 0.65), demonstrating task-relevant changes in perceived pain intensity. Low-frequency sinusoidal stimuli can induce knee pain of constant intensity for 60 s with minimal EMG artefacts while enabling task-relevant pain modulation when controlling current amplitude. By enabling task-dependent modulation of perceived pain intensity, our novel experimental model replicates key temporal aspects of clinical musculoskeletal pain while allowing quantification of neuromuscular activation during painful electrical stimulation. This approach will enable researchers to test the predicted relationship between movement strategies and pain.
Collapse
Affiliation(s)
- Alessio Gallina
- School of Kinesiology, University of British Columbia, Vancouver, Canada.,Centre of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Jacques Abboud
- School of Kinesiology, University of British Columbia, Vancouver, Canada.,Département des Sciences de l'Activité Physique, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Jean-Sébastien Blouin
- School of Kinesiology, University of British Columbia, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.,Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, Canada
| |
Collapse
|
18
|
Dolgorukova A, Isaeva JE, Verbitskaya E, Lyubashina OA, Giniatullin RА, Sokolov AY. Differential effects of the Piezo1 agonist Yoda1 in the trigeminovascular system: An electrophysiological and intravital microscopy study in rats. Exp Neurol 2021; 339:113634. [PMID: 33549548 DOI: 10.1016/j.expneurol.2021.113634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 01/15/2023]
Abstract
Migraine is associated with the activation and sensitisation of the trigeminovascular system and is often accompanied by mechanical hyperalgesia and allodynia. The mechanisms of mechanotransduction during a migraine attack are yet unknown. We have proposed that the ion channel Piezo1 may be involved, since it is expressed in endothelial cells as well as in trigeminal ganglion neurons, and thus, may contribute to the activation of both the vascular and neuronal component of the trigeminovascular system. We took advantage of extracellular recordings from the trigeminocervical complex - a key relay centre in the migraine pain pathway, to directly assess the impact of the differently applied Piezo1 agonist Yoda1 on the sensory processing at the spinal level. At a low dose, Yoda1 slightly facilitated the ongoing firing of central trigeminovascular neurons, however, at a high dose, this substance contributed to the suppression of their activity. Using intravital microscopy, we have revealed that Yoda1 at high dose can also induce the dilation of meningeal arteries innervated by trigeminal afferents. Collectively, here we have identified both neuronal and vascular modulation via selective activation of mechanosensitive Piezo1 channels, which provide new evidence in favour of the Piezo1 role in migraine pathogenesis. We propose several mechanisms that may underlie the revealed effects of Yoda1.
Collapse
Affiliation(s)
- Antonina Dolgorukova
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia.
| | - Julia E Isaeva
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia
| | - Elena Verbitskaya
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia
| | - Olga A Lyubashina
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia; Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg 199034, Russia
| | - Rashid А Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Alexey Y Sokolov
- Valdman Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, Saint Petersburg 197022, Russia; Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, Saint Petersburg 199034, Russia
| |
Collapse
|
19
|
Presynaptic Inhibition of Pain and Touch in the Spinal Cord: From Receptors to Circuits. Int J Mol Sci 2021; 22:ijms22010414. [PMID: 33401784 PMCID: PMC7795800 DOI: 10.3390/ijms22010414] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Sensory primary afferent fibers, conveying touch, pain, itch, and proprioception, synapse onto spinal cord dorsal horn neurons. Primary afferent central terminals express a wide variety of receptors that modulate glutamate and peptide release. Regulation of the amount and timing of neurotransmitter release critically affects the integration of postsynaptic responses and the coding of sensory information. The role of GABA (γ-aminobutyric acid) receptors expressed on afferent central terminals is particularly important in sensory processing, both in physiological conditions and in sensitized states induced by chronic pain. During the last decade, techniques of opto- and chemogenetic stimulation and neuronal selective labeling have provided interesting insights on this topic. This review focused on the recent advances about the modulatory effects of presynaptic GABAergic receptors in spinal cord dorsal horn and the neural circuits involved in these mechanisms.
Collapse
|