1
|
Qing W, Chen H, Ma X, Chen J, Le Y, Chen H, Tong J, Duan K, Ma D, Ouyang W, Tong J. Gut dysbiosis-induced vitamin B6 metabolic disorder contributes to chronic stress-related abnormal behaviors in a cortisol-independent manner. Gut Microbes 2025; 17:2447824. [PMID: 39773070 PMCID: PMC11730634 DOI: 10.1080/19490976.2024.2447824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Chronic stress can result in various conditions, including psychological disorders, neurodegenerative diseases, and accelerated brain aging. Gut dysbiosis potentially contributes to stress-related brain disorders in individuals with chronic stress. However, the causal relationship and key factors between gut dysbiosis and brain disorders in chronic stress remain elusive, particularly under non-sterile conditions. Here, using a repeated restraint stress (RRS) rat model, we show that sequential transplantation of the cecal contents of different RRS stages to normal rats reproduced RRS-induced core phenotypes, including abnormal behaviors, increased peripheral blood corticosterone and inflammatory cytokines, and a unique gut microbial phenotype. This core phenotypic development was effectively inhibited with probiotic supplement. The RRS-induced unique gut microbial phenotypes at the genus level were positively or negatively associated with the levels of 20 plasma metabolites, including vitamin B6 metabolites 4-pyridoxic acid and 4-pyridoxate. Vitamin B6 supplement during RRS alleviated weight loss, abnormal behaviors, peripheral inflammation, and neuroinflammation, but did not affect the peripheral corticosterone levels in chronic stressed rats. Dampening inflammatory signaling via knocking out caspase 11 or caspase 1 inhibitor abolished RRS-induced abnormal behaviors and peripheral and neuroinflammation but did not decrease peripheral corticosterone in mice. These findings show that gut dysbiosis-induced vitamin B6 metabolism disorder is a new non-hypothalamic-pituitary-adrenal axis mechanism of chronic stress-related brain disorders. Both probiotics and vitamin B6 supplement have potential to be developed as therapeutic strategies for preventing and/or treating chronic stress-related illness.
Collapse
Affiliation(s)
- Wenxiang Qing
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, China
| | - Huimin Chen
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, China
- Department of Anesthesiology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Xishan District, Kunming, Yunnan, China
| | - Xin Ma
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jie Chen
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Le
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hui Chen
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Kaiming Duan
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Wen Ouyang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianbin Tong
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Su C, Huang T, Zhang M, Zhang Y, Zeng Y, Chen X. Glucocorticoid receptor signaling in the brain and its involvement in cognitive function. Neural Regen Res 2025; 20:2520-2537. [PMID: 39248182 PMCID: PMC11801288 DOI: 10.4103/nrr.nrr-d-24-00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 07/06/2024] [Indexed: 09/10/2024] Open
Abstract
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucocorticoids in response to environmental challenges. In the brain, a nuclear receptor transcription factor, the glucocorticoid receptor, is an important component of the hypothalamic-pituitary-adrenal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity. The glucocorticoid receptor influences cognitive processes, including glutamate neurotransmission, calcium signaling, and the activation of brain-derived neurotrophic factor-mediated pathways, through a combination of genomic and non-genomic mechanisms. Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor, thereby affecting the hypothalamic-pituitary-adrenal axis and stress-related cognitive functions. An appropriate level of glucocorticoid receptor expression can improve cognitive function, while excessive glucocorticoid receptors or long-term exposure to glucocorticoids may lead to cognitive impairment. Patients with cognitive impairment-associated diseases, such as Alzheimer's disease, aging, depression, Parkinson's disease, Huntington's disease, stroke, and addiction, often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression. This review provides a comprehensive overview of the functions of the glucocorticoid receptor in the hypothalamic-pituitary-adrenal axis and cognitive activities. It emphasizes that appropriate glucocorticoid receptor signaling facilitates learning and memory, while its dysregulation can lead to cognitive impairment. This provides clues about how glucocorticoid receptor signaling can be targeted to overcome cognitive disability-related disorders.
Collapse
Affiliation(s)
- Chonglin Su
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Taiqi Huang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Meiyu Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanyu Zhang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
3
|
Chauhan R, Mohan M, Mannan A, Devi S, Singh TG. Unravelling the role of Interleukin-12 in Neuroinflammatory mechanisms: Pathogenic pathways linking Neuroinflammation to neuropsychiatric disorders. Int Immunopharmacol 2025; 156:114654. [PMID: 40294470 DOI: 10.1016/j.intimp.2025.114654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
Neuropsychiatric disorders are clinically characterized conditions involving both neurology and psychiatry, arising from dysfunctioning of cerebral function, or indirect effects of extra cerebral disease. Neuropsychiatric disorders tend to influence emotions, mood, and brain functioning. Growing evidence indicates that the etiology of these disorders is not confined to neuronal abnormalities but extends to include inflammation. While the underlying mechanism of these disorders is still in its infancy, recent data highlights the significant role of neuroinflammation in their pathophysiology. Neuroinflammation concerns the inflammation within the neural tissue characterized by alteration in astrocytes, cytokines, microglia, and chemokines within the central nervous system. The cytokines include IFN-γ, IL-1β, IL-2, IL4, IL-6, IL-8, IL-10, and IL-12. This review focuses on interleukin-12 (IL-12), a key mediator of neuroinflammation, and its potential involvement in neuropsychiatric disorders. IL-12 promotes neuroinflammation and influences neurotransmitter systems. Additionally, it also affects the HPA axis, impairs neuroplasticity, and activates microglia by interacting with TLR, JAK-STAT, PI3K/Akt, GSK-3, NMDA, MAPK, PKC, VEGFR, ROCK, and Wnt signaling pathways and elicit its role in ND. In this review, we dwell on the current evidence supporting IL-12's pathogenic role and explore the possible mechanisms by which it contributes to the development and progression of these conditions. This review aims to provide insights that may aid in future therapeutic strategies by illuminating the interplay between neuroinflammation and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rupali Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
4
|
Song L, Li S, Zhao Q, Zhang W, Sun X, Niu L, Bai Y. Zhi-Zi-Chi decoction ameliorates depression-like behavior in chronic unpredictable mild stress-induced mice via the PI3K/AKT/mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025:119987. [PMID: 40403895 DOI: 10.1016/j.jep.2025.119987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/14/2025] [Accepted: 05/16/2025] [Indexed: 05/24/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhi-Zi-Chi decoction (ZZCD), a famous classical prescription of traditional Chinese medicine (TCM), has long been used for depression treatment, but its detailed molecular anti-depression mechanisms remain to be further elucidated. AIM OF THE STUDY To explore the antidepressant properties and potential mechanisms of ZZCD in ameliorating depression-like behavior through network pharmacology and in vivo experimental validation. MATERIALS AND METHODS A chronic unpredictable mild stress (CUMS)-induced mouse depressive model was established in this present study. The sucrose preference test (SPT) and tail suspension test (TST) were performed to assess the antidepressant effects of ZZCD. In addition, the underlying molecular mechanisms of ZZCD against depression were dissected using an integrated network pharmacology approach, and these predicted results were verified in a mouse depressive model. Subsequently, the levels of inflammatory cytokines, neurotransmitters, genes or proteins associated with potential targets as well as the related proteins of the PI3K/AKT/mTOR signaling pathways were measured using ELISA kits, RT-qPCR, and western blot. RESULTS ZZCD effectively ameliorated CUMS-induced depressive behavior of mice. Treatments with ZZCD at doses of 3 and 6 g/kg obviously improved the sucrose preference rate in the SPT and attenuated the accumulated immobility time in the TST of CUMS mice. This was accompanied by a decrease in inflammatory factor levels and restoration of the 5-hydroxytryptamine (5-HT) levels in the hippocampi. The network informatics results revealed that the PI3K/AKT/mTOR signaling pathway, AKT1, TNF-α, and IL-6 might be the potential targets of ZZCD against depression. Correspondingly, an in vivo experiment verified that treatment with ZZCD up-regulated the protein expression levels of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR related to the PI3K/AKT/mTOR pathway and reversed the mRNA expression levels of IL-6, TNF-α, and AKT1 in the hippocampi. CONCLUSION Our research suggested that ZZCD had antidepressant effects in CUMS-induced depressive mice. The mechanisms underlying the effects of ZZCD against depression were associated with the modulation of inflammatory factor levels as well as related genes or protein expression of the PI3K/AKT/mTOR pathway. Accordingly, ZZCD might serve as a clinically promising TCM prescription for depression treatment.
Collapse
Affiliation(s)
- Lihua Song
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Shuolei Li
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China; Phase I Clinical Research Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Quan Zhao
- Department of Pharmacy, Changzhou Hospital of Traditional Chinese Medicine, Changzhou 213000,China.
| | - Weidong Zhang
- Department of Pharmacy, Changzhou Hospital of Traditional Chinese Medicine, Changzhou 213000,China.
| | - Xianfu Sun
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Lianjie Niu
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Yongtao Bai
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China; Phase I Clinical Research Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|
5
|
Chauhan R, Dande S, Hood DB, Chirwa SS, Langston MA, Grady SK, Dojcsak L, Tabatabai M, Wilus D, Valdez RB, Al-Hamdan MZ, Im W, McCallister M, Alcendor DJ, Mouton CP, Ramesh A. Particulate matter 2.5 (PM 2.5) - associated cognitive impairment and morbidity in humans and animal models: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:233-263. [PMID: 39827081 DOI: 10.1080/10937404.2025.2450354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) is one of the criteria air pollutants that (1) serve as an essential carrier of airborne toxicants arising from combustion-related events including emissions from industries, automobiles, and wildfires and (2) play an important role in transient to long-lasting cognitive dysfunction as well as several other neurological disorders. A systematic review was conducted to address differences in study design and various biochemical and molecular markers employed to elucidate neurological disorders in PM2.5 -exposed humans and animal models. Out of 340,068 scientific publications screened from 7 databases, 312 studies were identified that targeted the relationship between exposure to PM2.5 and cognitive dysfunction. Equivocal evidence was identified from pre-clinical (animal model) and human studies that PM2.5 exposure contributes to dementia, Parkinson disease, multiple sclerosis, stroke, depression, autism spectrum disorder, attention deficit hyperactivity disorder, and neurodevelopment. In addition, there was substantial evidence from human studies that PM2.5 also was associated with Alzheimer's disease, anxiety, neuropathy, and brain tumors. The role of exposome in characterizing neurobehavioral anomalies and opportunities available to leverage the neuroexposome initiative for conducting longitudinal studies is discussed. Our review also provided some areas that warrant consideration, one of which is unraveling the role of microbiome, and the other role of climate change in PM2.5 exposure-induced neurological disorders.
Collapse
Affiliation(s)
- Ritu Chauhan
- Department of Biochemistry, Cancer Biology, Neuroscience & Toxicology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Susmitha Dande
- Department of Family and Community Medicine, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Darryl B Hood
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Sanika S Chirwa
- Department of Biochemistry, Cancer Biology, Neuroscience & Toxicology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Michael A Langston
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Stephen K Grady
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Levente Dojcsak
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Mohammad Tabatabai
- Department of Public Health, School of Global Health, Meharry Medical College, Nashville, TN, USA
| | - Derek Wilus
- Department of Public Health, School of Global Health, Meharry Medical College, Nashville, TN, USA
| | - R Burciaga Valdez
- Agency for Healthcare Research and Quality, Department of Health and Human Services, Washington, DC, USA
| | - Mohammad Z Al-Hamdan
- National Center for Computational Hydroscience and Engineering (NCCHE) and Department of Civil Engineering and Department of Geology and Geological Engineering, School of Engineering, University of Mississippi, Oxford, MS, USA
| | - Wansoo Im
- Department of Public Health, School of Global Health, Meharry Medical College, Nashville, TN, USA
| | - Monique McCallister
- Department of Biological Sciences, College of Life & Physical Sciences, Tennessee State University, Nashville, TN, USA
| | - Donald J Alcendor
- Department of Microbiology, Immunology and Physiology, Center for AIDS Health Disparities Research, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Charles P Mouton
- Department of Family Medicine, John Sealy School of Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience & Toxicology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
6
|
Xu L, Cao Y, Zhang S, Du L, Wang W, Liu J, Wang D, Zhao D, Cui M, Jiang S, Qin G, Meng F, Zhang M, Li C. Sirtuin 1 underlies depression-related behaviors by modulating the serotonin system in the dorsal raphe nucleus in female mice. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111400. [PMID: 40374143 DOI: 10.1016/j.pnpbp.2025.111400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/08/2025] [Accepted: 05/10/2025] [Indexed: 05/17/2025]
Abstract
Major depressive disorder (MDD) is a primary driver of disability and greatly escalates the worldwide disease burden. Sirtuin 1 (Sirt1), a key regulator of cellular metabolism, is associated with genetic variations in MDD. We investigated how Sirt1 in serotonin (5-HT) neurons within the dorsal raphe nucleus (DRN) in mice affected behaviors associated with depression and susceptibility to stress. Our findings revealed that Sirt1 expression in the DRN was decreased when chronic unpredictable stress was induced in depressed female mice. Additionally, Sirt1 was co-localized with 5-HT neurons within the DRN, and its selective ablation in these neurons have induced depressive phenotypes in female mice but not in males. Adeno-associated virus-mediated knockdown of Sirt1 in adult female mice induced depressive behaviors, whereas Sirt1 overexpression eliminated these behaviors. Moreover, fiber-optic recordings showed a decrease in the neural excitability of 5-HT neurons and 5-HT levels in the DRN after Sirt1 knockdown. Furthermore, we observed that Sirt1 knockdown reduced the expression of tryptophan hydroxylase-2 (Tph2) and phosphorylation levels of extracellular signal-regulated kinase (ERK) and CAMP response element binding protein (CREB). Finally, variable molecular targets regarding immune responses and cytokine productions after Sirt1 knockdown were analyzed via high-throughput RNA-seq analysis of specimens from the DRN. The findings of this study emphasize the importance of Sirt1 for regulating depression-related behaviors in female mice by influencing the activity of 5-HT neurons in the DRN.
Collapse
Affiliation(s)
- Lihong Xu
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Yifan Cao
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Shasha Zhang
- Health Examination Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Lin Du
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Wentao Wang
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Jing Liu
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Dan Wang
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Di Zhao
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Minghu Cui
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Shujun Jiang
- Department of Physiology, Binzhou Medical University, Shandong 264003, China
| | - Gaofeng Qin
- Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China
| | - Fantao Meng
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China.
| | - Mengdi Zhang
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China.
| | - Chen Li
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China; Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong 256603, China.
| |
Collapse
|
7
|
Lin Z, Xu X, Zhang K, Wang T, Cao L, Wang Z, Wang G. Correlations between major depressive disorder, splenic morphology, and immune function. BMC Psychiatry 2025; 25:477. [PMID: 40355817 PMCID: PMC12070695 DOI: 10.1186/s12888-025-06853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
To analyze the symptoms, courses, and severities of depressive disorder, as well as the morphological changes in the spleens and related immune mechanisms, we recruited patients with first-episode or recurrent major depressive disorder (MDD) (patient group) and healthy controls (normal group) matched in age and gender. We measured their plasma MICB (pg/ml), ULBP1 (ng/ml), and splenic volume (cm3) at baseline. The patient group was randomly assigned to receive (S)-ketamine (study group) or saline (control group), and the above indices were collected again on the 4th weekend after administration. At baseline, both MICB and splenic volume were significantly higher in the patient group than in the normal group. A positive correlation was observed between MICB and splenic volume in the patient group. After (S)-ketamine administration, the elevated splenic volume and MICB levels decreased. These results suggest that the pathogenesis of MDD may involve abnormal MICB expression and splenic morphology. (S)-ketamine may ameliorate inflammation and enhance splenic function, thereby relieving MDD symptoms.
Collapse
Affiliation(s)
- Zouqing Lin
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, 214151, China.
| | - Xiaoyan Xu
- Wuxi Affiliated Hospital of Nanjing, University of Chinese Medicine, Wuxi, China
| | - Kai Zhang
- Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Tenglong Wang
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, 214151, China
| | - Leiming Cao
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, 214151, China
| | - Zhiqiang Wang
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, 214151, China
| | - Guoqiang Wang
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, 214151, China.
| |
Collapse
|
8
|
Yao C, Zeng X, Zhang S, Xiao B, Sun P, Kong L, Tao J, Fang M. Acupoint massage: a comprehensive descriptive review of its forms, applications, and underlying mechanisms. Chin Med 2025; 20:54. [PMID: 40270014 PMCID: PMC12020265 DOI: 10.1186/s13020-025-01105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 04/07/2025] [Indexed: 04/25/2025] Open
Abstract
Acupoint massage is a non-invasive traditional therapy that has demonstrated reliable clinical outcomes in pain management, mental health relief, sleep disorder regulation, gastrointestinal treatment, and as an adjunct therapy for cancer. Its convenience and cost-effectiveness further enhance its appeal. However, the existing English literature lacks a systematic review that encompasses the various forms of acupoint massage. The acupoint massage forms adaptability is particularly notable when considering the diverse conditions, it addresses, as well as its applicability across different age groups and gender differences. Providing a comprehensive understanding, it is crucial to outline common practices and explore specific applications in key areas. The comprehensive understanding can create opportunities for effective collaboration between preclinical and clinical studies. Defining and categorizing different forms of acupoint massage is essential, alongside investigating the neural circuits involved in touch sensation. Future efforts should enhance collaboration with modern biology, facilitating the transition from empirical to evidence-based practice. This review summarizes forms, applications, and mechanisms of mainstream acupoint massage and provides insights for future research and applications, promoting deeper integration into healthcare.
Collapse
Affiliation(s)
- Chongjie Yao
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Xinyu Zeng
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Shuaipan Zhang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Bin Xiao
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Pingping Sun
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Lingjun Kong
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jiming Tao
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
| | - Min Fang
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, People's Republic of China.
| |
Collapse
|
9
|
Xu S, Fang L, Cai J, Fang S, Zhu H, Lin F, Cai X. Design and discovery of novel heteroaryl substituted pregnenolone derivatives as potent anti-neuroinflammatory agents targeting LPS-stimulated BV-2 microglial cells. Steroids 2025; 216:109588. [PMID: 40024462 DOI: 10.1016/j.steroids.2025.109588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
A new family of steroidal compounds based on a heteroaryl-4,5-dihydropyrazole thiazolinone core structure was designed and synthesized through structural modifications. The anti-neuroinflammatory activity of these compounds was evaluated in lipopolysaccharide (LPS)-stimulated murine microglial BV-2 cells in vitro. Among the synthesized compounds, 10b and 10d effectively inhibited nitric oxide (NO) production, with compound 10b emerging as the most potent anti-neuroinflammatory agent (IC50 = 2.05 μM). Compound 10b demonstrated significantly greater inhibitory effects than progesterone (prog) (IC50 = 3.23 μM) and reduced NO production in a concentration-dependent manner. Furthermore, compound 10b attenuated the release of pro-inflammatory mediators, including tumour necrosis factor (TNF)-α, interleukin-1β (IL-1β), interleukin-6 (IL-6), and prostaglandin E2 (PGE2). It also inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Mechanistic studies revealed that compound 10b significantly suppressed the transcriptional activity of nuclear factor kappa B (NF-κB) in activated microglial cells and prevented NF-κB p65 activation and IκBα degradation. These effects were likely mediated by the inhibition of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) signaling pathways. Additionally, molecular docking studies suggested that the anti-neuroinflammatory effects of compound 10b may result from its hydrophobic and hydrophilic interactions with iNOS and COX-2, supporting its proposed mechanism of action. In summary, these findings suggest that compound 10b exerts anti-neuroinflammatory effects in LPS-stimulated BV-2 microglial cells by modulating key inflammatory pathways, including NF-κB and MAPK signaling.
Collapse
Affiliation(s)
- Siqi Xu
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041 Guangdong, China
| | - Ling Fang
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041 Guangdong, China
| | - Jianfeng Cai
- Department of Interventional Therapy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041 Guangdong, China
| | - Shuopo Fang
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041 Guangdong, China
| | - Huide Zhu
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041 Guangdong, China
| | - Fei Lin
- Department of Pharmacy Intravenous Admixture Services (PIVAS), The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041 Guangdong, China.
| | - Xiaorui Cai
- Department of Pharmacy, The Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041 Guangdong, China.
| |
Collapse
|
10
|
Sălcudean A, Bodo CR, Popovici RA, Cozma MM, Păcurar M, Crăciun RE, Crisan AI, Enatescu VR, Marinescu I, Cimpian DM, Nan AG, Sasu AB, Anculia RC, Strete EG. Neuroinflammation-A Crucial Factor in the Pathophysiology of Depression-A Comprehensive Review. Biomolecules 2025; 15:502. [PMID: 40305200 PMCID: PMC12024626 DOI: 10.3390/biom15040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Depression is a multifactorial psychiatric condition with complex pathophysiology, increasingly linked to neuroinflammatory processes. The present review explores the role of neuroinflammation in depression, focusing on glial cell activation, cytokine signaling, blood-brain barrier dysfunction, and disruptions in neurotransmitter systems. The article highlights how inflammatory mediators influence brain regions implicated in mood regulation, such as the hippocampus, amygdala, and prefrontal cortex. The review further discusses the involvement of the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, and the kynurenine pathway, providing mechanistic insights into how chronic inflammation may underlie emotional and cognitive symptoms of depression. The bidirectional relationship between inflammation and depressive symptoms is emphasized, along with the role of peripheral immune responses and systemic stress. By integrating molecular, cellular, and neuroendocrine perspectives, this review supports the growing field of immunopsychiatry and lays the foundation for novel diagnostic biomarkers and anti-inflammatory treatment approaches in depression. Further research in this field holds promise for developing more effective and personalized interventions for individuals suffering from depression.
Collapse
Affiliation(s)
- Andreea Sălcudean
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania; (A.S.); (M.-M.C.); (D.-M.C.)
| | - Cristina-Raluca Bodo
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania; (A.S.); (M.-M.C.); (D.-M.C.)
| | - Ramona-Amina Popovici
- Department of Management and Communication in Dental Medicine, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy of Timisoara, 9 Revolutiei 1989 Bv., 300070 Timisoara, Romania
| | - Maria-Melania Cozma
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania; (A.S.); (M.-M.C.); (D.-M.C.)
| | - Mariana Păcurar
- Orthodontic Department, Faculty of Dental Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mures, Romania;
| | | | - Andrada-Ioana Crisan
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania;
| | - Virgil-Radu Enatescu
- Department of Psychiatry, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy of Timisoara, 300041 Timisoara, Romania;
| | - Ileana Marinescu
- Discipline of Psychiatry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Dora-Mihaela Cimpian
- Department of Ethics and Social Sciences, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania; (A.S.); (M.-M.C.); (D.-M.C.)
| | - Andreea-Georgiana Nan
- First Department of Psychiatry, Clinical County Hospital of Targu Mures, 540142 Târgu Mureș, Romania; (A.-G.N.); (A.-B.S.)
| | - Andreea-Bianca Sasu
- First Department of Psychiatry, Clinical County Hospital of Targu Mures, 540142 Târgu Mureș, Romania; (A.-G.N.); (A.-B.S.)
| | - Ramona-Camelia Anculia
- Discipline of Occupational Medicine, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy of Timisoara, 300041 Timișoara, Romania;
| | - Elena-Gabriela Strete
- Department of Psychiatry, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania;
| |
Collapse
|
11
|
He Y, Liu H, Ren M, Sun G, Ma Y, Cai M, Wang R, Wang L, Zhang T, Zhang Y. Brain injury, endocrine disruption, and immune dysregulation in HIV-positive men who have sex with men with late HIV diagnosis. Front Immunol 2025; 16:1436589. [PMID: 40176812 PMCID: PMC11961418 DOI: 10.3389/fimmu.2025.1436589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/28/2025] [Indexed: 04/04/2025] Open
Abstract
Background In the realm of public health, late human immunodeficiency virus (HIV) diagnosis remains prevalent and is associated with neuropsychiatric adverse events. However, there is limited documentation regarding the impact of late HIV diagnosis (LD) on brain integrity, neurotrophic factors, endocrine function, and immunity in HIV-positive men who have sex with men (MSM). Methods Participants (38 LD and 34 non-LD of MSM) underwent comprehensive infectious disease and psychiatric assessments, multimodal magnetic resonance imaging (MRI) scans, neurotrophic factors, endocrine, and immunological evaluations. Immune cell levels, along with peripheral plasma concentrations of neurotrophic factors and hormones, were measured using enzyme-linked immunosorbent assays and flow cytometry, respectively. T1-weighted images along with resting-state functional MRI were applied to assess brain function and structure while also examining correlations between imaging alterations and clinical as well as peripheral blood variables. The data for this study originated from a subset of the cohort in HIV-associated neuropsychiatric disorders research. Results Compared to participants in the non-LD group, those in the LD group showed a lower total gray matter volume (GMV), with reduced GMV primarily observed in the left supramarginal gyrus. Participants in the LD group exhibited differences in brain function with certain regions and decreased functional connectivity between these altered regions and connected structures. A two-way factorial analysis of variance examining the main effects and interactions between groups and neuropsychiatric disorders revealed significant main effects of LD on specific brain regions. Furthermore, we found that individuals in the LD group had higher levels of cortisol, a lower frequency of central memory T cells, and elevated expression levels of perforin in double-negative T cells. These imaging findings were significantly correlated with endocrine, immune, and clinical variables. Conclusion This study suggests that LD may contribute to brain injury, endocrine disruption, and immune dysregulation in HIV-positive MSM. Consequently, there is an urgent need to develop public health strategies targeting late diagnosis, with a focus on strengthening screening and early detection for high-risk populations, as well as monitoring brain injury, endocrine, and immune functions in individuals with LD, and formulating precise, individualized intervention strategies to reduce the long-term impact of LD on the health of HIV-positive MSM.
Collapse
Affiliation(s)
- Yihui He
- Postgraduate Union Training Base of Jinzhou Medical University, PLA Rocket Force Characteristic Medical Center, Beijing, China
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Hao Liu
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Meixin Ren
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Gaungqiang Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yundong Ma
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Miaotian Cai
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Rui Wang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Lei Wang
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Tong Zhang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| | - Yang Zhang
- Center for Infectious Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing Institute for Sexually Transmitted Disease Control, Beijing, China
| |
Collapse
|
12
|
Ferreira FB, Kaufmann FN, Bastos CR, Xavier J, Aniszewski S, Molina ML, Lara DR, Jansen K, da Silva RA, Souza LDDM, Kaster MP, Ghisleni G. The gain-of-function variant in the NLRP3 gene predicts the effectiveness of brief psychotherapy but not the risk of major depression. Behav Brain Res 2025; 481:115413. [PMID: 39742924 DOI: 10.1016/j.bbr.2024.115413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric condition whose pathophysiology has been linked to neuroinflammatory processes involving the NLRP3 inflammasome. To address this point, the study investigated the association of the NLRP3 rs10754558 polymorphism with MDD diagnosis in a young adults population based study and the effectiveness of brief psychotherapies in a randomized clinical trial. A cross-sectional, population-based study was conducted with 1100 individuals aged 18-35 years, including 615 controls and 485 patients with MDD. Diagnosis was determined using the Mini International Neuropsychiatric Interview (M.I.N.I.) based on DSM-IV criteria. Our clinical trial included 227 participants with MDD aged 18-60 years from a randomized clinical trial evaluating the effectiveness of two brief psychotherapies for MDD. Depressive and anxiety symptoms were assessed at baseline, post-treatment (16-18 weeks), and 6-month follow-up using the Beck Depression Inventory-II (BDI-II) and the Beck Anxiety Inventory (BAI). Statistical analyses included logistic regression and generalized estimating equation (GEE) model adjusted for demographic and clinical variables. The results showed no significant association between rs10754558 genotypes and MDD diagnosis. However, when evaluating the efficacy of brief psychotherapies, the GG genotype was associated with poorer treatment outcomes for both depressive and anxiety symptoms compared to the GC/CC genotypes (p < 0.05). Longitudinal analysis revealed significant differences over time, with GG individuals demonstrating less symptom improvement (BDI-II: baseline 36.61 to follow-up 21.75; BAI: baseline 26.32 to follow-up 19.55) compared to GC/CC genotypes (BDI-II: baseline 32.05 to follow-up 20.29; BAI: baseline 22.05 to follow-up 17.96). These findings suggest that the GG genotype, previously characterized as a gain-of-function variant, may contribute to genetic heterogeneity influencing psychotherapy outcomes. This highlights the potential for genetic markers, such as rs10754558, to inform personalized psychiatric treatments and improve therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Clarissa Ribeiro Bastos
- Center of Health Sciences, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| | - Janaína Xavier
- Center of Health Sciences, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| | - Stephanie Aniszewski
- Center of Health Sciences, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| | - Mariane Lopez Molina
- Anhanguera Educational College of Rio Grande, Rio Grande, Rio Grande do Sul, Brazil.
| | - Diogo Rizzato Lara
- Department of Cellular and Molecular Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Karen Jansen
- Center of Health Sciences, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| | | | | | - Manuella Pinto Kaster
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| | - Gabriele Ghisleni
- Center of Health Sciences, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
13
|
Saad HA, Marzouk M, Abdelrahman H, Moradikor N. Mechanisms underlying stress effects on the brain: Basic concepts and clinical implications. PROGRESS IN BRAIN RESEARCH 2025; 291:21-47. [PMID: 40222781 DOI: 10.1016/bs.pbr.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Chronic stress impacts the brain through complex physiological, neurological, and immunological responses. The stress response involves the activation of the sympathetic-adrenal-medullary (SAM) system and the hypothalamic-pituitary-adrenal (HPA) axis, releasing stress hormones like norepinephrine and cortisol. While these responses are adaptive short-term, chronic stress disrupts homeostasis, increasing the risk of cardiovascular diseases, neurodegenerative disorders, and psychiatric conditions such as depression. This dysregulation is linked to persistent neuroinflammation, oxidative stress, and neurotransmitter imbalances involving dopamine and serotonin, impairing neuroplasticity and leading to structural changes in critical brain areas, such as the hippocampus and prefrontal cortex. Moreover, stress affects gene expression, particularly neuroinflammatory pathways, contributing to long-term cognitive function and emotional regulation alterations. Advancements in neuroimaging and molecular techniques, including MRI, PET, and SPECT, hold promise for identifying biomarkers and better understanding stress-induced brain changes. These insights are critical for developing targeted interventions to mitigate the adverse effects of chronic stress on brain health.
Collapse
Affiliation(s)
- Hager Adel Saad
- Faculty of Pharmacy and Biotechnology, German University in Cairo, (GUC), New Cairo, Cairo, Egypt.
| | - Mahmoud Marzouk
- Faculty of Pharmacy and Biotechnology, German University in Cairo, (GUC), New Cairo, Cairo, Egypt
| | - Hla Abdelrahman
- Faculty of Pharmacy and Biotechnology, German University in Cairo, (GUC), New Cairo, Cairo, Egypt
| | - Nasrollah Moradikor
- International Center for Neuroscience Research, Institute for Intelligent Research, Tbilisi, Georgia
| |
Collapse
|
14
|
Tang L, Tang R, Zheng J, Zhao P, Zhu R, Tang Y, Zhang X, Gong X, Wang F. Dissecting biological heterogeneity in major depressive disorder based on neuroimaging subtypes with multi-omics data. Transl Psychiatry 2025; 15:72. [PMID: 40032862 PMCID: PMC11876359 DOI: 10.1038/s41398-025-03286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/22/2024] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
The heterogeneity of Major Depressive Disorder (MDD) has been increasingly recognized, challenging traditional symptom-based diagnostics and the development of mechanism-targeted therapies. This study aims to identify neuroimaging-based MDD subtypes and dissect their predominant biological characteristics using multi-omics data. A total of 807 participants were included in this study, comprising 327 individuals with MDD and 480 healthy controls (HC). The amplitude of low-frequency fluctuations (ALFF), a functional neuroimaging feature, was extracted for each participant and used to identify MDD subtypes through machine learning clustering. Multi-omics data, including profiles of genetic, epigenetics, metabolomics, and pro-inflammatory cytokines, were obtained. Comparative analyses of multi-omics data were conducted between each MDD subtype and HC to explore the molecular underpinnings involved in each subtype. We identified three neuroimaging-based MDD subtypes, each characterized by unique ALFF pattern alterations compared to HC. Multi-omics analysis showed a strong genetic predisposition for Subtype 1, primarily enriched in neuronal development and synaptic regulation pathways. This subtype also exhibited the most severe depressive symptoms and cognitive decline compared to the other subtypes. Subtype 2 is characterized by immuno-inflammation dysregulation, supported by elevated IL-1 beta levels, altered epigenetic inflammatory measures, and differential metabolites correlated with IL-1 beta levels. No significant biological markers were identified for Subtype 3. Our results identify neuroimaging-based MDD subtypes and delineate the distinct biological features of each subtype. This provides a proof of concept for mechanism-targeted therapy in MDD, highlighting the importance of personalized treatment approaches based on neurobiological and molecular profiles.
Collapse
Affiliation(s)
- Lili Tang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Rui Tang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Pengfei Zhao
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Rongxin Zhu
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China
| | - Yanqing Tang
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Xizhe Zhang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China.
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering, MOE key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China.
- Department of Psychiatry, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
15
|
Egebjerg C, Kolmos MG, Ojeda AV, Breum AW, Frokjaer V, Kornum BR. Disturbing sleep in female adolescent mice does not increase vulnerability to depression triggers later in life. Brain Behav Immun 2025; 125:9-20. [PMID: 39675644 DOI: 10.1016/j.bbi.2024.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/03/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024] Open
Abstract
Poor sleep quality is a major issue for many adolescents and is associated with fatigue, poor academic performance, and depression. Adolescence is a crucial neurodevelopmental stage where multiple neuropsychiatric illnesses often emerge, suggesting increased central nervous system vulnerability, specifically at this age, which could be exacerbated by poor sleep. Studies on adolescent mice show that sleep deprivation or sleep disturbance (SD) induces structural and functional brain changes, indicating that SD affects the adolescent brain. The long-term consequences of such changes are poorly understood. We hypothesize that SD during adolescence increases vulnerability to future depression triggers in adulthood, such as social isolation or inflammation. To test this, female adolescent mice (post-natal day (P)36) were subjected to SD for seven days, 4 h per day during the light phase (zeitgeber time 2-6). We demonstrate that this SD protocol acutely leads to changes in the expression of Cx3Cr1, and Dnmt3b in the hippocampus and of Htr1a in the prefrontal cortex. To examine the long-term consequences of the SD protocol during adulthood (P77-84), the mice were then either exposed to single housing or received a single injection of lipopolysaccharide (LPS) to mimic known triggers of depression. Behavioral changes were examined using digital ventilated cages to track home-cage activity and the open field and tail suspension tests to assess anxiety- and despair-like behavior, respectively. In contrast to our hypothesis, we did not observe any changes in home-cage activity, anxiety- or despair-like behavior as a result of combining SD in adolescent female mice with a depression trigger in adulthood. We conclude that the adolescent brain is sensitive to SD, but SD during adolescence in mice does not lead to an exacerbated depression-like response to social isolation or inflammation during adulthood.
Collapse
Affiliation(s)
- Christine Egebjerg
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Building 24-6, Denmark
| | - Mie Gunni Kolmos
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Building 24-6, Denmark
| | - Ariel Vasques Ojeda
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Building 24-6, Denmark
| | - Alberte Wollesen Breum
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Building 24-6, Denmark
| | - Vibe Frokjaer
- Psychiatric Center Copenhagen, Denmark; Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Birgitte Rahbek Kornum
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Building 24-6, Denmark.
| |
Collapse
|
16
|
Sheffield Z, Paul P, Krishnakumar S, Pan D. Current Strategies and Future Directions of Wearable Biosensors for Measuring Stress Biochemical Markers for Neuropsychiatric Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411339. [PMID: 39688117 PMCID: PMC11791988 DOI: 10.1002/advs.202411339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Most wearable biosensors aimed at capturing psychological state target stress biomarkers in the form of physical symptoms that can correlate with dysfunction in the central nervous system (CNS). However, such markers lack the specificity needed for diagnostic or preventative applications. Wearable biochemical sensors (WBSs) have the potential to fill this gap, however, the technology is still in its infancy. Most WBSs proposed thus far target cortisol. Although cortisol detection is demonstrated as a viable method for approximating the extent and severity of psychological stress, the hormone also lacks specificity. Multiplex WBSs that simultaneously target cortisol alongside other viable stress-related biochemical markers (SBMs) can prove to be indispensable for understanding how psychological stress contributes to the pathophysiology of neuropsychiatric illnesses (NPIs) and, thus, lead to the discovery of new biomarkers and more objective clinical tools. However, none target more than one SBM implicated in NPIs. Till this review, cortisol's connection to dysfunctions in the CNS, to other SBMs, and their implication in various NPIs has not been discussed in the context of developing WBS technology. As such, this review is meant to inform the biosensing and neuropsychiatric communities of viable future directions and possible challenges for WBS technology for neuropsychiatric applications.
Collapse
Affiliation(s)
- Zach Sheffield
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
- Department of Nuclear EngineeringThe Pennsylvania State UniversityState CollegePA16802USA
- The Center for Advanced Sensing TechnologyUniversity of Maryland – Baltimore CountyBaltimoreMD21250USA
- Chemical, Biochemicaland Environmental Engineering DepartmentUniversity of Maryland – Baltimore CountyBaltimoreMD21250USA
| | - Priyanka Paul
- Department of PediatricsUniversity of Maryland Baltimore School of MedicineBaltimoreMD21201USA
| | - Shraddha Krishnakumar
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
| | - Dipanjan Pan
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
- Department of Nuclear EngineeringThe Pennsylvania State UniversityState CollegePA16802USA
| |
Collapse
|
17
|
Zhao R, Wang J, Chung SK, Xu B. New insights into anti-depression effects of bioactive phytochemicals. Pharmacol Res 2025; 212:107566. [PMID: 39746497 DOI: 10.1016/j.phrs.2024.107566] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Depression is one of the most common psychological disorders, and due to its high prevalence and mortality rates, it imposes a significant disease burden. Contemporary treatments for depression involve various synthetic drugs, which have limitations such as side effects, single targets, and slow onset of action. Unlike synthetic medications, phytochemicals offer the benefits of a multi-target and multi-pathway mode of treatment for depression. In this literature review, we describe the pharmacological actions, experimental models, and clinical trials of the antidepressant effects of various phytochemicals. Additionally, we summarize the potential mechanisms by which these phytochemicals prevent depression, including regulating neurotransmitters and their receptors, the HPA axis, inflammatory responses, managing oxidative stress, neuroplasticity, and the gut microbiome. Phytochemicals exert therapeutic effects through multiple pathways and targets, making traditional Chinese medicine (TCM) a promising adjunctive antidepressant for the prevention, alleviation, and treatment of depression. Therefore, this review aims to provide robust evidence for subsequent research into developing phytochemical resources as effective antidepressant agents.
Collapse
Affiliation(s)
- Ruohan Zhao
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Jingwen Wang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China.
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
18
|
Garcia de Leon R, Hodges TE, Brown HK, Bodnar TS, Galea LAM. Inflammatory signalling during the perinatal period: Implications for short- and long-term disease risk. Psychoneuroendocrinology 2025; 172:107245. [PMID: 39561569 DOI: 10.1016/j.psyneuen.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
During pregnancy and the postpartum, there are dynamic fluctuations in steroid and peptide hormone levels as well as inflammatory signalling. These changes are required for a healthy pregnancy and can persist well beyond the postpartum. Many of the same hormone and inflammatory signalling changes observed during the perinatal period also play a role in symptoms related to autoimmune disorders, psychiatric disorders, and perhaps neurodegenerative disease later in life. In this review, we outline hormonal and immunological shifts linked to pregnancy and the postpartum and discuss the possible role of these shifts in increasing psychiatric, neurodegenerative disease risk and autoimmune symptoms during and following pregnancy. Furthermore, we discuss how key variables such as the number of births (parity) and sex of the fetus can influence inflammatory signalling, and possibly future disease risk, but are not often studied. We conclude by discussing the importance of studying female experiences such as pregnancy and parenting on physiology and disease.
Collapse
Affiliation(s)
- Romina Garcia de Leon
- Centre for Addiction and Mental Health, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada
| | | | | | | | - Liisa A M Galea
- Centre for Addiction and Mental Health, Toronto, ON, Canada; University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
19
|
Hough CM, Kruse JL, Espinoza RT, Brooks JO, Congdon EJ, Norris V, Craske MG, Narr KL. Trajectory of peripheral inflammation during index ECT in association with clinical outcomes in treatment-resistant depression. Brain Behav Immun Health 2025; 43:100925. [PMID: 39834556 PMCID: PMC11743860 DOI: 10.1016/j.bbih.2024.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/22/2025] Open
Abstract
Background Electroconvulsive therapy (ECT) is a highly efficacious intervention for severe and intractable depression. Evidence suggests ECT provokes an initial acute inflammatory response that subsequently decreases with repeated administration. However, relationships between inflammatory changes and clinical effects are unclear. Improved understanding of these processes may provide critical insight into effective intervention for treatment-resistant depression (TRD). Methods Plasma inflammatory markers were assessed at pre-treatment (T1), after the second ECT session (T2), and after ECT index series completion (post-treatment/T3) in TRD (n = 40). Changes were examined over time and in association with post-treatment Responder/Non-responder status (≥50% reduction in global depression severity) and percent change in affective, cognitive and neurovegetative depressive symptom domains. Results C-reactive protein (CRP) and interleukin-6 (IL-6) increased from pre-treatment to T2, and decreased from T2 to post-treatment. Neither early (%T2-T1) nor total (%T1-T3) change in inflammation predicted clinical outcomes, however, the interaction between early/acute inflammatory response and post-treatment inflammation (relative to baseline) was associated with clinical outcomes. Larger initial increases in IL-6 predicted greater reductions in both affective and cognitive symptoms in subjects with higher post-treatment IL-6; those with lower post-treatment IL-6 trended toward the opposite. The same was found between changes in CRP and neurovegetative symptoms. Conclusions Though preliminary, these results demonstrate how processes involved in the acute inflammatory response to ECT may differentially influence clinical outcomes depending on overall trajectory of inflammation following ECT. Findings also highlight the importance of examining symptom-specific changes in depression when studying treatment mechanisms, rather than relying solely on global measures of severity.
Collapse
Affiliation(s)
- Christina M. Hough
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jennifer L. Kruse
- Department of Psychiatry & Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Randall T. Espinoza
- Department of Psychiatry & Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - John O. Brooks
- Department of Psychiatry & Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Eliza J. Congdon
- Department of Psychiatry & Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Viviane Norris
- Department of Psychiatry & Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Michelle G. Craske
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Psychiatry & Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Katherine L. Narr
- Department of Psychiatry & Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
20
|
Tezcan ME, Ekici F, Ugur C, Can Ü, Karatoprak S, Sağlıyan GA, Uçak EF, Güleç A, Erbasan V, Sen B, Simsek F, Atas AE. Do specific myelin autoantibodies and increased cerebral dopamine neurotrophic factor in the context of inflammation predict the diagnosis of attention deficit hyperactivity disorder in medication-free children? Brain Behav Immun 2025; 124:125-136. [PMID: 39617068 DOI: 10.1016/j.bbi.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 11/22/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND The aim of this study was to investigate the serum levels of anti-myelin basic protein (anti-MBP), anti-myelin oligodentrocyte glycoprotein (anti-MOG), myelin-associated glycoprotein (MAG), high-sensitivity C-reactive protein (hs-CRP), cerebral dopamine neurotrophic factor (CDNF), cerebellin-1, and reelin and their relationships with clinical severity and irritability behaviours in children with attention deficit (AD) hyperactivity disorder (ADHD) and typically developing (TD) healthy controls. METHODS In this study, 141 children with ADHD between the ages of 8 and 14 years who were medication-free and 135 TD healthy controls were included. The serum levels of anti-MBP, anti-MOG, MAG, CDNF, hs-CRP, cerebellin, and reelin were measured using enzyme-linked immunosorbent assay kits. The Turgay Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV)-based Screening and Evaluation Scale for Attention Deficit and Disruptive Behavior Disorders-Parent Form (TDSM-IV-O) and the affective reactivity index (ARI) scale were used to assess clinical severity and irritability behaviours in the children. RESULTS The MAG, CDNF, hs-CRP, reelin, and cerebellin levels were significantly higher in the ADHD group than in the control group, but no significant differences in anti-MBP and anti-MOG levels were found between the groups. Compared with the controls, the patients with ADHD showed significantly higher scores on the ARI self- and parent-report scales. The reelin, hs-CRP, and MAG levels were significantly associated with the TDSM-IV-O AD scores, AD and oppositional defiant (OD) disorder scores and hyperactivity, and OD and conduct disorder scores, respectively. Hs-CRP was significantly associated with anti-MBP and cerebellin levels. In an analysis of covariance, the results were unchanged even after controlling for potential confounders such as age, body mass index, and sex. CONCLUSION This study demonstrates that MAG, CDNF, hs-CRP, reelin, and cerebellin levels may play a potential role in the pathogenesis of ADHD.
Collapse
Affiliation(s)
- Mustafa Esad Tezcan
- Department of Child and Adolescent Psychiatry, Konya City Hospital, Karatay-Konya 42020, Turkey.
| | - Fatih Ekici
- Department of Psychiatry, Konya City Hospital, Karatay-Konya 42020, Turkey.
| | - Cüneyt Ugur
- Department of Pediatrics, Konya City Health Application and Research, University of Health Sciences Turkey, Karatay-Konya 42020, Turkey.
| | - Ümmügülsüm Can
- Department of Medical Biochemistry, Konya City Health Application and Research, University of Health Sciences Turkey, Karatay-Konya 42020, Turkey.
| | - Serdar Karatoprak
- Department of Child and Adolescent Psychiatry, Konya City Hospital, Karatay-Konya 42020, Turkey.
| | | | - Ekrem Furkan Uçak
- Department of Psychiatry, Konya City Hospital, Karatay-Konya 42020, Turkey.
| | - Ahmet Güleç
- Department of Child and Adolescent Psychiatry, Balıkesir City Hospital, Altıeylül, Balıkesir, Turkey.
| | - Vefa Erbasan
- Department of Psychiatry, İzmir City Hospital, Bayraklı, 35540 Izmir, Turkey.
| | - Barıs Sen
- Department of Psychiatry, Manavgat State Hospital, Manavgat-Antalya, Turkey.
| | - Fulya Simsek
- Department of Child and Adolescent Psychiatry, Konya City Hospital, Karatay-Konya 42020, Turkey.
| | - Abdullah Enes Atas
- Department of Radiology, Konya City Hospital, Karatay-Konya 42020, Turkey.
| |
Collapse
|
21
|
Vásquez-Pérez JM, González-Guevara E, Gutiérrez-Buenabad D, Martínez-Gopar PE, Martinez-Lazcano JC, Cárdenas G. Is Nasal Dysbiosis a Required Component for Neuroinflammation in Major Depressive Disorder? Mol Neurobiol 2025; 62:2459-2469. [PMID: 39120823 DOI: 10.1007/s12035-024-04375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Human microbiota is known to influence immune and cerebral responses by direct and/or indirect mechanisms, including hypothalamic-pituitary-adrenal axis signaling, activation of neural afferent circuits to the brain, and by altering the peripheral immune responses (cellular and humoral immune function, circulatory inflammatory cells, and the production of several inflammatory mediators, such as cytokines, chemokines, and reactive oxygen species). The inflammatory responses in the nasal mucosa (rhinitis) or paranasal sinuses (chronic rhinosinusitis) are dual conditions related with a greater risk for developing depression. In the nasal cavity, anatomic components of the olfactive function are in direct contact with the CNS through the olfactory receptors, neurons, and axons that end in the olfactory bulb and the entorhinal cortex. Local microbiome alterations (dysbiosis) are linked to transepithelial translocation of microorganisms and their metabolites, which disrupts the epithelial barrier and favors vascular permeability, increasing the levels of several inflammatory molecules (both cytokines and non-cytokine mediators: extracellular vesicles (exosomes) and neuropeptides), triggering local inflammation (rhinitis) and the spread of these components into the central nervous system (neuroinflammation). In this review, we discuss the role of microbiota-related immunity in conditions affecting the nasal mucosa (chronic rhinosinusitis and allergic rhinitis) and their relevance in major depressive disorders, focusing on the few mechanisms known to be involved and providing some hypothetical proposals on the pathophysiology of depression.
Collapse
Affiliation(s)
- Jorge Manuel Vásquez-Pérez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, 14370, Ciudad de México, Mexico
- Programa de Posgrado Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de Mexico, Mexico
| | - Edith González-Guevara
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Ciudad de México, Mexico
| | - Diana Gutiérrez-Buenabad
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, 14370, Ciudad de México, Mexico
- Programa de Posgrado Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de Mexico, Mexico
| | - Pablo Eliasib Martínez-Gopar
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Ciudad de México, Mexico
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, 14330, Ciudad de México, Mexico
| | - Juan Carlos Martinez-Lazcano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Ciudad de México, Mexico
| | - Graciela Cárdenas
- Departamento de Neurología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, Tlalpan, 14269, Ciudad de Mexico, Mexico.
| |
Collapse
|
22
|
Arsiwala TA, Blethen KE, Wolford CP, Pecar GL, Panchal DM, Kielkowski BN, Wang P, Ranjan M, Carpenter JS, Finomore V, Rezai A, Lockman PR. Single Exposure to Low-Intensity Focused Ultrasound Causes Biphasic Opening of the Blood-Brain Barrier Through Secondary Mechanisms. Pharmaceutics 2025; 17:75. [PMID: 39861723 PMCID: PMC11768402 DOI: 10.3390/pharmaceutics17010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objective: The blood-brain barrier (BBB) is selectively permeable, but it also poses significant challenges for treating CNS diseases. Low-intensity focused ultrasound (LiFUS), paired with microbubbles is a promising, non-invasive technique for transiently opening the BBB, allowing enhanced drug delivery to the central nervous system (CNS). However, the downstream physiological effects following BBB opening, particularly secondary responses, are not well understood. This study aimed to characterize the time-dependent changes in BBB permeability, transporter function, and inflammatory responses in both sonicated and non-sonicated brain tissues following LiFUS treatment. Methods: We employed in situ brain perfusion to assess alterations in BBB integrity and transporter function, as well as multiplex cytokine analysis to quantify the inflammatory response. Results: Our findings show that LiFUS significantly increased vascular volume and glucose uptake, with reduced P-gp function in brain tissues six hours post treatment, indicating biphasic BBB disruption. Additionally, elevated levels of pro-inflammatory cytokines, including TNF-α and IL-6, were observed in both sonicated and non-sonicated regions. A comparative analysis between wild-type and immunodeficient mice revealed distinct patterns of cytokine release, with immunodeficient mice showing lower serum concentrations of IFN-γ and TNF-α, highlighting the potential impact of immune status on the inflammatory response to LiFUS. Conclusions: This study provides new insights into the biphasic nature of LiFUS-induced BBB disruption, emphasizing the importance of understanding the timing and extent of secondary physiological changes.
Collapse
Affiliation(s)
- Tasneem A. Arsiwala
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Kathryn E. Blethen
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
| | - Cullen P. Wolford
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
| | - Geoffrey L. Pecar
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
| | - Dhruvi M. Panchal
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
| | - Brooke N. Kielkowski
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
| | - Peng Wang
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
- Department of Neuroradiology, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Manish Ranjan
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
- Department of Neuroradiology, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Jeffrey S. Carpenter
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
- Department of Neuroradiology, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Victor Finomore
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Ali Rezai
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
- Department of Neurosurgery, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| | - Paul R. Lockman
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA (G.L.P.)
- Department of Neuroscience, West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV 26505, USA
| |
Collapse
|
23
|
Zhou Z, Li Y, Ding J, Sun S, Cheng W, Yu J, Cai Z, Ni Z, Yu C. Chronic unpredictable stress induces anxiety-like behavior and oxidative stress, leading to diminished ovarian reserve. Sci Rep 2024; 14:30681. [PMID: 39730417 DOI: 10.1038/s41598-024-76717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/16/2024] [Indexed: 12/29/2024] Open
Abstract
Chronic stress can adversely affect the female reproductive endocrine system, potentially leading to disorders and impairments in ovarian function. However, current research lacks comprehensive understanding regarding the biochemical characteristics and underlying mechanisms of ovarian damage induced by chronic stress. We established a stable chronic unpredictable stress (CUS)-induced diminished ovarian reserve (DOR) animal model. Our findings demonstrated that prolonged CUS treatment over eight weeks resulted in increased atresia follicles in female mice. This atresia was accompanied by decreased AMH and increased FSH levels. Furthermore, we observed elevated levels of corticosterone both in the peripheral blood and within the ovary. Additionally, we detected abnormalities in ATP metabolism within the ovarian tissue. CUS exposure led to oxidative stress in the ovaries, fostering a microenvironment characterized by oxidative damage to mouse ovarian granulosa cells (mGCs) and heightened levels of reactive oxygen species. Furthermore, CUS prompted mGCs to undergo apoptosis via the mitochondrial pathway. These findings indicate a direct association between the fundamental physiological alterations leading to DOR and the oxidative phosphorylation processes within mGCs. The diminished ATP production by mGCs, triggered by CUS, emerges as a pivotal indicator of CUS-induced DOR. Our study establishes an animal model to investigate the impact of chronic stress on ovarian reserve function and sheds light on potential mechanisms underlying this phenomenon.
Collapse
Affiliation(s)
- Zhihao Zhou
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), 168 Changhai Road, Yangpu District, Shanghai, China
- Traditional Chinese Medicine Department, No. 929 Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yangshuo Li
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), 168 Changhai Road, Yangpu District, Shanghai, China
| | - Jie Ding
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), 168 Changhai Road, Yangpu District, Shanghai, China
| | - Shuai Sun
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), 168 Changhai Road, Yangpu District, Shanghai, China
| | - Wen Cheng
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), 168 Changhai Road, Yangpu District, Shanghai, China
| | - Jin Yu
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), 168 Changhai Road, Yangpu District, Shanghai, China
| | - Zailong Cai
- Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai, 200433, China
| | - Zhexin Ni
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), 168 Changhai Road, Yangpu District, Shanghai, China.
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, China.
| | - Chaoqin Yu
- Department of Traditional Chinese Gynecology, The First Affiliated Hospital of Naval Military Medical University (Changhai Hospital), 168 Changhai Road, Yangpu District, Shanghai, China.
| |
Collapse
|
24
|
Hoca M, Becer E, Vatansever HS. Carvacrol is potential molecule for diabetes treatment. Arch Physiol Biochem 2024; 130:823-830. [PMID: 38019023 DOI: 10.1080/13813455.2023.2288537] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Diabetes is an important chronic disease that can lead to various negative consequences and complications. In recent years, several new alternative treatments have been developed to improve diabetes. Carvacrol found in essential oils of numerous plant species and has crucial potential effects on diabetes. The anti-diabetic effects of carvacrol have also been comprehensively studied in diabetic animal and cell models. In addition, carvacrol could improve diabetes through affecting diabetes-related enzymes, insulin resistance, insulin sensitivity, glucose uptake, anti-oxidant, and anti-inflammatory mechanisms. The use of carvacrol alone or in combination with anti-diabetic therapies could show a significant potential effect in the treatment of diabetes. This review contributes an overview of the effect of carvacrol in diabetes and anti-diabetic mechanisms.
Collapse
Affiliation(s)
- Mustafa Hoca
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Near East University, Nicosia, Mersin, Turkey
| | - Eda Becer
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Mersin, Turkey
| | - Hafize Seda Vatansever
- DESAM Institute, Near East University, Nicosia, Mersin, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
25
|
Tavakol F, Amini-Khoei H, Sureda A, Zarean E, Lorigooini Z. Exploring the anti-depressant effects and nitric oxide modulation of quercetin: A preclinical study in Socially Isolated mice. World J Biol Psychiatry 2024; 25:592-603. [PMID: 39550700 DOI: 10.1080/15622975.2024.2424162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024]
Abstract
OBJECTIVES This study investigates the effects of quercetin, an antioxidant and nitric oxide (NO) modulator, on depressive-like behaviours triggered by social isolation stress (SIS) in mice. SIS, known to harm psychosocial functioning and increase the risk of depression, involves oxidative stress and NO in its pathophysiology. METHODS 72 male mice were divided into nine groups, including the social (SC) group as the control group (stress-free with normal saline intake). The isolation (IC) groups received normal saline, quercetin at doses of 10, 20, and 40 mg/kg, the nitric oxide synthetase inhibitor L-NAME at a dose of 5 mg/kg, the NO precursor L-arginine at a dose of 100 mg/kg, an ineffective dose of quercetin combined with L-NAME and an effective dose of quercetin combined with L-arginine. Behavioural tests (open-field, forced swimming, and splash tests) were conducted, followed by measuring hippocampal nitrite levels. RESULTS Quercetin significantly reduced immobility in the forced swimming test, increased activity in the open-field test, and enhanced grooming behaviour, particularly at 40 mg/kg. Co-administration of an ineffective dose of quercetin (10 mg/kg) with L-NAME increased immobility and grooming activity time. Interestingly, co-administration of the effective dose of quercetin (40 mg/kg) with L-arginine increased immobility time in the FST. Additionally, administration of quercetin at doses of 20 and 40 mg/kg significantly reduced the nitrite level in the hippocampus of SIS mice. Furthermore, co-administration of L-NAME and L-arginine with ineffective and effective doses of quercetin decreased and increased nitrite levels in the hippocampus and increased immobility time in the FST compared to their respective counterparts administered alone. CONCLUSIONS These results suggest quercetin's potential in alleviating depression by modulating NO levels, pointing to its promise in treating depression associated with chronic stressors like social isolation.
Collapse
Affiliation(s)
- Fatemeh Tavakol
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition & Oxidative Stress, University of the Balearic Islands-IUNICS, Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, Madrid, Spain
- Health Research Institute of Balearic Islands (IdISBa), Palma, Balearic Islands, Spain
| | - Elham Zarean
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
26
|
Chiu YHM, Coull BA, Wilson A, Hsu HHL, Xhani N, Nentin F, Deli BC, Schwartz J, Colicino E, Wright RO, Wright RJ. Air pollution mixture exposure during pregnancy and postpartum psychological functioning: racial/ethnic- and fetal sex-specific associations. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00726-2. [PMID: 39567710 DOI: 10.1038/s41370-024-00726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Prenatal air pollution (AP) exposure has been linked to postpartum psychological functioning, impacting health outcomes in both women and children. Extant studies primarily focused on individual pollutants. OBJECTIVE To assess the association between prenatal exposure to a mixture of seven AP components and postpartum psychological functioning using daily exposure data and data-driven statistical methods. METHODS Analyses included 981 women recruited at 24.0 ± 9.9 weeks gestation and followed longitudinally. We estimated prenatal daily exposure levels for constituents of fine particles [elemental carbon (EC), organic carbon (OC), nitrate (NO3-), sulfate (SO42-), ammonium (NH4+)], nitrogen dioxide (NO2), and ozone (O3) using validated global 3-D chemical-transport models and satellite-based hybrid models based on residential addresses. Edinburgh Postnatal Depression Scale (EPDS) was administered to participants to derive a total EPDS score and the subconstruct scores for anhedonia and depressive symptoms. A distributed lag model (DLM) was employed within Bayesian Kernel Machine Regression (BKMR) to develop time-weighted exposure profile for each pollutant. These exposures were then input into a Weighted Quantile Sum (WQS) regression to estimate an overall mixture effect, adjusted for maternal age, education, race/ethnicity, season of delivery, and delivery year. Effect modification by race/ethnicity and fetal sex was also examined. RESULTS Women were primarily Hispanic (51%) and Black (32%) reporting ≤12 years of education (58%). Prenatal exposure to an AP mixture was significantly associated with increased anhedonia subscale z-scores, particularly in Hispanics (β = 0.07, 95%CI = 0.004-0.13, per unit increase in WQS index). It was also borderline associated with increased total EPDS (β = 0.11, 95%CI = 0.00-0.22) and depressive symptom subscale (β = 0.09, 95%CI = -0.02 to 0.19) z-scores, particularly among Hispanic women who gave birth to a male infant. Sulfate (SO42-), O3 and OC were major contributors to these associations. IMPACT This study utilizes an advanced data-driven approach to examine the temporally- and mixture-weighted effects of prenatal air pollution exposure on postpartum psychological functioning. We found that exposure to a prenatal air pollution mixture predicted poorer postpartum psychological functioning, particularly anhedonia symptoms in Hispanic women. Findings underscore the importance of considering both exposure mixtures as well as potential modifying factors to better help identify particular pollutants that drive effects and susceptible populations, which can inform more effective intervention strategies.
Collapse
Affiliation(s)
- Yueh-Hsiu Mathilda Chiu
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Brent A Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Naim Xhani
- Department of Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Farida Nentin
- Department of Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara C Deli
- Department of Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Elena Colicino
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
27
|
Gu Q, Wang L, King TZ, Chen H, Zhang L, Ni J, Mao H. Seeing through "brain fog": neuroimaging assessment and imaging biomarkers for cancer-related cognitive impairments. Cancer Imaging 2024; 24:158. [PMID: 39558401 PMCID: PMC11572057 DOI: 10.1186/s40644-024-00797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Advances in cancer diagnosis and treatment have substantially improved patient outcomes and survival in recent years. However, up to 75% of cancer patients and survivors, including those with non-central nervous system (non-CNS) cancers, suffer from "brain fog" or impairments in cognitive functions such as attention, memory, learning, and decision-making. While we recognize the impact of cancer-related cognitive impairment (CRCI), we have not fully investigated and understood the causes, mechanisms and interplays of various involving factors. Consequently, there are unmet needs in clinical oncology in assessing the risk of CRCI and managing patients and survivors with this condition in order to make informed treatment decisions and ensure the quality of life for cancer survivors. The state-of-the-art neuroimaging technologies, particularly clinical imaging modalities like magnetic resonance imaging (MRI) and positron emission tomography (PET), have been widely used to study neuroscience questions, including CRCI. However, in-depth applications of these functional and molecular imaging methods in CRCI and their clinical implementation for CRCI management are largely limited. This scoping review provides the current understanding of contributing neurological factors to CRCI and applications of the state-of-the-art multi-modal neuroimaging methods in investigating the functional and structural alterations related to CRCI. Findings from these studies and potential imaging-biomarkers of CRCI that can be used to improve the assessment and characterization of CRCI as well as to predict the risk of CRCI are also highlighted. Emerging issues and perspectives on future development and applications of neuroimaging tools to better understand CRCI and incorporate neuroimaging-based approaches to treatment decisions and patient management are discussed.
Collapse
Affiliation(s)
- Quanquan Gu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1750 Haygood Drive NE, Atlanta, Georgia, 30322, USA
| | - Liya Wang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1750 Haygood Drive NE, Atlanta, Georgia, 30322, USA
- Department of Radiology, Shenzhen Hyzen Hospital, Shenzhen, 518109, Guangdong, People's Republic of China
| | - Tricia Z King
- School of Nursing, Emory University, Atlanta, Georgia, 30322, USA
| | - Hongbo Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, People's Republic of China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, People's Republic of China
| | - Jianming Ni
- Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, 214042, People's Republic of China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1750 Haygood Drive NE, Atlanta, Georgia, 30322, USA.
| |
Collapse
|
28
|
Zhang X, Guan M, Yi W, Li X, Ding X, He Y, Han W, Wang Z, Tang Q, Liao B, Shen J, Han X, Bai D. Smart Response Biomaterials for Pain Management. Adv Healthc Mater 2024; 13:e2401555. [PMID: 39039990 DOI: 10.1002/adhm.202401555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/12/2024] [Indexed: 07/24/2024]
Abstract
The intricate nature of pain classification and mechanism constantly affects the recovery of diseases and the well-being of patients. Key medical challenges persist in devising effective pain management strategies. Therefore, a comprehensive review of relevant methods and research advancements in pain management is conducted. This overview covers the main categorization of pain and its developmental mechanism, followed by a review of pertinent research and techniques for managing pain. These techniques include commonly prescribed medications, invasive procedures, and noninvasive physical therapy methods used in rehabilitation medicine. Additionally, for the first time, a systematic summary of the utilization of responsive biomaterials in pain management is provided, encompassing their response to physical stimuli such as ultrasound, magnetic fields, electric fields, light, and temperature, as well as changes in the physiological environment like reactive oxygen species (ROS) and pH. Even though the application of responsive biomaterials in pain management remains limited and at a fundamental level, recent years have seen the examination and debate of relevant research findings. These profound discussions aim to provide trends and directions for future research in pain management.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Mengtong Guan
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Weiwei Yi
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Xinhe Li
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Xiaoqian Ding
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Yi He
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Wang Han
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Zijie Wang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Qiuyu Tang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Bo Liao
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Jieliang Shen
- Department of Rehabilitation Medicine, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, 402760, P. R. China
| | - Xiaoyu Han
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
29
|
Rentschler KM, Kodavanti UP. Mechanistic insights regarding neuropsychiatric and neuropathologic impacts of air pollution. Crit Rev Toxicol 2024; 54:953-980. [PMID: 39655487 PMCID: PMC12043015 DOI: 10.1080/10408444.2024.2420972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 12/24/2024]
Abstract
Air pollution is a significant environmental health risk for urban areas and developing countries. Air pollution may contribute to the incidence of cardiopulmonary and metabolic diseases. Evidence also points to the role of air pollution in worsening or developing neurological and neuropsychiatric conditions. Inhaled pollutants include compositionally differing mixtures of respirable gaseous and particulate components of varied sizes, solubilities, and chemistry. Inhalation of combustibles and volatile organic compounds (VOCs) or other irritant particulate matter (PM) may trigger lung sensory afferents which initiate a sympathetic stress response via activation of the hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axes. Activation of SAM and HPA axes are associated with selective inhibition of hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-thyroid (HPT) axes following exposure. Regarding chronic exposure in susceptible hosts, these changes may become pathological by causing neuroinflammation, neurotransmitter, and neuroendocrine imbalances. Soluble PM, such as metals and nano-size particles may translocate across the olfactory, trigeminal, or vagal nerves through retrograde axonal transport, or through systemic circulation which may disrupt the blood-brain barrier (BBB) and deposit in neural tissue. Neuronal deposition of metallic components can have a negative impact through multiple molecular mechanisms. In addition to systemic translocation, the release of pituitary and stress hormones, altered metabolic hormonal status and resultant circulating metabolic milieu, and sympathetically and HPA-mediated changes in immune markers, may secondarily impact the brain through a variety of regulatory adrenal hormone-dependent mechanisms. Several reviews covering air pollution as a risk factor for neuropsychiatric disorders have been published, but no reviews discuss the in-depth intersection between molecular and stress-related neuroendocrine mechanisms, thereby addressing adaptation and susceptibility variations and link to peripheral tissue effects. The purpose of this review is to discuss evidence regarding neurochemical, neuroendocrine, and molecular mechanisms which may contribute to neuropathology from air pollution exposure. This review also covers bi-directional neural and systemic interactions which may raise the risk for air pollution-related systemic illness.
Collapse
Affiliation(s)
- Katherine M. Rentschler
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
30
|
Vijaya AK, Kuras S, Šimoliūnas E, Mingaila J, Makovskytė K, Buišas R, Daliri EBM, Meškys R, Baltriukienė D, Burokas A. Prebiotics Mitigate the Detrimental Effects of High-Fat Diet on memory, anxiety and microglia functionality in Ageing Mice. Brain Behav Immun 2024; 122:167-184. [PMID: 39142421 DOI: 10.1016/j.bbi.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024] Open
Abstract
Ageing is characterised by a progressive increase in systemic inflammation and especially neuroinflammation. Neuroinflammation is associated with altered brain states that affect behaviour, such as an increased level of anxiety with a concomitant decline in cognitive abilities. Although multiple factors play a role in the development of neuroinflammation, microglia have emerged as a crucial target. Microglia are the only macrophage population in the CNS parenchyma that plays a crucial role in maintaining homeostasis and in the immune response, which depends on the activation and subsequent deactivation of microglia. Therefore, microglial dysfunction has a major impact on neuroinflammation. The gut microbiota has been shown to significantly influence microglia from birth to adulthood in terms of development, proliferation, and function. Diet is a key modulating factor that influences the composition of the gut microbiota, along with prebiotics that support the growth of beneficial gut bacteria. Although the role of diet in neuroinflammation and behaviour has been well established, its relationship with microglia functionality is less explored. This article establishes a link between diet, animal behaviour and the functionality of microglia. The results of this research stem from experiments on mouse behaviour, i.e., memory, anxiety, and studies on microglia functionality, i.e., cytochemistry (phagocytosis, cellular senescence, and ROS assays), gene expression and protein quantification. In addition, shotgun sequencing was performed to identify specific bacterial families that may play a crucial role in the brain function. The results showed negative effects of long-term consumption of a high fat diet on ageing mice, epitomised by increased body weight, glucose intolerance, anxiety, cognitive impairment and microglia dysfunction compared to ageing mice on a control diet. These effects were a consequence of the changes in gut microbiota modulated by the diet. However, by adding the prebiotics fructo- and galacto-oligosaccharides, we were able to mitigate the deleterious effects of a long-term high-fat diet.
Collapse
Affiliation(s)
- Akshay Kumar Vijaya
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Simonas Kuras
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Egidijus Šimoliūnas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Jonas Mingaila
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Karolina Makovskytė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Rokas Buišas
- Department of Neurobiology and Biophysics, Institute of Bioscience, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Eric Banan-Mwine Daliri
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania
| | - Daiva Baltriukienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania.
| | - Aurelijus Burokas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
31
|
Zhang Y, Wang S, Hei M. Maternal separation as early-life stress: Mechanisms of neuropsychiatric disorders and inspiration for neonatal care. Brain Res Bull 2024; 217:111058. [PMID: 39197670 DOI: 10.1016/j.brainresbull.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The establishment of positive early parent-infant relationships provide essential nourishment and social stimulation for newborns. During the early stages of postnatal brain development, events such as synaptogenesis, neuronal maturation and glial differentiation occur in a highly coordinated manner. Maternal separation, as an early-life stress introducer, can disrupt the formation of parent-child bonds and exert long-term adverse effects throughout life. When offspring are exposed to maternal separation, the body regulates the stress of maternal separation through multiple mechanisms, including neuroinflammatory responses, neuroendocrinology, and neuronal electrical activity. In adulthood, early maternal separation has long-term effects, such as the induction of neuropsychiatric disorders such as anxiety, depression, and cognitive dysfunction. This review summarized the application of maternal separation models and the mechanisms of stress system response in neuropsychiatric disorders, serving as both a reminder and inspiration for approaches to improve neonatal care, "from bench to bedside".
Collapse
Affiliation(s)
- Yuan Zhang
- Neonatal Center, Beijing Children's Hospital Capital Medical University, National Center of Children's Health, Beijing 100045, China
| | - Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Mingyan Hei
- Neonatal Center, Beijing Children's Hospital Capital Medical University, National Center of Children's Health, Beijing 100045, China.
| |
Collapse
|
32
|
Wen X, Wang F, Tang T, Xu B, Yuan M, Li Y, Ding H, Tao F, Su P, Wang G. Sex-specific association of peripheral blood cell indices and inflammatory markers with depressive symptoms in early adolescence. J Affect Disord 2024; 362:134-144. [PMID: 38960333 DOI: 10.1016/j.jad.2024.06.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/30/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Previous studies have reported the correlation of dysregulated blood cell indices and peripheral inflammatory markers with depression in adults but limited studies have examined this correlation in early adolescents. METHODS This study used data from the Chinese Early Adolescents Cohort Study, which was conducted in Anhui, China. Students' depression symptoms were repeatedly measured using the Chinese version of the Center for Epidemiological Studies Depression Scale for Children. Students' blood samples were collected in September 2019 and September 2021. The peripheral blood cell counts and inflammatory marker levels were determined using routine blood tests. Multivariable regression models were used to explore the associations between blood cell indices and adolescent depressive symptoms in both the whole sample and the sex-stratified samples. RESULTS The white blood cell (WBC) count, neutrophil count (NC), platelet (PLT) count, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio, and systemic immune inflammation index (SII) were positively correlated with the severity of depressive symptoms during follow-up. The mean corpuscular volume (MCV), mean hemoglobin (HGB) volume (MCH), and mean corpuscular HGB concentration (MCHC) exhibited negative temporal correlations with depressive symptoms. Additionally, several sex-specific blood cell markers were correlated with depression. Male adolescents with increased red blood cell (RBC) and female adolescents with decreased HGB levels and upregulated WBC, NC, NLR, and SII levels exhibited severe depressive symptoms at follow-up. CONCLUSIONS These findings suggested the potential usefulness of peripheral blood cell indices in the assessment of depression in early adolescents.
Collapse
Affiliation(s)
- Xue Wen
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fan Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ting Tang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Baoyu Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Mengyuan Yuan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yonghan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Han Ding
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Puyu Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Gengfu Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
33
|
Claessens AAE, Vriend L, Ovadja ZN, Harmsen MC, van Dongen JA, Coert JH. Therapeutic Efficacy of Adipose Tissue-Derived Components in Neuropathic Pain: A Systematic Review. Bioengineering (Basel) 2024; 11:992. [PMID: 39451368 PMCID: PMC11504850 DOI: 10.3390/bioengineering11100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Neuropathic pain results from a defect in the somatosensory nervous system caused by a diversity of etiologies. The effect of current treat-ment with analgesics and surgery is limited. Studies report the therapeutic use of adipose tissue-derived components to treat neuropathic pain as a new treatment modality. OBJECTIVE The aim of this systematic review was to investigate the therapeutic clinical efficacy of adipose tissue-derived components on neuro-pathic pain. METHODS PubMed, Medline, Cochrane and Embase databases were searched until August 2023. Clinical studies assessing neuropathic pain after autologous fat grafting or the therapeutic use of adipose tissue-derived com-ponents were included. The outcomes of interest were neuropathic pain and quality of life. RESULTS In total, 433 studies were identified, of which 109 dupli-cates were removed, 324 abstracts were screened and 314 articles were excluded. In total, ten studies were included for comparison. Fat grafting and cellular stromal vascular fraction were used as treatments. Fat grafting indications were post-mastectomy pain syndrome, neuromas, post-herpetic neuropathy, neuro-pathic scar pain and trigeminal neuropathic pain. In seven studies, neuropathic pain levels decreased, and overall, quality of life did not improve. CONCLUSIONS The therapeutic efficacy of adipose tissue-derived components in the treatment of neuropathic pain remains unclear due to the few performed clinical trials with small sample sizes for various indications. Larger and properly designed (randomized) controlled trials are required.
Collapse
Affiliation(s)
- Anouk A. E. Claessens
- Department of Plastic, Reconstructive and Hand Surgery, Medisch Centrum Leeuwarden, 8934 AD Leeuwarden, The Netherlands;
| | - Linda Vriend
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht (UMC Utrecht), 3584 CX Utrecht, The Netherlands; (L.V.); (J.A.v.D.); (J.H.C.)
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Zachri N. Ovadja
- Department of Plastic, Reconstructive and Hand Surgery, Medisch Centrum Leeuwarden, 8934 AD Leeuwarden, The Netherlands;
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht (UMC Utrecht), 3584 CX Utrecht, The Netherlands; (L.V.); (J.A.v.D.); (J.H.C.)
| | - Martin C. Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Joris. A. van Dongen
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht (UMC Utrecht), 3584 CX Utrecht, The Netherlands; (L.V.); (J.A.v.D.); (J.H.C.)
| | - J. Henk Coert
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht (UMC Utrecht), 3584 CX Utrecht, The Netherlands; (L.V.); (J.A.v.D.); (J.H.C.)
| |
Collapse
|
34
|
Yin Y, Ju T, Zeng D, Duan F, Zhu Y, Liu J, Li Y, Lu W. "Inflamed" depression: A review of the interactions between depression and inflammation and current anti-inflammatory strategies for depression. Pharmacol Res 2024; 207:107322. [PMID: 39038630 DOI: 10.1016/j.phrs.2024.107322] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Depression is a common mental disorder, the effective treatment of which remains a challenging issue worldwide. The clinical pathogenesis of depression has been deeply explored, leading to the formulation of various pathogenic hypotheses. Among these, the monoamine neurotransmitter hypothesis holds a prominent position, yet it has significant limitations as more than one-third of patients do not respond to conventional treatments targeting monoamine transmission disturbances. Over the past few decades, a growing body of research has highlighted the link between inflammation and depression as a potential key factor in the pathophysiology of depression. In this review, we first summarize the relationship between inflammation and depression, with a focus on the pathophysiological changes mediated by inflammation in depression. The mechanisms linking inflammation to depression as well as multiple anti-inflammatory strategies are also discussed, and their efficacy and safety are assessed. This review broadens the perspective on specific aspects of using anti-inflammatory strategies for treating depression, laying the groundwork for advancing precision medicine for individuals suffering from "inflamed" depression.
Collapse
Affiliation(s)
- Yishu Yin
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Ting Ju
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Deyong Zeng
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Fangyuan Duan
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Yuanbing Zhu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China
| | - Junlian Liu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Beijing 100094, China.
| | - Weihong Lu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin 150001, China.
| |
Collapse
|
35
|
Romero-Ramírez L, Mey J. Emerging Roles of Bile Acids and TGR5 in the Central Nervous System: Molecular Functions and Therapeutic Implications. Int J Mol Sci 2024; 25:9279. [PMID: 39273226 PMCID: PMC11395147 DOI: 10.3390/ijms25179279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024] Open
Abstract
Bile acids (BAs) are cholesterol derivatives synthesized in the liver and released into the digestive tract to facilitate lipid uptake during the digestion process. Most of these BAs are reabsorbed and recycled back to the liver. Some of these BAs progress to other tissues through the bloodstream. The presence of BAs in the central nervous system (CNS) has been related to their capacity to cross the blood-brain barrier (BBB) from the systemic circulation. However, the expression of enzymes and receptors involved in their synthesis and signaling, respectively, support the hypothesis that there is an endogenous source of BAs with a specific function in the CNS. Over the last decades, BAs have been tested as treatments for many CNS pathologies, with beneficial effects. Although they were initially reported as neuroprotective substances, they are also known to reduce inflammatory processes. Most of these effects have been related to the activation of the Takeda G protein-coupled receptor 5 (TGR5). This review addresses the new challenges that face BA research for neuroscience, focusing on their molecular functions. We discuss their endogenous and exogenous sources in the CNS, their signaling through the TGR5 receptor, and their mechanisms of action as potential therapeutics for neuropathologies.
Collapse
Affiliation(s)
- Lorenzo Romero-Ramírez
- Laboratorio de Regeneración Neuronal, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain
| | - Jörg Mey
- Laboratorio de Regeneración Neuronal, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla-La Mancha, 45071 Toledo, Spain
- EURON Graduate School of Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
36
|
Jin GN, Wang Y, Liu YM, Lu YN, Lu JM, Wang JH, Ma JW, Quan YZ, Gao HY, Cui YX, Xu X, Piao LX. Arctiin Mitigates Neuronal Injury by Modulating the P2X7R/NLPR3 Inflammasome Signaling Pathway. Inflammation 2024:10.1007/s10753-024-02117-z. [PMID: 39154088 DOI: 10.1007/s10753-024-02117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
Depression, recognized globally as a primary cause of disability, has its pathogenesis closely related to neuroinflammation and neuronal damage. Arctiin (ARC), the major bioactive component of Fructus arctii, has various pharmacological activities, such as anti-inflammatory and neuroprotective effects. Building on previous findings that highlighted ARC's capability to mitigate depression by dampening microglial hyperactivation and thereby reducing neuroinflammatory responses and cortical neuronal damage in mice, the current study delves deeper into ARC's therapeutic potential by examining its impact on hippocampal neuronal damage in depression. Utilizing both chronic unpredictable mild stress (CUMS)-induced depression model in mice and corticosterone (CORT)-stimulated PC12 cell model of neuronal damage, the techniques including Nissl staining, immunohistochemistry, western blotting, ELISA, lactate dehydrogenase assays, colony formation assays, immunofluorescence staining and molecular docking were employed to unravel the mechanisms behind ARC's neuroprotective effects. The findings revealed that ARC not only mitigates hippocampal neuropathological damage and reduces serum CORT levels in CUMS-exposed mice but also enhances cell activity while reducing lactate dehydrogenase release in CORT-stimulated PC12 cells. ARC attenuated neuroinflammatory responses and neuronal apoptosis by inhibiting the overactivation of the P2X7 receptor (P2X7R)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling pathway, similar to the effect of A438079 (P2X7R antagonist). Interestingly, pretreatment with A438079 blocked the neuroprotective effect of ARC. Computer modeling predicted that both ARC and A438079 have strong binding with P2X7R and they have the same binding site. These results suggested that ARC may exert a neuroprotective role by binding to P2X7R, thereby inhibiting the P2X7R/NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Guang-Nan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yu Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yi-Ming Liu
- Department of Neurology, Yanbian University Hospital, Yanbian University, Yanji, 133000, Jilin Province, China
| | - Yu-Nan Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jing-Mei Lu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jing-He Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Jing-Wen Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yan-Zhu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Hong-Yan Gao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yue-Xian Cui
- Department of Neurology, Yanbian University Hospital, Yanbian University, Yanji, 133000, Jilin Province, China.
| | - Xiang Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Lian-Xun Piao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
37
|
Tendilla-Beltrán H, Aguilar-Alonso P, Hernández-González CA, Baltazar-Gaytán E, Orduña AA, Nicolini H, García-Dolores F, Flores G. Dysregulated zinc homeostasis and microadenomas in the anterior pituitary: pathological insights into suicide risk. Front Psychiatry 2024; 15:1446255. [PMID: 39193580 PMCID: PMC11347757 DOI: 10.3389/fpsyt.2024.1446255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Background Suicide is a significant public health problem influenced by various risk factors, including dysregulation of the hypothalamus-pituitary-adrenal (HPA) axis. Zinc (Zn), essential for pituitary function in hormone synthesis and release, has been linked to suicide, with studies noting reduced serum levels and altered brain transport mechanisms. Despite Zn's crucial role in pituitary function and its involvement in suicidal behavior, information on pituitary Zn in suicide is scarce. Tumor cells modify Zn dynamics in tissues, and a previous report suggests microadenomas in the anterior pituitary as a risk factor for suicide. Methods Histopathological analysis with hematoxylin-eosin stain and histochemical techniques to assess Zn homeostasis were carried out on anterior pituitary postmortem samples from 14 suicide completers and 9 non-suicidal cases. Results Pituitary microadenomas were identified in 35% of suicide cases and none in the non-suicidal cases. Furthermore, compartmentalized Zn (detected via dithizone reactivity), but not free Zn levels (detected via zinquin reactivity), was lower in the suicide cases compared to the non-suicidal group. Conclusion This is the first report of a potential association between disrupted Zn homeostasis and microadenomas in the anterior pituitary as a feature in suicide and provides critical insights for future neuroendocrine Zn-related research.
Collapse
Affiliation(s)
- Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Patricia Aguilar-Alonso
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | | | - Eduardo Baltazar-Gaytán
- Facultad de Medicina, Universidad Veracruzana (UV) Región Córdoba – Orizaba, Campus Ciudad Mendoza, Mendoza, Veracruz, Mexico
- Escuela Superior de Medicina, Centro de Estudios Tecnológicos y Universitarios del Golfo, Orizaba, Veracruz, Mexico
| | - Ana A. Orduña
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Humberto Nicolini
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Fernando García-Dolores
- Instituto de Ciencias Forenses (INCIFO), Tribunal Superior de Justicia de la Ciudad de México (TSJCDMX), Mexico City, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| |
Collapse
|
38
|
Santos L, Behrens L, Barbosa C, Tiefensee-Ribeiro C, Rosa-Silva H, Somensi N, Brum PO, Silveira AK, Rodrigues MS, de Oliveira J, Gelain DP, Almeida RF, Moreira JCF. Histone 3 Trimethylation Patterns are Associated with Resilience or Stress Susceptibility in a Rat Model of Major Depression Disorder. Mol Neurobiol 2024; 61:5718-5737. [PMID: 38225513 DOI: 10.1007/s12035-024-03912-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/23/2023] [Indexed: 01/17/2024]
Abstract
Major Depressive Disorder (MDD) is a severe and multifactorial psychiatric condition. Evidence has shown that environmental factors, such as stress, significantly explain MDD pathophysiology. Studies have hypothesized that changes in histone methylation patterns are involved in impaired glutamatergic signaling. Based on this scenario, this study aims to investigate histone 3 involvement in depression susceptibility or resilience in MDD pathophysiology by investigating cellular and molecular parameters related to i) glutamatergic neurotransmission, ii) astrocytic functioning, and iii) neurogenesis. For this, we subjected male Wistar rats to the Chronic Unpredictable Mild Stress (CUMS) model of depression. We propose that by evaluating the sucrose consumption, open field, and object recognition test performance from animals submitted to CUMS, it is possible to predict with high specificity rats with susceptibility to depressive-like phenotype and resilient to the depressive-like phenotype. We also demonstrated, for the first time, that patterns of H3K4me3, H3K9me3, H3K27me3, and H3K36me3 trimethylation are strictly associated with the resilient or susceptible to depressive-like phenotype in a brain-region-specific manner. Additionally, susceptible animals have reduced DCx and GFAP and resilient animals present increase of AQP-4 immunoreactivity. Together, these results provide evidence that H3 trimethylations are related to the development of the resilient or susceptible to depressive-like phenotype, contributing to further advances in the pathophysiology of MDD and the discovery of mechanisms behind resilience.
Collapse
Affiliation(s)
- Lucas Santos
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Luiza Behrens
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Barbosa
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Camila Tiefensee-Ribeiro
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helen Rosa-Silva
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nauana Somensi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro Ozorio Brum
- Max Perutz Labs, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Alexandre Kleber Silveira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Matheus Scarpatto Rodrigues
- Laboratório de Investigação de Desordens Metabólicas e Doenças Neurodegenerativas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jade de Oliveira
- Laboratório de Investigação de Desordens Metabólicas e Doenças Neurodegenerativas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto F Almeida
- Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - José Cláudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
39
|
Yang Y, He X, Zhao Z, Yi J. Macrophage-Centric Biomaterials for Bone Regeneration in Diabetes Mellitus: Contemporary Advancements, Challenges, and Future Trajectories. Cureus 2024; 16:e66621. [PMID: 39258053 PMCID: PMC11386247 DOI: 10.7759/cureus.66621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Increased susceptibility to bone fragility and the diminution of bone regenerative capacity are recognized as significant and frequent sequelae of diabetes mellitus. Research has elucidated the pivotal role of macrophages in the pathogenesis and repair of diabetic bone defects. Notwithstanding this, the therapeutic efficacy of traditional interventions remains predominantly inadequate. Concomitant with substantial advancements in tissue engineering in recent epochs, there has been an escalation in the development of biomaterials designed to modulate macrophage activity, thereby augmenting osseous tissue regeneration in the context of hyperglycemia. This review amalgamates insights from extant research and delineates recent progressions in the domain of biomaterials that target macrophages for the regeneration of diabetic bone, whilst also addressing the clinical challenges and envisaging future directions within this field.
Collapse
Affiliation(s)
- Yiyan Yang
- Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, CHN
| | - Xiaoli He
- Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, CHN
| | - Zhihe Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, CHN
| | - Jianru Yi
- Department of Orthodontics, State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, CHN
| |
Collapse
|
40
|
Cong E, Zhong Y, Wu M, Chen H, Cai Y, Ling Z, Wang Y, Wen H, Hu Y, Zhang H, Li Y, Liu X, Zhong P, Lai W, Xu Y, Wu Y. Hippocampal subfield morphology from first episodes of bipolar disorder type II and major depressive disorder in a drug naïve Chinese cohort. Front Psychiatry 2024; 15:1438144. [PMID: 39119073 PMCID: PMC11306163 DOI: 10.3389/fpsyt.2024.1438144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION Symptoms during the onset of major depressive disorder [MDD] and bipolar disorder type II [BD-II] are similar. The difference of hippocampus subregion could be a biological marker to distinguish MDD from BD-II. METHODS We recruited 61 drug-naïve patients with a first-episode MDD and BD-II episode and 30 healthy controls (HC) to participate in a magnetic resonance imaging [MRI] study. We built a general linear model (one-way analysis of covariance) with 22 hippocampal subfields and two total hippocampal volumes as dependent variables, and the diagnosis of MDD, BD-II, and HC as independent variables. We performed pair-wise comparisons of hippocampal subfield volumes between MDD and HC, BD-II and MDD, BD-II and HC with post hoc for primary analysis. RESULTS We identified three regions that differed significantly in size between patients and controls. The left hippocampal fissure, the hippocampal-amygdaloid transition area (HATA), and the right subiculum body were all significantly larger in patients with MDD compared with the HC. In the onset of first-episode of MDD, the hippocampal volume increased significantly, especially on the left side comparing to HC. However, we found differences between MDD and BD-II were not statistically significant. The volume of the left HATA and right subiculum body in BD-II was larger. CONCLUSIONS The sample size of this study is relatively small, as it is a cross-sectional comparative study. In both MDD and BD-II groups, the volume of more left subregions appeared to increase. The left subregions were severely injured in the development of depressive disorder.
Collapse
Affiliation(s)
- Enzhao Cong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingyan Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyue Wu
- X-LANCE Lab, Department of Computer Science and Engineering, MoE Key Lab of Artificial Intelligence, AI Institute Shanghai Jiao Tong University, Shanghai, China
| | - Haiying Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyun Cai
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Ling
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huifeng Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohua Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingfang Zhong
- Affective Disorder Department, Lincang Psychiatric Hospital, Lincang, China
| | - Weijie Lai
- Psychiatric Department, Zhangzhou Fukang Hospital, Zhangzhou, China
| | - Yifeng Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Ozkan BN, Bozali K, Boylu ME, Velioglu HA, Aktas S, Kirpinar I, Guler EM. Altered blood parameters in "major depression" patients receiving repetitive transcranial magnetic stimulation (rTMS) therapy: a randomized case-control study. Transl Psychiatry 2024; 14:264. [PMID: 38918365 PMCID: PMC11199570 DOI: 10.1038/s41398-024-02942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Major depressive disorder (MDD) is a debilitating illness that includes depressive mood. Repetitive Transcranial Magnetic Stimulation (rTMS) is a therapy method used in the treatment of MDD. The purpose of this study was to assess neurotrophic factors, and oxidative stress levels in MDD patients and evaluate the changes in these parameters as a result of rTMS therapy. Twenty-five patients with MDD and twenty-six healthy volunteers with the same demographic characteristics were included in the study. Brain-derived neurotrophic factors were measured photometrically with commercial kits. Oxidative stress parameters were measured by the photometric method. Oxidative stress index (OSI) and disulfide (DIS) levels were calculated with mathematical formulas. In this study, total antioxidant status (TAS), total thiol (TT), and native thiol (NT) antioxidant parameters and brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and allopregnanolone (ALLO) levels were reduced in pre-rTMS with regard to the healthy control group; TOS, OSI, DIS, and S100 calcium-binding protein B (S100B) levels were increased statistically significantly (p < 0.01). Moreover, owing to TMS treatment; TAS, TT, NT, BDNF, GDNF, and ALLO levels were increased compared to pre-rTMS, while DIS, TOS, OSI, and S100B levels were decreased significantly (p < 0.01). The rTMS treatment reduces oxidative stress and restores thiol-disulfide balance in MDD patients. Additionally, rTMS modulates neurotrophic factors and neuroactive steroids, suggesting its potential as an antidepressant therapy. The changes in the biomarkers evaluated may help determine a more specific approach to treating MDD with rTMS therapy.
Collapse
Affiliation(s)
- Beyza Nur Ozkan
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye School of Medicine, Istanbul, Türkiye
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye Institute of Health Sciences, Istanbul, Türkiye
| | - Kubra Bozali
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye School of Medicine, Istanbul, Türkiye
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye Institute of Health Sciences, Istanbul, Türkiye
| | - Muhammed Emin Boylu
- Department of Psychiatry, Bezmialem Vakif University, Faculty of Medicine, Istanbul, Türkiye
- Expertise Department of Psychiatric Observation, Council of Forensic Medicine, Ministry of Justice, Istanbul, Türkiye
| | - Halil Aziz Velioglu
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA.
- Department of Neuroscience, Istanbul Medipol University, Istanbul, Türkiye.
| | - Selman Aktas
- Department of Biostatistics, University of Health Sciences Turkey, Hamidiye School of Medicine, Istanbul, Türkiye
| | - Ismet Kirpinar
- Department of Psychiatry, Bezmialem Vakif University, Faculty of Medicine, Istanbul, Türkiye
| | - Eray Metin Guler
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye School of Medicine, Istanbul, Türkiye
- Department of Medical Biochemistry, University of Health Sciences Turkey, Hamidiye Faculty of Medicine, Haydarpasa Numune Health Application and Research Center, Istanbul, Türkiye
| |
Collapse
|
42
|
Stolfi F, Abreu H, Sinella R, Nembrini S, Centonze S, Landra V, Brasso C, Cappellano G, Rocca P, Chiocchetti A. Omics approaches open new horizons in major depressive disorder: from biomarkers to precision medicine. Front Psychiatry 2024; 15:1422939. [PMID: 38938457 PMCID: PMC11210496 DOI: 10.3389/fpsyt.2024.1422939] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Major depressive disorder (MDD) is a recurrent episodic mood disorder that represents the third leading cause of disability worldwide. In MDD, several factors can simultaneously contribute to its development, which complicates its diagnosis. According to practical guidelines, antidepressants are the first-line treatment for moderate to severe major depressive episodes. Traditional treatment strategies often follow a one-size-fits-all approach, resulting in suboptimal outcomes for many patients who fail to experience a response or recovery and develop the so-called "therapy-resistant depression". The high biological and clinical inter-variability within patients and the lack of robust biomarkers hinder the finding of specific therapeutic targets, contributing to the high treatment failure rates. In this frame, precision medicine, a paradigm that tailors medical interventions to individual characteristics, would help allocate the most adequate and effective treatment for each patient while minimizing its side effects. In particular, multi-omic studies may unveil the intricate interplays between genetic predispositions and exposure to environmental factors through the study of epigenomics, transcriptomics, proteomics, metabolomics, gut microbiomics, and immunomics. The integration of the flow of multi-omic information into molecular pathways may produce better outcomes than the current psychopharmacological approach, which targets singular molecular factors mainly related to the monoamine systems, disregarding the complex network of our organism. The concept of system biomedicine involves the integration and analysis of enormous datasets generated with different technologies, creating a "patient fingerprint", which defines the underlying biological mechanisms of every patient. This review, centered on precision medicine, explores the integration of multi-omic approaches as clinical tools for prediction in MDD at a single-patient level. It investigates how combining the existing technologies used for diagnostic, stratification, prognostic, and treatment-response biomarkers discovery with artificial intelligence can improve the assessment and treatment of MDD.
Collapse
Affiliation(s)
- Fabiola Stolfi
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Hugo Abreu
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Riccardo Sinella
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Sara Nembrini
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Sara Centonze
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Virginia Landra
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Claudio Brasso
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Giuseppe Cappellano
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| | - Paola Rocca
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Annalisa Chiocchetti
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Università del Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD), Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
43
|
Tene O, Molad J, Rotschild O, Alpernas A, Hawwari M, Seyman E, Giladi N, Hallevi H, Assayag EB. Blocking CCR5 activity by maraviroc augmentation in post-stroke depression: a proof-of-concept clinical trial. BMC Neurol 2024; 24:190. [PMID: 38844862 PMCID: PMC11155100 DOI: 10.1186/s12883-024-03683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/20/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Post-stroke depression (PSD) is a significant impediment to successful rehabilitation and recovery after a stroke. Current therapeutic options are limited, leaving an unmet demand for specific and effective therapeutic options. Our objective was to investigate the safety of Maraviroc, a CCR5 antagonist, as a possible mechanism-based add-on therapeutic option for PSD in an open-label proof-of-concept clinical trial. METHODS We conducted a 10-week clinical trial in which ten patients with subcortical and cortical stroke, suffering from PSD. were administered a daily oral dose of 300 mg Maraviroc. Participants were then monitored for an additional eight weeks. The primary outcome measure was serious treatment-emergent adverse events (TEAEs) and TEAEs leading to discontinuation. The secondary outcome measure was a change in the Montgomery-Asberg Depression Rating Scale (MADRS). RESULTS Maraviroc was well tolerated, with no reports of serious adverse events or discontinuations due to intolerance. The MADRS scores substantially reduced from baseline to week 10 (mean change: -16.4 ± 9.3; p < 0.001). By the conclusion of the treatment phase, a favorable response was observed in five patients, with four achieving remission. The time to response was relatively short, approximately three weeks. After the cessation of treatment, MADRS scores increased at week 18 by 6.1 ± 9.6 points (p = 0.014). CONCLUSIONS Our proof-of-concept study suggests that a daily dosage of 300 mg of Maraviroc may represent a well-tolerated and potentially effective pharmacological approach to treating PSD. Further comprehensive placebo-controlled studies are needed to assess the impact of Maraviroc augmentation on PSD. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05932550, Retrospectively registered: 28/06/2023.
Collapse
Affiliation(s)
- Oren Tene
- Department of Psychiatry, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Psychiatry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jeremy Molad
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel
| | - Ofer Rotschild
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel
| | - Aviva Alpernas
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel
| | - Muhamad Hawwari
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel
| | - Estelle Seyman
- Department of Neurology-Stroke, Rambam Medical Center, Haifa, Israel
| | - Nir Giladi
- Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Neurology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hen Hallevi
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel
- Department of Neurology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Einor Ben Assayag
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel.
- Department of Neurology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
44
|
Liu H, Zhu T, Zhang L, Li F, Zheng M, Chen B, Zhu H, Ren J, Lu X, Huang C. Immunization with a low dose of zymosan A confers resistance to depression-like behavior and neuroinflammatory responses in chronically stressed mice. Behav Pharmacol 2024; 35:211-226. [PMID: 38651984 DOI: 10.1097/fbp.0000000000000774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Stimulation of the innate immune system prior to stress exposure is a possible strategy to prevent depression under stressful conditions. Based on the innate immune system stimulating activities of zymosan A, we hypothesize that zymosan A may prevent the development of chronic stress-induced depression-like behavior. Our results showed that a single injection of zymosan A 1 day before stress exposure at a dose of 2 or 4 mg/kg, but not at a dose of 1 mg/kg, prevented the development of depression-like behaviors in mice treated with chronic social defeat stress (CSDS). The prophylactic effect of a single zymosan A injection (2 mg/kg) on CSDS-induced depression-like behaviors disappeared when the time interval between zymosan A and stress exposure was extended from 1 day or 5 days to 10 days, which was rescued by a second zymosan A injection 10 days after the first zymosan A injection and 4 days (4×, once daily) of zymosan A injections 10 days before stress exposure. Further analysis showed that a single zymosan A injection (2 mg/kg) 1 day before stress exposure could prevent the CSDS-induced increase in pro-inflammatory cytokines in the hippocampus and prefrontal cortex. Inhibition of the innate immune system by pretreatment with minocycline (40 mg/kg) abolished the preventive effect of zymosan A on CSDS-induced depression-like behaviors and CSDS-induced increase in pro-inflammatory cytokines in the brain. These results suggest that activation of the innate immune system triggered by zymosan A prevents the depression-like behaviors and neuroinflammatory responses in the brain induced by chronic stress.
Collapse
Affiliation(s)
- Huijun Liu
- Department of Pharmacy, The First People's Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng
| | - Tao Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong
| | - Linlin Zhang
- Department of Pharmacy, The First People's Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng
| | - Fu Li
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No. 7 People's Hospital, Changzhou, Jiangsu, China
| | - Meng Zheng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong
| | - Bingran Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong
| | - Jie Ren
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong
| |
Collapse
|
45
|
Bateineh S, Atoum MF. Association between Vitamin D Levels During Pregnancy and Postpartum Depression: A Narrative Reviews. IRANIAN JOURNAL OF NURSING AND MIDWIFERY RESEARCH 2024; 29:290-296. [PMID: 39100406 PMCID: PMC11296599 DOI: 10.4103/ijnmr.ijnmr_49_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 08/06/2024]
Abstract
Background Postpartum Depression (PPD) is a serious depression that develops in the first year, with unknown explained reasons. Many studies evaluated the impact of Vitamin D (VD) levels on depression during pregnancy and postnatal. This narrative review aims to review any association between serum VD levels during pregnancy and the development of PPD. Materials and Methods PPD data from published trials and research articles (period from 2012 to 2022) were assessed through PubMed, Scopus, Science Direct, and Google Scholar using the following terms: Depression, pregnancy, 25-hydroxyvitamin D (25OH VD), vitamin D deficiency (VDD) and postpartum (PP). Articles were selected manually and with careful tracking to avoid duplication. Articles that investigated any association between VD levels during pregnancy and PPD in the time frame were included in the study, while articles investigating VD levels of PP without depression were excluded. Results In this narrative review, five out of seven studies showed an association between PPD and VDD during pregnancy. Danish National Birth Cohort (DNBC), Edinburgh Postnatal Depression Scale (EPDS) and Center for Epidemiologic Studies Depression Scale (CES-D) enrolled among different studies from 3 days to 1 year PP to assess PPD. Conclusions Pregnant women with VDD are significantly associated with PPD. Longitudinal follow-up studies are needed to evaluate the association between VDD with PPD. Screening VD levels among pre-postnatal mothers may be essential for awareness programs that can be implemented to promote remission of postnatal depression.
Collapse
Affiliation(s)
- Sajedah Bateineh
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, Zarqa, Jordan
| | - Manar Fayiz Atoum
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
46
|
Chang J, Jiang T, Shan X, Zhang M, Li Y, Qi X, Bian Y, Zhao L. Pro-inflammatory cytokines in stress-induced depression: Novel insights into mechanisms and promising therapeutic strategies. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110931. [PMID: 38176531 DOI: 10.1016/j.pnpbp.2023.110931] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Stress-mediated depression is one of the common psychiatric disorders with a high prevalence and suicide rate, there is a lack of effective treatment. Accordingly, effective treatments with few adverse effects are urgently needed. Pro-inflammatory cytokines (PICs) may play a key role in stress-mediated depression. Thereupon, both preclinical and clinical studies have found higher levels of IL-1β, TNF-α and IL-6 in peripheral blood and brain tissue of patients with depression. Recent studies have found PICs cause depression by affecting neuroinflammation, monoamine neurotransmitters, hypothalamic pituitary adrenal axis and neuroplasticity. Moreover, they play an important role in the symptom, development and progression of depression, maybe a potential diagnostic and therapeutic marker of depression. In addition, well-established antidepressant therapies have some relief on high levels of PICs. Importantly, anti-inflammatory drugs relieve depressive symptoms by reducing levels of PICs. Collectively, reducing PICs may represent a promising therapeutic strategy for depression.
Collapse
Affiliation(s)
- Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Tingcan Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoqian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Mingxing Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yujiao Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, 300121, China
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
47
|
Davalos-Guzman AP, Vegas-Rodriguez FJ, Ramirez-Rodriguez GB, Flores-Ramos M, Romero-Luevano PV, Gonzalez-Olvera JJ, Saracco-Alvarez RA. Human olfactory neural progenitor cells reveal differences in IL-6, IL-8, thrombospondin-1, and MCP-1 in major depression disorder and borderline personality disorder. Front Psychiatry 2024; 15:1283406. [PMID: 38654728 PMCID: PMC11035822 DOI: 10.3389/fpsyt.2024.1283406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Background Discovering biological markers is essential for understanding and treating mental disorders. Despite the limitations of current non-invasive methods, neural progenitor cells from the olfactory epithelium (hNPCs-OE) have been emphasized as potential biomarker sources. This study measured soluble factors in these cells in Major Depressive Disorder (MDD), Borderline Personality Disorder (BPD), and healthy controls (HC). Methods We assessed thirty-five participants divided into MDD (n=14), BPD (n=14), and HC (n=7). MDD was assessed using the Hamilton Depression Rating Scale. BPD was evaluated using the DSM-5 criteria and the Structured Clinical Interview for Personality Disorders. We isolated hNPCs-OE, collected intracellular proteins and conditioned medium, and quantified markers and soluble factors, including Interleukin-6, interleukin-8, and others. Analysis was conducted using one-way ANOVA or Kruskal-Wallis test and linear regression. Results We found that hNPCs-OE of MDD and BPD decreased Sox2 and laminin receptor-67 kDa levels. MASH-1 decreased in BPD, while tubulin beta-III decreased in MDD compared to controls and BPD. Also, we found significant differences in IL-6, IL-8, MCP-1, and thrombospondin-1 levels between controls and MDD, or BPD, but not between MDD and BPD. Conclusions Altered protein markers are evident in the nhNPCs-OE in MDD and BPD patients. These cells also secrete higher concentrations of inflammatory cytokines than HC cells. The results suggest the potential utility of hNPCs-OE as an in vitro model for researching biological protein markers in psychiatric disorders. However, more extensive validation studies are needed to confirm their effectiveness and specificity in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Alan Patrick Davalos-Guzman
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Francisco Javier Vegas-Rodriguez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Gerardo Bernabe Ramirez-Rodriguez
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Monica Flores-Ramos
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Ciudad de México, Mexico
| | - Perla Vanessa Romero-Luevano
- Laboratorio de Neurogénesis, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Jorge Julio Gonzalez-Olvera
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Ciudad de México, Mexico
| | - Ricardo Arturo Saracco-Alvarez
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Ciudad de México, Mexico
| |
Collapse
|
48
|
Bielewicz J, Daniluk B, Kamieniak P. Altered serum cytokines in patients with symptomatic disk herniation and depressive symptoms. Front Neurosci 2024; 18:1366559. [PMID: 38646609 PMCID: PMC11026593 DOI: 10.3389/fnins.2024.1366559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Purpose An increasing number of studies have indicated the important role of cytokines in the development of depressive disturbances (DD). In medically ill patients, cytokines can provoked sickness behavior, the signs of which resemble DD. This results in alterations in behavior to limit energy expenditure and redirect it to cope with particular diseases. The aim of our study was to investigate the role of pro-inflammatory IL-6, TNF-α, and IL-1β and anti-inflammatory IL-10 and TGF-β in DD observed in patients suffering from pain caused by disk herniation (DH) qualified for surgery. Patients and methods The intensity of DD assessed by using Beck Depression Inventory, pain intensity, and functional impairment were evaluated in 70 patients with DH who were qualified for surgery. Pro-inflammatory serum levels of TNF-α, IL-1, IL-6, anti-inflammatory TGF-β, and IL-10 were measured. Results Elevated serum levels of TGF-β, IL-10, and IL-6 were found in the group with moderate and severe depressive symptoms (SD) compared with the groups with mild (MD) or no depressive symptoms (ND). TGF-β levels were negatively correlated with pain intensity, as assessed using the Present Pain Intensity scale in SD. Functional impairment measured using the Oswestry Disability Index was the most advanced in SD group. Conclusion Results of our study can suggest association between depressive disturbances and anti-inflammatory cytokines TGF-β and IL-10. Functional impairment of SD group is more severe but serum levels of TGF-β and IL-10, which are involved in the healing processes, are increased.
Collapse
Affiliation(s)
- Joanna Bielewicz
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | - Beata Daniluk
- Institute of Psychology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
49
|
Chen Y, Chen J, Xing Z, Peng C, Li D. Autophagy in Neuroinflammation: A Focus on Epigenetic Regulation. Aging Dis 2024; 15:739-754. [PMID: 37548945 PMCID: PMC10917535 DOI: 10.14336/ad.2023.0718-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
Neuroinflammation, characterized by the secretion of abundant inflammatory mediators, pro-inflammatory polarization of microglia, and the recruitment of infiltrating myeloid cells to foci of inflammation, drives or exacerbates the pathological processes of central nervous system disorders, especially in neurodegenerative diseases. Autophagy plays an essential role in neuroinflammatory processes, and the underlaying physiological mechanisms are closely correlated with neuroinflammation-related signals. Inhibition of mTOR and activation of AMPK and FOXO1 enhance autophagy and thereby suppress NLRP3 inflammasome activity and apoptosis, leading to the relief of neuroinflammatory response. And autophagy mitigates neuroinflammation mainly manifested by promoting the polarization of microglia from a pro-inflammatory to an anti-inflammatory state, reducing the production of pro-inflammatory mediators, and up-regulating the levels of anti-inflammatory factors. Notably, epigenetic modifications are intimately associated with autophagy and the onset and progression of various brain diseases. Non-coding RNAs, including microRNAs, circular RNAs and long noncoding RNAs, and histone acetylation have been reported to adjust autophagy-related gene and protein expression to alleviate inflammation in neurological diseases. The present review primarily focuses on the role and mechanisms of autophagy in neuroinflammatory responses, as well as epigenetic modifications of autophagy in neuroinflammation to reveal potential therapeutic targets in central nervous system diseases.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
50
|
Liu L, Yang X, Yang C, Tian Y, Li W, Xia L, Liu H. Associations between insomnia symptoms and inflammatory cytokines in adolescents with first-episode and recurrent major depressive disorder. J Affect Disord 2024; 350:110-117. [PMID: 38220096 DOI: 10.1016/j.jad.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/04/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Insomnia symptoms are often associated with increased levels of inflammatory biomarkers. However, such associations have not been adequately explored in adolescents with major depressive disorder (MDD). This study aimed to examine the associations between insomnia symptoms with inflammatory cytokines in adolescents with first-episode and recurrent MDD. METHODS From January to December 2021, this study included 164 adolescents with MDD and 76 healthy controls (HCs). The Center for Epidemiological Studies Depression Scale (CES-D) and the Insomnia Severity Index Scale (ISI) were used to assess depressive and insomnia symptoms, respectively. Also, plasma levels of interleukin (IL)-1β, IL-6, IL-8, IL-10, IL-17 A and tumor necrosis factor-α (TNF-α) were measured. RESULTS The prevalence of mild, moderate and severe insomnia in adolescents with MDD was 40.24 %, 36.59 % and 6.71 %, respectively. The patients had higher levels of IL-1β, IL-6 and TNF-α than HCs (all p < 0.05). ISI score was positively correlated with CES-D score and levels of IL-1β, IL-6 and TNF-α in first-episode patients but not in recurrent patients. A further multivariate stepwise linear regression analysis showed that ISI score was independently associated with CES-D score (beta = 0.523, t = 5.833, p < 0.001) and TNF-α levels (beta = 0.254, t = 2.832, p = 0.006). LIMITATIONS The cross-sectional design leads to failure to make causal inferences. CONCLUSION Insomnia symptoms are common in adolescents with MDD and associated with elevated levels of inflammatory cytokines in first-episode patients. The findings suggest that inflammatory cytokines may relate to the pathogenesis of insomnia symptoms in adolescents with MDD, but further longitudinal studies are needed to explore the causal association between insomnia symptoms and inflammatory cytokines in MDD.
Collapse
Affiliation(s)
- Lewei Liu
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, Anhui Province, China; Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui Province, China; Anhui Psychiatric Center, Anhui Medical University, Hefei 238000, Anhui Province, China
| | - Xiaoxue Yang
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, Anhui Province, China; Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui Province, China; Anhui Psychiatric Center, Anhui Medical University, Hefei 238000, Anhui Province, China
| | - Cheng Yang
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, Anhui Province, China; Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui Province, China; Anhui Psychiatric Center, Anhui Medical University, Hefei 238000, Anhui Province, China
| | - Yinghan Tian
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, Anhui Province, China; Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui Province, China; Anhui Psychiatric Center, Anhui Medical University, Hefei 238000, Anhui Province, China
| | - Wenzheng Li
- Department of Psychiatry, Hefei Fourth People's Hospital, Hefei 230000, Anhui Province, China
| | - Lei Xia
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, Anhui Province, China; Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui Province, China; Anhui Psychiatric Center, Anhui Medical University, Hefei 238000, Anhui Province, China.
| | - Huanzhong Liu
- Department of Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei 230000, Anhui Province, China; Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui Province, China; Anhui Psychiatric Center, Anhui Medical University, Hefei 238000, Anhui Province, China.
| |
Collapse
|