1
|
Everix L, Zajicek F, Eetveldt AV, Liu L, Bard J, Staelens S, Bertoglio D. Assessment of changes in synaptic density in the zQ175DN mouse model of Huntington's disease: a [ 18F]SynVesT-1 study. Neuroimage Clin 2025; 46:103800. [PMID: 40381377 DOI: 10.1016/j.nicl.2025.103800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder characterized by involuntary movements, cognitive decline and psychiatric problems. HD has been associated with synaptic dysfunction and loss of the synaptic vesicle protein 2A (SV2A). SV2A can readily be quantified via positron emission tomography (PET) using the selective and high affinity SV2A radiotracer [18F]SynVesT-1 that we previously characterized in C57BL/6J mice. Here, we performed dynamic [18F]SynVesT-1 PET to characterize SV2A levels at various disease stages in another HD mouse model, zQ175DN, at 3 and 6 months (M) (longitudinal) and 10 M and 16 M (cross-sectional). We also conducted ex vivo SV2A immunofluorescent staining and [3H]UCB-J and [3H]SynVesT-1 autoradiography at 16 M. Dynamic [18F]SynVesT-1 PET revealed comparable VT(IDIF) values between male and female 3 M and 6 M old zQ175DN mice. A significant age effect was found in the motor cortex and hippocampus between 3 M and 6 M. From 3 M to 10 M, no significant difference was found between heterozygous and wild-type mice. At 16 M, however, significant VT(IDIF) differences were observed between genotypes in the motor cortex (-9.1 ± 3.5 %, p = 0.038), hippocampus (-7.5 ± 3.3, p = 0.036) and thalamus (-8.9 ± 3.1 %, p = 0.016). Ex vivo analyses did not confirm the observed deficits at 16 M, likely due to the decreased sensitivity compared to PET. However, [3H]SynVesT-1 and [3H]UCB-J autoradiography displayed the same outcome, ruling out a radioligand-specific effect. [18F]SynVesT-1 PET identified mild SV2A deficits in the zQ175DN model of HD at 16 M, whereas no significant SV2A deficits were detected at younger ages.
Collapse
Affiliation(s)
- Liesbeth Everix
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium; µNeuro Center for Excellence, University of Antwerp, Antwerp, Belgium
| | - Franziska Zajicek
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium; µNeuro Center for Excellence, University of Antwerp, Antwerp, Belgium
| | - Annemie Van Eetveldt
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium; µNeuro Center for Excellence, University of Antwerp, Antwerp, Belgium
| | - Longbin Liu
- CHDI Management, Inc., the Company that Manages the Scientific Activities of CHDI Foundation, Inc. Princeton, NJ, USA
| | - Jonathan Bard
- CHDI Management, Inc., the Company that Manages the Scientific Activities of CHDI Foundation, Inc. Princeton, NJ, USA
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium; µNeuro Center for Excellence, University of Antwerp, Antwerp, Belgium
| | - Daniele Bertoglio
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium; µNeuro Center for Excellence, University of Antwerp, Antwerp, Belgium; Bio-Imaging Lab, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
2
|
Jeans AF, Padamsey Z, Collins H, Foster W, Allison S, Dierksmeier S, Klein WL, van den Maagdenberg AMJM, Emptage NJ. Ca V2.1 mediates presynaptic dysfunction induced by amyloid β oligomers. Cell Rep 2025; 44:115451. [PMID: 40127100 DOI: 10.1016/j.celrep.2025.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/06/2025] [Accepted: 02/28/2025] [Indexed: 03/26/2025] Open
Abstract
Synaptic dysfunction is an early pathological phenotype of Alzheimer's disease (AD) that is initiated by oligomers of amyloid β peptide (Aβos). Treatments aimed at correcting synaptic dysfunction could be beneficial in preventing disease progression, but mechanisms underlying Aβo-induced synaptic defects remain incompletely understood. Here, we uncover an epithelial sodium channel (ENaC) - CaV2.3 - protein kinase C (PKC) - glycogen synthase kinase-3β (GSK-3β) signal transduction pathway that is engaged by Aβos to enhance presynaptic CaV2.1 voltage-gated Ca2+ channel activity, resulting in pathological potentiation of action-potential-evoked synaptic vesicle exocytosis. We present evidence that the pathway is active in human APP transgenic mice in vivo and in human AD brains, and we show that either pharmacological CaV2.1 inhibition or genetic CaV2.1 haploinsufficiency is sufficient to restore normal neurotransmitter release. These findings reveal a previously unrecognized mechanism driving synaptic dysfunction in AD and identify multiple potentially tractable therapeutic targets.
Collapse
Affiliation(s)
- Alexander F Jeans
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| | - Zahid Padamsey
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Helen Collins
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - William Foster
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Sally Allison
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Steven Dierksmeier
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - William L Klein
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
| | | | - Nigel J Emptage
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
3
|
Hernández-Martín N, Pozo-Cabanell I, Fernández de la Rosa R, García-García L, Gómez-Oliver F, Pozo MÁ, Brackhan M, Bascuñana P. Preclinical PET imaging in epileptogenesis: towards identification of biomarkers and therapeutic targets. EJNMMI Res 2025; 15:43. [PMID: 40249560 PMCID: PMC12008110 DOI: 10.1186/s13550-025-01237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/05/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Epilepsy is a neurological disorder that affects a significant portion of the global population. However, its complexity and the lack of biomarkers hinder the study of its etiology, resulting in a lack of effective treatments to slow down or halt disease development, also called epileptogenesis. MAIN BODY Animal models have proven to be a crucial tool for studying epileptogenesis, many exhibiting cellular, molecular, and functional alterations that resemble those found in human patients. This review examines preclinical studies that have utilized positron emission tomography, a non-invasive neuroimaging technique that has demonstrated correlation with the pathological features and behavioral comorbidities of the disease and a high predictive value for the severity of epileptogenesis. CONCLUSION Positron emission tomography imaging has fostered the knowledge of the mechanisms driving epileptogenesis. This translational technique might be crucial for identifying biomarkers of epilepsy, identifying novel treatment targets and selecting and monitoring patients for potential future therapies.
Collapse
Affiliation(s)
- Nira Hernández-Martín
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Ignacio Pozo-Cabanell
- Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - Rubén Fernández de la Rosa
- Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- BioImaC, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis García-García
- Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Cartografía Cerebral, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisca Gómez-Oliver
- Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Cartografía Cerebral, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Miguel Ángel Pozo
- Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Cartografía Cerebral, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Mirjam Brackhan
- Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain.
- Cartografía Cerebral, Hospital Clínico San Carlos, IdISSC, Madrid, Spain.
- Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Calle del Prof Martín Lagos s/n, Madrid, 28040, Spain.
| | - Pablo Bascuñana
- Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Cartografía Cerebral, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
- Servicio de Medicina Nuclear, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| |
Collapse
|
4
|
Kim JS, Cho Y, Lee J, Cho H, Han S, Lee Y, Jeon Y, Kim TK, Hong JM, Im J, Chae M, Lee Y, Kim H, Park SY, Kim SH, Yim JH, Jo DG. N 5-((perfluorophenyl)amino)glutamine regulates BACE1, tau phosphorylation, synaptic function, and neuroinflammation in Alzheimer's disease models. Biosci Trends 2025; 19:102-115. [PMID: 39864832 DOI: 10.5582/bst.2024.01360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Its incidence is rising rapidly as the global population ages, leading to a significant social and economic burden. AD involves complex pathologies, including amyloid plaque accumulation, synaptic dysfunction, and neuroinflammation. This study explores the therapeutic potential of N 5 -((perfluorophenyl)amino)glutamine (RA-PF), a derivative of γ-glutamyl-N'-(2-hydroxyphenyl)hydrazide (Ramalin), a compound with antioxidant and anti-inflammatory properties. Administration of RA-PF to 5xFAD mice decreases BACE1, reduces Aβ plaque deposition, inhibits microglial activation, restores synaptic transmission, and improves mitochondrial motility, leading to the recovery of cognitive function. Additionally, RA-PF treatment in 3xTg-AD mice alleviates anxiety-like behaviors, tau phosphorylation via inactivating GSK-3β, and BACE1 expression. Further transcriptomic analysis reveals RA-PF treatment in AD mice models recovers phagosome, inflammation, NOD-like receptor, presynaptic membrane, and postsynaptic membrane related signaling pathways. These findings suggest that RA-PF effectively targets multiple aspects of AD pathology, offering a novel multi-target approach for AD treatment.
Collapse
Affiliation(s)
- Jun-Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Yongeun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Heewon Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Sukmin Han
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yeongyeong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Yeji Jeon
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Tai Kyoung Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Korea
| | - Ju-Mi Hong
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Korea
| | - Jeonghyeong Im
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Minshik Chae
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Yujeong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Hyunwook Kim
- Bio Research Dept, Ahngook Pharmaceutical Co., Gwacheon, Korea
| | - Sang Yoon Park
- Bio Research Dept, Ahngook Pharmaceutical Co., Gwacheon, Korea
| | - Sung Hyun Kim
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Joung Han Yim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
5
|
Bartholome O, Neirinckx V, De La Brassinne O, Desloovere J, Van Den Ackerveken P, Raedt R, Rogister B. Synaptic Vesicle Glycoprotein 2A Knockout in Parvalbumin and Somatostatin Interneurons Drives Seizures in the Postnatal Mouse Brain. J Neurosci 2025; 45:e1169242024. [PMID: 39753304 PMCID: PMC11841765 DOI: 10.1523/jneurosci.1169-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/15/2024] [Accepted: 12/10/2024] [Indexed: 02/21/2025] Open
Abstract
Synaptic vesicle glycoprotein 2A (SV2A) is a presynaptic protein targeted by the antiseizure drug levetiracetam. One or more of the three SV2 genes is expressed in all neurons and is essential to normal neurotransmission. Loss of SV2A results in a seizure phenotype in mice and mutations in humans are also linked to congenital seizures. How SV2A action impacts the epileptic phenotype remains unclear, especially among the diverse neuronal populations that regulate network excitability. This study explored how brain structure and function are affected by SV2A conditional knock-out (SV2A-cKO) in specific neural cell subtypes. We show that SV2A-cKO in all neurons of the postnatal brain triggers lethal seizures, suggesting that the seizures observed in earlier knock-out models were not due to aberrant brain development. Similar lethal seizures are detected in mice in which the loss of SV2A is limited to GABAergic neurons, whereas loss in excitatory neurons produces no noticeable phenotype. No apparent gender difference was ever observed. Further investigation revealed that SV2A-cKO in different GABAergic interneuron populations induces seizure, with variable timescales and severity. Most notably SV2A-cKO in parvalbumin interneurons (PV+) leads to lethal seizures in young animals, while SV2A-cKO in somatostatin (SST) inhibitory neurons results in seizures that were scarcely observed only in adult mice. These results support the crucial role SV2A plays in PV and SST interneurons and suggest that the action of levetiracetam may be due largely to effects on a subset of GABAergic interneurons.
Collapse
Affiliation(s)
- Odile Bartholome
- Nervous System Disorders and Therapy, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Virginie Neirinckx
- Nervous System Disorders and Therapy, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Orianne De La Brassinne
- Nervous System Disorders and Therapy, GIGA Institute, University of Liège, Liège 4000, Belgium
| | | | | | | | - Bernard Rogister
- Nervous System Disorders and Therapy, GIGA Institute, University of Liège, Liège 4000, Belgium
- Neurology Department, CHU, Academic Hospital, University of Liège, Liège 4000 Belgium
| |
Collapse
|
6
|
Cho Y, Lee J, Kim JS, Jeon Y, Han S, Cho H, Lee Y, Kim TK, Hong JM, Lee Y, Byun Y, Chae M, Park S, Palomera LF, Park SY, Kim H, Kim S, Kang S, Jee JG, An H, Yim JH, Kim SH, Jo DG. RA-PR058, a novel ramalin derivative, reduces BACE1 expression and phosphorylation of tau in Alzheimer's disease mouse models. Anim Cells Syst (Seoul) 2025; 29:122-134. [PMID: 39931645 PMCID: PMC11809180 DOI: 10.1080/19768354.2025.2459649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder characterized by cognitive decline, anxiety-like behavior, β-amyloid (Aβ) accumulation, and tau hyperphosphorylation. BACE1, the enzyme critical for Aβ production, has been a major therapeutic target; however, direct BACE1 inhibition has been associated with adverse side effects. This study investigates the therapeutic potential of RA-PR058, a novel ramalin derivative, as a multi-targeted modulator of AD-related pathologies. The effects of RA-PR058 were evaluated in vitro and in vivo. In vitro studies used SH-SY5Y cells under oxidative stress conditions to assess BACE1 expression, while in vivo effects were studied in 3xTg-AD mice following one month of oral RA-PR058 treatment. Behavioral assessments, biochemical analyses, transcriptomic profiling, and pharmacokinetic evaluations were performed to determine the efficacy of RA-PR058. RA-PR058 significantly reduced oxidative stress-induced BACE1 expression in vitro and decreased cortical BACE1 expression in 3xTg-AD mice. In vivo treatment alleviated anxiety-like behavior and reduced tau phosphorylation at disease-relevant sites (Ser202/Thr205, Thr231, and Ser396). Transcriptomic analysis revealed RA-PR058-mediated gene expression changes related to central nervous system development, response to hypoxia, and neuroactive ligand-receptor interactions, suggesting broader regulatory effects on AD-related pathways. Pharmacokinetic analysis demonstrated that RA-PR058 exhibits high metabolic stability, minimal cytochrome P450 interactions, and moderate blood-brain barrier penetration. RA-PR058 demonstrates potential as a multi-target AD therapeutic by reducing BACE1 expression, tau hyperphosphorylation, and anxiety-like behavior, coupled with favorable pharmacokinetics. Additional studies are needed to assess cognitive effects and clarify molecular mechanisms, but RA-PR058 may represent a promising advancement in addressing AD's complex pathology.
Collapse
Affiliation(s)
- Yongeun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeongmi Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jun-Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yeji Jeon
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sukmin Han
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Heewon Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yeongyeong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Tai Kyoung Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Ju-Mi Hong
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Yujeong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yujung Byun
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Minshik Chae
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sunyoung Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Leon F. Palomera
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sang Yoon Park
- Bio Research Dept., Ahngook Pharmaceutical, Gwacheon, Republic of Korea
| | - Hyunwook Kim
- Bio Research Dept., Ahngook Pharmaceutical, Gwacheon, Republic of Korea
| | - Soyeong Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Republic of Korea
| | - Seongeun Kang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Republic of Korea
| | - Jun-Goo Jee
- College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Hongchan An
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Republic of Korea
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon, Republic of Korea
| | - Joung Han Yim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Sung Hyun Kim
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
7
|
Sun T, Li J, Wang S, Han Y, Tao X, Yuan M, Jing Z, Liu T, Qi Y, Liu S, Feng Y, Chang J, Zhou L, Gao L, Shi J, Ning R, Cao J. Synaptotagmin-1 attenuates myocardial programmed necrosis and ischemia/reperfusion injury through the mitochondrial pathway. Cell Death Dis 2025; 16:45. [PMID: 39865120 PMCID: PMC11770119 DOI: 10.1038/s41419-025-07360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/22/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca2+ sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release. The later findings of Syt1 expressions in many non-neuronal tissues including muscles suggest that Syt1 may exert important functions beyond regulation of neurotransmitter release. Syt1 is highly expressed in cardiomyocytes and has been used as an extracellular molecular probe for SPECT imaging of cardiac cell death in acute myocardial infarction. However, whether Syt1 functions in the pathogenesis of cardiac disorders and what is the molecular etiology have not yet been clarified. We showed here that Syt1 expression was significantly down-regulated in mice I/R injured heart tissues, H2O2-challenged cardiomyocytes and hypoxia/reoxygenation (H/R)-damaged cardiomyocytes. Enforced expression of Syt1 significantly inhibited myocardial necrotic cell death and interstitial fibrosis, and improved cardiac function in mice subjected to I/R operation. In exploring the underlying mechanisms, we found that Syt1 interacted with Parkin and promoted Parkin-catalyzed CypD ubiquitination, thus inhibited mitochondrial membrane permeability transition pore (mPTP) opening and ultimately suppressed cardiomyocyte necrosis. We further found that Syt1 expression was negatively regulated by miR-193b-3p. MiR-193b-3p regulated cardiomyocyte necrosis and mPTP opening by targeting Syt1. Our present work revealed a novel regulatory model of myocardial necrosis composed of miR-193b-3p, Syt1, Parkin, and CypD, which may provide potential therapeutic targets and strategies for heart protection.
Collapse
Affiliation(s)
- Teng Sun
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.
| | - Jialei Li
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Shuang Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Yu Han
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Xiangyu Tao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Min Yuan
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Zhijie Jing
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, China
| | - Ting Liu
- First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuehong Qi
- The Anesthesiology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China.
| | - Siqi Liu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Yanlin Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Jiasong Chang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Lan Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Lijuan Gao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Jianyun Shi
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Ruihong Ning
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
8
|
Hogg JA, Cousin MA. Control of Synaptotagmin-1 Trafficking by SV2A-Mechanism and Consequences for Presynaptic Function and Dysfunction. J Neurochem 2025; 169:e16308. [PMID: 39853744 PMCID: PMC11758464 DOI: 10.1111/jnc.16308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025]
Abstract
Synaptic vesicle protein 2A (SV2A) is an abundant synaptic vesicle cargo with an as yet unconfirmed role in presynaptic function. It is also heavily implicated in epilepsy, firstly being the target of the leading anti-seizure medication levetiracetam and secondly with loss of function mutations culminating in human disease. A range of potential presynaptic functions have been proposed for SV2A; however its interaction with the calcium sensor for synchronous neurotransmitter release, synaptotagmin-1 (Syt1), has received particular attention over the past decade. In this review we will assess the evidence that the primary role of SV2A is to control the expression and localisation of Syt1 at the presynapse. This will integrate biochemical, cell biological and physiological studies where the interaction, trafficking and functional output of Syt1 is altered by SV2A. The potential for SV2A-dependent epilepsy to be a result of dysfunctional Syt1 expression and localisation is also discussed. Finally, a series of key open questions will be posed that require resolution before a definitive role for SV2A in Syt1 function in health and disease can be confirmed.
Collapse
Affiliation(s)
- James A. Hogg
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of EdinburghEdinburghScotlandUK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George SquareUniversity of EdinburghEdinburghScotlandUK
- Muir Maxwell Epilepsy CentreHugh Robson Building, George Square, University of EdinburghEdinburghScotlandUK
| | - Michael A. Cousin
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of EdinburghEdinburghScotlandUK
- Simons Initiative for the Developing Brain, Hugh Robson Building, George SquareUniversity of EdinburghEdinburghScotlandUK
- Muir Maxwell Epilepsy CentreHugh Robson Building, George Square, University of EdinburghEdinburghScotlandUK
| |
Collapse
|
9
|
Small C, Harper C, Jiang A, Kontaxi C, Pronot M, Yak N, Malapaka A, Davenport EC, Wallis TP, Gormal RS, Joensuu M, Martínez-Mármol R, Cousin MA, Meunier FA. SV2A controls the surface nanoclustering and endocytic recruitment of Syt1 during synaptic vesicle recycling. J Neurochem 2024; 168:3188-3208. [PMID: 39091022 DOI: 10.1111/jnc.16186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 08/04/2024]
Abstract
Following exocytosis, the recapture of plasma membrane-stranded vesicular proteins into recycling synaptic vesicles (SVs) is essential for sustaining neurotransmission. Surface clustering of vesicular proteins has been proposed to act as a 'pre-assembly' mechanism for endocytosis that ensures high-fidelity retrieval of SV cargo. Here, we used single-molecule imaging to examine the nanoclustering of synaptotagmin-1 (Syt1) and synaptic vesicle protein 2A (SV2A) in hippocampal neurons. Syt1 forms surface nanoclusters through the interaction of its C2B domain with SV2A, which are sensitive to mutations in this domain (Syt1K326A/K328A) and SV2A knockdown. SV2A co-clustering with Syt1 is reduced by blocking SV2A's cognate interaction with Syt1 (SV2AT84A). Surprisingly, impairing SV2A-Syt1 nanoclustering enhanced the plasma membrane recruitment of key endocytic protein dynamin-1, causing accelerated Syt1 endocytosis, altered intracellular sorting and decreased trafficking of Syt1 to Rab5-positive endocytic compartments. Therefore, SV2A and Syt1 are segregated from the endocytic machinery in surface nanoclusters, limiting dynamin recruitment and negatively regulating Syt1 entry into recycling SVs.
Collapse
Affiliation(s)
- Christopher Small
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Callista Harper
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Christiana Kontaxi
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Marie Pronot
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Nyakuoy Yak
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Anusha Malapaka
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Elizabeth C Davenport
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Ramón Martínez-Mármol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, the University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, the University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Cuhadar U, Calzado-Reyes L, Pascual-Caro C, Aberra AS, Ritzau-Jost A, Aggarwal A, Ibata K, Podgorski K, Yuzaki M, Geis C, Hallerman S, Hoppa MB, de Juan-Sanz J. Activity-driven synaptic translocation of LGI1 controls excitatory neurotransmission. Cell Rep 2024; 43:114186. [PMID: 38700985 PMCID: PMC11156761 DOI: 10.1016/j.celrep.2024.114186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/14/2023] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
The fine control of synaptic function requires robust trans-synaptic molecular interactions. However, it remains poorly understood how trans-synaptic bridges change to reflect the functional states of the synapse. Here, we develop optical tools to visualize in firing synapses the molecular behavior of two trans-synaptic proteins, LGI1 and ADAM23, and find that neuronal activity acutely rearranges their abundance at the synaptic cleft. Surprisingly, synaptic LGI1 is primarily not secreted, as described elsewhere, but exo- and endocytosed through its interaction with ADAM23. Activity-driven translocation of LGI1 facilitates the formation of trans-synaptic connections proportionally to the history of activity of the synapse, adjusting excitatory transmission to synaptic firing rates. Accordingly, we find that patient-derived autoantibodies against LGI1 reduce its surface fraction and cause increased glutamate release. Our findings suggest that LGI1 abundance at the synaptic cleft can be acutely remodeled and serves as a critical control point for synaptic function.
Collapse
Affiliation(s)
- Ulku Cuhadar
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Lorenzo Calzado-Reyes
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Carlos Pascual-Caro
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Aman S Aberra
- Department of Biology, Dartmouth College, Hanover, NH 03755, USA
| | - Andreas Ritzau-Jost
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, 04317 Leipzig, Germany
| | - Abhi Aggarwal
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Keiji Ibata
- Department of Neurophysiology, Keio University, Tokyo 160-8582, Japan
| | | | - Michisuke Yuzaki
- Department of Neurophysiology, Keio University, Tokyo 160-8582, Japan
| | - Christian Geis
- Department of Neurology, Section Translational Neuroimmunology, Jena University Hospital, 07747 Jena, Germany
| | - Stefan Hallerman
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, 04317 Leipzig, Germany
| | - Michael B Hoppa
- Department of Biology, Dartmouth College, Hanover, NH 03755, USA
| | - Jaime de Juan-Sanz
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.
| |
Collapse
|
11
|
Lee MH, Um KH, Lee SW, Sun YJ, Gu DH, Jo YO, Kim SH, Seol W, Hwang H, Baek K, Choi JW. Bi-directional regulation of AIMP2 and its splice variant on PARP-1-dependent neuronal cell death; Therapeutic implication for Parkinson's disease. Acta Neuropathol Commun 2024; 12:5. [PMID: 38172953 PMCID: PMC10765824 DOI: 10.1186/s40478-023-01697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Parthanatos represents a critical molecular aspect of Parkinson's disease, wherein AIMP2 aberrantly activates PARP-1 through direct physical interaction. Although AIMP2 ought to be a therapeutic target for the disease, regrettably, it is deemed undruggable due to its non-enzymatic nature and predominant localization within the tRNA synthetase multi-complex. Instead, AIMP2 possesses an antagonistic splice variant, designated DX2, which counteracts AIMP2-induced apoptosis in the p53 or inflammatory pathway. Consequently, we examined whether DX2 competes with AIMP2 for PARP-1 activation and is therapeutically effective in Parkinson's disease. METHODS The binding affinity of AIMP2 and DX2 to PARP-1 was contrasted through immunoprecipitation. The efficacy of DX2 in neuronal cell death was assessed under 6-OHDA and H2O2 in vitro conditions. Additionally, endosomal and exosomal activity of synaptic vesicles was gauged in AIMP2 or DX2 overexpressed hippocampal primary neurons utilizing optical live imaging with VAMP-vGlut1 probes. To ascertain the role of DX2 in vivo, rotenone-induced behavioral alterations were compared between wild-type and DX2 transgenic animals. A DX2-encoding self-complementary adeno-associated virus (scAAV) was intracranially injected into 6-OHDA induced in vivo animal models, and their mobility was examined. Subsequently, the isolated brain tissues were analyzed. RESULTS DX2 translocates into the nucleus upon ROS stress more rapidly than AIMP2. The binding affinity of DX2 to PARP-1 appeared to be more robust compared to that of AIMP2, resulting in the inhibition of PARP-1 induced neuronal cell death. DX2 transgenic animals exhibited neuroprotective behavior in rotenone-induced neuronal damage conditions. Following a single intracranial injection of AAV-DX2, both behavior and mobility were consistently ameliorated in neurodegenerative animal models induced by 6-OHDA. CONCLUSION AIMP2 and DX2 are proposed to engage in bidirectional regulation of parthanatos. They physically interact with PARP-1. Notably, DX2's cell survival properties manifest exclusively in the context of abnormal AIMP2 accumulation, devoid of any tumorigenic effects. This suggests that DX2 could represent a distinctive therapeutic target for addressing Parkinson's disease in patients.
Collapse
Affiliation(s)
- Min Hak Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Regulatory Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ki-Hwan Um
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Regulatory Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seok Won Lee
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ye Ji Sun
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Regulatory Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Da-Hye Gu
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Young Ok Jo
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sung Hyun Kim
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Wongi Seol
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, Sanbonro 321, Gunposi, Gyeonggido, 15865, Republic of Korea
| | - Hyorin Hwang
- Generoath Ltd., Seoul, 04168, Republic of Korea
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung, Gangwon-Do, 25457, Republic of Korea
| | - Kyunghwa Baek
- Department of Pharmacology, College of Dentistry and Research Institute of Oral Science, Gangneung-Wonju National University, Gangneung, Gangwon-Do, 25457, Republic of Korea
| | - Jin Woo Choi
- Department of Pharmacology, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Regulatory Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
12
|
Kim SR, Eom Y, Lee SH. Comprehensive analysis of sex differences in the function and ultrastructure of hippocampal presynaptic terminals. Neurochem Int 2023; 169:105570. [PMID: 37451344 DOI: 10.1016/j.neuint.2023.105570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/08/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Sex differences in the brain, encompassing variations in specific brain structures, size, cognitive function, and synaptic connections, have been identified across numerous species. While previous research has explored sex differences in postsynaptic structures, synaptic plasticity, and hippocampus-dependent functions, the hippocampal presynaptic terminals remain largely uninvestigated. The hippocampus is a critical structure responsible for multiple brain functions. This study examined presynaptic differences in cultured hippocampal neurons derived from male and female mice using a combination of biochemical assays, functional analyses measuring exocytosis and endocytosis of synaptic vesicle proteins, ultrastructural analyses via electron microscopy, and presynaptic Ca2+-specific optical probes. Our findings revealed that female neurons exhibited a higher number of synaptic vesicles at presynaptic terminals compared to male neurons. However, no significant differences were observed in presynaptic protein expression, presynaptic terminal ultrastructure, synaptic vesicle exocytosis and endocytosis, or presynaptic Ca2+ alterations between male and female neurons.
Collapse
Affiliation(s)
- Sung Rae Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; Brain Research Core Facilities of Korea Brain Research Institute (KBRI), Daegu 41068, Republic of Korea.
| | - Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
13
|
Han S, Bang S, Kim HN, Choi N, Kim SH. Modulating and monitoring the functionality of corticostriatal circuits using an electrostimulable microfluidic device. Mol Brain 2023; 16:13. [PMID: 36670465 PMCID: PMC9863144 DOI: 10.1186/s13041-023-01007-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
The central nervous system is organized into different neural circuits, each with particular functions and properties. Studying neural circuits is essential to understanding brain function and neuronal diseases. Microfluidic systems are widely used for reconstructing and studying neural circuits but still need improvement to allow modulation and monitoring of the physiological properties of circuits. In this study, we constructed an improved microfluidic device that supports the electrical modulation of neural circuits and proper reassembly. We demonstrated that our microfluidic device provides a platform for electrically modulating and monitoring the physiological function of neural circuits with genetic indicators for synaptic functionality in corticostriatal (CStr) circuits. In particular, our microfluidic device measures activity-driven Ca2+ dynamics using Ca2+ indicators (synaptophysin-GCaMP6f and Fluo5F-AM), as well as activity-driven synaptic transmission and retrieval using vGlut-pHluorin. Overall, our findings indicate that the improved microfluidic platform described here is an invaluable tool for studying the physiological properties of specific neural circuits.
Collapse
Affiliation(s)
- Sukmin Han
- grid.289247.20000 0001 2171 7818Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Seokyoung Bang
- grid.35541.360000000121053345Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Hong Nam Kim
- grid.35541.360000000121053345Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Nakwon Choi
- grid.35541.360000000121053345Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 Republic of Korea
| | - Sung Hyun Kim
- grid.289247.20000 0001 2171 7818Department of Neuroscience, Graduate School, Kyung Hee University, Seoul, 02447 Republic of Korea ,grid.289247.20000 0001 2171 7818Department of Physiology, School of Medicine, Kyung Hee University, Seoul, 02447 Republic of Korea ,grid.289247.20000 0001 2171 7818Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, 02447 South Korea
| |
Collapse
|
14
|
Oh Y, Lee W, Kim SH, Lee S, Kim BC, Lee KH, Kim SH, Song WK. SPIN90 Deficiency Ameliorates Amyloid β Accumulation by Regulating APP Trafficking in AD Model Mice. Int J Mol Sci 2022; 23:ijms231810563. [PMID: 36142484 PMCID: PMC9504172 DOI: 10.3390/ijms231810563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD), a common form of dementia, is caused in part by the aggregation and accumulation in the brain of amyloid β (Aβ), a product of the proteolytic cleavage of amyloid precursor protein (APP) in endosomes. Trafficking of APP, such as surface-intracellular recycling, is an early critical step required for Aβ generation. Less is known, however, about the molecular mechanism regulating APP trafficking. This study investigated the mechanism by which SPIN90, along with Rab11, modulates APP trafficking, Aβ motility and accumulation, and synaptic functionality. Brain Aβ deposition was lower in the progeny of 5xFAD-SPIN90KO mice than in 5xFAD-SPIN90WT mice. Analysis of APP distribution and trafficking showed that the surface fraction of APP was locally distinct in axons and dendrites, with these distributions differing significantly in 5xFAD-SPIN90WT and 5xFAD-SPIN90KO mice, and that neural activity-driven APP trafficking to the surface and intracellular recycling were more actively mobilized in 5xFAD-SPIN90KO neurons. In addition, SPIN90 was found to be cotrafficked with APP via axons, with ablation of SPIN90 reducing the intracellular accumulation of APP in axons. Finally, synaptic transmission was restored over time in 5xFAD-SPIN90KO but not in 5xFAD-SPIN90WT neurons, suggesting SPIN90 is implicated in Aβ production through the regulation of APP trafficking.
Collapse
Affiliation(s)
- Youngsoo Oh
- Cell Logistics Research Center, School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Wongyoung Lee
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - So Hee Kim
- Cell Logistics Research Center, School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Sooji Lee
- Department of Medicine, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Kun Ho Lee
- Gwangju Alzheimer’s Disease and Related Dementia Cohort Research Center, Chosun University, Gwangju 61452, Korea
| | - Sung Hyun Kim
- Department of Neuroscience, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.H.K.); (W.K.S.)
| | - Woo Keun Song
- Cell Logistics Research Center, School of Life Science, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Correspondence: (S.H.K.); (W.K.S.)
| |
Collapse
|
15
|
Spatio-Temporal Alterations in Synaptic Density During Epileptogenesis in the Rat Brain. Neuroscience 2022; 499:142-151. [PMID: 35878719 DOI: 10.1016/j.neuroscience.2022.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
Abstract
Synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein that binds levetiracetam and is involved in neurotransmission via an unknown mechanism. SV2A-immunoreactivity is reduced in animal models of epilepsy, and in postmortem hippocampi from patients with temporal lobe epilepsy. It is not known if other regions outside the hippocampus are affected in epilepsy, and whether SV2A is expression permanently reduced or regulated over time. In this study, we induced a generalized status epilepticus (SE) by systemic administration of lithium-pilocarpine to adult female rats. The brains from all animals experiencing SE were collected at different time points after the treatment. The radiotracer, [11C]-UCB-J, binds to SV2A with high affinity, and has been used for in vivo imaging as an a-proxy marker for synaptic density. Here we determined the level of tritiated UCB-J binding by semiquantitative autoradiography in the cerebral cortex, hippocampus, thalamus, and hypothalamus, and in subregions of these. A prominent and highly significant reduction in SV2A binding capacity was observed over the first days after SE in the cerebral cortex and the hippocampus, but not in the thalamus and hypothalamus. The magnitude in reduction was larger and occurred earlier in the hippocampus and the piriform cortex, than in other cortical subregions. Interestingly, in all areas examined, the binding capacity returned to control levels 12 weeks after the SE comparable to the chronic phase. These data show that lithium-pilocarpine-induced epileptogenesis involves both loss and gain of synapses in the in a time-dependent manner.
Collapse
|
16
|
Park C, Jung S, Park H. Single vesicle tracking for studying synaptic vesicle dynamics in small central synapses. Curr Opin Neurobiol 2022; 76:102596. [PMID: 35803103 DOI: 10.1016/j.conb.2022.102596] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
Sustained neurotransmission is driven by a continuous supply of synaptic vesicles to the release sites and modulated by synaptic vesicle dynamics. However, synaptic vesicle dynamics in synapses remain elusive because of technical limitations. Recent advances in fluorescence imaging techniques have enabled the tracking of single synaptic vesicles in small central synapses in living neurons. Single vesicle tracking has uncovered a wealth of new information about synaptic vesicle dynamics both within and outside presynaptic terminals, showing that single vesicle tracking is an effective tool for studying synaptic vesicle dynamics. Particularly, single vesicle tracking with high spatiotemporal resolution has revealed the dependence of synaptic vesicle dynamics on the location, stages of recycling, and neuronal activity. This review summarizes the recent findings from single synaptic vesicle tracking in small central synapses and their implications in synaptic transmission and pathogenic mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chungwon Park
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong
| | - Sangyong Jung
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 11 Biopolis Way, 138667, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - Hyokeun Park
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong; Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong; State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong.
| |
Collapse
|
17
|
Amalyan S, Tamboli S, Lazarevich I, Topolnik D, Bouman LH, Topolnik L. Enhanced motor cortex output and disinhibition in asymptomatic female mice with C9orf72 genetic expansion. Cell Rep 2022; 40:111043. [PMID: 35793625 DOI: 10.1016/j.celrep.2022.111043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/29/2022] [Accepted: 06/12/2022] [Indexed: 11/28/2022] Open
Abstract
Information and action coding by cortical circuits relies on a balanced dialogue between excitation and inhibition. Circuit hyperexcitability is considered a potential pathophysiological mechanism in various brain disorders, but the underlying deficits, especially at early disease stages, remain largely unknown. We report that asymptomatic female mice carrying the chromosome 9 open reading frame 72 (C9orf72) repeat expansion, which represents a high-prevalence genetic abnormality for human amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) spectrum disorder, exhibit abnormal motor cortex output. The number of primary motor cortex (M1) layer 5 pyramidal neurons is reduced in asymptomatic mice, with the surviving neurons receiving a decreased inhibitory drive that results in a higher M1 output, specifically during high-speed animal locomotion. Importantly, using deep-learning algorithms revealed that speed-dependent M1 output predicts the likelihood of C9orf72 genetic expansion. Our data link early circuit abnormalities with a gene mutation in asymptomatic ALS/FTLD carriers.
Collapse
Affiliation(s)
- Sona Amalyan
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, QC, Canada; Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, QC, Canada
| | - Suhel Tamboli
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, QC, Canada; Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, QC, Canada
| | - Ivan Lazarevich
- École Normale Supérieure, Laboratoire de Neurosciences Cognitives, Group for Neural Theory, Paris, France
| | - Dimitry Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, QC, Canada; Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, QC, Canada
| | - Leandra Harriet Bouman
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, QC, Canada; Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, QC, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, QC, Canada; Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, QC, Canada.
| |
Collapse
|
18
|
Rossi R, Arjmand S, Bærentzen SL, Gjedde A, Landau AM. Synaptic Vesicle Glycoprotein 2A: Features and Functions. Front Neurosci 2022; 16:864514. [PMID: 35573314 PMCID: PMC9096842 DOI: 10.3389/fnins.2022.864514] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
In recent years, the field of neuroimaging dramatically moved forward by means of the expeditious development of specific radioligands of novel targets. Among these targets, the synaptic vesicle glycoprotein 2A (SV2A) is a transmembrane protein of synaptic vesicles, present in all synaptic terminals, irrespective of neurotransmitter content. It is involved in key functions of neurons, focused on the regulation of neurotransmitter release. The ubiquitous expression in gray matter regions of the brain is the basis of its candidacy as a marker of synaptic density. Following the development of molecules derived from the structure of the anti-epileptic drug levetiracetam, which selectively binds to SV2A, several radiolabeled markers have been synthetized to allow the study of SV2A distribution with positron emission tomography (PET). These radioligands permit the evaluation of in vivo changes of SV2A distribution held to be a potential measure of synaptic density in physiological and pathological conditions. The use of SV2A as a biomarker of synaptic density raises important questions. Despite numerous studies over the last decades, the biological function and the expressional properties of SV2A remain poorly understood. Some functions of SV2A were claimed, but have not been fully elucidated. While the expression of SV2A is ubiquitous, stronger associations between SV2A and Υ amino butyric acid (GABA)-ergic rather than glutamatergic synapses were observed in some brain structures. A further issue is the unclear interaction between SV2A and its tracers, which reflects a need to clarify what really is detected with neuroimaging tools. Here, we summarize the current knowledge of the SV2A protein and we discuss uncertain aspects of SV2A biology and physiology. As SV2A expression is ubiquitous, but likely more strongly related to a certain type of neurotransmission in particular circumstances, a more extensive knowledge of the protein would greatly facilitate the analysis and interpretation of neuroimaging results by allowing the evaluation not only of an increase or decrease of the protein level, but also of the type of neurotransmission involved.
Collapse
Affiliation(s)
- Rachele Rossi
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Simone Larsen Bærentzen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
19
|
Functional validation of variants of unknown significance using CRISPR gene editing and transcriptomics: A Kleefstra syndrome case study. Gene X 2022; 821:146287. [PMID: 35176430 DOI: 10.1016/j.gene.2022.146287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 11/21/2022] Open
Abstract
There are an estimated > 400 million people living with a rare disease globally, with genetic variants the cause of approximately 80% of cases. Next Generation Sequencing (NGS) rapidly identifies genetic variants however they are often of unknown significance. Low throughput functional validation in specialist laboratories is the current ad hoc approach for functional validation of genetic variants, which creating major bottlenecks in patient diagnosis. This study investigates the application of CRISPR gene editing followed by genome wide transcriptomic profiling to facilitate patient diagnosis. As proof-of-concept, we introduced a variant in the Euchromatin histone methyl transferase (EHMT1) gene into HEK293T cells. We identified changes in the regulation of the cell cycle, neural gene expression and suppression of gene expression changes on chromosome 19 and chromosome X, that are in keeping with Kleefstra syndrome clinical phenotype and/or provide insight into disease mechanism. This study demonstrates the utility of genome editing followed by functional readouts to rapidly and systematically validating the function of variants of unknown significance in patients suffering from rare diseases.
Collapse
|
20
|
Asch RH, Holmes SE, Jastreboff AM, Potenza MN, Baldassarri SR, Carson RE, Pietrzak RH, Esterlis I. Lower synaptic density is associated with psychiatric and cognitive alterations in obesity. Neuropsychopharmacology 2022; 47:543-552. [PMID: 34294874 PMCID: PMC8674236 DOI: 10.1038/s41386-021-01111-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/03/2023]
Abstract
Obesity is a serious medical condition that often co-occurs with stress-related psychiatric disorders. It is recognized that the brain plays a key role in the (patho)physiology of obesity and that there is a bidirectional relationship between obesity and psychopathology, yet molecular mechanisms altered in obesity have not been fully elucidated. Thus, we investigated relationships between obesity and synaptic density in vivo using the radioligand [11C]UCB-J (which binds to synaptic glycoprotein SV2A) and positron emission tomography in individuals with obesity, and with or without stress-related psychiatric disorders. Regions of interest were the dorsolateral prefrontal cortex, orbitofrontal cortex, ventromedial, amygdala, hippocampus, and cerebellum. Forty individuals with a body mass index (BMI) ≥ 25 kg/m2 (overweight/obese), with (n = 28) or without (n = 12) psychiatric diagnosis, were compared to 30 age- and sex-matched normal weight individuals (BMI < 25), with (n = 14) or without (n = 16) psychiatric diagnosis. Overall, significantly lower synaptic density was observed in overweight/obese relative to normal weight participants (ηp2 = 0.193, F = 2.35, p = 0.042). Importantly, in participants with stress-related psychiatric diagnoses, we found BMI to be negatively correlated with synaptic density in all regions of interest (p ≤ 0.03), but no such relationship observed for mentally healthy controls (p ≥ 0.68). In the stress-related psychiatric groups, dorsolateral prefrontal cortex synaptic density was negatively associated with measures of worry (r = -0.46, p = 0.01), tension/anxiety (r = -0.38, p = 0.04), fatigue (r = -0.44, p = 0.02), and attentional difficulties (r = -0.44, p = 0.02). In summary, the findings of this novel in vivo experiment suggest compounding effects of obesity and stress-related psychopathology on the brain and the associated symptomatology that may impact functioning. This offers a novel biological mechanism for the relationship between overweight/obesity and stress-related psychiatric disorders that may guide future intervention development efforts.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Sophie E Holmes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Ania M Jastreboff
- Department of Internal Medicine (Endocrinology & Metabolism) and Department of Pediatrics (Pediatric Endocrinology), Yale School of Medicine, New Haven, CT, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - Richard E Carson
- Departments of Radiology and Biomedical Imaging and Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| | - Robert H Pietrzak
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- U.S. Department of Veteran Affairs National Center for Posttraumatic Stress Disorder, Clinical Neurosciences Division, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
21
|
Zhou J, Liang W, Wang J, Chen J, Liu D, Wang X, Wu Y, Zhang Q, Shen D. An epileptic encephalopathy associated GABRG2 missense mutation leads to pre- and postsynaptic defects in zebrafish. Hum Mol Genet 2021; 31:3216-3230. [PMID: 34957497 DOI: 10.1093/hmg/ddab338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in the γ-aminobutyric acid type A (GABAA) receptor γ2 subunit gene, GABRG2, have been associated with a variety of epilepsy syndromes. A de novo mutation (c.T1027C, p.F343L) in GABRG2 was identified in a patient with early onset epileptic encephalopathy. Zebrafish overexpressing mutant human GABRG2 (F343L) subunits displayed spontaneous seizure activity and convulsive behaviors. In this study, we demonstrated that Tg (hGABRG2F343L) zebrafish displayed hyperactivity during light phase with normal circadian rhythm, as well as increased drug-induced locomotor activity. Real-time quantitative PCR, whole mount in situ hybridization and western blotting showed that Tg(hGABRG2F343L) zebrafish had altered expression of GABAA receptor subunits. Furthermore, investigation of synaptic protein expression and synapse ultrastructure uncovered a robust synaptic phenotype that is causally linked to GABRG2(F343L) mutation. Strikingly, Tg(hGABRG2F343L) zebrafish not only had postsynaptic defects, but also displayed an unanticipated deficit at the presynaptic level. Overall, our Tg(hGABRG2F343L) overexpression zebrafish model has expanded the GABAergic paradigm in epileptic encephalopathy from channelopathy to synaptopathy.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenpeng Liang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Juan Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Dong Liu
- School of Life Science, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Youjia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Dingding Shen
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Caveolin-1 deficiency impairs synaptic transmission in hippocampal neurons. Mol Brain 2021; 14:53. [PMID: 33726791 PMCID: PMC7962241 DOI: 10.1186/s13041-021-00764-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/25/2021] [Indexed: 11/10/2022] Open
Abstract
In addition to providing structural support, caveolin-1 (Cav1), a component of lipid rafts, including caveolae, in the plasma membrane, is involved in various cellular mechanisms, including signal transduction. Although pre-synaptic membrane dynamics and trafficking are essential cellular processes during synaptic vesicle exocytosis/synaptic transmission and synaptic vesicle endocytosis/synaptic retrieval, little is known about the involvement of Cav1 in synaptic vesicle dynamics. Here we demonstrate that synaptic vesicle exocytosis is significantly impaired in Cav1-knockdown (Cav1-KD) neurons. Specifically, the size of the synaptic recycled vesicle pool is modestly decreased in Cav1-KD synapses and the kinetics of synaptic vesicle endocytosis are somewhat slowed. Notably, neurons rescued by triple mutants of Cav1 lacking palmitoylation sites mutants show impairments in both synaptic transmission and retrieval. Collectively, our findings implicate Cav1 in activity-driven synaptic vesicle dynamics-both exocytosis and endocytosis-and demonstrate that palmitoylation of Cav1 is important for this activity.
Collapse
|
23
|
Harper CB, Smillie KJ. Current molecular approaches to investigate pre-synaptic dysfunction. J Neurochem 2021; 157:107-129. [PMID: 33544872 DOI: 10.1111/jnc.15316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022]
Abstract
Over the course of the last few decades it has become clear that many neurodevelopmental and neurodegenerative disorders have a synaptic defect, which contributes to pathogenicity. A rise in new techniques, and in particular '-omics'-based methods providing large datasets, has led to an increase in potential proteins and pathways implicated in synaptic function and related disorders. Additionally, advancements in imaging techniques have led to the recent discovery of alternative modes of synaptic vesicle recycling. This has resulted in a lack of clarity over the precise role of different pathways in maintaining synaptic function and whether these new pathways are dysfunctional in neurodevelopmental and neurodegenerative disorders. A greater understanding of the molecular detail of pre-synaptic function in health and disease is key to targeting new proteins and pathways for novel treatments and the variety of new techniques currently available provides an ideal opportunity to investigate these functions. This review focuses on techniques to interrogate pre-synaptic function, concentrating mainly on synaptic vesicle recycling. It further examines techniques to determine the underlying molecular mechanism of pre-synaptic dysfunction and discusses methods to identify molecular targets, along with protein-protein interactions and cellular localization. In combination, these techniques will provide an expanding and more complete picture of pre-synaptic function. With the application of recent technological advances, we are able to resolve events with higher spatial and temporal resolution, leading research towards a greater understanding of dysfunction at the presynapse and the role it plays in pathogenicity.
Collapse
Affiliation(s)
- Callista B Harper
- Centre for Discovery Brain Sciences, University of Edinburgh, Scotland, UK
| | - Karen J Smillie
- Centre for Discovery Brain Sciences, University of Edinburgh, Scotland, UK
| |
Collapse
|