1
|
Chu T, Liu G, Liu J, Wu Y, Fang W. Uric Acid: A Biomarker and Pathogenic Factor of Affective Disorders and Neurodegenerative Diseases. Curr Pharm Des 2025; 31:585-597. [PMID: 39415583 DOI: 10.2174/0113816128333916241003180018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024]
Abstract
Uric acid (UA), the end-product of purine metabolism, has a complicated physiological role in the body, showing the combination of regulating inflammatory response, promoting oxidation/anti-oxidation, and modifying autophagy activity in vivo. Meanwhile, various research and theories support that inflammation, oxidative stress, and other risk factors promote the onset and progression of affective disorders and neurodegenerative diseases. Existing studies suggest that UA may be involved in the pathophysiological processes of affective disorders in various ways, and there has been a gradual advance in the understanding of the interplay between UA levels and affective disorders and neurodegenerative diseases. This review summarized the role of UA in the process of inflammation, oxidative stress, and autophagy. On this basis, we discussed the correlation between UA and affective disorders and several neurodegenerative diseases, and simultaneously analyzed the possible mechanism of its influence on affective disorders and neurodegenerative diseases, to provide a theoretical basis for UA as a biomarker or therapeutic target for the diagnosis of these diseases.
Collapse
Affiliation(s)
- Teng Chu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Ge Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Jing Liu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yue Wu
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, P.R. China
| |
Collapse
|
2
|
Taniguchi K, Kaneko N, Wada M, Moriyama S, Nakajima S, Mimura M, Noda Y. Neurophysiological profiles of patients with bipolar disorders as probed with transcranial magnetic stimulation: A systematic review. Neuropsychopharmacol Rep 2024; 44:572-584. [PMID: 38932486 PMCID: PMC11544454 DOI: 10.1002/npr2.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
AIM Bipolar disorder (BD) has a significant impact on global health, yet its neurophysiological basis remains poorly understood. Conventional treatments have limitations, highlighting the need for a better understanding of the neurophysiology of BD for early diagnosis and novel therapeutic strategies. DESIGN Employing a systematic review approach of the PRISMA guidelines, this study assessed the usefulness and validity of transcranial magnetic stimulation (TMS) neurophysiology in patients with BD. METHODS Databases searched included PubMed, MEDLINE, Embase, and PsycINFO, covering studies from January 1985 to January 2024. RESULTS Out of 6597 articles screened, nine studies met the inclusion criteria, providing neurophysiological insights into the pathophysiological basis of BD using TMS-electromyography and TMS-electroencephalography methods. Findings revealed significant neurophysiological impairments in patients with BD compared to healthy controls, specifically in cortical inhibition and excitability. In particular, short-interval cortical inhibition (SICI) was consistently diminished in BD across the studies, which suggests a fundamental impairment of cortical inhibitory function in BD. This systematic review corroborates the potential utility of TMS neurophysiology in elucidating the pathophysiological basis of BD. Specifically, the reduced cortical inhibition in the SICI paradigm observed in patients with BD suggests gamma-aminobutyric acid (GABA)-A receptor-mediated dysfunction, but results from other TMS paradigms have been inconsistent. Thus, complex neurophysiological processes may be involved in the pathological basis underlying BD. This study demonstrated that BD has a neural basis involving impaired GABAergic function, and it is highly expected that further research on TMS neurophysiology will further elucidate the pathophysiological basis of BD.
Collapse
Affiliation(s)
- Keita Taniguchi
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Naotsugu Kaneko
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Masataka Wada
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Sotaro Moriyama
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | | | - Masaru Mimura
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| | - Yoshihiro Noda
- Department of NeuropsychiatryKeio University School of MedicineTokyoJapan
| |
Collapse
|
3
|
Carletti B, Banaj N, Piras F, Bossù P. Schizophrenia and Glutathione: A Challenging Story. J Pers Med 2023; 13:1526. [PMID: 38003841 PMCID: PMC10672475 DOI: 10.3390/jpm13111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Schizophrenia (SZ) is a devastating mental illness with a complex and heterogeneous clinical state. Several conditions like symptoms, stage and severity of the disease are only some of the variables that have to be considered to define the disorder and its phenotypes. SZ pathophysiology is still unclear, and the diagnosis is currently relegated to the analysis of clinical symptoms; therefore, the search for biomarkers with diagnostic relevance is a major challenge in the field, especially in the era of personalized medicine. Though the mechanisms implicated in SZ are not fully understood, some processes are beginning to be elucidated. Oxidative stress, and in particular glutathione (GSH) dysregulation, has been demonstrated to play a crucial role in SZ pathophysiology. In fact, glutathione is a leading actor of oxidative-stress-mediated damage in SZ and appears to reflect the heterogeneity of the disease. The literature reports differing results regarding the levels of glutathione in SZ patients. However, each GSH state may be a sign of specific symptoms or groups of symptoms, candidating glutathione as a biomarker useful for discriminating SZ phenotypes. Here, we summarize the literature about the levels of glutathione in SZ and analyze the role of this molecule and its potential use as a biomarker.
Collapse
Affiliation(s)
- Barbara Carletti
- Laboratory of Neuropsychiatry, Clinical Neuroscience and Neurorehabilitation Department, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy; (N.B.); (F.P.)
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Clinical Neuroscience and Neurorehabilitation Department, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy; (N.B.); (F.P.)
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Clinical Neuroscience and Neurorehabilitation Department, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy; (N.B.); (F.P.)
| | - Paola Bossù
- Laboratory of Experimental Neuropsychobiology, Clinical Neuroscience and Neurorehabilitation Department, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| |
Collapse
|
4
|
Kaur P, Khan H, Grewal AK, Dua K, Singh TG. Therapeutic potential of NOX inhibitors in neuropsychiatric disorders. Psychopharmacology (Berl) 2023; 240:1825-1840. [PMID: 37507462 DOI: 10.1007/s00213-023-06424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
RATIONALE Neuropsychiatric disorders encompass a broad category of medical conditions that include both neurology as well as psychiatry such as major depressive disorder, autism spectrum disorder, bipolar disorder, schizophrenia as well as psychosis. OBJECTIVE NADPH-oxidase (NOX), which is the free radical generator, plays a substantial part in oxidative stress in neuropsychiatric disorders. It is thought that elevated oxidative stress as well as neuroinflammation plays a part in the emergence of neuropsychiatric disorders. Including two linked with membranes and four with subunits of cytosol, NOX is a complex of multiple subunits. NOX has been linked to a significant source of reactive oxygen species in the brain. NOX has been shown to control memory processing and neural signaling. However, excessive NOX production has been linked to cardiovascular disorders, CNS degeneration, and neurotoxicity. The increase in NOX leads to the progression of neuropsychiatric disorders. RESULT Our review mainly emphasized the characteristics of NOX and its various mechanisms, the modulation of NOX in various neuropsychiatric disorders, and various studies supporting the fact that NOX might be the potential therapeutic target for neuropsychiatric disorders. CONCLUSION Here, we summarizes various pharmacological studies involving NOX inhibitors in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Parneet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | | |
Collapse
|
5
|
Winiarska-Mieczan A, Kwiecień M, Jachimowicz-Rogowska K, Donaldson J, Tomaszewska E, Baranowska-Wójcik E. Anti-Inflammatory, Antioxidant, and Neuroprotective Effects of Polyphenols-Polyphenols as an Element of Diet Therapy in Depressive Disorders. Int J Mol Sci 2023; 24:ijms24032258. [PMID: 36768580 PMCID: PMC9916817 DOI: 10.3390/ijms24032258] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Depressive disorders can affect up to 350 million people worldwide, and in developed countries, the percentage of patients with depressive disorders may be as high as 10%. During depression, activation of pro-inflammatory pathways, mitochondrial dysfunction, increased markers of oxidative stress, and a reduction in the antioxidant effectiveness of the body are observed. It is estimated that approximately 30% of depressed patients do not respond to traditional pharmacological treatments. However, more and more attention is being paid to the influence of active ingredients in food on the course and risk of neurological disorders, including depression. The possibility of using foods containing polyphenols as an element of diet therapy in depression was analyzed in the review. The possibility of whether the consumption of products such as polyphenols could alleviate the course of depression or prevent the progression of it was also considered. Results from preclinical studies demonstrate the potential of phenolic compounds have the potential to reduce depressive behaviors by regulating factors related to oxidative stress, neuroinflammation, and modulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland
- Correspondence: ; Tel.: +48-81-445-67-44
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland
| | - Karolina Jachimowicz-Rogowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland
| |
Collapse
|
6
|
Theobroma cacao fortified-feed ameliorates potassium bromate-induced oxidative damage in male Wistar rat. Toxicol Rep 2023; 10:269-280. [PMID: 36876028 PMCID: PMC9976575 DOI: 10.1016/j.toxrep.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/31/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Some therapeutic and beneficial health properties of the Theobroma cacao leaf have been documented. This study evaluated the ameliorative effect of Theobroma cacao-fortified feed against potassium bromate-induced oxidative damage in male Wistar rats. Thirty rats were randomly grouped into A-E. Except for E (the negative control), the rats in the other groups were administered 0.5 ml of 10 mg/kg body weight of potassium bromate daily using oral gavage and then allowed access to feed and water ad libitum. Groups B, C, and D were fed with 10 %, 20 %, and 30 % leaf-fortified feed respectively, while the negative and positive control (A) was fed with commercial feed. The treatment was carried out consecutively for fourteen days. In the liver and kidney, there was a significant increase (p < 0.05) in total protein concentration, a significant decrease (P < 0.05) in MDA level, and SOD activity in the fortified feed group compared to the positive control. Furthermore, in the serum, there was a significant increase (p < 0.05) in the albumin concentration, and ALT activity, and a significant decrease (p < 0.05) in urea concentration in the fortified feed groups compared to the positive control. The histopathology of the liver and kidney in the treated groups showed moderate cell degeneration compared to the positive control group. Antioxidant activity due to the presence of flavonoids and metal chelating activity of fiber in Theobroma cacao leaf could be responsible for the ameliorative effect of the fortified feed against potassium bromate-induced oxidative damage.
Collapse
|
7
|
The neuroprotective and neuroplastic potential of glutamatergic therapeutic drugs in bipolar disorder. Neurosci Biobehav Rev 2022; 142:104906. [DOI: 10.1016/j.neubiorev.2022.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
|
8
|
Lorkiewicz P, Waszkiewicz N. Is SARS-CoV-2 a Risk Factor of Bipolar Disorder?-A Narrative Review. J Clin Med 2022; 11:6060. [PMID: 36294388 PMCID: PMC9604904 DOI: 10.3390/jcm11206060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
For 2.5 years we have been facing the coronavirus disease (COVID-19) and its health, social and economic effects. One of its known consequences is the development of neuropsychiatric diseases such as anxiety and depression. However, reports of manic episodes related to COVID-19 have emerged. Mania is an integral part of the debilitating illness-bipolar disorder (BD). Due to its devastating effects, it is therefore important to establish whether SARS-CoV-2 infection is a causative agent of this severe mental disorder. In this narrative review, we discuss the similarities between the disorders caused by SARS-CoV-2 and those found in patients with BD, and we also try to answer the question of whether SARS-CoV-2 infection may be a risk factor for the development of this affective disorder. Our observation shows that disorders in COVID-19 showing the greatest similarity to those in BD are cytokine disorders, tryptophan metabolism, sleep disorders and structural changes in the central nervous system (CNS). These changes, especially intensified in severe infections, may be a trigger for the development of BD in particularly vulnerable people, e.g., with family history, or cause an acute episode in patients with a pre-existing BD.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Wołodyjowskiego 2, 15-272 Białystok, Poland
| | | |
Collapse
|
9
|
Guidara W, Messedi M, Naifar M, Charfi N, Grayaa S, Maalej M, Maalej M, Ayadi F. Predictive value of oxidative stress biomarkers in drug-free patients with bipolar disorder. Nord J Psychiatry 2022; 76:539-550. [PMID: 34965843 DOI: 10.1080/08039488.2021.2016954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Oxidative stress is one of the primary etiological mechanisms of bipolar disorder (BD). METHODS The present study was conducted over a period of 24 months on Tunisian on 34 drug‑free male patients with BD (mean age: 34.5 years) and 101 age and gender matched controls (mean age: 34.20 years) were enrolled in the study. RESULTS Plasma reduced glutathione (GSH) and total thiols levels were significantly decreased in patients compared to controls (respectively p < .001; p = .009). In addition, malondialdehyde (MDA), advanced oxidation protein products (AOPP), protein carbonyls (PC) and homocysteine (Hcys) concentrations and glutathione peroxidase (GSH-Px) activity were significantly increased in patients compared to controls (p = .002; p < .001; p = .001; p < .001 and p = .016, respectively). The binary logistic regression analysis revealed that MDA, AOPP and Hcys could be considered as independent risk factors for BD. When using CombiROC analysis, a remarkable increase in the area under the curve (AUC) with higher sensitivity (Se) and specificity (Sp) for MDA, AOPP, PC, GSH-Px and Hcys combined markers was observed. CONCLUSIONS Overall, the identification of the predictive value of these five selected biomarkers related to oxidative stress in drug free patients should lead to a better identification of the etiological mechanism of BD.
Collapse
Affiliation(s)
- Wassim Guidara
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Meriam Messedi
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Manel Naifar
- Laboratory of Biochemistry, University of Sfax & Habib Bourguiba Hospital, Sfax, Tunisia
| | - Nada Charfi
- Psychiatry C- department, Hedi Chaker University Hospital, University of Sfax, Tunisia
| | - Sahar Grayaa
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Mohamed Maalej
- Psychiatry C- department, Hedi Chaker University Hospital, University of Sfax, Tunisia
| | - Manel Maalej
- Psychiatry C- department, Hedi Chaker University Hospital, University of Sfax, Tunisia
| | - Fatma Ayadi
- Laboratory of Research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia.,Laboratory of Biochemistry, University of Sfax & Habib Bourguiba Hospital, Sfax, Tunisia
| |
Collapse
|
10
|
Immunoglobulins G of Patients with Schizophrenia Protects from Superoxide: Pilot Results. J Pers Med 2022; 12:jpm12091449. [PMID: 36143234 PMCID: PMC9503855 DOI: 10.3390/jpm12091449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
This study aimed to evaluate the superoxide dismutase (SOD) activity of IgG in patients with schizophrenia. After signing informed consent, we included 67 patients with schizophrenia (34 people with acute schizophrenia and 33 individuals were on outpatient treatment in therapeutic remission) and 14 healthy volunteers. IgGs from blood serum were isolated by affinity chromatography. SOD activity of antibodies was determined spectrophotometrically. We have shown for the first time that IgGs from patients with schizophrenia have SOD activity and this activity is an intrinsic property of antibodies. The maximum increase in SOD activity was registered in the group of patients in therapeutic remission compared with acute schizophrenia (p = 0.005) and in healthy individuals (p = 0.001). Based on the data of inhibitory analysis using a specific SOD inhibitor enzyme, triethylenetetramine (TETA), we can assume that the mechanism of the SOD activity of IgG is similar to the mechanism of classical enzyme catalysis. According to the kinetic analysis, the affinity of the IgGs to the substrate is higher than that of the classical SOD enzyme.
Collapse
|
11
|
Kilicarslan T, Sahan E, Kirik F, Guler EM, Kurtulmus A, Yildiz FBP, Ozdemir MH, Kocyigit A, Kirpinar I. The relation of optical coherence tomography findings with oxidative stress parameters in patients with bipolar disorder and unaffected first-degree relatives. J Affect Disord 2022; 296:283-290. [PMID: 34628249 DOI: 10.1016/j.jad.2021.09.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/12/2021] [Accepted: 09/21/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND We aimed to evaluate the optical coherence tomography(OCT) findings and oxidative stress parameters in patients with bipolar disorder(BD) and their unaffected first-degree relatives(FDRs) and to explore OCT findings and oxidative stress parameters as potential endophenotype candidates. METHODS Fifty patients with BD, 40 FDRs of BD, and 50 healthy controls(HCs) were included. OCT was performed to measure peripapillary retinal nerve fiber layer(RNFL), ganglion cell layer(GCL), inner plexiform layer(IPL), central macular, and minimum foveal thicknesses(CMT and MFT), choroidal thickness(ChT). 4-hydroxy-2-nonenal(HNE), total thiol(TT), native thiol(NT), total oxidant status(TOS), total antioxidant status(TAS), disulfide(DIS) and oxidative stress index(OSI) were measured from serum samples. RESULTS TOS was higher patients with BD and FDRs than HCs (p < .001 and p = .012, respectively). OSI, DIS, HNE levels were higher patients with BD and FDRs than HCs (p < .001). TAS, TT, NT levels were lower patients and FDRs than HCs (p < .001). MFT of patients was thinner than HCs (p = .001). CMT of patients was thinner than HCs (p = .006); the same trend was observed in FDRs but did not reach the statistical significance level (p = .07). The groups did not differ on RNFL and choroidal thickness or GCL and IPL volume. LIMITATIONS Evaluation of only a few retinal layers. CONCLUSIONS TOS, TAS, OSI, TT, NT, DIS, HNE can be useful endophenotype biomarkers in BD. Among the OCT findings, CMT was determined as the closest parameter to being an endophenotype biomarker. Our study corroborates that oxidative stress parameters are more effective than OCT findings in endophenotype studies.
Collapse
Affiliation(s)
- Tezer Kilicarslan
- Department of Psychiatry, Igdir State Hospital, Igdir, Turkey; Faculty of Medicine, Department of Psychiatry, Bezmialem Vakif University, Istanbul, Turkey.
| | - Ebru Sahan
- Faculty of Medicine, Department of Psychiatry, Marmara University, Istanbul, Turkey
| | - Furkan Kirik
- Faculty of Medicine, Department of Ophthalmology, Bezmialem Vakif University, Istanbul, Turkey
| | - Eray Metin Guler
- Hamidiye Faculty of Medicine, Haydarpaşa Numune Health Application and Research Center, Department of Medical Biochemistry, University of Health Sciences Turkey, Istanbul, Turkey
| | - Ayse Kurtulmus
- Goztepe Training and Research Hospital, Istanbul Medeniyet University, Istanbul, Turkey
| | | | - Mehmet Hakan Ozdemir
- Faculty of Medicine, Department of Ophthalmology, Bezmialem Vakif University, Istanbul, Turkey
| | - Abdurrahim Kocyigit
- Faculty of Medicine, Department of Medical Biochemistry, Bezmialem Vakif University, Istanbul, Turkey
| | - Ismet Kirpinar
- Faculty of Medicine, Department of Psychiatry, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
12
|
Cecerska-Heryć E, Polikowska A, Serwin N, Roszak M, Grygorcewicz B, Heryć R, Michalczyk A, Dołęgowska B. Importance of oxidative stress in the pathogenesis, diagnosis, and monitoring of patients with neuropsychiatric disorders, a review. Neurochem Int 2021; 153:105269. [PMID: 34971747 DOI: 10.1016/j.neuint.2021.105269] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022]
Abstract
Oxidative stress is defined as the persistent imbalance between the activity of toxic reactive forms of both oxygen and nitrogen and the antioxidant defense. In low concentrations, they are essential for the proper functioning of the body. Still, their excessive amount contributes to the damage of the biomolecules, consequently leading to various pathologies of the organism. Due to the lipid-rich brain structure, enormous oxygen consumption, and the lack of a sufficient antioxidant barrier make it highly susceptible to oxidative imbalance. Hence, oxidative stress has been linked to various psychiatric disorders. These diseases include all behavioral, emotional, and cognitive abnormalities associated with a significant impediment to social life. Each of the diseases in question: Alzheimer's disease, schizophrenia, depression, and bipolar disorder, is characterized by excessive oxidative stress. Considerable damages to DNA, RNA, proteins, lipids, and mitochondrial dysfunction, are observed. All conditions show increased lipid peroxidation, which appears to be typical of psychiatric disorders because the brain contains large amounts of these types of molecules. In addition, numerous abnormalities in the antioxidant defense are noted, but the results of studies on the activity of antioxidant enzymes differ significantly. The most promising biomarkers seem to be GSH in Alzheimer's disease as an early-stage marker of the disease and thioredoxin in schizophrenia as a marker for therapy monitoring. Data from the literature are consistent with the decrease in antioxidants such as vitamin C, E, uric acid, albumin, etc. Despite these numerous inconsistencies, it seems that oxidative stress is present in the course of psychiatric diseases. Still, it cannot be conclusively determined whether it is the direct cause of development, a consequence of other abnormalities at the biochemical or molecular level, or the result of the disease itself.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Aleksandra Polikowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Marta Roszak
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Rafał Heryć
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, Broniewskiego 26, 71-460, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| |
Collapse
|
13
|
Huo L, Lu X, Wu F, Chang C, Ning Y, Zhang XY. Elevated activity of superoxide dismutase in male late-life schizophrenia and its correlation with clinical symptoms and cognitive deficits. BMC Psychiatry 2021; 21:606. [PMID: 34863137 PMCID: PMC8642951 DOI: 10.1186/s12888-021-03604-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/15/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Despite inconsistent findings, accumulative evidence has shown abnormalities of the key antioxidant enzyme, superoxide dismutase (SOD), in patients with schizophrenia. However, few studies explored SOD in late-life schizophrenia (LLS). Our work aimed to investigate changes in SOD activity and the relationship between SOD activity and psychotic symptoms or cognitive deficits in LLS. METHODS 32 geriatric male patients with schizophrenia (age ≥ 60) and 28 age-matched male normal controls were recruited in the study. We assessed cognitive functions with the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), evaluated the severity of clinical symptoms with the Positive and Negative Syndrome Scale (PANSS), and measured the plasma levels of SOD. RESULTS Patients with LLS presented with higher total levels of SOD compared to the controls (81.70 vs. 65.26 U/ml, p < .001). Except for the visuospatial index, the cognitive performance was significantly worse on RBANS total and other domain scores in the schizophrenia group than the control group. In the schizophrenia group, SOD levels were positively correlated with subscores of general psychopathology and negative symptoms and total scores of the PANSS (all p < .05), and inversely associated with performance in immediate memory, language, and RBANS total scores (all p < .05). CONCLUSIONS Our findings suggest that patients with LLS display disturbances in the antioxidant system, which may underlie the pathological process of cognitive impairments and negative symptoms in the late stage of schizophrenia. Supplementing with antioxidants could be a potential treatment.
Collapse
Affiliation(s)
- Lijuan Huo
- grid.410737.60000 0000 8653 1072Department of Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510000 China ,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510000 China
| | - Xiaobing Lu
- grid.410737.60000 0000 8653 1072Department of Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510000 China ,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510000 China
| | - Fengchun Wu
- grid.410737.60000 0000 8653 1072Department of Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510000 China ,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510000 China
| | - Catherine Chang
- grid.267308.80000 0000 9206 2401Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX USA
| | - Yuping Ning
- grid.410737.60000 0000 8653 1072Department of Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510000 China ,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510000 China ,grid.284723.80000 0000 8877 7471The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiang Yang Zhang
- Department of Psychiatry, Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510000, China. .,CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
14
|
Hurşitoğlu O, Orhan FÖ, Kurutaş EB, Doğaner A, Durmuş HT, Kopar H. Diagnostic Performance of Increased Malondialdehyde Level and Oxidative Stress in Patients with Schizophrenia. ACTA ACUST UNITED AC 2021; 58:184-188. [PMID: 34526839 PMCID: PMC8419726 DOI: 10.29399/npa.27372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/03/2021] [Indexed: 11/25/2022]
Abstract
Introduction: Schizophrenia is typically diagnosed through interviews with patients and their relatives. Thus, molecular biomarkers for this mental illness have recently become a hot topic for research. Oxidative stress and antioxidant parameters, such as catalase (CAT), superoxide dismutase (SOD) and malondialdehyde (MDA), have been investigated in schizophrenia; however, no studies have been conducted on the diagnostic performance of oxidative parameters. The goal of the present study is to examine the serum levels of SOD, CAT and MDA and to test the diagnostic performance of MDA in patients with schizophrenia. Methods: Thirty patients with schizophrenia and 30 healthy gender– and age-matched controls were included in our study. Symptom severity in the patient group was rated using the Positive and Negative Syndrome Scale (PANSS). Results: The serum levels of MDA, SOD and CAT were found to be significantly increased in patients with schizophrenia compared to the control group. A receiver operating characteristic curve showed a cut-off point of 2.72 nmol/ml for the MDA diagnostic measure. No significant correlation was found (p>0.05) between MDA, SOD and CAT activity and PANSS scores or the chlorpromazine equivalent and clinical characteristics. Conclusion: In summary, we found higher serum levels of SOD, CAT and MDA in patients with schizophrenia compared to healthy controls. MDA is considered a very good diagnostic lipid peroxidation marker, and further studies should be done to test its validity in patients with schizophrenia.
Collapse
Affiliation(s)
- Onur Hurşitoğlu
- Department of Psychiatry, Kahramanmaraş Necip Fazıl City Hospital, Kahramanmaras, Turkey
| | - Fatma Özlem Orhan
- Department of Psychiatry, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Ergül Belge Kurutaş
- Department of Biochemistry, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Adem Doğaner
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Hüseyin Toygun Durmuş
- Department of Psychiatry, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Hatice Kopar
- Department of Biochemistry, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
15
|
Ke PF, Xiong DS, Li JH, Pan ZL, Zhou J, Li SJ, Song J, Chen XY, Li GX, Chen J, Li XB, Ning YP, Wu FC, Wu K. An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data. Sci Rep 2021; 11:14636. [PMID: 34282208 PMCID: PMC8290033 DOI: 10.1038/s41598-021-94007-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/30/2021] [Indexed: 01/04/2023] Open
Abstract
Finding effective and objective biomarkers to inform the diagnosis of schizophrenia is of great importance yet remains challenging. Relatively little work has been conducted on multi-biological data for the diagnosis of schizophrenia. In this cross-sectional study, we extracted multiple features from three types of biological data, including gut microbiota data, blood data, and electroencephalogram data. Then, an integrated framework of machine learning consisting of five classifiers, three feature selection algorithms, and four cross validation methods was used to discriminate patients with schizophrenia from healthy controls. Our results show that the support vector machine classifier without feature selection using the input features of multi-biological data achieved the best performance, with an accuracy of 91.7% and an AUC of 96.5% (p < 0.05). These results indicate that multi-biological data showed better discriminative capacity for patients with schizophrenia than single biological data. The top 5% discriminative features selected from the optimal model include the gut microbiota features (Lactobacillus, Haemophilus, and Prevotella), the blood features (superoxide dismutase level, monocyte-lymphocyte ratio, and neutrophil count), and the electroencephalogram features (nodal local efficiency, nodal efficiency, and nodal shortest path length in the temporal and frontal-parietal brain areas). The proposed integrated framework may be helpful for understanding the pathophysiology of schizophrenia and developing biomarkers for schizophrenia using multi-biological data.
Collapse
Affiliation(s)
- Peng-Fei Ke
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Dong-Sheng Xiong
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Jia-Hui Li
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Zhi-Lin Pan
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Jing Zhou
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Shi-Jia Li
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Jie Song
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Xiao-Yi Chen
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Gui-Xiang Li
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, 510500, China.,National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, China
| | - Jun Chen
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, 510500, China.,National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, China
| | - Xiao-Bo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yu-Ping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, 510370, Guangdong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China
| | - Feng-Chun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, 510370, Guangdong, China. .,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.
| | - Kai Wu
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China. .,The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, 510370, Guangdong, China. .,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China. .,Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, 510500, China. .,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China. .,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China. .,National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, China. .,Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan.
| |
Collapse
|
16
|
A multimodal approach to studying the relationship between peripheral glutathione, brain glutamate, and cognition in health and in schizophrenia. Mol Psychiatry 2021; 26:3502-3511. [PMID: 33077854 PMCID: PMC9650557 DOI: 10.1038/s41380-020-00901-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 08/25/2020] [Accepted: 09/29/2020] [Indexed: 01/30/2023]
Abstract
Involvement of oxidative stress in the pathophysiology of schizophrenia (SZ) is suggested by studies of peripheral tissue. Nonetheless, it is unclear how such biological changes are linked to relevant, pathological neurochemistry, and brain function. We designed a multi-faceted study by combining biochemistry, neuroimaging, and neuropsychology to test how peripheral changes in a key marker for oxidative stress, glutathione (GSH), may associate with central neurochemicals or neuropsychological performance in health and in SZ. GSH in dorsal anterior cingulate cortex (dACC) was acquired as a secondary 3T 1H-MRS outcome using a MEGA-PRESS sequence. Fifty healthy controls and 46 patients with SZ were studied cross-sectionally, and analyses were adjusted for effects of confounding variables. We observed lower peripheral total GSH in SZ compared to controls in extracellular (plasma) and intracellular (lymphoblast) pools. Total GSH levels in plasma positively correlated with composite neuropsychological performance across the total population and within patients. Total plasma GSH levels were also positively correlated with the levels of Glx in the dACC across the total population, as well as within each individual group (controls, patients). Furthermore, the levels of dACC Glx and dACC GSH positively correlated with composite neuropsychological performance in the patient group. Exploring the relationship between systemic oxidative stress (in particular GSH), central glutamate, and cognition in SZ will benefit further from assessment of patients with more varied neuropsychological performance.
Collapse
|
17
|
Ventriglio A, Bellomo A, Favale D, Bonfitto I, Vitrani G, Di Sabatino D, Cuozzo E, Di Gioia I, Mauro P, Giampaolo P, Alessandro V, De Berardis D. Oxidative Stress in the Early Stage of Psychosis. Curr Top Med Chem 2021; 21:1457-1470. [PMID: 34218786 DOI: 10.2174/1568026621666210701105839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the past few decades, increasing evidence in the literature has appeared describing the role of the antioxidant defense system and redox signaling in the multifactorial pathophysiology of psychosis. It is of interest to clinicians and researchers alike that abnormalities of the antioxidant defense system are associated with alterations of cellular membranes, immune functions and neurotransmission, all of which have some clinical implications. METHODS This narrative review summarizes the evidence regarding oxidative stress in the early stages of psychosis. We included 136 peer-reviewed articles published from 2007 to 2020 on PubMed EMBASE, The Cochrane Library and Google Scholar. RESULTS Patients affected by psychotic disorders show a decreased level of non-enzymatic antioxidants, an increased level of lipid peroxides, nitric oxides, and a homeostatic imbalance of purine catabolism. In particular, a significantly reduced antioxidant defense has been described in the early onset first episode of psychosis, including reduced levels of glutathione. Also, it has been shown that a decreased basal low -antioxidant capacity correlates with cognitive deficits and negative symptoms, mostly related to glutamate-receptor hypofunction. In addition, atypical antipsychotic drugs seem to show significant antioxidant activity. These factors are critical in order to treat cases of first-onset psychosis effectively. CONCLUSION This systematic review indicates the importance that must be given to anti-oxidant defense systems.
Collapse
Affiliation(s)
- Antonio Ventriglio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Donato Favale
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Iris Bonfitto
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giovanna Vitrani
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Dario Di Sabatino
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Edwige Cuozzo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Ilaria Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Pettorruso Mauro
- Department of Neurosciences, Imaging and Clinical Sciences, Univerity of Chieti, Italy
| | - Perna Giampaolo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | | |
Collapse
|
18
|
Uddin SMN, Sultana F, Uddin MG, Dewan SMR, Hossain MK, Islam MS. Effect of antioxidant, malondialdehyde, macro-mineral, and trace element serum concentrations in Bangladeshi patients with schizophrenia: A case-control study. Health Sci Rep 2021; 4:e291. [PMID: 34013069 PMCID: PMC8112814 DOI: 10.1002/hsr2.291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is an incurable neuropsychiatric disorder generally described by impaired social behavior and altered recognition of reality. For the first time, this study explored serum levels of antioxidants (vitamin A, E, and C), malondialdehyde (MDA), macro-minerals (calcium, potassium, and sodium), and trace elements (zinc, iron, and selenium) in Bangladeshi patients with SCZ and thereby, discovering any pathophysiological correlation. METHODS This case-controlled study evaluated 63 patients with SCZ as cases and 63 healthy individuals as controls. Vitamin A and E levels were defined by RP-HPLC. MDA and vitamin C levels were measured by using UV spectrophotometry, and macro and trace elements by atomic absorption spectroscopy. RESULTS This study found significantly (P ≤ 0.05) elevated MDA levels and decreased levels of antioxidants-vitamin A, C, and E and significantly (P ≤ 0.05) diminished levels of macro and trace elements in cases in contrast to the controls. Serum levels of zinc (Zn), selenium (Se), iron (Fe), potassium (K), calcium (Ca), and sodium (Na) were determined to be 0.33 ± 0.008, 0.0252 ± 0.00060, 0.24 ± 0.01, 64.18 ± 2.72, 36.88 ± 2.56, and 2657.5 ± 53.32 mg/L, respectively, in cases, whereas 0.79 ± 0.03, 0.0650 ± 0.00355,0.78 ± 0.03, 168.01 ± 2.85, 86.43 ± 2.55, and 3200.8 ± 29.96 mg/L, respectively, were determined in controls. Pearson's correlation analysis revealed a negative correlation between Zn and Na, Zn and K, Zn and Ca, Zn and Fe, Zn and Se, Fe and Na, and Fe and Se in patients. CONCLUSIONS The findings connect that the pathogenesis of SCZ may have a correlation with altered levels of antioxidants, MDA, macro-minerals, and trace elements.
Collapse
Affiliation(s)
- S. M. Naim Uddin
- Department of PharmacyFaculty of Biological Sciences, University of ChittagongChittagongBangladesh
| | - Farhana Sultana
- Department of PharmacyNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Md. Giash Uddin
- Department of PharmacyFaculty of Biological Sciences, University of ChittagongChittagongBangladesh
| | | | - Mohammed Kamrul Hossain
- Department of PharmacyFaculty of Biological Sciences, University of ChittagongChittagongBangladesh
| | | |
Collapse
|
19
|
Interrelationships Between Oxidative Stress, Cytokines, and Psychotic Symptoms and Executive Functions in Patients With Chronic Schizophrenia. Psychosom Med 2021; 83:485-491. [PMID: 34080586 DOI: 10.1097/psy.0000000000000931] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Accumulating evidence has demonstrated that the pathophysiology of schizophrenia is involved in various abnormalities in oxidative stress markers and cytokines closely related to synaptic plasticity. However, the interactive effects among key cytokines, oxidative stress, and executive dysfunction and symptoms of schizophrenia have not been investigated yet. METHODS A total of 189 patients with chronic schizophrenia and 60 controls were recruited in the current study. Tumor necrosis factor α (TNF-α), interleukin (IL)-8, IL-6, and IL-2 levels; catalase, glutathione peroxidase, and superoxide dismutase (SOD) activities; and malondialdehyde (MDA) levels were determined in patients and controls. Executive function was evaluated by the Wisconsin card sorting tests, the verbal fluency tests, and the Stroop word-color test. Clinical symptoms were evaluated by the Positive and Negative Syndrome Scale. RESULTS Relative to the controls, the patients had lower activities of SOD and glutathione peroxidase and levels of TNF-α, but higher levels of MDA, IL-8, IL-6, and IL-2 (all p values < .05). A significant negative relationship between SOD activity and IL-8 levels was found only in patients (β = -0.44, p = .008). Furthermore, we found that an interactive effect of low TNF-α level and high MDA level was associated with negative symptoms (β = -0.02, p = .01). Moreover, the interactive effects of IL-8 and MDA or IL-8 and SOD were correlated with executive function only in patients (β = 0.23, p = .02; β = 0.09, p = .03). CONCLUSIONS Our findings suggest that the interrelationships between oxidative stress markers and cytokines occur in schizophrenia patients, which may be the basis of their pathological mechanisms underlying clinical symptoms and cognitive dysfunction.
Collapse
|
20
|
Satoh Y. The Potential of Hydrogen for Improving Mental Disorders. Curr Pharm Des 2021; 27:695-702. [PMID: 33185151 DOI: 10.2174/1381612826666201113095938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022]
Abstract
In 2007, Ohsawa and colleagues reported that molecular hydrogen (H2) gas significantly reduced the infarct volume size in a rat model of cerebral infarction, which was, at least, partially due to scavenging hydroxyl radicals. Since then, multiple studies have shown that H2 has not only anti-oxidative but also anti-inflammatory and anti-apoptotic properties, which has ignited interest in the clinical use of H2 in diverse diseases. A growing body of studies has indicated that H2 affects both mental and physical conditions. Mental disorders are characterized by disordered mood, thoughts, and behaviors that affect the ability to function in daily life. However, there is no sure way to prevent mental disorders. Although antidepressant and antianxiety drugs relieve symptoms of depression and anxiety, they have efficacy limitations and are accompanied by a wide range of side effects. While mental disorders are generally thought to be caused by a variety of genetic and/or environmental factors, recent progress has shown that these disorders are strongly associated with increased oxidative and inflammatory stress. Thus, H2 has received much attention as a novel therapy for the prevention and treatment of mental disorders. This review summarizes the recent progress in the use of H2 for the treatment of mental disorders and other related diseases. We also discuss the potential mechanisms of the biomedical effects of H2 and conclude that H2 could offer relief to people suffering from mental disorders.
Collapse
Affiliation(s)
- Yasushi Satoh
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
21
|
Extracellular free water and glutathione in first-episode psychosis-a multimodal investigation of an inflammatory model for psychosis. Mol Psychiatry 2021; 26:761-771. [PMID: 31138893 PMCID: PMC6881530 DOI: 10.1038/s41380-019-0428-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/22/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Abstract
Evidence has been accumulating for an immune-based component to the etiology of psychotic disorders. Advancements in diffusion magnetic resonance imaging (MRI) have enabled estimation of extracellular free water (FW), a putative biomarker of neuroinflammation. Furthermore, inflammatory processes may be associated with altered brain levels of metabolites, such as glutathione (GSH). Consequently, we sought to test the hypotheses that FW is increased and associated with decreased GSH in patients with first-episode schizophrenia (SZ) compared with healthy controls (HC). SZ (n = 36) and HC (n = 40) subjects underwent a multi-shell diffusion MRI scan on a Siemens 3T scanner. 1H-MR spectroscopy data were acquired using a GSH-optimized MEGA-PRESS editing sequence and GSH/creatine ratios were calculated for DLPFC (SZ: n = 33, HC: n = 37) and visual cortex (SZ: n = 29, HC: n = 35) voxels. Symptoms and functioning were measured using the SANS, SAPS, BPRS, and GSF/GRF. SZ demonstrated significantly elevated FW in whole-brain gray (p = .001) but not white matter (p = .060). There was no significant difference between groups in GSH in either voxel. However, there was a significant negative correlation between DLPFC GSH and both whole-brain and DLPFC-specific gray matter FW in SZ (r = -.48 and -.47, respectively; both p < .05), while this relationship was nonsignificant in HC and in both groups in the visual cortex. These data illustrate an important relationship between a metabolite known to be important for immune function-GSH-and the diffusion extracellular FW measure, which provides additional support for these measures as neuroinflammatory biomarkers that could potentially provide tractable treatment targets to guide pharmacological intervention.
Collapse
|
22
|
Scaini G, Andrews T, Lima CNC, Benevenuto D, Streck EL, Quevedo J. Mitochondrial dysfunction as a critical event in the pathophysiology of bipolar disorder. Mitochondrion 2021; 57:23-36. [PMID: 33340709 PMCID: PMC10494232 DOI: 10.1016/j.mito.2020.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/18/2020] [Accepted: 12/10/2020] [Indexed: 01/02/2023]
Abstract
The understanding of the pathophysiology of bipolar disorder (BD) remains modest, despite recent advances in neurobiological research. The mitochondrial dysfunction hypothesis of bipolar disorder has been corroborated by several studies involving postmortem brain analysis, neuroimaging, and specific biomarkers in both rodent models and humans. Evidence suggests that BD might be related to abnormal mitochondrial morphology and dynamics, neuroimmune dysfunction, and atypical mitochondrial metabolism and oxidative stress pathways. Mitochondrial dysfunction in mood disorders is also associated with abnormal Ca2+ levels, glutamate excitotoxicity, an imbalance between pro- and antiapoptotic proteins towards apoptosis, abnormal gene expression of electron transport chain complexes, and decreased ATP synthesis. This paper aims to review and discuss the implications of mitochondrial dysfunction in BD etiology and to explore mitochondria as a potential target for novel therapeutic agents.
Collapse
Affiliation(s)
- Giselli Scaini
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Taylor Andrews
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Camila N C Lima
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Deborah Benevenuto
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA
| | - Emilio L Streck
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
23
|
Cyrino LAR, Delwing-de Lima D, Ullmann OM, Maia TP. Concepts of Neuroinflammation and Their Relationship With Impaired Mitochondrial Functions in Bipolar Disorder. Front Behav Neurosci 2021; 15:609487. [PMID: 33732117 PMCID: PMC7959852 DOI: 10.3389/fnbeh.2021.609487] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Bipolar disorder (BD) is a chronic psychiatric disease, characterized by frequent behavioral episodes of depression and mania, and neurologically by dysregulated neurotransmission, neuroplasticity, growth factor signaling, and metabolism, as well as oxidative stress, and neuronal apoptosis, contributing to chronic neuroinflammation. These abnormalities result from complex interactions between multiple susceptibility genes and environmental factors such as stress. The neurocellular abnormalities of BD can result in gross morphological changes, such as reduced prefrontal and hippocampal volume, and circuit reorganization resulting in cognitive and emotional deficits. The term "neuroprogression" is used to denote the progressive changes from early to late stages, as BD severity and loss of treatment response correlate with the number of past episodes. In addition to circuit and cellular abnormalities, BD is associated with dysfunctional mitochondria, leading to severe metabolic disruption in high energy-demanding neurons and glia. Indeed, mitochondrial dysfunction involving electron transport chain (ETC) disruption is considered the primary cause of chronic oxidative stress in BD. The ensuing damage to membrane lipids, proteins, and DNA further perpetuates oxidative stress and neuroinflammation, creating a perpetuating pathogenic cycle. A deeper understanding of BD pathophysiology and identification of associated biomarkers of neuroinflammation are needed to facilitate early diagnosis and treatment of this debilitating disorder.
Collapse
Affiliation(s)
- Luiz Arthur Rangel Cyrino
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Laboratório de Práticas Farmacêuticas of Department of Pharmacy, University of Joinville Region—UNIVILLE, Joinville, Brazil
- Department of Psychology, University of Joinville—UNIVILLE, Joinville, Brazil
- Department of Pharmacy, University of Joinville—UNIVILLE, Joinville, Brazil
| | - Daniela Delwing-de Lima
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Laboratório de Práticas Farmacêuticas of Department of Pharmacy, University of Joinville Region—UNIVILLE, Joinville, Brazil
- Department of Pharmacy, University of Joinville—UNIVILLE, Joinville, Brazil
- Department of Medicine, University of Joinville—UNIVILLE, Joinville, Brazil
| | | | | |
Collapse
|
24
|
Sharma G, Shin EJ, Sharma N, Nah SY, Mai HN, Nguyen BT, Jeong JH, Lei XG, Kim HC. Glutathione peroxidase-1 and neuromodulation: Novel potentials of an old enzyme. Food Chem Toxicol 2021; 148:111945. [PMID: 33359022 DOI: 10.1016/j.fct.2020.111945] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
Glutathione peroxidase (GPx) acts in co-ordination with other signaling molecules to exert its own antioxidant role. We have demonstrated the protective effects of GPx,/GPx-1, a selenium-dependent enzyme, on various neurodegenerative disorders (i.e., Parkinson's disease, Alzheimer's disease, cerebral ischemia, and convulsive disorders). In addition, we summarized the recent findings indicating that GPx-1 might play a role as a neuromodulator in neuropsychiatric conditions, such as, stress, bipolar disorder, schizophrenia, and drug intoxication. In this review, we attempted to highlight the mechanistic scenarios mediated by the GPx/GPx-1 gene in impacting these neurodegenerative and neuropsychiatric disorders, and hope to provide new insights on the therapeutic interventions against these disorders.
Collapse
Affiliation(s)
- Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029, Republic of Korea
| | - Huynh Nhu Mai
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea; Pharmacy Faculty, Can Tho University of Medicine and Pharmacy, Can Tho City, 900000, Viet Nam
| | - Bao Trong Nguyen
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
25
|
Schoretsanitis G, de Filippis R, Ntogka M, Leucht S, Correll CU, Kane JM. Matrix Metalloproteinase 9 Blood Alterations in Patients With Schizophrenia Spectrum Disorders: A Systematic Review and Meta-Analysis. Schizophr Bull 2021; 47:986-996. [PMID: 33491066 PMCID: PMC8266643 DOI: 10.1093/schbul/sbab001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Matrix metalloproteinase 9 (MMP-9), an extracellular network protease implicated in glutamatergic signaling, may be part of the pathophysiology of schizophrenia spectrum disorders (SSD). METHODS We performed a systematic review in PubMed/Embase until July 15, 2020, conducting a random-effects meta-analysis of studies comparing MMP-9 blood levels in SSD vs healthy controls (HCs) and psychiatric controls (PCs), calculating between-group differences in standardized mean differences (SMDs) ± 95% confidence intervals (CIs). Meta-regression analyses included sex, age, illness duration, antipsychotic dose, and Positive and Negative Syndrome Scale (PANSS) total/subscales. Subgroup analyses included first-episode patients (FEP) vs non-FEP, each vs HCs and vs PCs, and blood sample type. Study quality was assessed using the Newcastle-Ottawa scale. RESULTS Four, five, and two trials were rated as high, fair, and low quality. In 11 studies (n = 1443), 643 patients (age = 36.7 ± 14.1 years, females = 42.9%) were compared with HCs (n = 631), with 4 studies including also 169 PCs. MMP-9 levels were higher in SSD vs HCs (SMD = 0.52, 95%CI = 0.20-0.85, P = .002), but not in PCs vs HCs (n = 132, after removing one implausible outlier [SMD = 0.33, 95%CI = -0.16 to 0.85, P = .082]). MMP-9 differences between SSD and HCs were associated with higher PANSS total (coefficient = 0.02, 95%CI = 0.01-0.02, P < .001), PANSS positive (coefficient = 0.08, 95%CI = 0.02-0.13, P = .006), and PANSS general scores (coefficient = 0.02, 95%CI = 0.01-0.03, P < .001). MMP-9 level differences vs HCs did not vary significantly between FEP (n = 103, SMD = 0.44, 95%CI = 0.15-0.72, P = .71) and non-FEP patients (n = 466, SMD = 0.59, 95%CI = 0.38-0.80; P = .34) (FEP vs non-FEP: P = .39). In four high-quality studies, MMP-9 levels remained significantly higher in SSD vs HCs (SMD = 0.82, 95%CI = 0.03-1.61). CONCLUSIONS Findings suggest MMP-9 upregulation in SSD, requiring further validation and understanding of related pathways.
Collapse
Affiliation(s)
- Georgios Schoretsanitis
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA,To whom correspondence should be addressed; 7559 263rd Street, Glen Oaks, NY 11004, USA; tel: +1 718-470-5914, fax: +1 718-343-7739, e-mail:
| | - Renato de Filippis
- Psychiatric Unit, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Maria Ntogka
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Stefan Leucht
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany,Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Christoph U Correll
- Department of Psychiatry and Molecular Medicine, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA,Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA,Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| | - John M Kane
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA,Department of Psychiatry and Molecular Medicine, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA,Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| |
Collapse
|
26
|
Pardhi VP, Flora S. Stable solid dispersion of lurasidone hydrochloride with augmented physicochemical properties for the treatment of schizophrenia and bipolar disorder. Biopharm Drug Dispos 2020; 41:334-351. [PMID: 33080060 DOI: 10.1002/bdd.2252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/08/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022]
Abstract
Crystalline solid dispersion of lurasidone hydrochloride (LH) was made with various polar and non-polar small molecules to overcome the poor aqueous solubility issue. LH-Glutathione (GSH) solid dispersion in 1:1 ratio was prepared by co-grinding method and characterized by using differential scanning calorimetry (DSC), powder X-ray diffraction, Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. GSH acts as antioxidant and reported for anti-schizophrenic activity may provide synergistic action with LH or reduce the side effects. LH in LH-GSH solid dispersion (SD) has shown improvement in solubility by 7.9 folds than plain drug which translated in terms of improved dissolution rate by two-folds. The in vitro dissolution results showed maximum dissolution rate with LH-GSH SD (97.85 ± 2.40%) compared to plain drug (50.5 ± 3.02%) at 15 min (t15 min, %) and thus, satisfying criteria of immediate release dosage form. DSC and FTIR data confirmed the stability of LH-GSH SD for 3 months at accelerated stability condition (40 ± 2°C and 75 ± 5% RH). The prepared LH-GSH SD can be used as a tool to target dual problems that is, enhanced physicochemical properties along with possible management of disorder which could be due to synergism with co-administered GSH. This approach is thought to be efficiently providing the relief to the psychological patients.
Collapse
Affiliation(s)
- Vishwas P Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, India
| | - Swaran Flora
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
27
|
Guidara W, Messedi M, Naifar M, Maalej M, Grayaa S, Omri S, Ben Thabet J, Maalej M, Charfi N, Ayadi F. Predictive value of oxidative stress biomarkers in drug‑free patients with schizophrenia and schizo-affective disorder. Psychiatry Res 2020; 293:113467. [PMID: 33198042 DOI: 10.1016/j.psychres.2020.113467] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/15/2020] [Indexed: 12/23/2022]
Abstract
Several studies have suggested that oxidative stress may represent one of the primary etiological mechanisms of schizophrenia (SZ) and schizoaffective disorder (SAD) which can be targeted by therapeutic intervention. The present study was conducted over a period of 24 months, between June 2016 and June 2018. All enrolled subjects were Tunisian, forty five drug‑free male patients with SZ (mean age: 37.6 years), twenty one drug‑free male patients with SAD (mean age: 28.8 years) and hundred and one age and gender matched controls (mean age: 34.2 years) were enrolled in the study. Plasma reduced glutathione (GSH) and Total thiols levels were significantly decreased in patients compared to controls (respectively p<0.001; p=0.050). In addition, malondialdehyde (MDA), advanced oxidation protein products (AOPP) and protein carbonyls (PC) concentrations and glutathione peroxidase (GSH-Px) activity were significantly increased in patients compared to controls (p<0.001; p<0.001; p<0.001 and p=0.003 respectively). The binary logistic regression analysis revealed that MDA, AOPP, PC and GSH-Px could be considered as independent risk factors for SZ and SAD. When using ROC analysis, a remarkable increase in the area under the curve (AUC) with higher sensitivity (Se) and specificity (Sp) for MDA, AOPP, PC and GSH-Px combined markers was observed. The present study indicated that the identification of the predictive value of this four-selected biomarkers related to oxidative stress in drug free patients should lead to a better identification of the etiological mechanism of SZ or SAD.
Collapse
Affiliation(s)
- Wassim Guidara
- Laboratory of research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia.
| | - Meriam Messedi
- Laboratory of research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Manel Naifar
- Laboratory of Biochemistry, University of Sfax & Habib Bourguiba Hospital, Sfax, Tunisia
| | - Manel Maalej
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Sahar Grayaa
- Laboratory of research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Sana Omri
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Jihène Ben Thabet
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Mohamed Maalej
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Nada Charfi
- Psychiatry C- department, University of Sfax & Hédi Chaker Hostipal, Sfax, Tunisia
| | - Fatma Ayadi
- Laboratory of research "Molecular Basis of Human Diseases", LR19ES13, Faculty of Medicine, University of Sfax, Sfax, Tunisia; Laboratory of Biochemistry, University of Sfax & Habib Bourguiba Hospital, Sfax, Tunisia
| |
Collapse
|
28
|
Madireddy S, Madireddy S. Regulation of Reactive Oxygen Species-Mediated Damage in the Pathogenesis of Schizophrenia. Brain Sci 2020; 10:brainsci10100742. [PMID: 33081261 PMCID: PMC7603028 DOI: 10.3390/brainsci10100742] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The biochemical integrity of the brain is paramount to the function of the central nervous system, and oxidative stress is a key contributor to cerebral biochemical impairment. Oxidative stress, which occurs when an imbalance arises between the production of reactive oxygen species (ROS) and the efficacy of the antioxidant defense mechanism, is believed to play a role in the pathophysiology of various brain disorders. One such disorder, schizophrenia, not only causes lifelong disability but also induces severe emotional distress; however, because of its onset in early adolescence or adulthood and its progressive development, consuming natural antioxidant products may help regulate the pathogenesis of schizophrenia. Therefore, elucidating the functions of ROS and dietary antioxidants in the pathogenesis of schizophrenia could help formulate improved therapeutic strategies for its prevention and treatment. This review focuses specifically on the roles of ROS and oxidative damage in the pathophysiology of schizophrenia, as well as the effects of nutrition, antipsychotic use, cognitive therapies, and quality of life on patients with schizophrenia. By improving our understanding of the effects of various nutrients on schizophrenia, it may become possible to develop nutritional strategies and supplements to treat the disorder, alleviate its symptoms, and facilitate long-term recovery.
Collapse
Affiliation(s)
- Samskruthi Madireddy
- Independent Researcher, 1353 Tanaka Drive, San Jose, CA 95131, USA
- Correspondence: ; Tel.: +1-408-9214162
| | - Sahithi Madireddy
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA;
| |
Collapse
|
29
|
Hsu MC, Huang YS, Ouyang WC. Beneficial effects of omega-3 fatty acid supplementation in schizophrenia: possible mechanisms. Lipids Health Dis 2020; 19:159. [PMID: 32620164 PMCID: PMC7333328 DOI: 10.1186/s12944-020-01337-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Schizophrenia is a serious long-term psychotic disorder marked by positive and negative symptoms, severe behavioral problems and cognitive function deficits. The cause of this disorder is not completely clear, but is suggested to be multifactorial, involving both inherited and environmental factors. Since human brain regulates all behaviour, studies have focused on identifying changes in neurobiology and biochemistry of brain in schizophrenia. Brain is the most lipid rich organ (approximately 50% of brain dry weight). Total brain lipids is constituted of more than 60% of phospholipids, in which docosahexaenoic acid (DHA, 22:6n-3) is the most abundant (more than 40%) polyunsaturated fatty acid (PUFA) in brain membrane phospholipids. Results from numerous studies have shown significant decreases of PUFAs, in particular, DHA in peripheral blood (plasma and erythrocyte membranes) as well as brain of schizophrenia patients at different developmental phases of the disorder. PUFA deficiency has been associated to psychotic symptoms and cognitive deficits in schizophrenia. These findings have led to a number of clinical trials examining whether dietary omega-3 fatty acid supplementation could improve the course of illness in patients with schizophrenia. Results are inconsistent. Some report beneficial whereas others show not effective. The discrepancy can be attributed to the heterogeneity of patient population. METHODS In this review, results from recent experimental and clinical studies, which focus on illustrating the role of PUFAs in the development of schizophrenia were examined. The rationale why omega-3 supplementation was beneficial on symptoms (presented by subscales of the positive and negative symptom scale (PANSS), and cognitive functions in certain patients but not others was reviewed. The potential mechanisms underlying the beneficial effects were discussed. RESULTS Omega-3 fatty acid supplementation reduced the conversion rate to psychosis and improved both positive and negative symptoms and global functions in adolescents at ultra-high risk for psychosis. Omega-3 fatty acid supplementation could also improve negative symptoms and global functions in the first-episode patients with schizophrenia, but improve mainly total or general PANSS subscales in chronic patients. Patients with low PUFA (particularly DHA) baseline in blood were more responsive to the omega-3 fatty acid intervention. CONCLUSION Omega-3 supplementation is more effective in reducing psychotic symptom severity in young adults or adolescents in the prodromal phase of schizophrenia who have low omega-3 baseline. Omega-3 supplementation was more effective in patients with low PUFA baseline. It suggests that patients with predefined lipid levels might benefit from lipid treatments, but more controlled clinical trials are warranted.
Collapse
Affiliation(s)
- Mei-Chi Hsu
- Department of Nursing, I-Shou University, No.8, Yida Road, Jiaosu Village Yanchao District, Kaohsiung, 82445 Taiwan
| | - Yung-Sheng Huang
- College of Medicine, I-Shou University, No.8, Yida Road, Jiaosu Village Yanchao District, Kaohsiung, 82445 Taiwan
| | - Wen-Chen Ouyang
- Department of Geriatric Psychiatry, Jianan Psychiatric Center, Ministry of Health and Welfare, No.539, Yuzhong Rd., Rende Dist., Tainan City, 71742 Taiwan
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, No.452, Huanqiu Rd. Luzhu Dist, Kaohsiung, 82144 Taiwan
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, No.100, Shin-Chuan 1st Road, Sanmin Dist., Kaohsiung, 80708 Taiwan
| |
Collapse
|
30
|
Lv Q, Hu Q, Zhang W, Huang X, Zhu M, Geng R, Cheng X, Bao C, Wang Y, Zhang C, He Y, Li Z, Yi Z. Disturbance of Oxidative Stress Parameters in Treatment-Resistant Bipolar Disorder and Their Association With Electroconvulsive Therapy Response. Int J Neuropsychopharmacol 2020; 23:207-216. [PMID: 31967315 PMCID: PMC7177162 DOI: 10.1093/ijnp/pyaa003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/17/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Electroconvulsive therapy (ECT) is an effective option for treatment-resistant bipolar disorder (trBD). However, the mechanisms of its effect are unknown. Oxidative stress is thought to be involved in the underpinnings of BD. Our study is the first, to our knowledge, to report the association between notable oxidative stress parameters (superoxide dismutase [SOD], glutathione peroxidase [GSH-Px], catalase [CAT], and malondialdehyde [MDA]) levels and ECT response in trBD patients. METHODS A total 28 trBD patients and 49 controls were recruited. Six-week ECT and naturalistic follow-up were conducted. SOD, GSH-Px, CAT, and MDA levels were measured by enzyme-linked immunosorbent assay, and the 17-item Hamilton Depression Rating Scale and Young Mania Rating Scale were administered at baseline and the end of the 6th week. MANCOVA, ANCOVA, 2 × 2 ANCOVA, and a multiple regression model were conducted. RESULTS SOD levels were lower in both trBD mania and depression (P = .001; P = .001), while GSH-Px (P = .01; P = .001) and MDA (P = .001; P = .001) were higher in both trBD mania and depression compared with controls. CAT levels were positively associated with 17-item Hamilton Depression Rating Scale scores in trBD depression (radjusted = 0.83, P = .005). MDA levels in trBD decreased after 6 weeks of ECT (P = .001). Interestingly, MDA levels decreased in responders (P = .001) but not in nonresponders (P > .05). CONCLUSIONS Our study indicates that decreased SOD could be a trait rather than a state in trBD. Oxidative stress levels are associated with illness severity and ECT response. This suggests that the mechanism of oxidative stress plays a crucial role in the pathophysiology of trBD.
Collapse
Affiliation(s)
- Qinyu Lv
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyue Hu
- Qingdao Mental Health Center, Qingdao, China
| | | | - Xinxin Huang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghuan Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruijie Geng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxi Bao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingyi Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongguang He
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zezhi Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Lv Q, Guo Y, Zhu M, Geng R, Cheng X, Bao C, Wang Y, Huang X, Zhang C, Hao Y, Li Z, Yi Z. Predicting individual responses to lithium with oxidative stress markers in drug-free bipolar disorder. World J Biol Psychiatry 2019; 20:778-789. [PMID: 31595816 DOI: 10.1080/15622975.2019.1663929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/18/2019] [Accepted: 08/28/2019] [Indexed: 10/25/2022]
Abstract
Objectives: This is the first study to investigate the oxidative stress (OxS) levels in drug-free bipolar disorder (BD) patients and their association with lithium response.Methods: A total of 61 drug-free BD patients and 49 controls were included. Patients treated with lithium were followed-up for 6 weeks. The levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) and malondialdehyde (MDA) were measured at baseline and at the end of the sixth week.Results: Compared to controls, the SOD levels were lower, whereas the MDA were higher in the BD-depression (BD-D) group (both P < 0.001). GSH-Px levels were higher in both the BD-D and the BD-mania (BD-M) group (both P < 0.001). Both GSH-Px and MDA levels in the BD (P = 0.009, P < 0.001) and the BD-D subgroup (P = 0.006, P = 0.001) decreased significantly after the 6-week treatment with lithium. Interestingly, both GSH-Px and MDA levels decreased in responders (P = 0.03, P = 0.002) but not in the non-responders of BD-D (both p > 0.05). Moreover, the reduction in the MDA levels were associated with lithium response (B = 1.47, Wald statistic = 5.94, P = 0.015, odds ratio = 4.35, 95% confidence interval 1.33-14.20).Conclusions: Our study demonstrates an imbalance of OxS in drug-free BD, especially BD-D. Lithium reduces the GSH-Px and MDA levels in BD patients. The reduction in MDA levels may predict individual responsiveness to lithium.
Collapse
Affiliation(s)
- Qinyu Lv
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhong Guo
- Qingdao Mental Health Center, Qingdao, China
| | - Minghuan Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruijie Geng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxi Bao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingyi Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxin Huang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Hao
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zezhi Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Tsugawa S, Noda Y, Tarumi R, Mimura Y, Yoshida K, Iwata Y, Elsalhy M, Kuromiya M, Kurose S, Masuda F, Morita S, Ogyu K, Plitman E, Wada M, Miyazaki T, Graff-Guerrero A, Mimura M, Nakajima S. Glutathione levels and activities of glutathione metabolism enzymes in patients with schizophrenia: A systematic review and meta-analysis. J Psychopharmacol 2019; 33:1199-1214. [PMID: 31039654 DOI: 10.1177/0269881119845820] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Glutathione is among the important antioxidants to prevent oxidative stress. However, the relationships between abnormality in the glutathione system and pathophysiology of schizophrenia remain uncertain due to inconsistent findings on glutathione levels and/or glutathione-related enzyme activities in patients with schizophrenia. METHODS A systematic literature search was conducted using Embase, Medline, PsycINFO, and PubMed. Original studies, in which three metabolite levels (glutathione, glutathione disulfide, and total glutathione (glutathione+glutathione disulfide)) and five enzyme activities (glutathione peroxidase, glutathione reductase, glutamate-cysteine ligase, glutathione synthetase, and glutathione S-transferase) were measured with any techniques in both patients with schizophrenia and healthy controls, were included. Standardized mean differences were calculated to determine the group differences in the glutathione levels with a random-effects model. RESULTS We identified 41, 9, 15, 38, and seven studies which examined glutathione, glutathione disulfide, total glutathione, glutathione peroxidase, and glutathione reductase, respectively. Patients with schizophrenia had lower levels of both glutathione and total glutathione and decreased activity of glutathione peroxidase compared to controls. Glutathione levels were lower in unmedicated patients with schizophrenia than those in controls while glutathione levels did not differ between patients with first-episode psychosis and controls. CONCLUSIONS Our findings suggested that there may be glutathione deficits and abnormalities in the glutathione redox cycle in patients with schizophrenia. However, given the small number of studies examined the entire glutathione system, further studies are needed to elucidate a better understanding of disrupted glutathione function in schizophrenia, which may pave the way for the development of novel therapeutic strategies in this disorder.
Collapse
Affiliation(s)
- Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryosuke Tarumi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kazunari Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.,Pharmacogenetic Research Clinic, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yusuke Iwata
- Multimodal Imaging Group, University of Toronto, Toronto, ON, Canada
| | - Muhammad Elsalhy
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Minori Kuromiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shin Kurose
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Fumi Masuda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinji Morita
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kamiyu Ogyu
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Eric Plitman
- Multimodal Imaging Group, University of Toronto, Toronto, ON, Canada
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Miyazaki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | | | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.,Multimodal Imaging Group, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Savushkina OK, Boksha IS, Prokhorova TA, Tereshkina EB, Burminskiy DS, Morozova MA, Vorobyeva EA, Burbaeva GS. [The activity of erythrocyte and platelet glutathione reductase and glutathione-S-transferase in paranoid schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 118:77-81. [PMID: 30585609 DOI: 10.17116/jnevro201811811177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM A comparative evaluation of glutathione reductase (GR) and glutathione-S-transferase (GST) activities in erythrocytes and platelets of patients with schizophrenia. MATERIAL AND METHODS Fifty patients, 47 men and 3 women, aged 25-56 years (medium 34) with acute paranoid schizophrenia (F20.0 ICD-10) with hallucinatory-paranoid or paranoid syndrome were studied. The control group consisted of 48 healthy people, 45 men and 3 women, aged 21-59 years (medium 38). GR activity was determined by the oxidation of NADP-H in the reduction reaction of oxidized glutathione. GST activity was determined by the rate of chromogenic conjugate formation between glutathione and 1-chloro-2.4-dinitrobenzene. RESULTS No differences in the erythrocyte GR and GST activities between the control group and patients with schizophrenia were found. The platelet activity of GR and GST was significantly lower in patients compared to the control group (Mann-Whitney U test, p<0.01). Spearman rank correlation analysis showed that the erythrocyte GST activity was significantly correlated with PANSSneg scores when measured at the beginning of the study, GST was higher in those patients who had less PANSSneg scores after treatment (R=-0.41, p<0.05). The activity of platelet GST in patients with schizophrenia was correlated with the severity of positive symptoms (PANSSpos score) at the beginning of the study before taking therapy (R=-0.31, p<0.05), i.e. the more prominent psychotic symptoms were expressed in patients with lower GST activity. Upon completion of therapy, this association disappeared. CONCLUSION The activity of glutathione-dependent enzymes in the blood cells of schizophrenic patients determined before the beginning of antipsychotic pharmacotherapy may be important for objective assessment of this metabolic system status and the degree of its impairment in patients.
Collapse
Affiliation(s)
| | - I S Boksha
- Mental Health Research Centre, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
34
|
Das TK, Javadzadeh A, Dey A, Sabesan P, Théberge J, Radua J, Palaniyappan L. Antioxidant defense in schizophrenia and bipolar disorder: A meta-analysis of MRS studies of anterior cingulate glutathione. Prog Neuropsychopharmacol Biol Psychiatry 2019; 91:94-102. [PMID: 30125624 DOI: 10.1016/j.pnpbp.2018.08.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/21/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Glutathione [GSH] is a major intracellular antioxidant that disposes peroxides and protects neurons and glial cells from oxidative stress. In both schizophrenia and bipolar disorder, atypical levels of GSH have been demonstrated, particularly in the anterior cingulate cortex (ACC), though no consistent results have emerged due to limitations in sample size. Our objective was to evaluate if GSH levels in the ACC are abnormal in these 2 disorder, when compared to healthy controls. METHODS We reviewed all 1H-MRS studies reporting GSH values for patients satisfying DSM or ICD based criteria for (1) the psychotic disorders - schizophrenia or schizoaffective disorder or (2) bipolar disorder in comparison to a healthy controls (HC) group in the Anterior Cingulate Cortex (ACC) published until June 2018. A random-effects model was used to calculate the pooled effect size. A meta-regression analysis of moderator variables was also undertaken. RESULTS The literature search identified 18 studies with a total sample size of 581 controls, 578 patients with schizophrenia or bipolar disorder. There is a small but significant reduction in ACC GSH in patients with schizophrenia compared to HC (N = 13; RFX SMD =0.26; 95% CI [0.07 to 0.44]; p = 0.008; heterogeneity p = 0.11). There is a significant increase in the ACC GSH concentration in bipolar disorder compared to HC (N = 6; RFX SMD = -0.28, 95% CI [-0.09 to -0.47]; p = 0.003; heterogeneity p = 0.95). CONCLUSIONS We report a small, but significant reduction in GSH concentration in the ACC in schizophrenia, and a similar sized increase in bipolar disorder. A notable limitation is the lack of sufficient data to examine the moderating effect of the symptom profile. Schizophrenia and bipolar disorder have notably different patterns of redox abnormalities in the ACC. Reduced ACC GSH may confer a schizophrenia-like clinical phenotype, while an excess favouring a bipolar disorder-like profile.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Department of Psychiatry, University of Western Ontario, London, ON, Canada; Robarts Research Institute, London, ON. Canada; Lawson Health Research Institute, London, ON. Canada
| | - Alborz Javadzadeh
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Avyarthana Dey
- Department of Psychiatry, University of Western Ontario, London, ON, Canada; Robarts Research Institute, London, ON. Canada
| | | | - Jean Théberge
- Lawson Health Research Institute, London, ON. Canada; Department of Medical Biophysics, University of Western Ontario, London, ON, Canada; Department of Diagnostic Imaging, St. Joseph's Health Care London, ON, Canada
| | - Joaquim Radua
- FIDMAG Germanes Hospitalàries, CIBERSAM, Sant Boi de Llobregat, Spain; Institute of Psychiatry, King's College London, De Crespigny Park, London,UK; Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lena Palaniyappan
- Department of Psychiatry, University of Western Ontario, London, ON, Canada; Robarts Research Institute, London, ON. Canada; Lawson Health Research Institute, London, ON. Canada; Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
35
|
Bai ZL, Li XS, Chen GY, Du Y, Wei ZX, Chen X, Zheng GE, Deng W, Cheng Y. Serum Oxidative Stress Marker Levels in Unmedicated and Medicated Patients with Schizophrenia. J Mol Neurosci 2018; 66:428-436. [PMID: 30298298 DOI: 10.1007/s12031-018-1165-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/28/2018] [Indexed: 11/30/2022]
Abstract
Oxidative stress has been suggested to be involved in schizophrenia, but studies have demonstrated inconsistent results on oxidative stress marker level/activity in patients with schizophrenia. In order to clarify the circulating oxidative stress marker level/activity in patients with schizophrenia, this study recruited 80 schizophrenia patients (40 first-episode, drug-free and 40 chronically medicated patients) and 80 controls to analyze serum activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC), and levels of lipid peroxidation marker malondialdehyde (MDA) in schizophrenia patients, and whether they associate with the severity of the disease. We showed that only serum GSH-Px activity was significantly reduced in unmedicated patients with schizophrenia when compared with control subjects, whereas the other three analyzed oxidative stress markers did not show significant differences between cases and controls. Moreover, our results demonstrated that chronic medication increased GSH-Px activity and MDA levels in patients with schizophrenia, but reduced SOD activity in the patients. We also found that short-term antipsychotic treatments on the patients with schizophrenia reduced the SOD activity. Correlation analyses indicated that the oxidative stress marker activity/level is not significantly associated with the severity of schizophrenia, except that SOD level correlated with PANSS positive score significantly. Taken together, the data from the present study suggested that the dysfunctions of oxidative stress markers in patients with schizophrenia were mainly caused by antipsychotics, emphasizing increased oxidative stress as a potential side effect of antipsychotics on the patients.
Collapse
Affiliation(s)
- Zhi-Le Bai
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Beijing, 100081, China
| | - Xue-Song Li
- The Third Hospital of Fuoshan, Fuoshan, Guangzhou, China
| | | | - Yang Du
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Beijing, 100081, China
| | - Ze-Xu Wei
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Beijing, 100081, China
| | - Xi Chen
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Beijing, 100081, China
| | - Guang-En Zheng
- The Third Hospital of Fuoshan, Fuoshan, Guangzhou, China
| | - Wen Deng
- The Third Hospital of Fuoshan, Fuoshan, Guangzhou, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, 27 South Zhongguancun Avenue, Beijing, 100081, China.
| |
Collapse
|
36
|
Ngamchuea K, Batchelor-McAuley C, Williams C, Godlewska BR, Sharpley AL, Cowen PJ, Compton RG. Salivary glutathione in bipolar disorder: A pilot study. J Affect Disord 2018; 238:277-280. [PMID: 29894933 DOI: 10.1016/j.jad.2018.05.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/05/2018] [Accepted: 05/27/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Glutathione (GSH) is an important cellular antioxidant and its levels are decreased in some studies of bipolar patients. Saliva provides a simple and feasible means of measuring GSH but has not yet been applied to the study of bipolar disorder. The purpose of the study was to compare salivary levels of GSH and oxidized glutathione (GSSG) in bipolar patients and healthy controls. METHODS Saliva was sampled from 22 medicated, euthymic patients with bipolar disorder and 20 healthy controls. GSH and GSSG were measured using an enzyme kinetic essay. RESULTS GSH and GSSG were significantly higher in saliva from bipolar patients relative to controls. The ratio of GSH:GSSG was unchanged. There was no correlation between the measured clinical characteristics of the patients and GSH levels. LIMITATIONS The main limitation of the study was the small sample size. Patients were medicated which may have influenced saliva production and hence GSH levels. In addition, salivary GSH may not reflect GSH status in tissues more directly involved in the pathophysiology of bipolar disorder. CONCLUSION Salivary GSH can be readily measured in bipolar patients. Relative to controls, salivary levels of GSH and GSSG were increased in bipolar patients but their ratio was unchanged. The origin and significance of these change requires further study.
Collapse
Affiliation(s)
- Kamonwad Ngamchuea
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Christopher Batchelor-McAuley
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Clare Williams
- Department of Psychiatry, Oxford University, Oxford OX3 7JX, United Kingdom
| | - Beata R Godlewska
- Department of Psychiatry, Oxford University, Oxford OX3 7JX, United Kingdom
| | - Ann L Sharpley
- Department of Psychiatry, Oxford University, Oxford OX3 7JX, United Kingdom
| | - Philip J Cowen
- Department of Psychiatry, Oxford University, Oxford OX3 7JX, United Kingdom.
| | - Richard G Compton
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom.
| |
Collapse
|
37
|
Nikray N, Karimi I, Siavashhaghighi Z, Becker LA, Mofatteh MM. An effort toward molecular biology of food deprivation induced food hoarding in gonadectomized NMRI mouse model: focus on neural oxidative status. BMC Neurosci 2018; 19:59. [PMID: 30249177 PMCID: PMC6154416 DOI: 10.1186/s12868-018-0461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 09/20/2018] [Indexed: 12/03/2022] Open
Abstract
Background Environmental uncertainty, such as food deprivation, may alter internal milieu of nervous system through various mechanisms. In combination with circumstances of stress or aging, high consumption of unsaturated fatty acids and oxygen can make neural tissues sensitive to oxidative stress (OS). For adult rats, diminished level of gonadal steroid hormones accelerates OS and may result in special behavioral manifestations. This study was aimed to partially answer the question whether OS mediates trade-off between food hoarding and food intake (fat hoarding) in environmental uncertainty (e.g., fluctuations in food resource) within gonadectomized mouse model in the presence of food deprivation-induced food hoarding behavior. Results Hoarding behavior was not uniformly expressed in all male mice that exposed to food deprivation. Extended phenotypes including hoarder and non-hoarder mice stored higher and lower amounts of food respectively as compared to that of low-hoarder mice (normal phenotype) after food deprivation. Results showed that neural oxidative status was not changed in the presence of hoarding behavior in gonadectomized mice regardless of tissue type, however, glutathione levels of brain tissues were increased in the presence of hoarding behavior. Decreased superoxide dismutase activity in brain and spinal cord tissues and increased malondialdehyde in brain tissues of gonadectomized mice were also seen. Conclusions Although, food deprivation-induced hoarding behavior is a strategic response to food shortage in mice, it did not induce the same amount of hoarding across all colony mates. Hoarding behavior, in this case, is a response to the environmental uncertainty of food shortage, therefore is not an abnormal behavior. Hoarding behavior induced neural OS with regard to an increase in brain glutathione levels but failed to show other markers of neural OS. Decreased superoxide dismutase activity in brain and spinal cord tissues and increased malondialdehyde levels in brain tissues of gonadectomized mice could be a hallmark of debilitated antioxidative defense and more lipid peroxidation due to reduced amount of gonadal steroid hormones during aging.
Collapse
Affiliation(s)
- Noushin Nikray
- Laboratory of Molecular and Cellular Biology 1214, Department of Basic Veterinary Sciences, School of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Isaac Karimi
- Laboratory of Molecular and Cellular Biology 1214, Department of Basic Veterinary Sciences, School of Veterinary Medicine, Razi University, Kermanshah, Iran. .,Department of Biology, Faculty of Science, Razi University, Kermanshah, 67149-67346, Iran.
| | | | - Lora A Becker
- Department of Psychology, University of Evansville, Evansville, IN, 47722, USA
| | - Mohammad Mehdi Mofatteh
- Department of Accounting, School of Economics and Accounting, Islamic Azad University South Tehran Branch, Tehran, Iran
| |
Collapse
|
38
|
Erzin G, Kotan VO, Topçuoğlu C, Özkaya G, Erel Ö, Yüksel RN, Ürer E, Aydemir MÇ, Göka E. Thiol/disulphide homeostasis in bipolar disorder. Psychiatry Res 2018; 261:237-242. [PMID: 29329041 DOI: 10.1016/j.psychres.2017.12.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/31/2017] [Accepted: 12/30/2017] [Indexed: 10/18/2022]
Abstract
Bipolar disorder (BD) patients have increased oxidative stress, which can disturb thiol/disulphide homeostasis, causing disulphide formation. The aim of the study is to investigate dynamic thiol/disulphide (SH/SS) homeostasis in BD patients, which is a novel evaluation method of oxidative status. Ninety-four BD patients (50 in the manic episode and 44 in remission) and 44 healthy controls were included in the study. Blood serum native thiol (SH) and total thiol (ToSH) concentrations were measured in a paired test. The half value of the difference between native thiol and total thiol concentrations was calculated as the disulphide (SS) bond amount. Serum native thiol levels of the mania group were found to be lower than the remission and the control groups. There was a significant difference between the remission group and the control group in terms of native thiol. Serum total thiol level was lower in mania group than the control group. Detection of oxidative molecules for BD could be helpful, especially in treatment, follow-up periods and reducing morbidity. The results of our study besides the data available in the literature support that thiol and disulphide levels are useful markers for BD and promising therapeutic targets in terms of future pharmacological modulation.
Collapse
Affiliation(s)
- Gamze Erzin
- Ankara Numune Training and Research Hospital, Psychiatry Department, Ankara, Turkey.
| | - Vahap Ozan Kotan
- Ankara Numune Training and Research Hospital, Psychiatry Department, Ankara, Turkey.
| | - Canan Topçuoğlu
- Ankara Numune Training and Research Hospital, Biochemistry Department, Ankara, Turkey.
| | - Güven Özkaya
- Uludağ University, Faculty of Medicine, Biostatistics Department, Bursa, Turkey.
| | - Özcan Erel
- Yıldırım Beyazıt University, Biochemistry Department, Ankara, Turkey.
| | - Rabia Nazik Yüksel
- Ankara Numune Training and Research Hospital, Psychiatry Department, Ankara, Turkey.
| | - Emre Ürer
- Ankara University, School of Medicine, Child and Adolescent Psychiatry, Ankara, Turkey.
| | | | - Erol Göka
- Ankara Numune Training and Research Hospital, Psychiatry Department, Ankara, Turkey.
| |
Collapse
|
39
|
Ngamchuea K, Chaisiwamongkhol K, Batchelor-McAuley C, Compton RG. Chemical analysis in saliva and the search for salivary biomarkers – a tutorial review. Analyst 2018; 143:81-99. [DOI: 10.1039/c7an01571b] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A review of the uses of saliva biomarkers, detection methods and requirements for new biomarkers.
Collapse
Affiliation(s)
- Kamonwad Ngamchuea
- Department of Chemistry
- Physical & Theoretical Chemistry Laboratory
- University of Oxford
- Oxford
- UK
| | - Korbua Chaisiwamongkhol
- Department of Chemistry
- Physical & Theoretical Chemistry Laboratory
- University of Oxford
- Oxford
- UK
| | | | - Richard G. Compton
- Department of Chemistry
- Physical & Theoretical Chemistry Laboratory
- University of Oxford
- Oxford
- UK
| |
Collapse
|
40
|
Nucifora LG, Tanaka T, Hayes LN, Kim M, Lee BJ, Matsuda T, Nucifora Jr FC, Sedlak T, Mojtabai R, Eaton W, Sawa A. Reduction of plasma glutathione in psychosis associated with schizophrenia and bipolar disorder in translational psychiatry. Transl Psychiatry 2017; 7:e1215. [PMID: 28892069 PMCID: PMC5611744 DOI: 10.1038/tp.2017.178] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 01/13/2023] Open
Abstract
The establishment of mechanism-driven peripheral markers is important for translational psychiatry. Many groups, including ours, have addressed molecular alterations in peripheral tissues in association with symptomatic changes in major illnesses. Oxidative stress is implicated in the pathophysiology of schizophrenia (SZ) and bipolar disorder (BP) through studies of patient peripheral tissues and animal models. Although the relationship between peripheral changes and brain pathology remain elusive, oxidative stress may bridge such translational efforts. Nonetheless, the molecular substrates of oxidative stress are not well defined in mental conditions. Glutathione (GSH) is a non-enzymatic antioxidant that eliminates free radicals, and has been suggested to have a role in SZ. We performed a cross-sectional study of 48 healthy controls (CON), 52 SZ patients and 62 BP patients to compare the levels of peripheral GSH by a biochemical enzyme assay. We show a significant reduction of plasma GSH in both SZ and BP patients compared with CON. We evaluated possible influences of clinical characteristics on the level of GSH in SZ and BP. A decrease in GSH level correlated with Positive and Negative Syndrome Scale (PANSS) total and positive scores for SZ and correlated with the PANSS general for BP. Taken together, we provide evidence that SZ and BP display a common molecular signature in the reduction of peripheral GSH in the psychosis dimension.
Collapse
Affiliation(s)
- L G Nucifora
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - T Tanaka
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - L N Hayes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - M Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - B J Lee
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - T Matsuda
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - F C Nucifora Jr
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - T Sedlak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - R Mojtabai
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - W Eaton
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - A Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166A, Baltimore, MD 21287 USA. E-mail:
| |
Collapse
|
41
|
Decreased NOX2 expression in the brain of patients with bipolar disorder: association with valproic acid prescription and substance abuse. Transl Psychiatry 2017; 7:e1206. [PMID: 28809856 PMCID: PMC5611741 DOI: 10.1038/tp.2017.175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/05/2017] [Accepted: 06/13/2017] [Indexed: 12/19/2022] Open
Abstract
Neuroinflammation and increased oxidative stress are believed to contribute to the development of psychiatric diseases. Animal studies have implicated NADPH oxidases (NOX) as relevant sources of reactive oxygen species in the brain. We have analyzed the expression of NOX isoforms in post-mortem brain samples from patients with psychiatric disorders (schizophrenia, bipolar disorder) and non-psychiatric subjects. Two collections from the Stanley Medical Research Institute were studied: the Array Collection (RNA, 35 individuals per group), and a neuropathology consortium collection (paraffin-embedded sections, 15 individuals per group). Quantitative PCR analysis revealed expression of NOX2 and NOX4 in prefrontal cortex. No impact of psychiatric disease on NOX4 levels was detected. Remarkably, the expression of NOX2 was specifically decreased in prefrontal and cingulate cortices of bipolar patients, as compared with controls and schizophrenic patients. NOX2 expression was not statistically associated with demographic parameters and post-mortem interval, but correlated with brain pH. Immunostaining demonstrated that NOX2 was predominantly expressed in microglia, which was corroborated by a decrease in the microglial markers CD68 and CD11b in the cingulate cortex of bipolar disorder patients. The analysis of potentially confounding parameters showed association of valproic acid prescription and heavy substance abuse with lower levels of NOX2. Taken together, we did not observe changes of NOX2 in schizophrenic patients, but a marked decrease of microglial markers and NOX2 in the brain of bipolar patients. This might be an underlying feature of bipolar disorder and/or a consequence of valproic acid treatment and substance abuse.
Collapse
|
42
|
Data-Franco J, Singh A, Popovic D, Ashton M, Berk M, Vieta E, Figueira ML, Dean OM. Beyond the therapeutic shackles of the monoamines: New mechanisms in bipolar disorder biology. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:73-86. [PMID: 27616052 DOI: 10.1016/j.pnpbp.2016.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/31/2016] [Accepted: 09/06/2016] [Indexed: 02/08/2023]
Abstract
Multiple novel biological mechanisms putatively involved in the etiology of bipolar disorders are being explored. These include oxidative stress, altered glutamatergic neurotransmission, mitochondrial dysfunction, inflammation, cell signaling, apoptosis and impaired neurogenesis. Important clinical translational potential exists for such mechanisms to help underpin development of novel therapeutics - much needed given limitations of current therapies. These new mechanisms also help improve our understanding of how current therapeutics might exert their effects. Lithium, for example, appears to have antioxidant, immunomodulatory, signaling, anti-apoptotic and neuroprotective properties. Similar properties have been attributed to other mood stabilizers such as valproate, lamotrigine, and quetiapine. Perhaps of greatest translational value has been the recognition of such mechanisms leading to the emergence of novel therapeutics for bipolar disorders. These include the antioxidant N-acetylcysteine, the anti-inflammatory celecoxib, and ketamine - with effects on the glutamatergic system and microglial inhibition. We review these novel mechanisms and emerging therapeutics, and comment on next steps in this space.
Collapse
Affiliation(s)
- João Data-Franco
- Psychiatric Department, Hospital Beatriz Ângelo, Loures, Portugal; University of Lisbon, Faculty of Medicine, Lisbon, Portugal.
| | - Ajeet Singh
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, VIC, Australia
| | - Dina Popovic
- Bipolar Disorders Program, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain; Psychiatry Division, The Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Melanie Ashton
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, VIC, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, VIC, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia; Orygen Youth Health Research Centre, Parkville, VIC, Australia
| | - Eduard Vieta
- Bipolar Disorders Program, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - M L Figueira
- University of Lisbon, Faculty of Medicine, Lisbon, Portugal
| | - Olivia M Dean
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, VIC, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
43
|
Koizumi M, Kondo Y, Isaka A, Ishigami A, Suzuki E. Vitamin C impacts anxiety-like behavior and stress-induced anorexia relative to social environment in SMP30/GNL knockout mice. Nutr Res 2016; 36:1379-1391. [PMID: 27932080 DOI: 10.1016/j.nutres.2016.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/04/2016] [Accepted: 11/15/2016] [Indexed: 01/21/2023]
Abstract
The role of endogenous vitamin C (VC) in emotion and psychiatric measures has long been uncertain. We aimed to investigate how an individual's VC status impacts his or her mental health. Our hypothesis is that body VC levels modulate anxiety, anorexia, and depressive phenotypes under the influence of psychosocial rearing environments and sex. The VC status of senescence marker protein-30/gluconolactonase knockout mice, which lack the ability to synthesize VC, were continuously shifted from adequate (VC+) to depleted (VC-) by providing a water with or without VC. Despite weight loss in both sexes, suppressed feeding was specifically seen in males only during the VC- phase. Anxiety responses in the novelty-suppressed feeding paradigm were worse during the VC-, especially in females. Sensitivity to the forced swim test as determined by the initial latency was significantly shorter in the socially stable animals compared with socially unstable animals during the VC+ condition. The stress coping underlying depressive phenotypes was assessed by immobility duration in a series of forced swim tests. No significant differences were apparent between contrasting VC status. Homeostatic symptoms following stressful behavioral tests consisted of a great loss of appetite during the VC-. It should be noted that anorexia is extremely serious for the females. We conclude that endogenous VC status is critical for determining vulnerability to anxiety and anorexia in a sex-specific manner.
Collapse
Affiliation(s)
- Miwako Koizumi
- Department of Nutrition and Food Science, Ohanomizu University, 2-1-1 Ohtsuka, Bunkyo, Tokyo 112-8610, Japan.
| | - Yoshitaka Kondo
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan.
| | - Ayumi Isaka
- Department of Nutrition and Food Science, Ohanomizu University, 2-1-1 Ohtsuka, Bunkyo, Tokyo 112-8610, Japan.
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan.
| | - Emiko Suzuki
- Department of Nutrition and Food Science, Ohanomizu University, 2-1-1 Ohtsuka, Bunkyo, Tokyo 112-8610, Japan.
| |
Collapse
|
44
|
Cingi Yirün M, Ünal K, Altunsoy Şen N, Yirün O, Aydemir Ç, Göka E. Evaluation of Oxidative Stress in Bipolar Disorder in terms of Total Oxidant Status, Total Antioxidant Status, and Oxidative Stress Index. Noro Psikiyatr Ars 2016; 53:194-198. [PMID: 28373794 DOI: 10.5152/npa.2015.10123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/11/2015] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Bipolar disorder is one of the most debilitating psychiatric disorders characterized by disruptive episodes of mania/hypomania and depression. Considering the complex role of biological and environmental factors in the etiology of affective disorders, recent studies have focused on oxidative stress, which may damage nerve cell components and take part in pathophysiology. The aim of the present study was to contribute to the data about oxidative stress in bipolar disorder by detecting the total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels of manic episode (ME) and euthymic (EU) patients and by comparing these results with those of healthy controls (HCs). METHODS The study population consisted of 28 EU outpatients meeting the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria for bipolar disorder I and 23 inpatients who were currently hospitalized in a psychiatry ward with the diagnosis of the bipolar disorder ME according to the DSM-5 criteria. Forty-three healthy subjects were included in the study as the control group (HC). Serum TAS, TOS, and OSI levels of all the participants were determined. RESULTS Statistical analysis of serum TAS, TOS, and OSI levels did not show any significant differences between the ME patients, EU patients, and HCs. Comparison between the bipolar disorder patients (ME+EU) and HC also did not reveal any statistically significant difference between these two groups in terms of serum TAS, TOS, and OSI levels. CONCLUSION To date, studies on oxidative stress in bipolar disorder have led to controversial results. In the present study, no statistically significant difference was detected between the oxidative parameters of bipolar disorder patients and HCs. In order to comprehensively evaluate oxidative stress in bipolar disorder, further studies are needed.
Collapse
Affiliation(s)
- Merve Cingi Yirün
- Clinic of Psychiatry, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Kübranur Ünal
- Clinic of Biochemistry, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | | | - Onur Yirün
- Clinic of Psychiatry, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Çiğdem Aydemir
- Clinic of Psychiatry, Ankara Numune Training and Research Hospital, Ankara, Turkey
| | - Erol Göka
- Clinic of Psychiatry, Ankara Numune Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
45
|
Koga M, Serritella AV, Sawa A, Sedlak TW. Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res 2016; 176:52-71. [PMID: 26589391 DOI: 10.1016/j.schres.2015.06.022] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Abstract
Oxidative stress is a well-recognized participant in the pathophysiology of multiple brain disorders, particularly neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. While not a dementia, a wide body of evidence has also been accumulating for aberrant reactive oxygen species and inflammation in schizophrenia. Here we highlight roles for oxidative stress as a common mechanism by which varied genetic and epidemiologic risk factors impact upon neurodevelopmental processes that underlie the schizophrenia syndrome. While there is longstanding evidence that schizophrenia may not have a single causative lesion, a common pathway involving oxidative stress opens the possibility for intervention at susceptible phases.
Collapse
Affiliation(s)
- Minori Koga
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Anthony V Serritella
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA
| | - Thomas W Sedlak
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 3-166, Baltimore, MD 21287, USA.
| |
Collapse
|
46
|
Pósfai B, Cserép C, Hegedüs P, Szabadits E, Otte DM, Zimmer A, Watanabe M, Freund TF, Nyiri G. Synaptic and cellular changes induced by the schizophrenia susceptibility gene G72 are rescued by N-acetylcysteine treatment. Transl Psychiatry 2016; 6:e807. [PMID: 27163208 PMCID: PMC5070069 DOI: 10.1038/tp.2016.74] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/19/2016] [Accepted: 03/20/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic studies have linked the primate-specific gene locus G72 to the development of schizophrenia and bipolar disorder. Transgenic mice carrying the entire gene locus express G72 mRNA in dentate gyrus (DG) and entorhinal cortex, causing altered electrophysiological properties of their connections. These transgenic mice exhibit behavioral alterations related to psychiatric diseases, including cognitive deficits that can be reversed by treatment with N-acetylcysteine, which was also found to be effective in human patients. Here, we show that G72 transgenic mice have larger excitatory synapses with an increased amount of N-methyl-d-aspartate (NMDA) receptors in the molecular layer of DG, compared with wild-type littermates. Furthermore, transgenic animals have lower number of dentate granule cells with a parallel, but an even stronger decrease in the number of excitatory synapses in the molecular layer. Importantly, we also show that treatment with N-acetylcysteine can effectively normalize all these changes in transgenic animals, resulting in a state similar to wild-type mice. Our results show that G72 transcripts induce robust alterations in the glutamatergic system at the synaptic level that can be rescued with N-acetylcysteine treatment.
Collapse
Affiliation(s)
- B Pósfai
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - C Cserép
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - P Hegedüs
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - E Szabadits
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - D M Otte
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - A Zimmer
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - M Watanabe
- Department of Anatomy and Embryology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - T F Freund
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - G Nyiri
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
47
|
de Jesus JR, Pessôa GDS, Sussulini A, Martínez JLC, Arruda MAZ. Proteomics strategies for bipolar disorder evaluation: From sample preparation to validation. J Proteomics 2016; 145:187-196. [PMID: 27113133 DOI: 10.1016/j.jprot.2016.04.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 02/06/2023]
Abstract
Bipolar disorder (BD) is a complex and costly psychiatric disorder, which affects one hundred million people worldwide. Due to its heterogeneity, correct BD diagnosis is still a challenge. In order to overcome this issue, different bioanalytical strategies have been proposed in the literature recently. Among these strategies, proteomic approaches have arisen as some of the most promising in the area. Thus, recent applications suggest protein profiles to further refine the proteome of BD as well as the discovery of novel protein biomarkers to facilitate diagnostics. In this review, the state-of-art of proteomic research in BD is summarized. Furthermore, important aspects of proteomics for understanding of BD, such as sample type and size, sampling, sample preparation, gel-based and gel-free proteomics, proteomic quantitative and protein validation are overviewed.
Collapse
Affiliation(s)
- Jemmyson Romário de Jesus
- Spectrometry, Sample Preparation and Mechanization Group, GEPAM, University of Campinas (UNICAMP), Campinas, Brazil; National Institute of Science and Technology for Bioanalytics, University of Campinas (UNICAMP), Campinas, Brazil; UCIBIO-REQUIMTE, Chemistry Department, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Caparica, Portugal
| | - Gustavo de Souza Pessôa
- Spectrometry, Sample Preparation and Mechanization Group, GEPAM, University of Campinas (UNICAMP), Campinas, Brazil; National Institute of Science and Technology for Bioanalytics, University of Campinas (UNICAMP), Campinas, Brazil
| | - Alessandra Sussulini
- Spectrometry, Sample Preparation and Mechanization Group, GEPAM, University of Campinas (UNICAMP), Campinas, Brazil; National Institute of Science and Technology for Bioanalytics, University of Campinas (UNICAMP), Campinas, Brazil
| | - José Luis Capelo Martínez
- UCIBIO-REQUIMTE, Chemistry Department, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Caparica, Portugal; ProteoMass Scientific Society, MadanPark, Rua dos Inventores s/n, Monte de Caparica, Caparica, Portugal
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, GEPAM, University of Campinas (UNICAMP), Campinas, Brazil; National Institute of Science and Technology for Bioanalytics, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
48
|
Soeiro-de-Souza MG, Pastorello BF, Leite CDC, Henning A, Moreno RA, Garcia Otaduy MC. Dorsal Anterior Cingulate Lactate and Glutathione Levels in Euthymic Bipolar I Disorder: 1H-MRS Study. Int J Neuropsychopharmacol 2016; 19:pyw032. [PMID: 27207914 PMCID: PMC5006200 DOI: 10.1093/ijnp/pyw032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/01/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Oxidative stress and mitochondrial dysfunction are 2 closely integrated processes implicated in the physiopathology of bipolar disorder. Advanced proton magnetic resonance spectroscopy techniques enable the measurement of levels of lactate, the main marker of mitochondrial dysfunction, and glutathione, the predominant brain antioxidant. The objective of this study was to measure brain lactate and glutathione levels in bipolar disorder and healthy controls. METHODS Eighty-eight individuals (50 bipolar disorder and 38 healthy controls) underwent 3T proton magnetic resonance spectroscopy in the dorsal anterior cingulate cortex (2x2x4.5cm(3)) using a 2-D JPRESS sequence. Lactate and glutathione were quantified using the ProFit software program. RESULTS Bipolar disorder patients had higher dorsal anterior cingulate cortex lactate levels compared with controls. Glutathione levels did not differ between euthymic bipolar disorder and controls. There was a positive correlation between lactate and glutathione levels specific to bipolar disorder. No influence of medications on metabolites was observed. CONCLUSION This is the most extensive magnetic resonance spectroscopy study of lactate and glutathione in bipolar disorder to date, and results indicated that euthymic bipolar disorder patients had higher levels of lactate, which might be an indication of altered mitochondrial function. Moreover, lactate levels correlated with glutathione levels, indicating a compensatory mechanism regardless of bipolar disorder diagnosis.
Collapse
Affiliation(s)
- Márcio Gerhardt Soeiro-de-Souza
- Mood Disorders Unit (GRUDA), Institute of Psychiatry, School of Medicine (IPq-FMUSP) (Drs Soeiro-de-Souza and Moreno), Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology (InRad-FMUSP) (Drs Pastorello, Costa Leite, and Otaduy), and Genetics and Pharmacogenetics Unit (PROGENE), Institute of Psychiatry, School of Medicine (Dr Soeiro-de-Souza), University of São Paulo (IPq-FMUSP), São Paulo, Brazil; Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (Dr Henning); Max Planck Institute of Biological Cybernetics, Tubingen, Germany (Dr Henning).
| | | | | | | | | | | |
Collapse
|
49
|
Ngamchuea K, Batchelor-McAuley C, Cowen PJ, Williams C, Gonçalves LM, Compton RG. Can saliva testing replace blood measurements for health monitoring? Insights from a correlation study of salivary and whole blood glutathione in humans. Analyst 2016; 141:4707-12. [DOI: 10.1039/c6an01139j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The feasibility of using saliva samples as diagnostic for health status is assessed.
Collapse
Affiliation(s)
- Kamonwad Ngamchuea
- Department of Chemistry
- Physical & Theoretical Chemistry Laboratory
- Oxford University
- Oxford
- UK
| | | | | | | | - Luís Moreira Gonçalves
- Requimte/LAQV
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - Richard G. Compton
- Department of Chemistry
- Physical & Theoretical Chemistry Laboratory
- Oxford University
- Oxford
- UK
| |
Collapse
|
50
|
Queiroz AIG, de Araújo MM, da Silva Araújo T, de Souza GC, Cavalcante LM, de Jesus Souza Machado M, de Lucena DF, Quevedo J, Macêdo D. GBR 12909 administration as an animal model of bipolar mania: time course of behavioral, brain oxidative alterations and effect of mood stabilizing drugs. Metab Brain Dis 2015; 30:1207-15. [PMID: 26073232 DOI: 10.1007/s11011-015-9697-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/04/2015] [Indexed: 01/09/2023]
Abstract
Polymorphisms in the human dopamine transporter (DAT) are associated with bipolar endophenotype. Based on this, the acute inhibition of DAT using GBR12909 causes behavioral alterations that are prevented by valproate (VAL), being related to a mania-like model. Herein our first aim was to analyze behavioral and brain oxidative alterations during a 24 h period post-GBR12909 to better characterize this model. Our second aim was to determine the preventive effects of lithium (Li) or VAL 2 h post-GBR12909. For this, adult male mice received GBR12909 or saline being evaluated at 2, 4, 8, 12 or 24 h post-administration. Hyperlocomotion, levels of reduced glutathione (GSH) and lipid peroxidation in brain areas were assessed at all these time-points. GBR12909 caused hyperlocomotion at 2 and 24 h. Rearing behavior increased only at 2 h. GSH levels decreased in the hippocampus and striatum at the time points of 2, 4, 8 and 12 h. Increased lipid peroxidation was detected at the time-points of 2 and 12 h in all brain areas studied. At the time-point of 2 h post-GBR12909 Li prevented the hyperlocomotion and rearing alterations, while VAL prevented only rearing alterations. Both drugs prevented pro-oxidative changes. In conclusion, we observed that the main behavioral and oxidative alterations took place at the time-period of 2 h post-GBR12909, what points to this time-period as the best for the assessment of alterations in this model. Furthermore, the present study expands the predictive validity of the model by the determination of the preventive effects of Li.
Collapse
Affiliation(s)
- Ana Isabelle G Queiroz
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|