1
|
Weishaupt S, Holkenjans W, Balzer S, Jeremias A, Sperling M, Vogel M, Karst U. Quantification of Gd species in a tetrameric Gd-based contrast agent using HPLC-ICP-MS. J Chromatogr A 2025; 1746:465808. [PMID: 39999648 DOI: 10.1016/j.chroma.2025.465808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
This study presents a newly developed high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) method for quantification of Gd complexes in a tetrameric, macrocyclic Gd-based MRI contrast agent (GBCA). Since for the multimeric GBCA Gadoquatrane, currently in Phase III clinical development, mainly multinuclear Gd complexes are expected as by-products from the route of synthesis, HPLC-ICP-MS is suitable for the quantitative determination of these Gd species. The developed HPLC-ICP-MS method offers high sensitivity and accurate quantification based on external calibration with a generic Gd standard and is thus a powerful alternative to routinely used HPLC-UV in the pharmaceutical industry. The method allows for quantitatively detecting six different multimeric Gd-containing by-products in a Gadoquatrane sample taken from the early process development. A limit of quantification (LOQ) of 38 nmol/L is achieved for monomeric Gd complexes, which allows the quantitative determination of Gd species at levels as low as 0.004 mass% in the product. With this method, unknown Gd-containing by-products in GBCAs even at trace levels can be well assessed regarding their relevance in the further synthesis process optimization and in the drug substance control strategy. The elaborative synthesis of reference compounds for quantification of unknowns may be omitted, which can significantly accelerate the synthesis process optimization.
Collapse
Affiliation(s)
- Sonja Weishaupt
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstr. 48, 48149 Münster, Germany
| | - Wiebke Holkenjans
- Bayer AG, Pharmaceuticals, Research & Development, Friedrich-Ebert-Str. 217-333, 42117 Wuppertal, Germany
| | - Sandra Balzer
- Bayer AG, Pharmaceuticals, Research & Development, Friedrich-Ebert-Str. 217-333, 42117 Wuppertal, Germany
| | - Anne Jeremias
- Bayer AG, Pharmaceuticals, Research & Development, Friedrich-Ebert-Str. 217-333, 42117 Wuppertal, Germany
| | - Michael Sperling
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstr. 48, 48149 Münster, Germany
| | - Martin Vogel
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstr. 48, 48149 Münster, Germany
| | - Uwe Karst
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstr. 48, 48149 Münster, Germany.
| |
Collapse
|
2
|
Gullett KL, Moore JM, Ford CL, Fout AR. A biologically inspired iron complex for the homogeneous reduction of Cr(VI) to Cr(III). Dalton Trans 2025; 54:6313-6317. [PMID: 40131330 DOI: 10.1039/d5dt00416k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Hexavalent chromium (CrVI) is a toxic and carcinogenic pollutant commonly found in industrial waste, posing significant environmental and health risks. In contrast, trivalent chromium (CrIII) is significantly less toxic and less mobile in water. This study presents the efficient reduction of CrVI to CrIII using a biologically inspired non-heme iron complex, [N(afaCy)3FeIIOTf]OTf. The reaction achieves near-quantitative conversion as calculated by a paramagnetic 1H NMR calibration method for direct quantification of the iron(III)-oxo species formed during reduction. X-ray photoelectron spectroscopy (XPS) confirms CrIII as the final chromium containing product. This work provides a highly effective and selective approach to chromium detoxification, with potential applications in water remediation while demonstrating the utility of a 1H NMR calibration curve for quantifying paramagnetic species in reaction mixtures.
Collapse
Affiliation(s)
- Kelly L Gullett
- School of Chemical Science, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, USA
| | - Jewelianna M Moore
- Department of Chemistry, Texas A&M University, 580 Ross St. College Station, Texas 77843, USA.
| | - Courtney L Ford
- School of Chemical Science, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801, USA
| | - Alison R Fout
- Department of Chemistry, Texas A&M University, 580 Ross St. College Station, Texas 77843, USA.
| |
Collapse
|
3
|
Patra B, Narayanan S, Halder S, Sharma M, Sachdeva D, Ravishankar N, Pati SK, Jain SK, Senguttuvan P. NASICON-NaV 0.25Al 0.25Nb 1.5(PO 4) 3/C: A High-Rate and Robust Anode for Fast Charging and Long-Life Sodium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419417. [PMID: 40195626 DOI: 10.1002/adma.202419417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/19/2025] [Indexed: 04/09/2025]
Abstract
Nb-based NAtrium Super Ionic CONductor (NASICON) frameworks (e.g., Nb2(PO4)3 and Na1.5V0.5Nb1.5(PO4)3) are emerging as the attractive Na-ion anodes due to their lower intercalation voltage (≈1.4-1.2 V vs Na+/Na0) and higher storage capacities (≈140-160 mAh g-1). However, their practical realization is limited by moderate cycle life and rate performances. In this work, a carbon-coated NASICON-NaV0.25Al0.25Nb1.5(PO4)3 (NaVAlNb/C) anode is unveiled for fast charging Na-ion batteries. The incorporation of Al3+ increases covalency of NASICON and creates disordered Na-ion sublattice as observed by X-ray diffraction and nuclear magnetic resonance spectroscopy measurements. Besides, the carbon-coating and particle downsizing produces facile electron and ion percolation network. Accordingly, the NaVAlNb/C anode renders extraordinary rate performances (80 mAh g-1 at 20C) with longer cycling stability (95.2% retention after 5000 cycles at 10C). Climbing image nudged elastic band calculations reveal reduced Na-ion migration barrier (202 meV) for NaVAlNb/C. Most importantly, a full Na-ion cell based on Na4V2(PO4)3 cathode and NaVAlNb/C anode is demonstrated with a high-power density (6493 W kg-1) and long-cycle life (3000 cycles at 20C), which are far excellent compared to the state-of-the-art NASICON-based cells. This work demonstrates the significance of carbon coating and chemical tuning to tailor high-rate NASICON anodes, which can produce fast-charging Na-ion batteries.
Collapse
Affiliation(s)
- Biplab Patra
- New Chemistry Unit, International Centre for Materials Science, and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, 560064, India
| | - Swathy Narayanan
- New Chemistry Unit, International Centre for Materials Science, and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, 560064, India
| | - Suraj Halder
- Solid State and Structural Chemistry Unit (SSCU), Indian Institute of Science, Bengaluru, 560012, India
| | - Mayank Sharma
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, 560064, India
| | - Dorothy Sachdeva
- Materials Research Centre (MRC), Indian Institute of Science, Bengaluru, 560012, India
| | - Narayanan Ravishankar
- Materials Research Centre (MRC), Indian Institute of Science, Bengaluru, 560012, India
| | - Swapan K Pati
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, 560064, India
| | - Sheetal K Jain
- Solid State and Structural Chemistry Unit (SSCU), Indian Institute of Science, Bengaluru, 560012, India
| | - Premkumar Senguttuvan
- New Chemistry Unit, International Centre for Materials Science, and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, 560064, India
| |
Collapse
|
4
|
Joshi M, Riesner M, Wang Z, Mireskandari S, Nanda R, Reber RE, Huber C, Fischer M, Fainblat R, Mandel K, Wisser D, Segets D, Bacher G, Wisser FM, Hartmann M. Europium(iii)/terbium(iii) mixed metal-organic frameworks and their application as ratiometric thermometers with tuneable sensitivity in organic dispersion. RSC Adv 2025; 15:11230-11242. [PMID: 40206354 PMCID: PMC11979743 DOI: 10.1039/d5ra00822k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
The ability to engineer on a molecular level luminescent metal-organic frameworks (MOFs) enables the design of well-performing ratiometric, i.e., self-referencing, temperature sensors. Lanthanide-based MOFs stand out as luminescent temperature sensors due to their high luminescence intensity and the sharp emission lines of the lanthanides. The use of two different lanthanide cations, incorporated into the same MOF structure, is supposed to enable ratiometric temperature sensing. Herein, we present a series of mixed-metal Eu x Tb(1-x)BTC, in which the metal ions are homogeneously dispersed, as demonstrated by 1H solid state NMR spectroscopy. The Eu x Tb(1-x)BTC series shows controllable luminescent properties, which depend on the solvation of the lanthanide. The two MOFs in the series with the lowest Eu contents, namely Eu0.05Tb0.95BTC and Eu0.02Tb0.98BTC, are suitable candidates for ratiometric temperature sensing, achieving sensitivities of up to 2.0% K-1. As the fluorescence is affected by the presence of solvents, simultaneous ratiometric temperature and solvent sensing is possible with remarkable high thermal sensitivities of ca. 0.1% K-1 and ca. 0.2% K-1 for dispersions of Eu0.02Tb0.98BTC in acetonitrile and ethanol, respectively.
Collapse
Affiliation(s)
- Madhura Joshi
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Egerlandstraße 3 91058 Erlangen Germany
| | - Maurizio Riesner
- Werkstoffe der Elektrotechnik, University of Duisburg-Essen (UDE) Carl-Benz-Straße 199 47057 Duisburg Germany
| | - Zhuang Wang
- Institute for Energy and Materials Processes - Particle Science and Technology (EMPI-PST), University of Duisburg-Essen (UDE) Carl-Benz-Straße 199 47057 Duisburg Germany
| | - Sahba Mireskandari
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Egerlandstraße 3 91058 Erlangen Germany
| | - Raju Nanda
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Egerlandstraße 3 91058 Erlangen Germany
| | - Rebecca Elfriede Reber
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Egerlandstraße 3 91058 Erlangen Germany
| | - Christoph Huber
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Egerlandstraße 3 91058 Erlangen Germany
| | - Marcus Fischer
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Egerlandstraße 3 91058 Erlangen Germany
| | - Rachel Fainblat
- Werkstoffe der Elektrotechnik, University of Duisburg-Essen (UDE) Carl-Benz-Straße 199 47057 Duisburg Germany
| | - Karl Mandel
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) Egerlandstrasse 1 91058 Erlangen Germany
- Fraunhofer-Institute for Silicate Research ISC Neunerplatz 2 97082 Würzburg Germany
| | - Dorothea Wisser
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Egerlandstraße 3 91058 Erlangen Germany
| | - Doris Segets
- Institute for Energy and Materials Processes - Particle Science and Technology (EMPI-PST), University of Duisburg-Essen (UDE) Carl-Benz-Straße 199 47057 Duisburg Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen (UDE) Germany
| | - Gerd Bacher
- Werkstoffe der Elektrotechnik, University of Duisburg-Essen (UDE) Carl-Benz-Straße 199 47057 Duisburg Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen (UDE) Germany
| | - Florian M Wisser
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Egerlandstraße 3 91058 Erlangen Germany
- Erlangen Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Haberstr. 9a 91058 Erlangen Germany
| | - Martin Hartmann
- Erlangen Center for Interface Research and Catalysis (ECRC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Egerlandstraße 3 91058 Erlangen Germany
- Erlangen Center for Functional Particle Systems (FPS), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Haberstr. 9a 91058 Erlangen Germany
| |
Collapse
|
5
|
Vaz RF, Brown LS, Ladizhansky V. Membrane protein structure determination from Paramagnetic Relaxation Enhancement and internuclear distance restraints. JOURNAL OF BIOMOLECULAR NMR 2025:10.1007/s10858-025-00467-w. [PMID: 40156665 DOI: 10.1007/s10858-025-00467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Magic angle spinning nuclear magnetic resonance (MAS NMR) is well suited for the determination of protein structure. The key structural information is obtained in the form of spectral cross peaks between spatially close nuclear spins, but assigning these cross peaks unambiguously to unique spin pairs is often a tedious task because of spectral overlap. Here, we use a seven-helical membrane protein Anabaena Sensory Rhodopsin (ASR) as a model system to demonstrate that transverse Paramagnetic Relaxation Enhancements (PRE) extracted from 2D MAS NMR spectra could be used to obtain a protein structural model. Starting with near complete assignments (93%) of ASR residues, TALOS + predicted backbone dihedral angles and secondary structure restraints in the form of backbone hydrogen bonds are combined with PRE-based restraints and used to generate a coarse model. This model is subsequently utilized as a template reference to facilitate automated assignments of highly ambiguous internuclear correlations. The template is used in an iterative cross peak assignment process and is progressively improved through the inclusion of disambiguated restraints, thereby converging to a low root-mean-square-deviation structural model. In addition to improving structure calculation conversion, the inclusion of PREs also improves packing between helices within an alpha-helical bundle.
Collapse
Affiliation(s)
- Raoul F Vaz
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Vlad Ladizhansky
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
6
|
Baldwin J, Bonham KL, Thompson TRC, Gransbury GK, Whitehead GFS, Vitorica-Yrezabal IJ, Lee D, Chilton NF, Mills DP. 31P NMR Chemical Shift Anisotropy in Paramagnetic Lanthanide Phosphide Complexes. JACS AU 2025; 5:1196-1212. [PMID: 40151241 PMCID: PMC11937968 DOI: 10.1021/jacsau.4c01018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025]
Abstract
Lanthanide (Ln) magnetic resonance imaging and chiral shift reagents generally exploit 1H NMR shifts, as paramagnetic broadening tends to preclude the use of heavier, less sensitive nuclei. Here, we report the solution and solid-state 31P NMR shifts of an isostructural series of distorted trigonal bipyramidal Ln(III) tris-silylphosphide complexes, [Ln{P(SiMe3)2}3(THF)2] (1-Ln; Ln = La, Ce, Pr, Nd, Sm); 1-Ln was also characterized by elemental analysis; single-crystal and powder X-ray diffraction; multinuclear NMR, EPR, ATR-IR, and UV-vis-NIR spectroscopy; and SQUID magnetometry. Breaking assumptions, we observed paramagnetically broadened 31P NMR spectra for the Ln-bound P atoms for the 1-Ln family; in solution, 1-Nd showed the most downfield chemical shift (δ{31P} = 2570.14 ppm) and 1-Sm the most upfield value (δ{31P} = -259.21 ppm). We determined the span of the chemical shift anisotropies (CSAs) for solid 1-Ln using magic angle spinning NMR spectroscopy; the CSA was largest for 1-Pr (Ω{31P} ≈ 2000 ppm), consistent with a combination of paramagnetism and the relatively large differences in pyramidalization of the three P atoms in the solid-state. Density functional theory calculations for 1-La were in excellent agreement with the experimentally determined 31P NMR parameters. We find good agreement of experimental 1H NMR chemical shifts with ab initio-calculated values for paramagnetic 1-Ln, while the shifts of heavier 13C, 29Si, and 31P nuclei are not well-reproduced due to the current limitations of paramagnetic NMR calculations for nuclei with large contact shifts.
Collapse
Affiliation(s)
- Jack Baldwin
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Katherine L. Bonham
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Toby R. C. Thompson
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Gemma K. Gransbury
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - George F. S. Whitehead
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - Daniel Lee
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Nicholas F. Chilton
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Research
School of Chemistry, The Australian National
University, Sullivans
Creek Road, Canberra ACT2601, Australia
| | - David P. Mills
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
7
|
Busch H, Yasir Ateeque M, Taube F, Wiegand T, Corzilius B, Künze G. Probing Biomolecular Interactions with Paramagnetic Nuclear Magnetic Resonance Spectroscopy. Chembiochem 2025; 26:e202400903. [PMID: 39803829 PMCID: PMC11907393 DOI: 10.1002/cbic.202400903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Indexed: 03/15/2025]
Abstract
Recent advances in computational methods like AlphaFold have transformed structural biology, enabling accurate modeling of protein complexes and driving applications in drug discovery and protein engineering. However, predicting the structure of systems involving weak, transient, or dynamic interactions, or of complexes with disordered regions, remains challenging. Nuclear Magnetic Resonance (NMR) spectroscopy offers atomic-level insights into biomolecular complexes, even in weakly interacting and dynamic systems. Paramagnetic NMR, in particular, provides long-range structural restraints, easily exceeding distances over 25 Å, making it ideal for studying large protein complexes. Advances in chemical tools for introducing paramagnetic tags into proteins, combined with progress in electron paramagnetic resonance (EPR) spectroscopy, have enhanced the method's utility. This perspective article discusses paramagnetic NMR approaches for analyzing biomolecular complexes in solution and in the solid state, emphasizing quantities like pseudocontact shifts, residual dipolar couplings, and paramagnetic relaxation enhancements. Additionally, dynamic nuclear polarization offers a promising method to amplify NMR signals of large complexes, even in complex environments. The integration of AlphaFold protein structure prediction with paramagnetic NMR holds great potential for advancing our understanding of biomolecular interactions.
Collapse
Affiliation(s)
- Hannah Busch
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Muhammad Yasir Ateeque
- Institute for Drug Discovery, University of Leipzig, Brüderstr. 34, 04103, Leipzig, Germany
| | - Florian Taube
- Institute of Chemistry, Department Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 27, 18059, Rostock, Germany
| | - Thomas Wiegand
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mühlheim/Ruhr, Germany
| | - Björn Corzilius
- Institute of Chemistry, Department Life, Light & Matter, University of Rostock, Albert-Einstein-Str. 27, 18059, Rostock, Germany
| | - Georg Künze
- Institute for Drug Discovery, University of Leipzig, Brüderstr. 34, 04103, Leipzig, Germany
| |
Collapse
|
8
|
Thompson TR, Staab JK, Chilton NF. Approximate Hamiltonians from a Linear Vibronic Coupling Model for Solution-Phase Spin Dynamics. J Chem Theory Comput 2025; 21:1222-1229. [PMID: 39824753 PMCID: PMC11823414 DOI: 10.1021/acs.jctc.4c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Abstract
The linear vibronic coupling (LVC) model is an approach for approximating how a molecular Hamiltonian changes in response to small changes in molecular geometry. The LVC framework thus has the ability to approximate molecular Hamiltonians at low computational expense but with quality approaching multiconfigurational ab initio calculations, when the change in geometry compared to the reference calculation used to parametrize it is small. Here, we show how the LVC approach can be used to project approximate spin Hamiltonians of a solvated lanthanide complex along a room-temperature molecular dynamics trajectory. As expected, the LVC approximation is less accurate as the geometry diverges from that at which the model was parametrized. We examine the accuracy of the predicted Hamiltonians by performing time-dependent quantum simulations of the spin dynamics of the molecule, with reference to the dynamics obtained using spin Hamiltonians projected from ab initio calculations at each step. We find that quantitatively accurate behavior is obtained when LVC parametrizations are performed at least every 10 fs during the trajectory.
Collapse
Affiliation(s)
- Toby R.
C. Thompson
- Department
of Chemistry, The University of Manchester, Manchester M13 9PL, U.K.
| | - Jakob K. Staab
- Department
of Chemistry, The University of Manchester, Manchester M13 9PL, U.K.
- Department
of Chemistry “Ugo Schiff”, INSTM Research Unit, Universitá degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| | - Nicholas F. Chilton
- Department
of Chemistry, The University of Manchester, Manchester M13 9PL, U.K.
- Research
School of Chemistry, Australian National
University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
9
|
Ogbolu BO, Poudel TP, Dikella TNDD, Truong E, Chen Y, Hou D, Li T, Liu Y, Gabriel E, Xiong H, Huang C, Hu Y. Tailoring Ion Transport in Li 3-3yHo 1+yCl 6-xBr x via Transition-Metal Free Structural Planes and Charge Carrier Distribution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409668. [PMID: 39690877 PMCID: PMC11831455 DOI: 10.1002/advs.202409668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/10/2024] [Indexed: 12/19/2024]
Abstract
Localized atomistic disorder in halide-based solid electrolytes (SEs) can be leveraged to boost Li+ mobility. In this study, Li+ transport in structurally modified Li3HoCl6, via Br- introduction and Li+ deficiency, is explored. The optimized Li3-3 yHo1+ yCl6- xBrx achieves an ionic conductivity of 3.8 mS cm-1 at 25 °C, the highest reported for holmium halide materials. 6,7Li nuclear magnetic resonance and relaxometry investigations unveil enhanced ion dynamics with bromination, attaining a Li+ motional rate neighboring 116 MHz. X-ray diffraction analyses reveal mixed-anion-induced phase transitions with disproportionate octahedral expansions and distortions, creating Ho-free planes with favorable energetics for Li+ migration. Bond valence site energy analysis highlights preferred Li+ transport pathways, particularly in structural planes devoid of Ho3+ blocking effects. Molecular dynamics simulations corroborate enhanced Li+ diffusion with Br- introduction into Li3HoCl6. Li-Ho electrostatic repulsions in the (001) plane presumably drive Li+ diffusion into the Ho-free (002) layer, enabling rapid intraplanar Li+ motion and exchange between the 2d and 4h sites. Li3-3 yHo1+ yCl6- xBrx also demonstrates good battery cycling stability. These findings offer valuable insights into the intricate correlations between structure and ion transport and will help guide the design of high-performance fast ion conductors for all-solid-state batteries.
Collapse
Affiliation(s)
- Bright O. Ogbolu
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFL32306USA
| | - Tej P. Poudel
- Materials Science and Engineering ProgramFlorida State UniversityTallahasseeFL32310USA
| | | | - Erica Truong
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFL32306USA
| | - Yudan Chen
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFL32306USA
| | - Dewen Hou
- Micron School of Materials Science and EngineeringBoise State UniversityBoiseID83725USA
- Center for Nanoscale MaterialsArgonne National LaboratoryArgonneIL60439USA
| | - Tianyi Li
- X‐Ray Science DivisionArgonne National LaboratoryArgonneIL60439USA
| | - Yuzi Liu
- Center for Nanoscale MaterialsArgonne National LaboratoryArgonneIL60439USA
| | - Eric Gabriel
- Micron School of Materials Science and EngineeringBoise State UniversityBoiseID83725USA
| | - Hui Xiong
- Micron School of Materials Science and EngineeringBoise State UniversityBoiseID83725USA
| | - Chen Huang
- Department of Scientific ComputingFlorida State UniversityTallahasseeFL32306USA
| | - Yan‐Yan Hu
- Department of Chemistry and BiochemistryFlorida State UniversityTallahasseeFL32306USA
- Materials Science and Engineering ProgramFlorida State UniversityTallahasseeFL32310USA
- Center of Interdisciplinary Magnetic ResonanceNational High Magnetic Field LaboratoryTallahasseeFL32310USA
| |
Collapse
|
10
|
Elena-Real CA, Urbanek A, Sagar A, Mohanty P, Levy G, Morató A, Fournet A, Allemand F, Sibille N, Mittal J, Sinnaeve D, Bernadó P. Site-Specific Incorporation of Fluorinated Prolines into Proteins and Their Impact on Neighbouring Residues. Chemistry 2025; 31:e202403718. [PMID: 39661394 PMCID: PMC11772113 DOI: 10.1002/chem.202403718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/12/2024]
Abstract
The incorporation of fluorinated amino acids into proteins provides new opportunities to study biomolecular structure-function relationships in an elegant manner. The available strategies to incorporate the majority of fluorinated amino acids are not site-specific or imply important structural modifications. Here, we present a chemical biology approach for the site-specific incorporation of three commercially available Cγ-modified fluoroprolines that has been validated using a non-pathogenic version of huntingtin exon-1 (HttExon-1). 19F, 1H and 15N NMR chemical shifts measured for multiple variants of HttExon-1 indicated that the trans/cis ratio was strongly dependent on the fluoroproline variant and the sequence context. By isotopically labelling the rest of the protein, we have shown that the extent of spectroscopic perturbations to the neighbouring residues depends on the number of fluorine atoms and the stereochemistry at Cγ, as well as the isomeric form of the fluoroproline. We have rationalized these observations by means of extensive molecular dynamics simulations, indicating that the observed atomic chemical shift perturbations correlate with the distance to fluorine atoms and that the effect remains very local. These results validate the site-specific incorporation of fluoroprolines as an excellent strategy to monitor intra- and intermolecular interactions in disordered proline-rich proteins.
Collapse
Affiliation(s)
- Carlos A. Elena-Real
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Annika Urbanek
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Amin Sagar
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M, College Station, TX 77843
| | - Geraldine Levy
- Univ. Lille, INSERM, Institut Pasteur de Lille, CHU Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases. 59000 Lille, France
- CNRS EMR9002 – Integrative Structural Biology, 59000 Lille, France
| | - Anna Morató
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Aurélie Fournet
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Frédéric Allemand
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Nathalie Sibille
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M, College Station, TX 77843
- Department of Chemistry, Texas A&M University, College Station, TX 77843
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, College Station, TX 77843
| | - Davy Sinnaeve
- Univ. Lille, INSERM, Institut Pasteur de Lille, CHU Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases. 59000 Lille, France
- CNRS EMR9002 – Integrative Structural Biology, 59000 Lille, France
| | - Pau Bernadó
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS 29 rue de Navacelles, 34090 Montpellier (France)
| |
Collapse
|
11
|
Ashbrook SE. Concluding remarks: Faraday Discussion on NMR crystallography. Faraday Discuss 2025; 255:583-601. [PMID: 39420802 DOI: 10.1039/d4fd00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This Faraday Discussion explored the field of NMR crystallography, and considered recent developments in experimental and theoretical approaches, new advances in machine learning and in the generation and handling of large amounts of data. Applications to a wide range of disordered, amorphous and dynamic systems demonstrated the range and quality of information available from this approach and the challenges that are faced in exploiting automation and developing best practice. In these closing remarks I will reflect on the discussions on the current state of the art, questions about what we want from these studies, how accurate we need results to be, how we best generate models for complex materials and what machine learning approaches can offer. These remarks close with thoughts about the future direction of the field, who will be carrying out this type of research, how they might be doing it and what their focus will be, along with likely possible challenges and opportunities.
Collapse
Affiliation(s)
- Sharon E Ashbrook
- School of Chemistry, EaStCHEM and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| |
Collapse
|
12
|
Pereira TLE, Serrano Sevillano J, Moreno BD, Reid JW, Carlier D, Goward GR. Combined 7Li NMR, density functional theory and operando synchrotron X-ray powder diffraction to investigate a structural evolution of cathode material LiFeV 2O 7. Faraday Discuss 2025; 255:244-265. [PMID: 39297782 DOI: 10.1039/d4fd00077c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
In our recent study, we demonstrated using 7Li solid-state Nuclear Magnetic Resonance (ssNMR) and single-crystal X-ray diffraction that the cathode LiFeV2O7 possesses a defect associated with the positioning of vanadium atoms. We proposed that this defect could be the source of extra signals detected in the 7Li spectra. In this context, we now apply density functional theory (DFT) calculations to assign the experimental signals observed in 7Li NMR spectra of the pristine sample. The calculation results are in strong agreement with the experimental observations. DFT calculations are a useful tool to interpret the observed paramagnetic shifts and understand how the presence of disorder affects the spectra behavior through the spin-density transfer processes. Furthermore, we conducted a detailed study of the lithiated phase combining operando synchrotron powder X-ray diffraction (SPXRD) and DFT calculations. A noticeable volume expansion is observed through the first discharge cycle which likely contributes to the enhanced lithium dynamics in the bulk material, as supported by previously published ssNMR data. DFT calculations are used to model the lithiated phase and demonstrate that both iron and vanadium participate in the redox process. The unusual electronic structure of the V4+ exhibits a single electron on the 3dxy orbital perpendicular to the V-O-Li bond being a source of a negative Fermi contact shift observed in the 7Li NMR of the lithiated phase.
Collapse
Affiliation(s)
- Taiana L E Pereira
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada.
| | - Jon Serrano Sevillano
- Centro de Investigación Cooperativa de Energías Alternativas (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), 01510 Vitoria-Gasteiz, Spain
- CNRS, Bordeaux INP, ICMCB UMR5026, Université Bordeaux, F-33600 Pessac, France
| | - Beatriz D Moreno
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada
| | - Joel W Reid
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada
| | - Dany Carlier
- CNRS, Bordeaux INP, ICMCB UMR5026, Université Bordeaux, F-33600 Pessac, France
| | - Gillian R Goward
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario L8S 4M1, Canada.
| |
Collapse
|
13
|
von Witte G, Kozerke S, Ernst M. Two-electron two-nucleus effective Hamiltonian and the spin diffusion barrier. SCIENCE ADVANCES 2025; 11:eadr7168. [PMID: 39752498 PMCID: PMC11698094 DOI: 10.1126/sciadv.adr7168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
Dynamic nuclear polarization (DNP) and emerging quantum technologies rely on the spin transfer in electron-nuclear hybrid quantum systems. Spin transfers might be suppressed by larger couplings, e.g., hyperfine couplings suppressing nuclear dipolar flip-flops ("spin diffusion barrier"). We apply the Schrieffer-Wolff transformation to a two-electron two-nucleus spin system involving dipolar and hyperfine couplings in their tensorial form and study possible polarization-transfer processes. Among the different effective Hamiltonian matrix elements investigated is an energy-conserving electron-nuclear four-spin flip-flop, which combines an electronic with a nuclear dipolar flip-flop. The relevance of this electron-nuclear four-spin flip-flop for nuclear spin diffusion close to electrons is supported by model fits of HypRes-on experimental data. We connect the closely related fields of magnetic resonance and quantum information and provide a model that explains how all nuclear spins can contribute to the hyperpolarization of the bulk without a spin diffusion barrier in DNP.
Collapse
Affiliation(s)
- Gevin von Witte
- Institute for Biomedical Engineering, University and ETH Zurich, 8092 Zurich, Switzerland
- Institute of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, 8092 Zurich, Switzerland
| | - Matthias Ernst
- Institute of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
14
|
Qiao Z, Cao H, Wang J, Yang H, Yao W, Wang J, Cheetham AK. Curvature-Induced Electron Spin Catalysis with Carbon Spheres. Angew Chem Int Ed Engl 2025; 64:e202412745. [PMID: 39218803 DOI: 10.1002/anie.202412745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Here, we report curvature-induced electron spin catalysis by using solid carbon spheres as catalysts, which were synthesized using positive curvature molecular hexabromocyclopentadiene as a precursor molecule, following a radical coupling mechanism. The curvature spin of carbon is regarded as an overlapping state of σ- and π-radical, which is identified by the inverse Laplace transform of pulse-electron paramagnetic resonance. The growth mechanism of carbon spheres abiding by Kroto's model, is supported by the density functional theory study of thermodynamics and kinetics calculations. The solid carbon spheres present excellent catalytic behaviour of oxidation coupling of amines to form corresponding imines with the conversion of >99 %, selectivity of 98.7 %, and yield of 97.7 %, which is attributed to the predominantly curvature-induced electron spin catalysis of carbon, supported by the calculation of oxygen adsorption energy. This work proposes a view of curvature-induced spin catalysis of carbon, which opens up a research direction for curvature-induced electron spin catalysis.
Collapse
Affiliation(s)
- Zirui Qiao
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
- Engineering Research Center of Advanced Rare Earth Materials, Tsinghua University, 100084, Beijing, China
| | - Huaqiang Cao
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
- Engineering Research Center of Advanced Rare Earth Materials, Tsinghua University, 100084, Beijing, China
| | - Jiadao Wang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China
| | - Haijun Yang
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
- Engineering Research Center of Advanced Rare Earth Materials, Tsinghua University, 100084, Beijing, China
| | - Wenqing Yao
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
- Engineering Research Center of Advanced Rare Earth Materials, Tsinghua University, 100084, Beijing, China
| | - Jiaou Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
| | - Anthony K Cheetham
- Materials Research Laboratory, University of California, Santa Barbara, 93106, Santa Barbara, CA, USA
- Department of Materials Science and Engineering, National University of Singapore, 117576, Singapore, Singapore
| |
Collapse
|
15
|
Duckworth TM, Gericke R, Kaden P, Köhler L, Näder A, März J, Patzschke M, Stumpf T, Schmidt M. Comparative Analysis of Tetravalent Actinide Schiff Base Complexes: Influence of Donor and Ligand Backbone on Molecular Geometry and Metal Binding. Chemistry 2025; 31:e202403081. [PMID: 39435794 PMCID: PMC11711302 DOI: 10.1002/chem.202403081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/23/2024]
Abstract
A series of isostructural early actinide AnIV complexes was synthesized in order to investigate the influence of a conjugated framework in the ligand backbone on An bonding. Therefore, the AnIV complexes [An(pyrophen)2] (An = Th, U, Np, and Pu) with the pure N-donor ligand bis(2-pyrrolecarbonylaldehyde)-o-phenylenediamine referred to as pyrophen, were synthesized and characterized. Solid state analysis via single-crystal X-ray diffraction (SC-XRD) reveals two sets of ligands binding in an almost orthogonal arrangement to the actinide center. For the larger actinides Th and U, the coordination sphere allows for additional coordination by a solvent molecule. Nuclear magnetic resonance spectroscopy (NMR) studies show the presence of highly symmetrical complexes in solution in good agreement with the solvent-free solid structures. While SC-XRD suggests mainly ionic binding, an analysis of paramagnetic NMR contributions and quantum chemical bond analysis hint towards significant covalency in the U, Np, and Pu compounds. This series of An complexes allowed for a thorough structural and theoretical comparison of a conjugated system to a closely related N-donor ligand (pyren),[1] as well as to the mixed N,O Schiff base ligands salophen (conjugated) and salen (non-conjugated).
Collapse
Affiliation(s)
- Tamara M. Duckworth
- Institute of Resource EcologyHelmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 40001328DresdenGermany
| | - Robert Gericke
- Institute of Resource EcologyHelmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 40001328DresdenGermany
| | - Peter Kaden
- Institute of Resource EcologyHelmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 40001328DresdenGermany
| | - Luisa Köhler
- Institute of Resource EcologyHelmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 40001328DresdenGermany
| | - Adrian Näder
- Institute of Resource EcologyHelmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 40001328DresdenGermany
| | - Juliane März
- Institute of Resource EcologyHelmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 40001328DresdenGermany
| | - Michael Patzschke
- Institute of Resource EcologyHelmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 40001328DresdenGermany
| | - Thorsten Stumpf
- Institute of Resource EcologyHelmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 40001328DresdenGermany
| | - Moritz Schmidt
- Institute of Resource EcologyHelmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 40001328DresdenGermany
| |
Collapse
|
16
|
Koppe J, Sanders KJ, Robinson TC, Lejeune AL, Proriol D, Wegner S, Purea A, Engelke F, Clément RJ, Grey CP, Pell AJ, Pintacuda G. Resolving Structures of Paramagnetic Systems in Chemistry and Materials Science by Solid-State NMR: The Revolving Power of Ultra-Fast MAS. Angew Chem Int Ed Engl 2025; 64:e202408704. [PMID: 39388344 DOI: 10.1002/anie.202408704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Ultra-fast magic-angle spinning (100+kHz) has revolutionized solid-state NMR of biomolecular systems but has so far failed to gain ground for the analysis of paramagnetic organic and inorganic powders, despite the potential rewards from substantially improved spectral resolution. The principal blockages are that the smaller fast-spinning rotors present significant barriers for sample preparation, particularly for air/moisture-sensitive systems, and are associated with low sensitivity from the reduced sample volumes. Here, we demonstrate that the sensitivity penalty is less severe than expected for highly paramagnetic solids and is more than offset by the associated improved resolution. While previous approaches employing slower MAS are often unsuccessful in providing sufficient resolution, we show that ultra-fast 100+kHz MAS allows site-specific assignments of all resonances from complex paramagnetic solids. Combined with more reliable rotor materials and handling methods, this opens the way to the routine characterization of geometry and electronic structures of functional paramagnetic systems in chemistry, including catalysts and battery materials. We benchmark this approach on a hygroscopic luminescent Tb3+ complex, an air-sensitive homogeneous high-spin Fe2+ catalyst, and a series of mixed Fe2+/Mn2+/Mg2+ olivine-type cathode materials.
Collapse
Affiliation(s)
- Jonas Koppe
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Kevin J Sanders
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Thomas C Robinson
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Arthur L Lejeune
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
- IFP Energies Nouvelles, Rond-point de l'échangeur de Solaize, 69360, Solaize, France
| | - David Proriol
- IFP Energies Nouvelles, Rond-point de l'échangeur de Solaize, 69360, Solaize, France
| | | | - Armin Purea
- Bruker Biospin, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | - Frank Engelke
- Bruker Biospin, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | - Raphaële J Clément
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
- Materials Department and Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Andrew J Pell
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Guido Pintacuda
- Centre de RMN Très Hauts Champs de Lyon (UMR5082-CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France
| |
Collapse
|
17
|
Porat-Dahlerbruch G, Sergeyev IV, Quinn CM, Struppe J, Banks D, Dahlheim C, Johnson D, Murphy D, Ilott A, Abraham A, Polenova T. Spatial Organization of Lipid Nanoparticle siRNA Delivery Systems Revealed by an Integrated Magnetic Resonance Approach. SMALL METHODS 2025; 9:e2400622. [PMID: 39021326 DOI: 10.1002/smtd.202400622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 07/20/2024]
Abstract
Lipid nanoparticles (LNPs) are increasingly finding applications in targeted drug delivery, including for subcutaneous, intravenous, inhalation, and vaccine administration. While a variety of microscopy techniques are widely used for LNP characterization, their resolution does not allow for characterization of the spatial organization of different components, such as the excipients, targeting agents, or even the active ingredient. Herein, an approach is presented to probe the spatial organization of individual constituent groups of LNPs used for siRNA-based drug delivery, currently in clinical trials, by multinuclear solid-state magic-angle-spinning nuclear magnetic resonance (MAS NMR) spectroscopy. Dynamic nuclear polarization is exploited (DNP) for sensitivity enhancement, together with judicious 2H labeing, to detect functionally important LNP constituents, the siRNA and the targeting agent (<1-2 w/v%), respectively, and achieve a structural model of the LNP locating the siRNA in the core, the targeting agent below the surface, and the sugars above the lipid bilayer at the surface. The integrated approach presented here is applicable for structural analysis of LNPs and can be extended more generally to other multi-component biological formulations.
Collapse
Affiliation(s)
- Gal Porat-Dahlerbruch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Ivan V Sergeyev
- Bristol Myers Squibb, Drug Product Development, New Brunswick, NJ, 08901, USA
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, 01821, USA
| | - Daniel Banks
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, 01821, USA
| | - Charles Dahlheim
- Bristol Myers Squibb, Drug Product Development, New Brunswick, NJ, 08901, USA
| | - Donald Johnson
- Bristol Myers Squibb, Drug Product Development, New Brunswick, NJ, 08901, USA
| | - Denette Murphy
- Bristol Myers Squibb, Drug Product Development, New Brunswick, NJ, 08901, USA
| | - Andrew Ilott
- Bristol Myers Squibb, Drug Product Development, New Brunswick, NJ, 08901, USA
| | - Anuji Abraham
- Bristol Myers Squibb, Drug Product Development, New Brunswick, NJ, 08901, USA
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
18
|
Shaw BK, Corti L, Tuffnell JM, Castillo-Blas C, Schlachta P, Robertson GP, McHugh L, Sapnik AF, Hallweger SA, Chater PA, Kieslich G, Keen DA, Dutton SE, Blanc F, Bennett TD. (RPh 3P)[Mn(dca) 3]: A Family of Glass-Forming Hybrid Organic-Inorganic Materials. Inorg Chem 2024; 63:24812-24824. [PMID: 39696790 PMCID: PMC11688669 DOI: 10.1021/acs.inorgchem.4c04181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
ABX3-type hybrid organic-inorganic structures have recently emerged as a new class of meltable materials. Here, by the use of phenylphosphonium derivatives as A cation, we study liquid- and glass-forming behavior of a new family of hybrid structures, (RPh3P)[Mn(dca)3] (R = Me, Et, Ph; dca = dicyanamide). These new compounds melt at 196-237 °C (Tm) and then vitrify upon cooling to room temperature, forming glasses. In situ glass formation of this new family of materials was probed on a large scale using a variable-temperature PXRD experiment. Structure analyses of the crystalline and the glasses were carried out by solid-state nuclear magnetic resonance spectroscopy and synchrotron X-ray total scattering techniques for using the pair distribution function. The mechanical properties of the glasses produced were evaluated showing promising durability. Thermal and electrical conductivities showed low thermal conductivities (κ ∼ 0.07-0.09 W m-1 K-1) and moderate electrical conductivities (σ ∼ 10-4-10-6 S m-1) at room temperature, suggesting that by the precise control of the A cation, we can tune meltable hybrid structures from moderate conductors to efficient thermal insulators. Our results raise attention on the practical use of this new hybrid material in applications including, e.g., photovoltaic devices to prevent light-deposited heat (owing to low κRT), energy harvesting thermoelectric, etc., and advance the structure-property understanding.
Collapse
Affiliation(s)
- Bikash Kumar Shaw
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Lucia Corti
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
- Leverhulme
Research Centre for Functional Materials Design, Materials Innovation
Factory, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Joshua M. Tuffnell
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
- Department
of Physics, University of Cambridge, Cambridge CB3 0FS, U.K.
| | - Celia Castillo-Blas
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Patrick Schlachta
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Georgina P. Robertson
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | - Lauren McHugh
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Adam F. Sapnik
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| | | | - Philip A. Chater
- Diamond
Light Source Ltd., Diamond House, Harwell Campus, Didcot OX11 0DE, Oxfordshire, U.K.
| | - Gregor Kieslich
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - David A. Keen
- ISIS
Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K.
| | - Sian E. Dutton
- Department
of Physics, University of Cambridge, Cambridge CB3 0FS, U.K.
| | - Frédéric Blanc
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
- Leverhulme
Research Centre for Functional Materials Design, Materials Innovation
Factory, University of Liverpool, Liverpool L7 3NY, U.K.
- Stephenson
Institute for Renewable Energy, University
of Liverpool, Crown Street, Liverpool L69 7ZF, U.K.
| | - Thomas D. Bennett
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
| |
Collapse
|
19
|
Icsel C, Aydinlik S, Aygun M, Yilmaz VT. Cationic first-row transition metal saccharinate complexes with tris(2-pyridylmethyl)amine: synthesis, structures and anticancer studies. Dalton Trans 2024; 54:247-258. [PMID: 39530863 DOI: 10.1039/d4dt02258k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A series of new cationic first-row transition metal complexes of [Mn(sac)(H2O)(tpma)](sac)·H2O (Mn), [(μ-O){FeCl(tpma)}2](sac)2·3H2O (Fe), [Co(sac)(H2O)(tpma)](sac)·H2O (Co), [Ni(H2O)2(tpma)](sac)2·2H2O (Ni), [Cu(sac)(tpma)](sac) (Cu) and [Zn(sac)(H2O)(tpma)](sac) (Zn), where sac = saccharinate and tpma = tris(2-pyridylmethyl)amine, were synthesized and structurally characterized by elemental analysis, UV-Vis, IR, ESI-MS, NMR, X-ray diffraction and conductivity measurements. The cytotoxic activity of the metal complexes was evaluated in vitro against lung carcinoma (A549), breast adenocarcinoma (MCF7), colon (HT29), and normal BEAS-2B cell lines. Mn and Fe displayed potent cytotoxic activity in all cell lines with IC50 values between 1.99 ± 0.33 and 6.65 ± 0.67 μM, while Cu moderately affected the growth of HT29 cells. However the rest of the metal complexes did not demonstrate any growth inhibitory effect. Further studies with Fe treated HT29 cells through cellular imaging analysis indicated that Fe significantly induced intracellular ROS (reactive oxygen species) accumulation, mitochondrial dysfunction and double-strand DNA breaks, and eventually caused apoptotic cell death through the intrinsic pathway.
Collapse
Affiliation(s)
- Ceyda Icsel
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey.
| | - Seyma Aydinlik
- TUBITAK Marmara Research Center, Climate and Life Sciences, Biotechnology Research Group, 41470 Gebze, Kocaeli, Turkey
| | - Muhittin Aygun
- Department of Physics, Faculty of Sciences, Dokuz Eylul University, 35210 Izmir, Turkey
| | - Veysel T Yilmaz
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, 61080 Trabzon, Turkey.
| |
Collapse
|
20
|
Jaroniec CP. Structural and dynamic studies of chromatin by solid-state NMR spectroscopy. Curr Opin Struct Biol 2024; 89:102921. [PMID: 39293192 PMCID: PMC11602356 DOI: 10.1016/j.sbi.2024.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/01/2024] [Indexed: 09/20/2024]
Abstract
Chromatin is a complex of DNA with histone proteins organized into nucleosomes that regulates genome accessibility and controls transcription, replication and repair by dynamically switching between open and compact states as a function of different parameters including histone post-translational modifications and interactions with chromatin modulators. Continuing advances in structural biology techniques including X-ray crystallography, cryo-electron microscopy and nuclear magnetic resonance (NMR) spectroscopy have facilitated studies of chromatin systems, in spite of challenges posed by their large size and dynamic nature, yielding important functional and mechanistic insights. In this review we highlight recent applications of magic angle spinning solid-state NMR - an emerging technique that is uniquely-suited toward providing atomistic information for rigid and flexible regions within biomacromolecular assemblies - to detailed characterization of structure, conformational dynamics and interactions for histone core and tail domains in condensed nucleosomes and oligonucleosome arrays mimicking chromatin at high densities characteristic of the cellular environment.
Collapse
Affiliation(s)
- Christopher P Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| |
Collapse
|
21
|
von Witte G, Himmler A, Hyppönen V, Jäntti J, Albannay MM, Moilanen JO, Ernst M, Lehto VP, Riikonen J, Kozerke S, Kettunen MI, Tamarov K. Controlled synthesis and characterization of porous silicon nanoparticles for dynamic nuclear polarization. NANOSCALE 2024; 16:19385-19399. [PMID: 39330968 PMCID: PMC11430043 DOI: 10.1039/d4nr02603a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Si nanoparticles (NPs) have been actively developed as a hyperpolarized magnetic resonance imaging (MRI) contrast agent with an imaging window close to one hour. However, the progress in the development of NPs has been hampered by the incomplete understanding of their structural properties that correspond to efficient hyperpolarization buildup and long polarization decays. In this work we study dynamic nuclear polarization (DNP) of single crystal porous Si (PSi) NPs with defined doping densities ranging from nominally undoped to highly doped with boron or phosphorus. To develop such PSi NPs we perform low-load metal-assisted catalytic etching for electronic grade Si powder followed by thermal oxidation to form the dangling bonds in the Si/SiO2 interface, the Pb centers. Pb centers are the endogenous source of the unpaired electron spins necessary for DNP. The controlled fabrication and oxidation procedures allow us to thoroughly investigate the impact of the magnetic field, temperature and doping on the DNP process. We argue that the buildup and decay rate constants are independent of size of Si crystals between approximately 10 and 60 nm. Instead, the rates are limited by the polarization transfer across the nuclear spin diffusion barrier determined by the large hyperfine shift of the central 29Si nuclei of the Pb centers. The size-independent rates are then weakly affected by the doping degree for low and moderately doped Si although slight doping is required to achieve the highest polarization. Thus, we find the room temperature relaxation of low boron doped PSi NPs reaching 75 ± 3 minutes and nuclear polarization levels exceeding ∼6% when polarized at 6.7 T and 1.4 K. Our study thus establishes solid grounds for further development of Si NPs as hyperpolarized contrast agents.
Collapse
Affiliation(s)
- Gevin von Witte
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- Institute of Molecular Physical Science, ETH Zurich, Zurich, Switzerland
| | - Aaron Himmler
- Institute of Molecular Physical Science, ETH Zurich, Zurich, Switzerland
| | - Viivi Hyppönen
- Kuopio Biomedical Imaging Unit, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Jiri Jäntti
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
| | - Mohammed M Albannay
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Jani O Moilanen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Matthias Ernst
- Institute of Molecular Physical Science, ETH Zurich, Zurich, Switzerland
| | - Vesa-Pekka Lehto
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
| | - Joakim Riikonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Mikko I Kettunen
- Kuopio Biomedical Imaging Unit, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Konstantin Tamarov
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
22
|
Mishra A, Hope MA, Emsley L. Light-Induced Metallic and Paramagnetic Defects in Halide Perovskites from Magnetic Resonance. ACS ENERGY LETTERS 2024; 9:5074-5080. [PMID: 39416673 PMCID: PMC11474947 DOI: 10.1021/acsenergylett.4c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Halide perovskites are promising next-generation solar cell materials, but their commercialization is hampered by their propensity to degrade under operating conditions, particularly under heat, humidity, and light. Identifying degradation products and linking them to the degradation mechanism at the atomic scale is necessary to design more stable perovskite materials. Here we use magnetic resonance methods to identify and characterize the formation of both metallic lead clusters and Pb3+ defects upon light-induced degradation of methylammonium lead halide perovskite using nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) measurements. Paramagnetic relaxation enhancement (PRE) of the 1H NMR resonances demonstrates the presence of localized paramagnetic Pb3+ defects, a large Knight shift of the 207Pb NMR proves the presence of lead metal, and their relative proportions are determined by the differing temperature dependence in variable-temperature EPR. This work reconciles previous conflicting literature results, enabling the use of EPR spectroscopy to monitor photodegradation of perovskite devices.
Collapse
Affiliation(s)
| | | | - Lyndon Emsley
- Institut des Sciences et Ingénierie
Chimiques, Ecole Polytechnique Fédérale
de Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
23
|
Bassey EN, Nguyen H, Insinna T, Lee J, Barra AL, Cibin G, Bencok P, Clément R, Grey CP. Strong Magnetic Exchange Interactions and Delocalized Mn-O States Enable High-Voltage Capacity in the Na-Ion Cathode P2-Na 0.67[Mg 0.28Mn 0.72]O 2. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:9493-9515. [PMID: 39398379 PMCID: PMC11467838 DOI: 10.1021/acs.chemmater.4c01320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
The increased capacity offered by oxygen-redox active cathode materials for rechargeable lithium- and sodium-ion batteries (LIBs and NIBs, respectively) offers a pathway to the next generation of high-gravimetric-capacity cathodes for use in devices, transportation and on the grid. Many of these materials, however, are plagued with voltage fade, voltage hysteresis and O2 loss, the origins of which can be traced back to changes in their electronic and chemical structures on cycling. Developing a detailed understanding of these changes is critical to mitigating these cathodes' poor performance. In this work, we present an analysis of the redox mechanism of P2-Na0.67[Mg0.28Mn0.72]O2, a layered NIB cathode whose high capacity has previously been attributed to trapped O2 molecules. We examine a variety of charge compensation scenarios, calculate their corresponding densities of states and spectroscopic properties, and systematically compare the results to experimental data: 25Mg and 17O nuclear magnetic resonance (NMR) spectroscopy, operando X-band and ex situ high-frequency electron paramagnetic resonance (EPR), ex situ magnetometry, and O and Mn K-edge X-ray Absorption Spectroscopy (XAS) and X-ray Absorption Near Edge Spectroscopy (XANES). Via a process of elimination, we suggest that the mechanism for O redox in this material is dominated by a process that involves the formation of strongly antiferromagnetic, delocalized Mn-O states which form after Mg2+ migration at high voltages. Our results primarily rely on noninvasive techniques that are vital to understanding the electronic structure of metastable cycled cathode samples.
Collapse
Affiliation(s)
- Euan N. Bassey
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Howie Nguyen
- Materials
Department and Materials Research Laboratory, University of California, Santa
Barbara, California 93106-5050, United States
| | - Teresa Insinna
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jeongjae Lee
- School
of Earth and Environmental Sciences, Seoul
National University, Seoul 08826, Korea
| | - Anne-Laure Barra
- Laboratoire
National des Champs Magnétiques Intenses, CNRS, Univ. Grenoble-Alpes, 38042 Grenoble
Cedex 9, France
- Université
Grenoble Alpes, 621 Av.
Centrale, 38400 Saint-Martin-d’Hères, France
| | - Giannantonio Cibin
- Diamond
Light Source, Harwell
Science and Innovation Campus, Didcot OX11 0DE, United
Kingdom
| | - Peter Bencok
- Diamond
Light Source, Harwell
Science and Innovation Campus, Didcot OX11 0DE, United
Kingdom
| | - Raphaële
J. Clément
- Materials
Department and Materials Research Laboratory, University of California, Santa
Barbara, California 93106-5050, United States
| | - Clare P. Grey
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
24
|
Dai Y, Terskikh V, Wu G. A combined solid-state 1H, 13C, 17O NMR and periodic DFT study of hyperfine coupling tensors in paramagnetic copper(II) compounds. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2024; 132:101945. [PMID: 38968703 DOI: 10.1016/j.ssnmr.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
We report solid-state 1H, 13C, and 17O NMR determination of hyperfine coupling tensors (A-tensors) in several paramagnetic Cu(II) (d9, S = 1/2) complexes: trans-Cu(DL-Ala)2·H217O, Cu([1-13C]acetate)2·H2O, Cu([2-13C]acetate)2·H2O, and Cu(acetate)2·H217O. Using these new experimental results and some A-tensor data available in the literature for trans-Cu(L-Ala)2 and K2CuCl4·2H2O, we were able to examine the accuracy of A-tensor computation from a periodic DFT method implemented in the BAND program. We evaluated A-tensors on 1H (I = 1/2), 13C (I = 1/2), 14N (I = 1), 17O (I = 5/2), 39K (I = 3/2), 35Cl (I = 3/2), and 63Cu (I = 3/2) nuclei over a range spanning more than 3 orders of magnitude. We found that the BAND code can reproduce reasonably well the experimental results for both A-tensors and nuclear quadrupole coupling tensors.
Collapse
Affiliation(s)
- Yizhe Dai
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| | - Victor Terskikh
- Metrology, National Research Council Canada, Ottawa, K1A 0R6, Canada
| | - Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
25
|
Ye K, Chin SY, Xi NL, Sharma B, Lu Y, Xue K. Characterizing the Behavior of Water Interacting with a Nano-Pore Material: A Structural Investigation in Native Environment Using Magnetic Resonance Approaches. Chemphyschem 2024; 25:e202400053. [PMID: 38706399 DOI: 10.1002/cphc.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
The study of fluid absorption, particularly that of water, into nanoporous materials has garnered increasing attention in the last decades across a broad range of disciplines. However, most investigation approaches to probe such behaviors are limited by characterization conditions and may lead to misinterpretations. In this study, a combined MRI and MAS NMR method was used to study a nanoporous silica glass to acquire information about its structural framework and interactions with confined water in a native humid environment. Specifically, MRI was used for a quantitative analysis of water extent. While MAS NMR techniques provided structural information of silicate materials, including interactive surface area and framework packing. Analysis of water spin-spin relaxation times (T2) suggested differences in water confinement within the characterized framework. Subsequent unsuccessful delivery of paramagnetic molecule into the pores enabled a quantitative assessment of the dimensions that "bottleneck" the pores. Finally, pore sizes were derived from the paramagnetic molecular size, density function theory (DFT) simulation and characterizations on standard samples. Our result matches with Brunauer-Emmett-Teller (BET) analysis that the pore size is less than 1.3 nm. The use of a paramagnetic probe for pore size determination introduces a new approach of characterization in the liquid phase, offering an alternative to the conventional BET analysis that uses gas molecule as probes.
Collapse
Affiliation(s)
- Kai Ye
- Center of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639789, Singapore
| | - Sze Yuet Chin
- Center of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Nicole Lin Xi
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639789, Singapore
| | - Bhargy Sharma
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639789, Singapore
| | - Yunpeng Lu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639789, Singapore
| | - Kai Xue
- Center of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
26
|
Šorm D, Blahut J, Bashta B, Císařová I, Vrbková E, Vyskočilová E, Sedláček J. Complex isomerism influencing the textural properties of organometallic [Cu(salen)] porous polymers: paramagnetic solid-state NMR characterization and heterogeneous catalysis. Dalton Trans 2024; 53:12162-12175. [PMID: 38963296 DOI: 10.1039/d4dt01305k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Although organometallic porous polymer networks are recognized as promising heterogeneous catalysts, the relationship between ligand/monomer geometry and network parameters is usually not well understood due to the lack of atom-resolved characterization methods for the amorphous network matrix. In this work, a series of copper(II) salen-type metal complexes was synthesized, using trans- and cis-1,2-diaminocyclohexane segments, and thoroughly characterized by single-crystal X-ray diffraction and solution- and solid-state NMR spectroscopy. Terminal ethynyl groups of the complexes were then transformed into polyacetylene chains by coordination chain-growth homopolymerization, resulting in highly porous (458-655 m2 g-1) organometallic polymer networks with a copper(II) ion content of about 12 wt%. The presence of paramagnetic copper(II) moieties in these complexes and respective polymer networks required the application of tailored NMR techniques, which together with X-ray crystallography and DFT calculations of the paramagnetic NMR shifts made it possible to investigate the differences in the complex geometry in liquid, powder and crystalline form and compare it with the complex geometry in polymer networks. All prepared organometallic polymer networks were also tested as heterogeneous catalysts for styrene oxidation with uncommonly high substrate conversions and compared with their low-molecular-weight analogues. The high reusability of such heterogeneous polymer-based catalysts was also proven.
Collapse
Affiliation(s)
- David Šorm
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 43, Czech Republic.
| | - Jan Blahut
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6, 160 00, Czech Republic.
| | - Bogdana Bashta
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 43, Czech Republic.
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 43, Czech Republic
| | - Eva Vrbková
- Department of Organic Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Eliška Vyskočilová
- Department of Organic Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Jan Sedláček
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 43, Czech Republic.
| |
Collapse
|
27
|
Réant BL, Mackintosh FJ, Gransbury GK, Mattei CA, Alnami B, Atkinson BE, Bonham KL, Baldwin J, Wooles AJ, Vitorica-Yrezabal IJ, Lee D, Chilton NF, Liddle ST, Mills DP. Tris-Silanide f-Block Complexes: Insights into Paramagnetic Influence on NMR Chemical Shifts. JACS AU 2024; 4:2695-2711. [PMID: 39055148 PMCID: PMC11267535 DOI: 10.1021/jacsau.4c00466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
The paramagnetism of f-block ions has been exploited in chiral shift reagents and magnetic resonance imaging, but these applications tend to focus on 1H NMR shifts as paramagnetic broadening makes less sensitive nuclei more difficult to study. Here we report a solution and solid-state (ss) 29Si NMR study of an isostructural series of locally D 3h -symmetric early f-block metal(III) tris-hypersilanide complexes, [M{Si(SiMe3)3}3(THF)2] (1-M; M = La, Ce, Pr, Nd, U); 1-M were also characterized by single crystal and powder X-ray diffraction, EPR, ATR-IR, and UV-vis-NIR spectroscopies, SQUID magnetometry, and elemental analysis. Only one SiMe3 signal was observed in the 29Si ssNMR spectra of 1-M, while two SiMe3 signals were seen in solution 29Si NMR spectra of 1-La and 1-Ce. This is attributed to dynamic averaging of the SiMe3 groups in 1-M in the solid state due to free rotation of the M-Si bonds and dissociation of THF from 1-M in solution to give the locally C 3v -symmetric complexes [M{Si(SiMe3)3}3(THF) n ] (n = 0 or 1), which show restricted rotation of M-Si bonds on the NMR time scale. Density functional theory and complete active space self-consistent field spin-orbit calculations were performed on 1-M and desolvated solution species to model paramagnetic NMR shifts. We find excellent agreement of experimental 29Si NMR data for diamagnetic 1-La, suggesting n = 1 in solution and reasonable agreement of calculated paramagnetic shifts of SiMe3 groups for 1-M (M = Pr and Nd); the NMR shifts for metal-bound 29Si nuclei could only be reproduced for diamagnetic 1-La, showing the current limitations of pNMR calculations for larger nuclei.
Collapse
Affiliation(s)
- Benjamin
L. L. Réant
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Fraser J. Mackintosh
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Gemma K. Gransbury
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Carlo Andrea Mattei
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Barak Alnami
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Benjamin E. Atkinson
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Katherine L. Bonham
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
| | - Jack Baldwin
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ashley J. Wooles
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - Daniel Lee
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, U.K.
| | - Nicholas F. Chilton
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Research
School of Chemistry, The Australian National
University, Sullivans
Creek Road, Canberra 2601, Australian Capital Territory, Australia
| | - Stephen T. Liddle
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David P. Mills
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
28
|
Allen JP, Szczuka C, Smith HE, Jónsson E, Eichel RA, Granwehr J, Grey CP. Coordination of dissolved transition metals in pristine battery electrolyte solutions determined by NMR and EPR spectroscopy. Phys Chem Chem Phys 2024; 26:19505-19520. [PMID: 38979604 PMCID: PMC11253248 DOI: 10.1039/d4cp01663g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
The solvation of dissolved transition metal ions in lithium-ion battery electrolytes is not well-characterised experimentally, although it is important for battery degradation mechanisms governed by metal dissolution, deposition, and reactivity in solution. This work identifies the coordinating species in the Mn2+ and Ni2+ solvation spheres in LiPF6/LiTFSI-carbonate electrolyte solutions by examining the electron-nuclear spin interactions, which are probed by pulsed EPR and paramagnetic NMR spectroscopy. These techniques investigate solvation in frozen electrolytes and in the liquid state at ambient temperature, respectively, also probing the bound states and dynamics of the complexes involving the ions. Mn2+ and Ni2+ are shown to primarily coordinate to ethylene carbonate (EC) in the first coordination sphere, while PF6- is found primarily in the second coordination sphere, although a degree of contact ion pairing does appear to occur, particularly in electrolytes with low EC concentrations. NMR results suggest that Mn2+ coordinates more strongly to PF6- than to TFSI-, while the opposite is true for Ni2+. This work provides a framework to experimentally determine the coordination spheres of paramagnetic metals in battery electrolyte solutions.
Collapse
Affiliation(s)
- Jennifer P Allen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, Cambridge, UK.
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, UK
| | - Conrad Szczuka
- Institute of Energy and Climate Research (IEK-9), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Holly E Smith
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, Cambridge, UK.
| | - Erlendur Jónsson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, Cambridge, UK.
| | - Rüdiger-A Eichel
- Institute of Energy and Climate Research (IEK-9), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Physical Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Josef Granwehr
- Institute of Energy and Climate Research (IEK-9), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, Cambridge, UK.
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot OX11 0RA, UK
| |
Collapse
|
29
|
Autillo M, Illy MC, Briscese L, Islam MA, Bolvin H, Berthon C. Paramagnetic Properties of [An IV(NO 3) 6] 2- Complexes (An = U, Np, Pu) Probed by NMR Spectroscopy and Quantum Chemical Calculations. Inorg Chem 2024; 63:12969-12980. [PMID: 38951989 DOI: 10.1021/acs.inorgchem.4c01694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Actinide +IV complexes with six nitrates [AnIV(NO3)6]2- (An = Th, U, Np, and Pu) have been studied by 15N and 17O NMR spectroscopy in solution and first-principles calculations. Magnetic susceptibilities were evaluated experimentally using the Evans method and are in good agreement with the ab initio values. The evolution in the series of the crystal field parameters deduced from ab initio calculations is discussed. The NMR paramagnetic shifts are analyzed based on ab initio calculations. Because the cubic symmetry of the complex quenches the dipolar contribution, they are only of Fermi contact origin. They are evaluated from first-principles based on a complete active space/density functional theory (DFT) strategy, in good accordance with the experimental one. The ligand hyperfine coupling constants are deduced from paramagnetic shifts and calculated using unrestricted DFT. The latter are decomposed in terms of the contribution of molecular orbitals. It highlights two pathways for the delocalization of the spin density from the metallic open-shell 5f orbitals to the NMR active nuclei, either through the valence 5f hybridized with 6d to the valence 2p molecular orbitals of the ligands, or by spin polarization of the metallic 6p orbitals which interact with the 2s-based molecular orbitals of the ligands.
Collapse
Affiliation(s)
- Matthieu Autillo
- CEA, DES, ISEC, DPME, Univ. Montpellier, Bagnols-sur-Cèze 30207, France
| | - Marie-Claire Illy
- CEA, DES, ISEC, DMRC, Univ. Montpellier, Bagnols-sur-Cèze 30207, France
| | - Luca Briscese
- CEA, DES, ISEC, DMRC, Univ. Montpellier, Bagnols-sur-Cèze 30207, France
| | - Md Ashraful Islam
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs─CRMN, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Hélène Bolvin
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université Toulouse III, 118 route de Narbonne, 31062 Toulouse, France
| | - Claude Berthon
- CEA, DES, ISEC, DMRC, Univ. Montpellier, Bagnols-sur-Cèze 30207, France
| |
Collapse
|
30
|
Brown S, Warren MR, Kubicki DJ, Fitzpatrick A, Pike SD. Photoinitiated Single-Crystal to Single-Crystal Redox Transformations of Titanium-Oxo Clusters. J Am Chem Soc 2024; 146:17325-17333. [PMID: 38865257 PMCID: PMC11212046 DOI: 10.1021/jacs.4c04068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Titanium-oxo clusters can undergo photochemical reactions under UV light, resulting in the reduction of the titanium-oxo core and oxidation of surface ligands. This is an important step in photocatalytic processes in light-absorbing Ti/O-based clusters, metal-organic frameworks, and (nano)material surfaces; however, studying the direct outcome of this photochemical process is challenging due to the fragility of the immediate photoproducts. In this report, titanium-oxo clusters [TiO(OiPr)(L)]n (n = 4, L = O2PPh2, or n = 6, L = O2CCH2tBu) undergo a two-electron photoredox reaction in the single-crystal state via an irreversible single-crystal to single-crystal (SC-SC) transformation initiated by a UV laser. The process is monitored by single crystal X-ray diffraction revealing the photoreduction of the cluster with coproduction of an (oxidized) acetone ligand, which is retained in the structure as a ligand to Ti(3+). The results demonstrate that photochemistry of inorganic molecules can be studied in the single crystal phase, allowing characterization of photoproducts which are unstable in the solution phase.
Collapse
Affiliation(s)
- Stephen
E. Brown
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Mark R. Warren
- Diamond
Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, U.K.
| | | | - Ann Fitzpatrick
- RAL
Space, Harwell Science & Innovation Campus, Didcot OX11 0QX, U.K.
| | - Sebastian D. Pike
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
31
|
Novotny J, Komorovsky S, Marek R. Paramagnetic Effects in NMR Spectroscopy of Transition-Metal Complexes: Principles and Chemical Concepts. Acc Chem Res 2024; 57:1467-1477. [PMID: 38687879 PMCID: PMC11112740 DOI: 10.1021/acs.accounts.3c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
ConspectusMagnetic resonance techniques represent a fundamental class of spectroscopic methods used in physics, chemistry, biology, and medicine. Electron paramagnetic resonance (EPR) is an extremely powerful technique for characterizing systems with an open-shell electronic nature, whereas nuclear magnetic resonance (NMR) has traditionally been used to investigate diamagnetic (closed-shell) systems. However, these two techniques are tightly connected by the electron-nucleus hyperfine interaction operating in paramagnetic (open-shell) systems. Hyperfine interaction of the nuclear spin with unpaired electron(s) induces large temperature-dependent shifts of nuclear resonance frequencies that are designated as hyperfine NMR shifts (δHF).Three fundamental physical mechanisms shape the total hyperfine interaction: Fermi-contact, paramagnetic spin-orbit, and spin-dipolar. The corresponding hyperfine NMR contributions can be interpreted in terms of through-bond and through-space effects. In this Account, we provide an elemental theory behind the hyperfine interaction and NMR shifts and describe recent progress in understanding the structural and electronic principles underlying individual hyperfine terms.The Fermi-contact (FC) mechanism reflects the propagation of electron-spin density throughout the molecule and is proportional to the spin density at the nuclear position. As the imbalance in spin density can be thought of as originating at the paramagnetic metal center and being propagated to the observed nucleus via chemical bonds, FC is an excellent indicator of the bond character. The paramagnetic spin-orbit (PSO) mechanism originates in the orbital current density generated by the spin-orbit coupling interaction at the metal center. The PSO mechanism of the ligand NMR shift then reflects the transmission of the spin polarization through bonds, similar to the FC mechanism, but it also makes a substantial through-space contribution in long-range situations. In contrast, the spin-dipolar (SD) mechanism is relatively unimportant at short-range with significant spin polarization on the spectator atom. The PSO and SD mechanisms combine at long-range to form the so-called pseudocontact shift, traditionally used as a structural and dynamics probe in paramagnetic NMR (pNMR). Note that the PSO and SD terms both contribute to the isotropic NMR shift only at the relativistic spin-orbit level of theory.We demonstrate the advantages of calculating and analyzing the NMR shifts at relativistic two- and four-component levels of theory and present analytical tools and approaches based on perturbation theory. We show that paramagnetic NMR effects can be interpreted by spin-delocalization and spin-polarization mechanisms related to chemical bond concepts of electron conjugation in π-space and hyperconjugation in σ-space in the framework of the molecular orbital (MO) theory. Further, we discuss the effects of environment (supramolecular interactions, solvent, and crystal packing) and demonstrate applications of hyperfine shifts in determining the structure of paramagnetic Ru(III) compounds and their supramolecular host-guest complexes with macrocycles.In conclusion, we provide a short overview of possible pNMR applications in the analysis of spectra and electronic structure and perspectives in this field for a general chemical audience.
Collapse
Affiliation(s)
- Jan Novotny
- CEITEC
– Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, CZ-625
00 Brno, Czechia
| | - Stanislav Komorovsky
- Institute
of Inorganic Chemistry, Slovak Academy of
Sciences, Dúbravská cesta 9, SK-84536 Bratislava, Slovakia
| | - Radek Marek
- CEITEC
– Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czechia
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5, CZ-625
00 Brno, Czechia
| |
Collapse
|
32
|
Novotný J, Munzarová M, Marek R. Mechanisms of Ligand Hyperfine Coupling in Transition-Metal Complexes: σ and π Transmission Pathways. Inorg Chem 2024; 63:8580-8592. [PMID: 38690843 PMCID: PMC11094796 DOI: 10.1021/acs.inorgchem.3c04425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/03/2024]
Abstract
Theoretical interpretation of hyperfine interactions was pioneered in the 1950s-1960s by the seminal works of McConnell, Karplus, and others for organic radicals and by Watson and Freeman for transition-metal (TM) complexes. In this work, we investigate a series of octahedral Ru(III) complexes with aromatic ligands to understand the mechanism of transmission of the spin density from the d-orbital of the metal to the s-orbitals of the ligand atoms. Spin densities and spin populations underlying ligand hyperfine couplings are analyzed in terms of π-conjugative or σ-hyperconjugative delocalization vs spin polarization based on symmetry considerations and restricted open-shell vs unrestricted wave function analysis. The transmission of spin density is shown to be most efficient in the case of symmetry-allowed π-conjugative delocalization, but when the π-conjugation is partially or fully symmetry-forbidden, it can be surpassed by σ-hyperconjugative delocalization. Despite a lower spin population of the ligand in σ-hyperconjugative transmission, the hyperfine couplings can be larger because of the direct involvement of the ligand s-orbitals in this delocalization pathway. We demonstrate a quantitative correlation between the hyperfine couplings of aromatic ligand atoms and the characteristics of the metal-ligand bond modulated by the trans substituent, a hyperfine trans effect.
Collapse
Affiliation(s)
- Jan Novotný
- CEITEC
− Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice
5, Brno CZ-62500, Czechia
| | - Markéta Munzarová
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice
5, Brno CZ-62500, Czechia
| | - Radek Marek
- CEITEC
− Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice
5, Brno CZ-62500, Czechia
| |
Collapse
|
33
|
Zhang W, Lucier BEG, Terskikh VV, Chen S, Huang Y. Understanding Cu(i) local environments in MOFs via63/65Cu NMR spectroscopy. Chem Sci 2024; 15:6690-6706. [PMID: 38725502 PMCID: PMC11077522 DOI: 10.1039/d4sc00782d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 05/12/2024] Open
Abstract
The field of metal-organic frameworks (MOFs) includes a vast number of hybrid organic and inorganic porous materials with wide-ranging applications. In particular, the Cu(i) ion exhibits rich coordination chemistry in MOFs and can exist in two-, three-, and four-coordinate environments, which gives rise to many structural motifs and potential applications. Direct characterization of the structurally and chemically important Cu(i) local environments is essential for understanding the sources of specific MOF properties. For the first time, 63/65Cu solid-state NMR has been used to investigate a variety of Cu(i) sites and local coordination geometries in Cu MOFs. This approach is a sensitive probe of the local Cu environment, particularly when combined with density functional theory calculations. A wide range of structurally-dependent 63/65Cu NMR parameters have been observed, including 65Cu quadrupolar coupling constants ranging from 18.8 to 74.8 MHz. Using the data from this and prior studies, a correlation between Cu quadrupolar coupling constants, Cu coordination number, and local Cu coordination geometry has been established. Links between DFT-calculated and experimental Cu NMR parameters are also presented. Several case studies illustrate the feasibility of 63/65Cu NMR for investigating and resolving inequivalent Cu sites, monitoring MOF phase changes, interrogating the Cu oxidation number, and characterizing the product of a MOF chemical reaction involving Cu(ii) reduction to Cu(i). A convenient avenue to acquire accurate 65Cu NMR spectra and NMR parameters from Cu(i) MOFs at a widely accessible magnetic field of 9.4 T is described, with a demonstrated practical application for tracking Cu(i) coordination evolution during MOF anion exchange. This work showcases the power of 63/65Cu solid-state NMR spectroscopy and DFT calculations for molecular-level characterization of Cu(i) centers in MOFs, along with the potential of this protocol for investigating a wide variety of MOF structural changes and processes important for practical applications. This approach has broad applications for examining Cu(i) centers in other weight-dilute systems.
Collapse
Affiliation(s)
- Wanli Zhang
- Department of Chemistry, The University of Western Ontario 1151 Richmond Street London Ontario N6A 5B7 Canada
| | - Bryan E G Lucier
- Department of Chemistry, The University of Western Ontario 1151 Richmond Street London Ontario N6A 5B7 Canada
| | - Victor V Terskikh
- Metrology, National Research Council Canada Ottawa Ontario K1A 0R6 Canada
| | - Shoushun Chen
- College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario 1151 Richmond Street London Ontario N6A 5B7 Canada
| |
Collapse
|
34
|
Islam MA, Pell AJ. Delving into theoretical and computational considerations for accurate calculation of chemical shifts in paramagnetic transition metal systems using quantum chemical methods. Phys Chem Chem Phys 2024; 26:12786-12798. [PMID: 38619872 DOI: 10.1039/d4cp00683f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The chemical shielding tensor for a paramagnetic system has been derived from the macroscopically observed magnetization using the perturbation theory. An approach to calculate the paramagnetic chemical shifts in transition metal systems based on the spin-only magnetic susceptibility directly evaluated from the ab initio Hilbert space of the electronic Zeeman Hamiltonian has been discussed. Computationally, several advantages are associated with this approach: (a) it includes the state-specific paramagnetic Curie (first-order) and Van Vleck (second-order) contributions of the paramagnetic ion to the paramagnetic chemical shifts; (b) thus it avoids the system-specific modeling and evaluating effectively in terms of the electron paramagnetic resonance (EPR) spin Hamiltonian parameters of the magnetic moment of the paramagnetic ion formulated previously; (c) it can be utilized both in the point-dipole (PD) approximation (in the long-range) and with the quantum chemical (QC) method based the hyperfine tensors (in the short-range). Additionally, we have examined the predictive performance of various density functional theory (DFT) functionals of different families and commonly used core-augmented basis sets for nuclear magnetic resonance (NMR) chemical shifts. A selection of transition metal ion complexes with and without first-order orbital contributions, namely the [M(AcPyOx)3(BPh)]+ complexes of M = Mn2+, Ni2+ and Co2+ ions and CoTp2 complex and their reported NMR chemical shifts are studied from QC methods for illustration.
Collapse
Affiliation(s)
- Md Ashraful Islam
- Centre de RMN à Très Hauts Champs de Lyon, UMR-5082, CNRS/UCB Lyon 1/ENS de Lyon, 69100 Villeurbanne, France.
| | - Andrew J Pell
- Centre de RMN à Très Hauts Champs de Lyon, UMR-5082, CNRS/UCB Lyon 1/ENS de Lyon, 69100 Villeurbanne, France.
| |
Collapse
|
35
|
Kubicki DJ, Prochowicz D, Hofstetter A, Ummadisingu A, Emsley L. Speciation of Lanthanide Metal Ion Dopants in Microcrystalline All-Inorganic Halide Perovskite CsPbCl 3. J Am Chem Soc 2024; 146:9554-9563. [PMID: 38548624 PMCID: PMC11009948 DOI: 10.1021/jacs.3c11427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Lanthanides are versatile modulators of optoelectronic properties owing to their narrow optical emission spectra across the visible and near-infrared range. Their use in metal halide perovskites (MHPs) has recently gained prominence, although their fate in these materials has not yet been established at the atomic level. We use cesium-133 solid-state NMR to establish the speciation of all nonradioactive lanthanide ions (La3+, Ce3+, Pr3+, Nd3+, Sm3+, Sm2+, Eu3+, Eu2+, Gd3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+) in microcrystalline CsPbCl3. Our results show that all lanthanides incorporate into the perovskite structure of CsPbCl3 regardless of their oxidation state (+2, +3).
Collapse
Affiliation(s)
| | - Daniel Prochowicz
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Albert Hofstetter
- Laboratory
of Magnetic Resonance, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| | - Amita Ummadisingu
- Manufacturing
Futures Laboratory, Department of Chemical Engineering, University College London, Torrington Place, WC1E 7JE London, United Kingdom
| | - Lyndon Emsley
- Laboratory
of Magnetic Resonance, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
36
|
Ashuiev A, Allouche F, Islam MA, Carvalho JP, Sanders KJ, Conley MP, Klose D, Lapadula G, Wörle M, Baabe D, Walter MD, Pell AJ, Copéret C, Jeschke G, Pintacuda G, Andersen RA. Geometry and electronic structure of Yb(III)[CH(SiMe 3) 2] 3 from EPR and solid-state NMR augmented by computations. Phys Chem Chem Phys 2024; 26:8734-8747. [PMID: 38416412 PMCID: PMC10936694 DOI: 10.1039/d4cp00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Characterization of paramagnetic compounds, in particular regarding the detailed conformation and electronic structure, remains a challenge, and - still today it often relies solely on the use of X-ray crystallography, thus limiting the access to electronic structure information. This is particularly true for lanthanide elements that are often associated with peculiar structural and electronic features in relation to their partially filled f-shell. Here, we develop a methodology based on the combined use of state-of-the-art magnetic resonance spectroscopies (EPR and solid-state NMR) and computational approaches as well as magnetic susceptibility measurements to determine the electronic structure and geometry of a paramagnetic Yb(III) alkyl complex, Yb(III)[CH(SiMe3)2]3, a prototypical example, which contains notable structural features according to X-ray crystallography. Each of these techniques revealed specific information about the geometry and electronic structure of the complex. Taken together, both EPR and NMR, augmented by quantum chemical calculations, provide a detailed and complementary understanding of such paramagnetic compounds. In particular, the EPR and NMR signatures point to the presence of three-centre-two-electron Yb-γ-Me-β-Si secondary metal-ligand interactions in this otherwise tri-coordinate metal complex, similarly to its diamagnetic Lu analogues. The electronic structure of Yb(III) can be described as a single 4f13 configuration, while an unusually large crystal-field splitting results in a thermally isolated ground Kramers doublet. Furthermore, the computational data indicate that the Yb-carbon bond contains some π-character, reminiscent of the so-called α-H agostic interaction.
Collapse
Affiliation(s)
- Anton Ashuiev
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland.
| | - Florian Allouche
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland.
| | - Md Ashraful Islam
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon (UMR 5082 - CNRS, ENS Lyon, Université Claude Bernard Lyon 1), F-69100 Villeurbanne, France.
| | - José P Carvalho
- Department of Materials and Environmental Chemistry, Stockholm University, Svänte Arrhenius väg 16 C, 106 91 Stockholm, Sweden
| | - Kevin J Sanders
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon (UMR 5082 - CNRS, ENS Lyon, Université Claude Bernard Lyon 1), F-69100 Villeurbanne, France.
| | - Matthew P Conley
- Department of Chemistry and Chemical Sciences, University of California Riverside, 501 Big Springs Road, Riverside, CA 92521, USA
| | - Daniel Klose
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland.
| | - Giuseppe Lapadula
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland.
| | - Michael Wörle
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland.
| | - Dirk Baabe
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Andrew J Pell
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon (UMR 5082 - CNRS, ENS Lyon, Université Claude Bernard Lyon 1), F-69100 Villeurbanne, France.
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland.
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland.
| | - Guido Pintacuda
- Université de Lyon, Centre de RMN à Très Hauts Champs de Lyon (UMR 5082 - CNRS, ENS Lyon, Université Claude Bernard Lyon 1), F-69100 Villeurbanne, France.
| | - Richard A Andersen
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
37
|
Bogdanov A, Frydman V, Seal M, Rapatskiy L, Schnegg A, Zhu W, Iron M, Gronenborn AM, Goldfarb D. Extending the Range of Distances Accessible by 19F Electron-Nuclear Double Resonance in Proteins Using High-Spin Gd(III) Labels. J Am Chem Soc 2024; 146:6157-6167. [PMID: 38393979 PMCID: PMC10921402 DOI: 10.1021/jacs.3c13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
Fluorine electron-nuclear double resonance (19F ENDOR) has recently emerged as a valuable tool in structural biology for distance determination between F atoms and a paramagnetic center, either intrinsic or conjugated to a biomolecule via spin labeling. Such measurements allow access to distances too short to be measured by double electron-electron resonance (DEER). To further extend the accessible distance range, we exploit the high-spin properties of Gd(III) and focus on transitions other than the central transition (|-1/2⟩ ↔ |+1/2⟩), that become more populated at high magnetic fields and low temperatures. This increases the spectral resolution up to ca. 7 times, thus raising the long-distance limit of 19F ENDOR almost 2-fold. We first demonstrate this on a model fluorine-containing Gd(III) complex with a well-resolved 19F spectrum in conventional central transition measurements and show quantitative agreement between the experimental spectra and theoretical predictions. We then validate our approach on two proteins labeled with 19F and Gd(III), in which the Gd-F distance is too long to produce a well-resolved 19F ENDOR doublet when measured at the central transition. By focusing on the |-5/2⟩ ↔ |-3/2⟩ and |-7/2⟩ ↔ |-5/2⟩ EPR transitions, a resolution enhancement of 4.5- and 7-fold was obtained, respectively. We also present data analysis strategies to handle contributions of different electron spin manifolds to the ENDOR spectrum. Our new extended 19F ENDOR approach may be applicable to Gd-F distances as large as 20 Å, widening the current ENDOR distance window.
Collapse
Affiliation(s)
- Alexey Bogdanov
- Department
of Chemical and Biological Physics, The
Weizmann Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Veronica Frydman
- Department
of Chemical Research Support, The Weizmann
Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Manas Seal
- Department
of Chemical and Biological Physics, The
Weizmann Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Leonid Rapatskiy
- Max
Planck Institute for Chemical Energy Conversion, 34-36 Stiftstraße, Mülheim an der Ruhr, 45470, Germany
| | - Alexander Schnegg
- Max
Planck Institute for Chemical Energy Conversion, 34-36 Stiftstraße, Mülheim an der Ruhr, 45470, Germany
| | - Wenkai Zhu
- Department
of Structural Biology, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Mark Iron
- Department
of Chemical Research Support, The Weizmann
Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Angela M. Gronenborn
- Department
of Structural Biology, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Daniella Goldfarb
- Department
of Chemical and Biological Physics, The
Weizmann Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| |
Collapse
|
38
|
Bauder L, Wu G. Solid-state 35/37 Cl NMR detection of chlorine atoms directly bound to paramagnetic cobalt(II) ions in powder samples. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:145-155. [PMID: 37950603 DOI: 10.1002/mrc.5407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
We report high-quality solid-state 35/37 Cl NMR spectra for chlorine atoms directly bonded to paramagnetic cobalt(II) ions (high spin S = 3/2) in powered samples of CoCl2 , CoCl2 ·2H2 O, CoCl2 ·6H2 O, and CoCl2 (terpy) (terpy = 2,2':6',2″-terpyridine). Because solid-state 35/37 Cl NMR spectra for paramagnetic cobalt(II) compounds often cover an extremely wide spectral range, they were recorded in this work in the form of variable-offset cumulative spectra. Solid-state 35/37 Cl NMR measurements were performed at three magnetic fields (11.7, 14.1, and 16.5 T) and analysis of data yielded information about 35/37 Cl quadrupole coupling and hyperfine coupling tensors in these paramagnetic cobalt(II) compounds. Experimental 35/37 Cl NMR tensors were found to be in reasonable agreement with quantum chemical calculations based on a periodic DFT method implemented in BAND.
Collapse
Affiliation(s)
- Lukas Bauder
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Gang Wu
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
39
|
Eberle L, Lindenthal S, Ballmann J. To Split or Not to Split: [AsCCAs]-Coordinated Mo, W, and Re Complexes and Their Reactivity toward Molecular Dinitrogen. Inorg Chem 2024; 63:3682-3691. [PMID: 38359784 DOI: 10.1021/acs.inorgchem.3c03244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Molybdenum, tungsten, and rhenium halides bearing a 2,2'-(iPr2As)2-substituted diphenylacetylene ([AsCCAs], 1-As) were prepared and reduced under an atmosphere of dinitrogen in order to activate the latter substrate. In the case of molybdenum, a diiodo (2-As) and a triiodo molybdenum precursor (5) were equally suited for reductive N2 splitting, which led to the isolation of [AsCCAs]Mo≡N(I) (3-As) in each case. For tungsten, [AsCCAs]WCl3 (6) was reduced under N2 to afford {[AsCCAs]WCl2}2(N2) (7), which is best described as a dinuclear π8δ4-configured μ-(η1: η1)-N2-bridged dimer. Attempts to reductively cleave the N2 unit in 7 did not lead to the expected tungsten nitride (8), which had to be prepared independently via the treatment of 7 with sodium azide. To arrive at a π10δ4-configured N2-bridged dimer in a tetragonally distorted ligand environment, [AsCCAs]ReCl3 (9) was reduced in the presence of N2. As expected, a μ-(η1: η1)-N2-bridged dirhenium species, namely, {[AsCCAs]ReCl2}2(N2) (10), was formed, but found to very quickly decompose (presumably via loss of N2), not only under reduced pressure, but also upon irradiation or heating. Hence, an alternative synthetic route to the originally envisioned nitride, [AsCCAs]Re≡N(Cl)2 (11), was developed. While all the aforementioned nitrides (3-As, 8, and 11) were found to be fairly robust, significantly different stabilities were noticed for {[AsCCAs]MCl2}2(N2) (7 for M = W, 10 for M = Re), which is ascribed to the electronically different MN2M cores (π8δ4 for 7 vs π10δ4 for 10) in these μ-(η1: η1)-N2-bridged dimers.
Collapse
Affiliation(s)
- Lukas Eberle
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, Heidelberg D-69120, Germany
| | - Sebastian Lindenthal
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 253, Heidelberg D-69120, Germany
| | - Joachim Ballmann
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 276, Heidelberg D-69120, Germany
| |
Collapse
|
40
|
Zhang Z, Zhao Q, Gong Z, Du R, Liu M, Zhang Y, Zhang L, Li C. Progress, Challenges and Opportunities of NMR and XL-MS for Cellular Structural Biology. JACS AU 2024; 4:369-383. [PMID: 38425916 PMCID: PMC10900494 DOI: 10.1021/jacsau.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 03/02/2024]
Abstract
The validity of protein structures and interactions, whether determined under ideal laboratory conditions or predicted by AI tools such as Alphafold2, to precisely reflect those found in living cells remains to be examined. Moreover, understanding the changes in protein structures and interactions in response to stimuli within living cells, under both normal and disease conditions, is key to grasping proteins' functionality and cellular processes. Nevertheless, achieving high-resolution identification of these protein structures and interactions within living cells presents a technical challenge. In this Perspective, we summarize the recent advancements in in-cell nuclear magnetic resonance (NMR) and in vivo cross-linking mass spectrometry (XL-MS) for studying protein structures and interactions within a cellular context. Additionally, we discuss the challenges, opportunities, and potential benefits of integrating in-cell NMR and in vivo XL-MS in future research to offer an exhaustive approach to studying proteins in their natural habitat.
Collapse
Affiliation(s)
- Zeting Zhang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qun Zhao
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, National
Chromatographic R. & A. Center, State Key Laboratory of Medical
Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Zhou Gong
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ruichen Du
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 10049, China
| | - Maili Liu
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yukui Zhang
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, National
Chromatographic R. & A. Center, State Key Laboratory of Medical
Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Lihua Zhang
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, National
Chromatographic R. & A. Center, State Key Laboratory of Medical
Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Conggang Li
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
41
|
Yan T, Hou H, Wu C, Cai Y, Yin A, Cao Z, Liu Z, He P, Xu J. Unraveling the molecular mechanism for enhanced gas adsorption in mixed-metal MOFs via solid-state NMR spectroscopy. Proc Natl Acad Sci U S A 2024; 121:e2312959121. [PMID: 38300865 PMCID: PMC10861867 DOI: 10.1073/pnas.2312959121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024] Open
Abstract
The incorporation of multiple metal ions in metal-organic frameworks (MOFs) through one-pot synthesis can induce unique properties originating from specific atomic-scale spatial apportionment, but the extraction of this crucial information poses challenges. Herein, nondestructive solid-state NMR spectroscopy was used to discern the atomic-scale metal apportionment in a series of bulk Mg1-xCox-MOF-74 samples via identification and quantification of eight distinct arrangements of Mg/Co ions labeled with a 13C-carboxylate, relative to Co content. Due to the structural characteristics of metal-oxygen chains, the number of metal permutations is infinite for Mg1-xCox-MOF-74, making the resolution of atomic-scale metal apportionment particularly challenging. The results were then employed in density functional theory calculations to unravel the molecular mechanism underlying the macroscopic adsorption properties of several industrially significant gases. It is found that the incorporation of weak adsorption sites (Mg2+ for CO and Co2+ for CO2 adsorption) into the MOF structure counterintuitively boosts the gas adsorption energy on strong sites (Co2+ for CO and Mg2+ for CO2 adsorption). Such effect is significant even for Co2+ remote from Mg2+ in the metal-oxygen chain, resulting in a greater enhancement of CO adsorption across a broad composition range, while the enhancement of CO2 adsorption is restricted to Mg2+ with adjacent Co2+. Dynamic breakthrough measurements unambiguously verified the trend in gas adsorption as a function of metal composition. This research thus illuminates the interplay between atomic-scale structures and macroscopic gas adsorption properties in mixed-metal MOFs and derived materials, paving the way for developing superior functional materials.
Collapse
Affiliation(s)
- Tao Yan
- Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering and National Institute for Advanced Materials, Nankai University, Tianjin300350, People’s Republic of China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi030001, People’s Republic of China
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing101400, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Huaming Hou
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing101400, People’s Republic of China
| | - Changzong Wu
- Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering and National Institute for Advanced Materials, Nankai University, Tianjin300350, People’s Republic of China
| | - Yuhang Cai
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi030001, People’s Republic of China
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing101400, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Anping Yin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi030001, People’s Republic of China
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing101400, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Zhi Cao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi030001, People’s Republic of China
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing101400, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Zhong Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Provincial Key Laboratory of Resources and Chemistry of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai810008, People’s Republic of China
| | - Peng He
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi030001, People’s Republic of China
- National Energy Center for Coal to Clean Fuels, Synfuels China Technology Co., Ltd., Beijing101400, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Jun Xu
- Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering and National Institute for Advanced Materials, Nankai University, Tianjin300350, People’s Republic of China
| |
Collapse
|
42
|
Franzke YJ, Bruder F, Gillhuber S, Holzer C, Weigend F. Paramagnetic Nuclear Magnetic Resonance Shifts for Triplet Systems and Beyond with Modern Relativistic Density Functional Methods. J Phys Chem A 2024; 128:670-686. [PMID: 38195394 DOI: 10.1021/acs.jpca.3c07093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
An efficient framework for the calculation of paramagnetic NMR (pNMR) shifts within exact two-component (X2C) theory and (current-dependent) density functional theory (DFT) up to the class of local hybrid functionals (LHFs) is presented. Generally, pNMR shifts for systems with more than one unpaired electron depend on the orbital shielding contribution and a temperature-dependent term. The latter includes zero-field splitting (ZFS), hyperfine coupling (HFC), and the g-tensor. For consistency, we calculate these three tensors at the same level of theory, i.e., using scalar-relativistic X2C augmented with spin-orbit perturbation theory. Results for pNMR chemical shifts of transition-metal complexes reveal that this X2C-DFT framework can yield good results for both the shifts and the individual tensor contributions of metallocenes and related systems, especially if the HFC constant is large. For small HFC constants, the relative error is often large, and sometimes the sign may be off. 4d and 5d complexes with more complicated structures demonstrate the limitations of a fully DFT-based approach. Additionally, a Co-based complex with a very large ZFS and pronounced multireference character is not well described. Here, a hybrid DFT-multireference framework is necessary for accurate results. Our results show that X2C is sufficient to describe relativistic effects and computationally cheaper than a fully relativistic approach. Thus, it allows use of large basis sets for converged HFCs. Overall, current-dependent meta-generalized gradient approximations and LHFs show some potential; however, the currently available functionals leave a lot to be desired, and the predictive power is limited.
Collapse
Affiliation(s)
- Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Florian Bruder
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Sebastian Gillhuber
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| |
Collapse
|
43
|
Dovrat G, Pevzner S, Maimon E, Bogoslavsky B, Ben-Eliyahu Y, Moisy P, Bettelheim A, Zilbermann I. Macrocyclic Ligand Coordinating Amide-Arm Hydrolysis Reaction Activation in Aqueous Solutions: Tetravalent Uranium Does It Better. Inorg Chem 2024; 63:400-415. [PMID: 38150742 DOI: 10.1021/acs.inorgchem.3c03286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Chelation of lanthanide and actinide cations within a suitable macrocyclic ligand often results in a rigid, kinetically inert, and thermodynamically stable complex. A benchmark for such cation-ligand suitability are cyclen-derived macrocyclic ligands, frequently used as large cation hosts for various applications. Herein, a comprehensive study of the 1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane ligand (DOTAM) chelates of UIV and CeIII and their properties in aqueous solutions is presented. By employing multiple analysis techniques, including X-ray crystallography, UV-vis absorbance, 1H NMR, UPLC-MS, cyclic voltammetry, and differential pulse voltammetry, the study has revealed that the two aqueous complexes undergo a spontaneous, gradual, and stepwise hydrolysis of each of the coordinated amides toward carboxylates. The coordination of UIV in the studied reaction has been shown to significantly enhance the reaction rate, leading to an acceleration of up to 6 orders of magnitude compared to the natural process of simple aqueous amides at room temperature. An attempt to describe the unusual chelated metal cation amide-activation feature, based on the relatively lower rigidity of the complex structure, is presented. Additionally, the electrochemical properties of the complex series are discussed in detail, along with the limitations of the analytical methods employed.
Collapse
Affiliation(s)
- Gev Dovrat
- Energy Engineering Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Svetlana Pevzner
- Chemistry Department, Nuclear Research Centre Negev, Beer Sheva 84190, Israel
| | - Eric Maimon
- Chemistry Department, Nuclear Research Centre Negev, Beer Sheva 84190, Israel
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Benny Bogoslavsky
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | | | - Philippe Moisy
- CEA, DES, ISEC, DMRC, Univ, Marcoule, Bagnols-sur-cèze 30200, France
| | - Armand Bettelheim
- Chemical Engineering Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Israel Zilbermann
- Chemistry Department, Nuclear Research Centre Negev, Beer Sheva 84190, Israel
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
44
|
Bassey EN, Seymour ID, Bocarsly JD, Keen DA, Pintacuda G, Grey CP. Superstructure and Correlated Na + Hopping in a Layered Mg-Substituted Sodium Manganate Battery Cathode are Driven by Local Electroneutrality. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:10564-10583. [PMID: 38162043 PMCID: PMC10753809 DOI: 10.1021/acs.chemmater.3c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
In this work, we present a variable-temperature 23Na NMR and variable-temperature and variable-frequency electron paramagnetic resonance (EPR) analysis of the local structure of a layered P2 Na-ion battery cathode material, Na0.67[Mg0.28Mn0.72]O2 (NMMO). For the first time, we elucidate the superstructure in this material by using synchrotron X-ray diffraction and total neutron scattering and show that this superstructure is consistent with NMR and EPR spectra. To complement our experimental data, we carry out ab initio calculations of the quadrupolar and hyperfine 23Na NMR shifts, the Na+ ion hopping energy barriers, and the EPR g-tensors. We also describe an in-house simulation script for modeling the effects of ionic mobility on variable-temperature NMR spectra and use our simulations to interpret the experimental spectra, available upon request. We find long-zigzag-type Na ordering with two different types of Na sites, one with high mobility and the other with low mobility, and reconcile the tendency toward Na+/vacancy ordering to the preservation of local electroneutrality. The combined magnetic resonance methodology for studying local paramagnetic environments from the perspective of electron and nuclear spins will be useful for examining the local structures of materials for devices.
Collapse
Affiliation(s)
- Euan N. Bassey
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Ieuan D. Seymour
- Department
of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Joshua D. Bocarsly
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - David A. Keen
- ISIS
Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford Campus, Didcot OX11 0QX, U.K.
| | - Guido Pintacuda
- Centre
de RMN à Très Hauts Champs, UMR 5082 (CNRS/Université
Claude Bernard Lyon 1/Ecole Normale Supérieure de Lyon), University of Lyon, 69100 Villeurbanne, France
| | - Clare P. Grey
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
45
|
Koppe J, Frerichs JE, Hansen MR. Pushing the Detection Limit of Static Wideline NMR Spectroscopy Using Ultrafast Frequency-Swept Pulses. J Phys Chem Lett 2023; 14:10748-10753. [PMID: 38010530 DOI: 10.1021/acs.jpclett.3c02758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
We report a simple design strategy for wideband uniform-rate smooth truncation (WURST) pulses that enables ultrafast frequency sweeps to maximize the sensitivity of Carr-Purcell-Meiboom-Gill (CPMG) acquisition in static wideline nuclear magnetic resonance (NMR). Three compelling examples showcase the advantage of ultrafast frequency sweeps over currently employed WURST-CPMG protocols, demonstrating the potential of investigating materials that are typically inaccessible to static wideline NMR techniques, e.g., paramagnetic solids with short homogeneous transverse relaxation times.
Collapse
Affiliation(s)
- Jonas Koppe
- Institute for Physical Chemistry, University of Münster, Corrensstrasse 28/30, DE-48149 Münster, Germany
- Centre de RMN Très Hauts Champs de Lyon (UMR5082 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Joop Enno Frerichs
- Institute for Physical Chemistry, University of Münster, Corrensstrasse 28/30, DE-48149 Münster, Germany
| | - Michael Ryan Hansen
- Institute for Physical Chemistry, University of Münster, Corrensstrasse 28/30, DE-48149 Münster, Germany
- Center for Multiscale Theory and Computation (CMTC), University of Münster, Corrensstrasse 40, DE-48149 Münster, Germany
| |
Collapse
|
46
|
Querci L, Grifagni D, Trindade IB, Silva JM, Louro RO, Cantini F, Piccioli M. Paramagnetic NMR to study iron sulfur proteins: 13C detected experiments illuminate the vicinity of the metal center. JOURNAL OF BIOMOLECULAR NMR 2023; 77:247-259. [PMID: 37853207 PMCID: PMC10687126 DOI: 10.1007/s10858-023-00425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
The robustness of NMR coherence transfer in proximity of a paramagnetic center depends on the relaxation properties of the nuclei involved. In the case of Iron-Sulfur Proteins, different pulse schemes or different parameter sets often provide complementary results. Tailored versions of HCACO and CACO experiments significantly increase the number of observed Cα/C' connectivities in highly paramagnetic systems, by recovering many resonances that were lost due to paramagnetic relaxation. Optimized 13C direct detected experiments can significantly extend the available assignments, improving the overall knowledge of these systems. The different relaxation properties of Cα and C' nuclei are exploited in CACO vs COCA experiments and the complementarity of the two experiments is used to obtain structural information. The two [Fe2S2]+ clusters containing NEET protein CISD3 and the one [Fe4S4]2+ cluster containing HiPIP protein PioC have been taken as model systems. We show that tailored experiments contribute to decrease the blind sphere around the cluster, to extend resonance assignment of cluster bound cysteine residues and to retrieve details on the topology of the iron-bound ligand residues.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Deborah Grifagni
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Inês B Trindade
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157, Oeiras, Portugal
- Division of Biology and Biological Engineering, California Institute of Technology, CA 91125, Pasadena, USA
| | - José Malanho Silva
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157, Oeiras, Portugal
| | - Francesca Cantini
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Mario Piccioli
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
47
|
Silva IDA, Bartalucci E, Bolm C, Wiegand T. Opportunities and Challenges in Applying Solid-State NMR Spectroscopy in Organic Mechanochemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304092. [PMID: 37407000 DOI: 10.1002/adma.202304092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
In recent years it is shown that mechanochemical strategies can be beneficial in directed conversions of organic compounds. Finding new reactions proved difficult, and due to the lack of mechanistic understanding of mechanochemical reaction events, respective efforts have mostly remained empirical. Spectroscopic techniques are crucial in shedding light on these questions. In this overview, the opportunities and challenges of solid-state nuclear magnetic resonance (NMR) spectroscopy in the field of organic mechanochemistry are discussed. After a brief discussion of the basics of high-resolution solid-state NMR under magic-angle spinning (MAS) conditions, seven opportunities for solid-state NMR in the field of organic mechanochemistry are presented, ranging from ex situ approaches to structurally elucidated reaction products obtained by milling to the potential and limitations of in situ solid-state NMR approaches. Particular strengths of solid-state NMR, for instance in differentiating polymorphs, in NMR-crystallographic structure-determination protocols, or in detecting weak noncovalent interactions in molecular-recognition events employing proton-detected solid-state NMR experiments at fast MAS frequencies, are discussed.
Collapse
Affiliation(s)
| | - Ettore Bartalucci
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Wiegand
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470, Mülheim/Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|
48
|
Fusco E, Ashbrook SE, Bühl M. 13C pNMR shifts of MOFs based on Cu(II)-paddlewheel dimers - DFT predictions for spin-1/2 defects. Phys Chem Chem Phys 2023; 25:31898-31906. [PMID: 37971425 DOI: 10.1039/d3cp04618d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
We present DFT predictions (CAM-B3LYP/II level) for the paramagnetic Nuclear Magnetic Resonance (pNMR) spectra of small molecular models based on the Cu(II)-paddlewheel dimer motif that is present in metal-organic frameworks (MOFs, notably the HKUST and STAM families). We explore potential point defects with spin-1/2 discovered through electron paramagnetic resonance (EPR) experiments. We consider defects through substitution of one Cu(II) centre in the dimer with protons, or through one-electron reduction, affording a mixed-valence dimer. While most of the defects have predicted pNMR shifts at room temperature in the range of those for the non-defective MOFs, their detection and assignment should be possible based on their distinct temperature dependence.
Collapse
Affiliation(s)
- Edoardo Fusco
- EaStCHEM School of Chemistry and Centre of Magnetic Resonance, University of St Andrews, Fife KY16 9ST, UK.
| | - Sharon E Ashbrook
- EaStCHEM School of Chemistry and Centre of Magnetic Resonance, University of St Andrews, Fife KY16 9ST, UK.
| | - Michael Bühl
- EaStCHEM School of Chemistry and Centre of Magnetic Resonance, University of St Andrews, Fife KY16 9ST, UK.
| |
Collapse
|
49
|
Paul S, Bouleau E, Reynard-Feytis Q, Arnaud JP, Bancel F, Rollet B, Dalban-Moreynas P, Reiter C, Purea A, Engelke F, Hediger S, De Paëpe G. Sustainable and cost-effective MAS DNP-NMR at 30 K with cryogenic sample exchange. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 356:107561. [PMID: 37837749 DOI: 10.1016/j.jmr.2023.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/16/2023]
Abstract
We report here instrumental developments to achieve sustainable, cost-effective cryogenic Helium sample spinning in order to conduct dynamic nuclear polarisation (DNP) and solid-state NMR (ssNMR) at ultra-low temperatures (<30 K). More specifically, we describe an efficient closed-loop helium system composed of a powerful heat exchanger (95% efficient), a single cryocooler, and a single helium compressor to power the sample spinning and cooling. The system is integrated with a newly designed triple-channel NMR probe that minimizes thermal losses without compromising the radio frequency (RF) performance and spinning stability (±0.05%). The probe is equipped with an innovative cryogenic sample exchange system that allows swapping samples in minutes without introducing impurities in the closeloop system. We report that significant gain in sensitivity can be obtained at 30-40 K on large micro-crystalline molecules with unfavorable relaxation timescales, making them difficult or impossible to polarize at 100 K. We also report rotor-synchronized 2D experiments to demonstrate the stability of the system.
Collapse
Affiliation(s)
- Subhradip Paul
- Univ. Grenoble. Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France
| | - Eric Bouleau
- Univ. Grenoble Alpes, CEA, IRIG, DSBT, 38000 Grenoble, France
| | | | | | - Florian Bancel
- Univ. Grenoble Alpes, CEA, IRIG, DSBT, 38000 Grenoble, France
| | - Bertrand Rollet
- Univ. Grenoble Alpes, CEA, IRIG, DSBT, 38000 Grenoble, France
| | | | | | | | | | - Sabine Hediger
- Univ. Grenoble. Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble. Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| |
Collapse
|
50
|
Sodreau A, Zahedi HG, Dervişoğlu R, Kang L, Menten J, Zenner J, Terefenko N, DeBeer S, Wiegand T, Bordet A, Leitner W. A Simple and Versatile Approach for the Low-Temperature Synthesis of Transition Metal Phosphide Nanoparticles from Metal Chloride Complexes and P(SiMe 3 ) 3. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306621. [PMID: 37768320 DOI: 10.1002/adma.202306621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Indexed: 09/29/2023]
Abstract
Metal chloride complexes react with tris(trimethylsilyl)phosphine under mild condition to produce metal phosphide (TMP) nanoparticles (NPs), and chlorotrimethylsilane as a byproduct. The formation of Si-Cl bonds that are stronger than the starting M-Cl bonds acts as a driving force for the reaction. The potential of this strategy is illustrated through the preparation of ruthenium phosphide NPs using [RuCl2 (cymene)] and tris(trimethylsilyl)phosphine at 35 °C. Characterization with a combination of techniques including electron microscopy (EM), X-ray absorption spectroscopy (XAS), and solid-state nuclear magnetic resonance (NMR) spectroscopy, evidences the formation of small (diameter of 1.3 nm) and amorphous NPs with an overall Ru50 P50 composition. Interestingly, these NPs can be easily immobilized on functional support materials, which is of great interest for potential applications in catalysis and electrocatalysis. Mo50 P50 and Co50 P50 NPs can also be synthesized following the same strategy. This approach is simple and versatile and paves the way toward the preparation of a wide range of transition metal phosphide nanoparticles under mild reaction conditions.
Collapse
Affiliation(s)
- Alexandre Sodreau
- Department of Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Hooman Ghazi Zahedi
- Department of Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Rıza Dervişoğlu
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Liqun Kang
- Department of Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Julia Menten
- Department of Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Johannes Zenner
- Department of Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Nicole Terefenko
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Serena DeBeer
- Department of Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Thomas Wiegand
- Department of Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Alexis Bordet
- Department of Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Department of Molecular Catalysis, Max Planck Institute for Chemical Energy Conversion, 45470, Mülheim an der Ruhr, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| |
Collapse
|