1
|
Yin L, Lin Y, Qiu J, Xiang Y, Li M, Xiao X, Lui SSY, So HC. Integrating brain imaging features and genomic profiles for the subtyping of major depression. Psychol Med 2025; 55:e158. [PMID: 40400388 DOI: 10.1017/s0033291725001096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
BACKGROUND Precise stratification of patients into homogeneous disease subgroups could address the heterogeneity of phenotypes and enhance understanding of the pathophysiology underlying specific subtypes. Existing literature on subtyping patients with major depressive disorder (MDD) mainly utilized clinical features only. Genomic and imaging data may improve subtyping, but advanced methods are required due to the high dimensionality of features. METHODS We propose a novel disease subtyping framework for MDD by integrating brain structural features, genotype-predicted expression levels in brain tissues, and clinical features. Using a multi-view biclustering approach, we classify patients into clinically and biologically homogeneous subgroups. Additionally, we propose approaches to identify causally relevant genes for clustering. RESULTS We verified the reliability of the subtyping model by internal and external validation. High prediction strengths (PS) (average PS: 0.896, minimum: 0.854), a measure of generalizability of the derived clusters in independent datasets, support the validity of our approach. External validation using patient outcome variables (treatment response and hospitalization risks) confirmed the clinical relevance of the identified subgroups. Furthermore, subtype-defining genes overlapped with known susceptibility genes for MDD and were involved in relevant biological pathways. In addition, drug repositioning analysis based on these genes prioritized promising candidates for subtype-specific treatments. CONCLUSIONS Our approach successfully stratified MDD patients into subgroups with distinct clinical prognoses. The identification of biologically and clinically meaningful subtypes may enable more personalized treatment strategies. This study also provides a framework for disease subtyping that can be extended to other complex disorders.
Collapse
Affiliation(s)
- Liangying Yin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuping Lin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jinghong Qiu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yong Xiang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ming Li
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology and The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao Xiao
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology and The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Simon Sai-Yu Lui
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
- Castle Peak Hospital, Hong Kong, China
| | - Hon-Cheong So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology and The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, China
- Margaret K.L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Hong Kong SAR, China
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of the Chinese Academy of Sciences Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Wu L, Liu X, Jiang Q, Li M, Liang M, Wang S, Wang R, Su L, Ni T, Dong N, Zhu L, Guan F, Zhu J, Zhang W, Wu M, Chen Y, Chen T, Wang B. Methamphetamine-induced impairment of memory and fleeting neuroinflammation: Profiling mRNA changes in mouse hippocampus following short-term and long-term exposure. Neuropharmacology 2024; 261:110175. [PMID: 39357738 DOI: 10.1016/j.neuropharm.2024.110175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/20/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Methamphetamine (METH) has been implicated in inducing memory impairment, but the precise mechanisms underlying this effect remain unclear. Current research often limits itself to singular models or focuses on individual gene or protein functions, which hampers a comprehensive understanding of the underlying mechanisms. In this study, we established three METH mouse exposure models, extracted hippocampal nuclei, and utilized RNA sequencing to analyze changes in mRNA expression profiles. Our results indicate that METH significantly impairs the learning and memory capabilities of mice. Additionally, we observed that METH-induced inflammatory responses occur in the early phase and do not further exacerbate with repeated injections. However, RNA sequencing revealed the persistent enrichment of inflammatory pathway molecules, which correlated with worsened behaviors. This suggests that although METH-induced neuroinflammation plays a critical role in learning and memory impairment, the continued enrichment of inflammatory pathway molecules is associated with behavioral outcomes. These findings provide crucial evidence for the potential application of immune intervention in METH-related disorders.
Collapse
Affiliation(s)
- Laiqiang Wu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Xiaorui Liu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Qingchen Jiang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ming Li
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Min Liang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Shuai Wang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Rui Wang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Linlan Su
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Tong Ni
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Nan Dong
- School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Li Zhu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Fanglin Guan
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Jie Zhu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Wen Zhang
- Department of Pathology, Northwest Women's and Children's Hospital, Xi'an, China
| | - Min Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Teng Chen
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China.
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| |
Collapse
|
3
|
Li Y, Yang Y, Guan X, Liu Z, Pan L, Wang Y, Jia X, Yang J, Hou T. SorCS2 is involved in promoting periodontitis-induced depression-like behaviour in mice. Oral Dis 2024; 30:5408-5420. [PMID: 38568959 DOI: 10.1111/odi.14944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Emerging evidence supports the association between periodontitis and depression, although the mechanisms are unclear. This study investigated the role of SorCS2 in the pathogenesis of periodontitis-induced depression. MATERIALS AND METHODS An experimental periodontitis model was established using SorCS2 knockout mice and their wild-type littermates, and depression-like behaviour was evaluated. The expression of proBDNF signalling, neuronal activity, and glutamate-associated signalling pathways were further measured by western blotting and immunofluorescence. In addition, neuroinflammatory status, astrocytic and microglial markers, and the expression of corticosterone-related factors were measured by immunofluorescence, western blotting, and enzyme-linked immunosorbent assays. RESULTS SorCS2 deficiency alleviated periodontitis-induced depression-like behaviour in mice. Further results suggested that SorCS2 deficiency downregulated the expression of pro-BDNF and glutamate signalling and restored neuronal activities in mice with periodontitis. Neuroinflammation in the mouse hippocampus was triggered by experimental periodontitis but was not affected by SorCS2 deficiency. The levels of corticosterone and the expression of glucocorticoid receptors were also not altered. CONCLUSION Our study, for the first time, reveals the critical role of SorCS2 in the pathogenesis of periodontitis-induced depression. The underlying mechanism involves proBDNF and glutamate signalling in the hippocampus, providing a novel therapeutic target for periodontitis-associated depression.
Collapse
Affiliation(s)
- Yingxue Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yao Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyue Guan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Zhijun Liu
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lifei Pan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yuting Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xiangbin Jia
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Jianmin Yang
- Department of Medicine, Weill Cornell Medical School, Cornell University, New York, New York, USA
| | - Tiezhou Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Zafrilla-López M, Acosta-Díez M, Mitjans M, Giménez-Palomo A, Saiz PA, Barrot-Feixat C, Jiménez E, Papiol S, Ruiz V, Gavín P, García-Portilla MP, González-Blanco L, Bobes J, Schulze TG, Vieta E, Benabarre A, Arias B. Lithium response in bipolar disorder: Epigenome-wide DNA methylation signatures and epigenetic aging. Eur Neuropsychopharmacol 2024; 85:23-31. [PMID: 38669938 DOI: 10.1016/j.euroneuro.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Lithium (Li) is the first-line treatment for bipolar disorder (BD) even though only 30 % of BD patients are considered excellent responders. The mechanisms by which Li exerts its action are not clearly understood, but it has been suggested that specific epigenetic mechanisms, such as methylation processes, may play a role. In this regard, DNA methylation patterns can be used to estimate epigenetic age (EpiAge), which is accelerated in BD patients and reversed by Li treatment. Our first aim was to compare the DNA methylation profile in peripheral blood between BD patients categorized as excellent responders to Li (Ex-Rp) and non-responders (N-Rp). Secondly, EpiAge was estimated to detect differential age acceleration between the two groups. A total of 130 differentially methylated positions (DMPs) and 16 differentially methylated regions (DMRs) between Ex-Rp (n = 26) and N-Rp (n = 37) were identified (FDR adjusted p-value < 0.05). We found 122 genes mapping the DMPs and DMRs, nine of which (HOXB6, HOXB3, HOXB-AS3, TENM2, CACNA1B, ANK3, EEF2K, CYP1A1, and SORCS2) had previously been linked to Li response. We found genes related to the GSK3β pathway to be highly represented. Using FUMA, we found enrichment in Gene Ontology Cell Component for the synapse. Gene network analysis highlighted functions related to the cell cycle, nervous system development and function, and gene expression. No significant differences in age acceleration were found between Ex-Rp and N-Rp for any of the epigenetic clocks analysed. Our findings indicate that a specific methylation pattern could determine the response to Li in BD patients. We also found that a significant portion of the differentially methylated genes are closely associated with the GSK3β pathway, reinforcing the role of this system in Li response. Future longitudinal studies with larger samples will help to elucidate the epigenetic mechanisms underlying Li response.
Collapse
Affiliation(s)
- Marina Zafrilla-López
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Miriam Acosta-Díez
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Marina Mitjans
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Spain.
| | - Anna Giménez-Palomo
- Bipolar and Depressive Disorders Unit, Psychiatry and Psychology Service, Clinical Institute of Neuroscience, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Pilar A Saiz
- Department of Psychiatry, Servicio de Salud del Principado de Asturias (SESPA), School of Medicine, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Ester Jiménez
- Bipolar and Depressive Disorders Unit, Psychiatry and Psychology Service, Clinical Institute of Neuroscience, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Institut de Neurociències, Department of Medicine, University of Barcelona, Barcelona, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergi Papiol
- CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | - Victoria Ruiz
- Bipolar and Depressive Disorders Unit, Psychiatry and Psychology Service, Clinical Institute of Neuroscience, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Patrícia Gavín
- Bipolar and Depressive Disorders Unit, Psychiatry and Psychology Service, Clinical Institute of Neuroscience, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - María Paz García-Portilla
- Department of Psychiatry, Servicio de Salud del Principado de Asturias (SESPA), School of Medicine, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Leticia González-Blanco
- Department of Psychiatry, Servicio de Salud del Principado de Asturias (SESPA), School of Medicine, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Julio Bobes
- Department of Psychiatry, Servicio de Salud del Principado de Asturias (SESPA), School of Medicine, University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany; Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eduard Vieta
- Bipolar and Depressive Disorders Unit, Psychiatry and Psychology Service, Clinical Institute of Neuroscience, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Institut de Neurociències, Department of Medicine, University of Barcelona, Barcelona, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Antoni Benabarre
- Bipolar and Depressive Disorders Unit, Psychiatry and Psychology Service, Clinical Institute of Neuroscience, Hospital Clinic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Institut de Neurociències, Department of Medicine, University of Barcelona, Barcelona, Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Bárbara Arias
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Spain; CIBER de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Lawn T, Giacomel A, Martins D, Veronese M, Howard M, Turkheimer FE, Dipasquale O. Normative modelling of molecular-based functional circuits captures clinical heterogeneity transdiagnostically in psychiatric patients. Commun Biol 2024; 7:689. [PMID: 38839931 PMCID: PMC11153627 DOI: 10.1038/s42003-024-06391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Advanced methods such as REACT have allowed the integration of fMRI with the brain's receptor landscape, providing novel insights transcending the multiscale organisation of the brain. Similarly, normative modelling has allowed translational neuroscience to move beyond group-average differences and characterise deviations from health at an individual level. Here, we bring these methods together for the first time. We used REACT to create functional networks enriched with the main modulatory, inhibitory, and excitatory neurotransmitter systems and generated normative models of these networks to capture functional connectivity deviations in patients with schizophrenia, bipolar disorder (BPD), and ADHD. Substantial overlap was seen in symptomatology and deviations from normality across groups, but these could be mapped into a common space linking constellations of symptoms through to underlying neurobiology transdiagnostically. This work provides impetus for developing novel biomarkers that characterise molecular- and systems-level dysfunction at the individual level, facilitating the transition towards mechanistically targeted treatments.
Collapse
Affiliation(s)
- Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Alessio Giacomel
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Matthew Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Department of Research & Development Advanced Applications, Olea Medical, La Ciotat, France.
| |
Collapse
|
6
|
Arruda AL, Khandaker GM, Morris AP, Smith GD, Huckins LM, Zeggini E. Genomic insights into the comorbidity between type 2 diabetes and schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:22. [PMID: 38383672 PMCID: PMC10881980 DOI: 10.1038/s41537-024-00445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Multimorbidity represents an increasingly important public health challenge with far-reaching implications for health management and policy. Mental health and metabolic diseases have a well-established epidemiological association. In this study, we investigate the genetic intersection between type 2 diabetes and schizophrenia. We use Mendelian randomization to examine potential causal relationships between the two conditions and related endophenotypes. We report no compelling evidence that type 2 diabetes genetic liability potentially causally influences schizophrenia risk and vice versa. Our findings show that increased body mass index (BMI) has a protective effect against schizophrenia, in contrast to the well-known risk-increasing effect of BMI on type 2 diabetes risk. We identify evidence of colocalization of association signals for these two conditions at 11 genomic loci, six of which have opposing directions of effect for type 2 diabetes and schizophrenia. To elucidate these colocalizing signals, we integrate multi-omics data from bulk and single-cell gene expression studies, along with functional information. We identify putative effector genes and find that they are enriched for homeostasis and lipid-related pathways. We also highlight drug repurposing opportunities including N-methyl-D-aspartate (NMDA) receptor antagonists. Our findings provide insights into shared biological mechanisms for type 2 diabetes and schizophrenia, highlighting common factors that influence the risk of the two conditions in opposite directions and shedding light on the complex nature of this comorbidity.
Collapse
Affiliation(s)
- Ana Luiza Arruda
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Munich School for Data Science, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Technical University of Munich (TUM), TUM School of Medicine and Health, Graduate School of Experimental Medicine, Munich, 81675, Germany
| | - Golam M Khandaker
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
- Avon and Wiltshire Mental Health Partnership NHS Trust, Bristol, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Laura M Huckins
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany.
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Munich, 81675, Germany.
| |
Collapse
|
7
|
Bortolasci CC, Kidnapillai S, Spolding B, Truong TTT, Connor T, Swinton C, Panizzutti B, Liu ZSJ, Sanigorski A, Dean OM, Crowley T, Richardson M, Bozaoglu K, Vlahos K, Cowdery S, Watmuff B, Steyn SF, Wolmarans DW, Engelbrecht BJ, Perry C, Drummond K, Pang T, Jamain S, Gray L, McGee SL, Harvey BH, Kim JH, Leboyer M, Berk M, Walder K. Use of a gene expression signature to identify trimetazidine for repurposing to treat bipolar depression. Bipolar Disord 2023; 25:661-670. [PMID: 36890661 PMCID: PMC10946906 DOI: 10.1111/bdi.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
OBJECTIVES The aim of this study was to repurpose a drug for the treatment of bipolar depression. METHODS A gene expression signature representing the overall transcriptomic effects of a cocktail of drugs widely prescribed to treat bipolar disorder was generated using human neuronal-like (NT2-N) cells. A compound library of 960 approved, off-patent drugs were then screened to identify those drugs that affect transcription most similar to the effects of the bipolar depression drug cocktail. For mechanistic studies, peripheral blood mononuclear cells were obtained from a healthy subject and reprogrammed into induced pluripotent stem cells, which were then differentiated into co-cultured neurons and astrocytes. Efficacy studies were conducted in two animal models of depressive-like behaviours (Flinders Sensitive Line rats and social isolation with chronic restraint stress rats). RESULTS The screen identified trimetazidine as a potential drug for repurposing. Trimetazidine alters metabolic processes to increase ATP production, which is thought to be deficient in bipolar depression. We showed that trimetazidine increased mitochondrial respiration in cultured human neuronal-like cells. Transcriptomic analysis in induced pluripotent stem cell-derived neuron/astrocyte co-cultures suggested additional mechanisms of action via the focal adhesion and MAPK signalling pathways. In two different rodent models of depressive-like behaviours, trimetazidine exhibited antidepressant-like activity with reduced anhedonia and reduced immobility in the forced swim test. CONCLUSION Collectively our data support the repurposing of trimetazidine for the treatment of bipolar depression.
Collapse
Affiliation(s)
- Chiara C. Bortolasci
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Srisaiyini Kidnapillai
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Briana Spolding
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Trang T. T. Truong
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Timothy Connor
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Courtney Swinton
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Bruna Panizzutti
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Zoe S. J. Liu
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Andrew Sanigorski
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Olivia M. Dean
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
| | - Tamsyn Crowley
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
- Bioinformatics Core Research Facility (BCRF)Deakin UniversityGeelongAustralia
| | - Mark Richardson
- Bioinformatics Core Research Facility (BCRF)Deakin UniversityGeelongAustralia
| | - Kiymet Bozaoglu
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneParkvilleVictoriaAustralia
| | - Katerina Vlahos
- Murdoch Children's Research InstituteParkvilleVictoriaAustralia
| | - Stephanie Cowdery
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Brad Watmuff
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Stephan F. Steyn
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health SciencesNorth‐West UniversityPotchefstroomSouth Africa
| | - De Wet Wolmarans
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health SciencesNorth‐West UniversityPotchefstroomSouth Africa
| | - Barend J. Engelbrecht
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health SciencesNorth‐West UniversityPotchefstroomSouth Africa
| | - Christina Perry
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
| | - Katherine Drummond
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
| | - Terence Pang
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
| | - Stéphane Jamain
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, AP‐HP, DMU IMPACT, FHU ADAPTFondation FondaMentalCréteilFrance
| | - Laura Gray
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
| | - Sean L. McGee
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| | - Brian H. Harvey
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health SciencesNorth‐West UniversityPotchefstroomSouth Africa
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Mental Health and Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Jee Hyun Kim
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
| | - Marion Leboyer
- Univ Paris Est Créteil, INSERM, IMRB, Translational Neuropsychiatry, AP‐HP, DMU IMPACT, FHU ADAPTFondation FondaMentalCréteilFrance
| | - Michael Berk
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
- The Florey Institute of Neuroscience and Mental HealthParkvilleAustralia
- Orygen, The National Centre of Excellence in Youth Mental HealthParkvilleAustralia
| | - Ken Walder
- IMPACTThe Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin UniversityGeelongAustralia
| |
Collapse
|
8
|
Arruda AL, Khandaker GM, Morris AP, Smith GD, Huckins LM, Zeggini E. Genomic insights into the comorbidity between type 2 diabetes and schizophrenia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.16.23297073. [PMID: 37905000 PMCID: PMC10615007 DOI: 10.1101/2023.10.16.23297073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Multimorbidity represents an increasingly important public health challenge with far-reaching implications for health management and policy. Mental health and metabolic diseases have a well-established epidemiological association. In this study, we investigate the genetic intersection between type 2 diabetes and schizophrenia. We use Mendelian randomization to examine potential causal relationships between the two conditions and related endophenotypes. We report no compelling evidence that type 2 diabetes genetic liability potentially causally influences schizophrenia risk and vice versa. Our findings show that increased body mass index (BMI) has a protective effect against schizophrenia, in contrast to the well-known risk-increasing effect of BMI on type 2 diabetes risk. We identify evidence of colocalization of association signals for these two conditions at 11 genomic loci, six of which have opposing directions of effect for type 2 diabetes and schizophrenia. To elucidate these colocalizing signals, we integrate multi-omics data from bulk and single-cell gene expression studies, along with functional information. We identify high-confidence effector genes and find that they are enriched for homeostasis and lipid-related pathways. We also highlight drug repurposing opportunities including N-methyl-D-aspartate (NMDA) receptor antagonists. Our findings provide insights into shared biological mechanisms for type 2 diabetes and schizophrenia, highlighting common factors that influence the risk of the two conditions in opposite directions and shedding light on the complex nature of this comorbidity.
Collapse
Affiliation(s)
- Ana Luiza Arruda
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, 85764, Germany
- Munich School for Data Science, Helmholtz Munich, Neuherberg, 85764, Germany
- Technical University of Munich (TUM), School of Medicine, Graduate School of Experimental Medicine, Munich, 81675, Germ
| | - Golam M. Khandaker
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
- Avon and Wiltshire Mental Health Partnership NHS Trust, Bristol, UK
| | - Andrew P. Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - Laura M. Huckins
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, 85764, Germany
- TUM school of medicine, Technical University Munich and Klinikum Rechts der Isar, Munich, 81675, Germany
| |
Collapse
|
9
|
Gospodinova KO, Olsen D, Kaas M, Anderson SM, Phillips J, Walker RM, Bermingham ML, Payne AL, Giannopoulos P, Pandya D, Spires-Jones TL, Abbott CM, Porteous DJ, Glerup S, Evans KL. Loss of SORCS2 is Associated with Neuronal DNA Double-Strand Breaks. Cell Mol Neurobiol 2023; 43:237-249. [PMID: 34741697 PMCID: PMC9813074 DOI: 10.1007/s10571-021-01163-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/29/2021] [Indexed: 01/09/2023]
Abstract
SORCS2 is one of five proteins that constitute the Vps10p-domain receptor family. Members of this family play important roles in cellular processes linked to neuronal survival, differentiation and function. Genetic and functional studies implicate SORCS2 in cognitive function, as well as in neurodegenerative and psychiatric disorders. DNA damage and DNA repair deficits are linked to ageing and neurodegeneration, and transient neuronal DNA double-strand breaks (DSBs) also occur as a result of neuronal activity. Here, we report a novel role for SORCS2 in DSB formation. We show that SorCS2 loss is associated with elevated DSB levels in the mouse dentate gyrus and that knocking out SORCS2 in a human neuronal cell line increased Topoisomerase IIβ-dependent DSB formation and reduced neuronal viability. Neuronal stimulation had no impact on levels of DNA breaks in vitro, suggesting that the observed differences may not be the result of aberrant neuronal activity in these cells. Our findings are consistent with studies linking the VPS10 receptors and DNA damage to neurodegenerative conditions.
Collapse
Affiliation(s)
- Katerina O. Gospodinova
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Ditte Olsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Mathias Kaas
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Susan M. Anderson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Jonathan Phillips
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Rosie M. Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK ,Present Address: University of Edinburgh, Chancellor’s Building, 49, Edinburgh, EH16 4SB UK
| | - Mairead L. Bermingham
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Abigail L. Payne
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Panagiotis Giannopoulos
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Divya Pandya
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Tara L. Spires-Jones
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Catherine M. Abbott
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - David J. Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Simon Glerup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Kathryn L. Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU UK
| |
Collapse
|
10
|
The neuroprotective and neuroplastic potential of glutamatergic therapeutic drugs in bipolar disorder. Neurosci Biobehav Rev 2022; 142:104906. [DOI: 10.1016/j.neubiorev.2022.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
|
11
|
Sargazi S, Zahedi Abghari A, Mirinejad S, Heidari Nia M, Majidpour M, Danesh H, Saravani R, Sheervalilou R, Shakiba M, Zahedi Abghari F. Long noncoding RNA HOTAIR polymorphisms and susceptibility to bipolar disorder: a preliminary case-control study. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:684-701. [PMID: 35469536 DOI: 10.1080/15257770.2022.2065017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent studies have shown that long noncoding RNAs contribute to the pathogenesis of bipolar disorder (BD). In this study, we genotyped four HOX Transcript Antisense Intergenic RNA (HOTAIR) gene polymorphisms to investigate if these variations could affect the risk of BD and its clinical subtypes. A total of 357 subjects, comprised of 194 BD patients and 163 age-matched healthy controls, were enrolled. Genotyping was carried out using PCR-RFLP and ARMS-PCR methods. We detected significant associations between the HOTAIR gene rs1899663 G/T, rs12826786 C/T, rs4759314 A/G, and rs920778 C/T polymorphism and the risk of BD under allelic, recessive, dominant, and codominant contrasted genetic models. The CT genotype of rs920778 C/T, GT genotype of rs1899663 G/T, and CT genotype of rs12826786 C/T polymorphisms enhanced the risk of BD type II (BDII). In contrast, the GG genotype of rs4759314 A/G polymorphism significantly diminished BDII risk by 83%. A positive association was noticed between CTTA and CTCG haplotypes of rs920778/rs1899663/rs12826786/rs4759314 and BD risk. Our findings reveal an interactive effect of HOTAIR polymorphisms on the development of BD and its subtypes. Further functional studies are needed to elucidate the role of these variations on HOTAIR expression and epigenetic status.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Armin Zahedi Abghari
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahdi Majidpour
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hiva Danesh
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Mansoor Shakiba
- Department of Psychiatry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fateme Zahedi Abghari
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Li J, Zhang J, Tao S, Hong J, Zhang Y, Chen W. Prognostication of Pancreatic Cancer Using The Cancer Genome Atlas Based Ferroptosis-Related Long Non-Coding RNAs. Front Genet 2022; 13:838021. [PMID: 35237306 PMCID: PMC8883032 DOI: 10.3389/fgene.2022.838021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) are key regulators of pancreatic cancer development and are involved in ferroptosis regulation. LncRNA transcript levels serve as a prognostic factor for pancreatic cancer. Therefore, identifying ferroptosis-related lncRNAs (FRLs) with prognostic value in pancreatic cancer is critical. Methods: In this study, FRLs were identified by combining The Cancer Genome Atlas (TCGA) and FerrDb databases. For training cohort, univariate Cox, Lasso, and multivariate Cox regression analyses were applied to identify prognosis FRLs and then construct a prognostic FRLs signature. Testing cohort and entire cohort were applied to validate the prognostic signature. Moreover, the nomogram was performed to predict prognosis at different clinicopathological stages and risk scores. A co-expression network with 76 lncRNA-mRNA targets was constructed. Results: Univariate Cox analysis was performed to analyze the prognostic value of 193 lncRNAs. Furthermore, the least absolute shrinkage and selection operator and the multivariate Cox analysis were used to assess the prognostic value of these ferroptosis-related lncRNAs. A prognostic risk model, of six lncRNAs, including LINC01705, AC068620.2, TRAF3IP2-AS1, AC092171.2, AC099850.3, and MIR193BHG was constructed. The Kaplan Meier (KM) and time-related receiver operating characteristic (ROC) curve analysis were performed to calculate overall survival and compare high- and low-risk groups. There was also a significant difference in survival time between the high-risk and low-risk groups for the testing cohort and the entire cohort, with AUCs of .723, .753, respectively. Combined with clinicopathological characteristics, the risk model was validated as a new independent prognostic factor for pancreatic adenocarcinoma through univariate and multivariate Cox regression. Moreover, a nomogram showed good prediction. Conclusion: The signature of six FRLs had significant prognostic value for pancreatic adenocarcinoma. They may be a promising therapeutic target in clinical practice.
Collapse
Affiliation(s)
- Jiayu Li
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinghui Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuiliang Tao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaze Hong
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuyan Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Yuyan Zhang, ; Weiyan Chen,
| | - Weiyan Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Yuyan Zhang, ; Weiyan Chen,
| |
Collapse
|
13
|
Cuttler K, Hassan M, Carr J, Cloete R, Bardien S. Emerging evidence implicating a role for neurexins in neurodegenerative and neuropsychiatric disorders. Open Biol 2021; 11:210091. [PMID: 34610269 PMCID: PMC8492176 DOI: 10.1098/rsob.210091] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Synaptopathies are brain disorders characterized by dysfunctional synapses, which are specialized junctions between neurons that are essential for the transmission of information. Synaptic dysfunction can occur due to mutations that alter the structure and function of synaptic components or abnormal expression levels of a synaptic protein. One class of synaptic proteins that are essential to their biology are cell adhesion proteins that connect the pre- and post-synaptic compartments. Neurexins are one type of synaptic cell adhesion molecule that have, recently, gained more pathological interest. Variants in both neurexins and their common binding partners, neuroligins, have been associated with several neuropsychiatric disorders. In this review, we summarize some of the key physiological functions of the neurexin protein family and the protein networks they are involved in. Furthermore, examination of published literature has implicated neurexins in both neuropsychiatric and neurodegenerative disorders. There is a clear link between neurexins and neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia. However, multiple expression studies have also shown changes in neurexin expression in several neurodegenerative disorders, including Alzheimer's disease and Parkinson's disease. Therefore, this review highlights the potential importance of neurexins in brain disorders and the importance of doing more targeted studies on these genes and proteins.
Collapse
Affiliation(s)
- Katelyn Cuttler
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Maryam Hassan
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Jonathan Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa,South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| |
Collapse
|
14
|
Dmitrzak-Weglarz M, Szczepankiewicz A, Rybakowski J, Kapelski P, Bilska K, Skibinska M, Reszka E, Lesicka M, Jablonska E, Wieczorek E, Pawlak J. Expression Biomarkers of Pharmacological Treatment Outcomes in Women with Unipolar and Bipolar Depression. PHARMACOPSYCHIATRY 2021; 54:261-268. [PMID: 34470067 DOI: 10.1055/a-1546-9483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION This study aimed to find the expression biomarkers of pharmacological treatment response in a naturalistic hospital setting. Through gene expression profiling, we were able to find differentially-expressed genes (DEGs) in unipolar (UD) and bipolar (BD) depressed women. METHODS We performed gene expression profiling in hospitalized women with unipolar (n=24) and bipolar depression (n=32) who achieved clinical improvement after pharmacological treatment (without any restriction). To identify DEGs in peripheral blood mononuclear cells (PBMCs), we used the SurePrint G3 Microarray and GeneSpring software. RESULTS After pharmacological treatment, UD and BD varied in the number of regulated genes and ontological pathways. Also, the pathways of neurogenesis and synaptic transmission were significantly up-regulated. Our research focused on DEGs with a minimum fold change (FC) of more than 2. For both types of depression, 2 up-regulated genes, OPRM1 and CELF4 (p=0.013), were significantly associated with treatment response (defined as a 50% reduction on the Hamilton Depression Rating Scale [HDRS]). We also uncovered the SHANK3 (p=0.001) gene that is unique for UD and found that the RASGRF1 (p=0.010) gene may be a potential specific biomarker of treatment response for BD. CONCLUSION Based on transcriptomic profiling, we identified potential expression biomarkers of treatment outcomes for UD and BD. We also proved that the Ras-GEF pathway associated with long-term memory, female stress response, and treatment response modulation in animal studies impacts treatment efficacy in patients with BD. Further studies focused on the outlined genes may help provide predictive markers of treatment outcomes in UD and BD.
Collapse
Affiliation(s)
| | - Aleksandra Szczepankiewicz
- Laboratory of Molecular and Cell Biology, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poland
| | - Janusz Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poland
| | - Paweł Kapelski
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poland
| | - Karolina Bilska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poland
| | - Maria Skibinska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poland
| | - Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Monika Lesicka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Ewa Jablonska
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Edyta Wieczorek
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poland
| |
Collapse
|
15
|
Cui F, Gu S, Gu Y, Yin J, Fang C, Liu L. Alteration in the mRNA expression profile of the autophagy-related mTOR pathway in schizophrenia patients treated with olanzapine. BMC Psychiatry 2021; 21:388. [PMID: 34348681 PMCID: PMC8335969 DOI: 10.1186/s12888-021-03394-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mammalian target of rapamycin protein (mTOR) signaling pathway is involved in the pathogenesis of schizophrenia and the mechanism of extrapyramidal adverse reactions to antipsychotic drugs, which might be mediated by an mTOR-dependent autophagy impairment. This study aimed to examine the expression of mTOR pathway genes in patients with schizophrenia treated with olanzapine, which is considered an mTOR inhibitor and autophagy inducer. METHODS Thirty-two patients with acute schizophrenia who had been treated with olanzapine for four weeks (average dose 14.24 ± 4.35 mg/d) and 32 healthy volunteers were recruited. Before and after olanzapine treatment, the Positive and Negative Syndrome Scale (PANSS) was used to evaluate the symptoms of patients with schizophrenia, and the mRNA expression levels of mTOR pathway-related genes, including MTOR, RICTOR, RAPTOR, and DEPTOR, were detected in fasting venous blood samples from all subjects using real-time quantitative PCR. RESULTS The MTOR and RICTOR mRNA expression levels in patients with acute schizophrenia were significantly decreased compared with those of healthy controls and further significantly decreased after four weeks of olanzapine treatment. The DEPTOR mRNA expression levels in patients with acute schizophrenia were not significantly different from those of healthy controls but were significantly increased after treatment. The expression levels of the RAPTOR mRNA were not significantly different among the three groups. The pairwise correlations of MTOR, DEPTOR, RAPTOR, and RICTOR mRNA expression levels in patients with acute schizophrenia and healthy controls were significant. After olanzapine treatment, the correlations between the expression levels of the DEPTOR and MTOR mRNAs and between the DEPTOR and RICTOR mRNAs disappeared. CONCLUSIONS Abnormalities in the mTOR pathway, especially DEPTOR and mTORC2, might play important roles in the autophagy mechanism underlying the pathophysiology of schizophrenia and effects of olanzapine treatment.
Collapse
Affiliation(s)
- Fengwei Cui
- grid.89957.3a0000 0000 9255 8984Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, 214151 Jiangsu China
| | - Shuguang Gu
- grid.89957.3a0000 0000 9255 8984Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, 214151 Jiangsu China
| | - Yue Gu
- grid.89957.3a0000 0000 9255 8984The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166 Jiangsu China
| | - Jiajun Yin
- grid.89957.3a0000 0000 9255 8984Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, 214151 Jiangsu China
| | - Chunxia Fang
- Combined TCM & Western Medicine Department, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, 214151, Jiangsu, China.
| | - Liang Liu
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, 214151, Jiangsu, China.
| |
Collapse
|
16
|
Is NRXN1 Gene Expression an Important Marker of Treatment of Depressive Disorders? A Pilot Study. J Pers Med 2021; 11:jpm11070637. [PMID: 34357104 PMCID: PMC8303668 DOI: 10.3390/jpm11070637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/07/2021] [Accepted: 07/01/2021] [Indexed: 11/17/2022] Open
Abstract
Aim: Due to the fact that NRXN1 is associated with neurodevelopmental disorders, the aim of this study was to investigate the role of the NRXN1 gene in the etiology and epigenetics of depression by comparison of NRXN1 mRNA expression and NRXN1 protein level expression in patients suffering from depression versus healthy controls, as well as to search for clinical variables related to expression of the analyzed gene. Material and Methods: A total of 180 people aged 19–64 qualified for the study. The experimental group consisted of 97 people who were psychiatrically hospitalized, diagnosed with recurrent depressive disorders (F33) or who met the diagnostic criteria of a depressive episode (F32) according to ICD-10. The control group included 83 healthy people who volunteered to participate in the study. A sample of peripheral blood was obtained from people who were positively qualified to participate in the study—twice in the experimental group and once in the control group for genetic testing. Sociodemographic variables and data on the course of the disorder were also gathered. Patients were examined on study entry and at the end of the hospitalization with the Hamilton Depression Scale. Obtained data were analyzed statistically. The study was approved by the University’s Bioethics Committee. Results: The gene expression of NRXN1 at both mRNA and protein level significantly differs and it is lower in the experimental group compared to expression in healthy people. The difference in gene expression of NRXN1 at both the mRNA and protein levels between the first and second measurement in the experimental group is also significant. The result demonstrates a higher expression level in the first measurement and lower expression level in the second measurement when reported depression symptoms are less severe. Conclusions: Results concerning expression of NRXN1 may play an important role in further researches about the etiopathogenesis of depressive disorders such as looking for depression biomarkers and identifying evidence which may be relevant to personalize treatment for depression.
Collapse
|
17
|
Bundo M, Ueda J, Nakachi Y, Kasai K, Kato T, Iwamoto K. Decreased DNA methylation at promoters and gene-specific neuronal hypermethylation in the prefrontal cortex of patients with bipolar disorder. Mol Psychiatry 2021; 26:3407-3418. [PMID: 33875800 PMCID: PMC8505249 DOI: 10.1038/s41380-021-01079-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/06/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Abstract
Bipolar disorder (BD) is a severe mental disorder characterized by repeated mood swings. Although genetic factors are collectively associated with the etiology of BD, the underlying molecular mechanisms, particularly how environmental factors affect the brain, remain largely unknown. We performed promoter-wide DNA methylation analysis of neuronal and nonneuronal nuclei in the prefrontal cortex of patients with BD (N = 34) and controls (N = 35). We found decreased DNA methylation at promoters in both cell types in the BD patients. Gene Ontology (GO) analysis of differentially methylated region (DMR)-associated genes revealed enrichment of molecular motor-related genes in neurons, chemokines in both cell types, and ion channel- and transporter-related genes in nonneurons. Detailed GO analysis further revealed that growth cone- and dendrite-related genes, including NTRK2 and GRIN1, were hypermethylated in neurons of BD patients. To assess the effect of medication, neuroblastoma cells were cultured under therapeutic concentrations of three mood stabilizers. We observed that up to 37.9% of DMRs detected in BD overlapped with mood stabilizer-induced DMRs. Interestingly, mood stabilizer-induced DMRs showed the opposite direction of changes in DMRs, suggesting the therapeutic effects of mood stabilizers. Among the DMRs, 12 overlapped with loci identified in a genome-wide association study (GWAS) of BD. We also found significant enrichment of neuronal DMRs in the loci reported in another GWAS of BD. Finally, we performed qPCR of DNA methylation-related genes and found that DNMT3B was overexpressed in BD. The cell-type-specific DMRs identified in this study will be useful for understanding the pathophysiology of BD.
Collapse
Affiliation(s)
- Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junko Ueda
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan.
- Department of Psychiatry and Behavioral Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
18
|
Zhong Y, Yang B, Su Y, Qian Y, Cao Q, Chang S, Wang Y, Yang L. The Association with Quantitative Response to Attention-Deficit/Hyperactivity Disorder Medication of the Previously Identified Neurodevelopmental Network Genes. J Child Adolesc Psychopharmacol 2020; 30:348-354. [PMID: 32175767 DOI: 10.1089/cap.2018.0164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Objective: A recent pharmacoimaging study suggested that methylphenidate (MPH) and atomoxetine (ATX) might have common mechanisms for the treatment of attention-deficit/hyperactivity disorder (ADHD). Previous pharmacogenetic studies have by and large only involved genes in neurotransmitter systems, which accounted for very small variances. Therefore, this study aimed to investigate whether the neurodevelopmental genes identified in a prior ADHD etiology Genome-Wide Association Study (GWAS) could predict patients' responses to MPH and ATX, given the aforementioned mechanisms of action. Methods: For our sample of 241 patients with ADHD, we assessed the change in the ADHD rating scale (ADHD-RS) total symptom scores from baseline to the end of the 12th week of treatment with either MPH or ATX. We performed association analyses at the genetic single-marker, gene-based, set-based, and GWAS-based polygenic levels. Results: In our analyses, neither single nucleotide polymorphism (SNP) nor gene-level analyses yielded significant markers associated with the change in the ADHD-RS score after multiple comparison correction. The polygenic risk score model, which was based on SNPs associated with ADHD etiology at a threshold of p ≤ 0.0001 in a recent Han Chinese GWAS, predicted symptomatic improvement with ADHD medication (p = 0.018, R2 = 0.023). Conclusion: Our results provide new evidence for a small influence of neurodevelopmental genes on the efficacy of medications for ADHD.
Collapse
Affiliation(s)
- Yuanxin Zhong
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health (Peking University), Ministry of Health, Beijing, China
| | | | - Yi Su
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health (Peking University), Ministry of Health, Beijing, China
| | - Ying Qian
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health (Peking University), Ministry of Health, Beijing, China
| | - Qingjiu Cao
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health (Peking University), Ministry of Health, Beijing, China
| | - Suhua Chang
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health (Peking University), Ministry of Health, Beijing, China
| | - Yufeng Wang
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health (Peking University), Ministry of Health, Beijing, China
| | - Li Yang
- Peking University Sixth Hospital (Institute of Mental Health), National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health (Peking University), Ministry of Health, Beijing, China
| |
Collapse
|
19
|
Price KM, Wigg KG, Feng Y, Blokland K, Wilkinson M, He G, Kerr EN, Carter TC, Guger SL, Lovett MW, Strug LJ, Barr CL. Genome-wide association study of word reading: Overlap with risk genes for neurodevelopmental disorders. GENES BRAIN AND BEHAVIOR 2020; 19:e12648. [PMID: 32108986 DOI: 10.1111/gbb.12648] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 01/28/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
Reading disabilities (RD) are the most common neurocognitive disorder, affecting 5% to 17% of children in North America. These children often have comorbid neurodevelopmental/psychiatric disorders, such as attention deficit/hyperactivity disorder (ADHD). The genetics of RD and their overlap with other disorders is incompletely understood. To contribute to this, we performed a genome-wide association study (GWAS) for word reading. Then, using summary statistics from neurodevelopmental/psychiatric disorders, we computed polygenic risk scores (PRS) and used them to predict reading ability in our samples. This enabled us to test the shared aetiology between RD and other disorders. The GWAS consisted of 5.3 million single nucleotide polymorphisms (SNPs) and two samples; a family-based sample recruited for reading difficulties in Toronto (n = 624) and a population-based sample recruited in Philadelphia [Philadelphia Neurodevelopmental Cohort (PNC)] (n = 4430). The Toronto sample SNP-based analysis identified suggestive SNPs (P ~ 5 × 10-7 ) in the ARHGAP23 gene, which is implicated in neuronal migration/axon pathfinding. The PNC gene-based analysis identified significant associations (P < 2.72 × 10-6 ) for LINC00935 and CCNT1, located in the region of the KANSL2/CCNT1/LINC00935/SNORA2B/SNORA34/MIR4701/ADCY6 genes on chromosome 12q, with near significant SNP-based analysis. PRS identified significant overlap between word reading and intelligence (R2 = 0.18, P = 7.25 × 10-181 ), word reading and educational attainment (R2 = 0.07, P = 4.91 × 10-48 ) and word reading and ADHD (R2 = 0.02, P = 8.70 × 10-6 ; threshold for significance = 7.14 × 10-3 ). Overlap was also found between RD and autism spectrum disorder (ASD) as top-ranked genes were previously implicated in autism by rare and copy number variant analyses. These findings support shared risk between word reading, cognitive measures, educational outcomes and neurodevelopmental disorders, including ASD.
Collapse
Affiliation(s)
- Kaitlyn M Price
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Karen G Wigg
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yu Feng
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kirsten Blokland
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Margaret Wilkinson
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gengming He
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth N Kerr
- Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Tasha-Cate Carter
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Holland Bloorview Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Sharon L Guger
- Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maureen W Lovett
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Lisa J Strug
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Cathy L Barr
- Genetics and Development Division, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW To better understand the shared basis of language and mental health, this review examines the behavioral and neurobiological features of aberrant language in five major neuropsychiatric conditions. Special attention is paid to genes implicated in both language and neuropsychiatric disorders, as they reveal biological domains likely to underpin the processes controlling both. RECENT FINDINGS Abnormal language and communication are common manifestations of neuropsychiatric conditions, and children with impaired language are more likely to develop psychiatric disorders than their peers. Major themes in the genetics of both language and psychiatry include master transcriptional regulators, like FOXP2; key developmental regulators, like AUTS2; and mediators of neurotransmission, like GRIN2A and CACNA1C.
Collapse
|
21
|
Liu Y, Gu HY, Zhu J, Niu YM, Zhang C, Guo GL. Identification of Hub Genes and Key Pathways Associated With Bipolar Disorder Based on Weighted Gene Co-expression Network Analysis. Front Physiol 2019; 10:1081. [PMID: 31481902 PMCID: PMC6710482 DOI: 10.3389/fphys.2019.01081] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022] Open
Abstract
Bipolar disorder (BD) is a complex mental disorder with high mortality and disability rates worldwide; however, research on its pathogenesis and diagnostic methods remains limited. This study aimed to elucidate potential candidate hub genes and key pathways related to BD in a pre-frontal cortex sample. Raw gene expression profile files of GSE53987, including 36 samples, were obtained from the gene expression omnibus (GEO) database. After data pre-processing, 10,094 genes were selected for weighted gene co-expression network analysis (WGCNA). After dividing highly related genes into 19 modules, we found that the pink, midnight blue, and brown modules were highly correlated with BD. Functional annotation and pathway enrichment analysis for modules, which indicated some key pathways, were conducted based on the Enrichr database. One of the most remarkable significant pathways is the Hippo signaling pathway and its positive transcriptional regulation. Finally, 30 hub genes were identified in three modules. Hub genes with a high degree of connectivity in the PPI network are significantly enriched in positive regulation of transcription. In addition, the hub genes were validated based on another dataset (GSE12649). Taken together, the identification of these 30 hub genes and enrichment pathways might have important clinical implications for BD treatment and diagnosis.
Collapse
Affiliation(s)
- Yang Liu
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hui-Yun Gu
- Department of Orthopedic, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jie Zhu
- Trade Union, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yu-Ming Niu
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chao Zhang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Guang-Ling Guo
- Center of Women’s Health Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
22
|
Caron A, Briscoe DM, Richard D, Laplante M. DEPTOR at the Nexus of Cancer, Metabolism, and Immunity. Physiol Rev 2018; 98:1765-1803. [PMID: 29897294 DOI: 10.1152/physrev.00064.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
DEP domain-containing mechanistic target of rapamycin (mTOR)-interacting protein (DEPTOR) is an important modulator of mTOR, a kinase at the center of two important protein complexes named mTORC1 and mTORC2. These highly studied complexes play essential roles in regulating growth, metabolism, and immunity in response to mitogens, nutrients, and cytokines. Defects in mTOR signaling have been associated with the development of many diseases, including cancer and diabetes, and approaches aiming at modulating mTOR activity are envisioned as an attractive strategy to improve human health. DEPTOR interaction with mTOR represses its kinase activity and rewires the mTOR signaling pathway. Over the last years, several studies have revealed key roles for DEPTOR in numerous biological and pathological processes. Here, we provide the current state of the knowledge regarding the cellular and physiological functions of DEPTOR by focusing on its impact on the mTOR pathway and its role in promoting health and disease.
Collapse
Affiliation(s)
- Alexandre Caron
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - David M Briscoe
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Denis Richard
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| | - Mathieu Laplante
- Department of Internal Medicine, Division of Hypothalamic Research, The University of Texas Southwestern Medical Center , Dallas, Texas ; Transplant Research Program, Boston Children's Hospital , Boston, Massachusetts ; Department of Pediatrics, Harvard Medical School , Boston, Massachusetts ; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Faculté de Médecine, Université Laval , Québec , Canada ; and Centre de Recherche sur le Cancer de l'Université Laval, Université Laval , Québec , Canada
| |
Collapse
|
23
|
Ferguson A, Lyall LM, Ward J, Strawbridge RJ, Cullen B, Graham N, Niedzwiedz CL, Johnston KJA, MacKay D, Biello SM, Pell JP, Cavanagh J, McIntosh AM, Doherty A, Bailey MES, Lyall DM, Wyse CA, Smith DJ. Genome-Wide Association Study of Circadian Rhythmicity in 71,500 UK Biobank Participants and Polygenic Association with Mood Instability. EBioMedicine 2018; 35:279-287. [PMID: 30120083 PMCID: PMC6154782 DOI: 10.1016/j.ebiom.2018.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Circadian rhythms are fundamental to health and are particularly important for mental wellbeing. Disrupted rhythms of rest and activity are recognised as risk factors for major depressive disorder and bipolar disorder. METHODS We conducted a genome-wide association study (GWAS) of low relative amplitude (RA), an objective measure of rest-activity cycles derived from the accelerometer data of 71,500 UK Biobank participants. Polygenic risk scores (PRS) for low RA were used to investigate potential associations with psychiatric phenotypes. OUTCOMES Two independent genetic loci were associated with low RA, within genomic regions for Neurofascin (NFASC) and Solute Carrier Family 25 Member 17 (SLC25A17). A secondary GWAS of RA as a continuous measure identified a locus within Meis Homeobox 1 (MEIS1). There were no significant genetic correlations between low RA and any of the psychiatric phenotypes assessed. However, PRS for low RA was significantly associated with mood instability across multiple PRS thresholds (at PRS threshold 0·05: OR = 1·02, 95% CI = 1·01-1·02, p = 9·6 × 10-5), and with major depressive disorder (at PRS threshold 0·1: OR = 1·03, 95% CI = 1·01-1·05, p = 0·025) and neuroticism (at PRS threshold 0·5: Beta = 0·02, 95% CI = 0·007-0·04, p = 0·021). INTERPRETATION Overall, our findings contribute new knowledge on the complex genetic architecture of circadian rhythmicity and suggest a putative biological link between disrupted circadian function and mood disorder phenotypes, particularly mood instability, but also major depressive disorder and neuroticism. FUNDING Medical Research Council (MR/K501335/1).
Collapse
Affiliation(s)
- Amy Ferguson
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK.
| | - Laura M Lyall
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Joey Ward
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Rona J Strawbridge
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK; Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Breda Cullen
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Nicholas Graham
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | | | | | - Daniel MacKay
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Stephany M Biello
- Institute of Neuroscience and Psychology, University of Glasgow, Scotland, UK
| | - Jill P Pell
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Jonathan Cavanagh
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Andrew M McIntosh
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Scotland, UK
| | - Aiden Doherty
- Big Data Institute, Nuffield Department of Population Health, BHF Centre of Research Excellence, University of Oxford, Oxford, UK; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Mark E S Bailey
- School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - Donald M Lyall
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK
| | - Cathy A Wyse
- Department of Molecular and Cellular Therapeutics, Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Daniel J Smith
- Institute of Health & Wellbeing, University of Glasgow, Scotland, UK.
| |
Collapse
|
24
|
Fabbri C, Tansey KE, Perlis RH, Hauser J, Henigsberg N, Maier W, Mors O, Placentino A, Rietschel M, Souery D, Breen G, Curtis C, Sang-Hyuk L, Newhouse S, Patel H, Guipponi M, Perroud N, Bondolfi G, O'Donovan M, Lewis G, Biernacka JM, Weinshilboum RM, Farmer A, Aitchison KJ, Craig I, McGuffin P, Uher R, Lewis CM. New insights into the pharmacogenomics of antidepressant response from the GENDEP and STAR*D studies: rare variant analysis and high-density imputation. THE PHARMACOGENOMICS JOURNAL 2018; 18:413-421. [PMID: 29160301 PMCID: PMC10204124 DOI: 10.1038/tpj.2017.44] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 12/27/2022]
Abstract
Genome-wide association studies have generally failed to identify polymorphisms associated with antidepressant response. Possible reasons include limited coverage of genetic variants that this study tried to address by exome genotyping and dense imputation. A meta-analysis of Genome-Based Therapeutic Drugs for Depression (GENDEP) and Sequenced Treatment Alternatives to Relieve Depression (STAR*D) studies was performed at the single-nucleotide polymorphism (SNP), gene and pathway levels. Coverage of genetic variants was increased compared with previous studies by adding exome genotypes to previously available genome-wide data and using the Haplotype Reference Consortium panel for imputation. Standard quality control was applied. Phenotypes were symptom improvement and remission after 12 weeks of antidepressant treatment. Significant findings were investigated in NEWMEDS consortium samples and Pharmacogenomic Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS) for replication. A total of 7062 950 SNPs were analyzed in GENDEP (n=738) and STAR*D (n=1409). rs116692768 (P=1.80e-08, ITGA9 (integrin α9)) and rs76191705 (P=2.59e-08, NRXN3 (neurexin 3)) were significantly associated with symptom improvement during citalopram/escitalopram treatment. At the gene level, no consistent effect was found. At the pathway level, the Gene Ontology (GO) terms GO: 0005694 (chromosome) and GO: 0044427 (chromosomal part) were associated with improvement (corrected P=0.007 and 0.045, respectively). The association between rs116692768 and symptom improvement was replicated in PGRN-AMPS (P=0.047), whereas rs76191705 was not. The two SNPs did not replicate in NEWMEDS. ITGA9 codes for a membrane receptor for neurotrophins and NRXN3 is a transmembrane neuronal adhesion receptor involved in synaptic differentiation. Despite their meaningful biological rationale for being involved in antidepressant effect, replication was partial. Further studies may help in clarifying their role.
Collapse
Affiliation(s)
- C Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - K E Tansey
- College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - R H Perlis
- Department of Psychiatry, Center for Experimental Drugs and Diagnostics, Massachusetts General Hospital, Boston, MA, USA
| | - J Hauser
- Laboratory of Psychiatric Genetics, Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - N Henigsberg
- Croatian Institute for Brain Research, Medical School, University of Zagreb, Zagreb, Croatia
| | - W Maier
- Department of Psychiatry, University of Bonn, Bonn, Germany
| | - O Mors
- Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark
| | - A Placentino
- Biological Psychiatry Unit and Dual Diagnosis Ward, Istituto Di Ricovero e Cura a Carattere Scientifico, Centro San Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | - M Rietschel
- Division of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - D Souery
- Laboratoire de Psychologie Médicale, Université Libre de Bruxelles and Psy Pluriel-Centre Européen de Psychologie Médicale, Brussels, Belgium
| | - G Breen
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - C Curtis
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - L Sang-Hyuk
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - S Newhouse
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - H Patel
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - M Guipponi
- Department of Genetic Medicine and Development, University of Geneva Medical School and University Hospitals of Geneva, Geneva, Switzerland
| | - N Perroud
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - G Bondolfi
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - M O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - G Lewis
- Division of Psychiatry, University College London (UCL), London, UK
| | - J M Biernacka
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - R M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - A Farmer
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - K J Aitchison
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - I Craig
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - P McGuffin
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - R Uher
- Department of Psychiatry, Dalhousie University, Halifax, Canada
| | - C M Lewis
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
25
|
Genome-wide haplotype-based association analysis of major depressive disorder in Generation Scotland and UK Biobank. Transl Psychiatry 2017; 7:1263. [PMID: 29187746 PMCID: PMC5802488 DOI: 10.1038/s41398-017-0010-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 12/22/2022] Open
Abstract
Genome-wide association studies using genotype data have had limited success in the identification of variants associated with major depressive disorder (MDD). Haplotype data provide an alternative method for detecting associations between variants in weak linkage disequilibrium with genotyped variants and a given trait of interest. A genome-wide haplotype association study for MDD was undertaken utilising a family-based population cohort, Generation Scotland: Scottish Family Health Study (n = 18,773), as a discovery cohort with UK Biobank used as a population-based replication cohort (n = 25,035). Fine mapping of haplotype boundaries was used to account for overlapping haplotypes potentially tagging the same causal variant. Within the discovery cohort, two haplotypes exceeded genome-wide significance (P < 5 × 10-8) for an association with MDD. One of these haplotypes was nominally significant in the replication cohort (P < 0.05) and was located in 6q21, a region which has been previously associated with bipolar disorder, a psychiatric disorder that is phenotypically and genetically correlated with MDD. Several haplotypes with P < 10-7 in the discovery cohort were located within gene coding regions associated with diseases that are comorbid with MDD. Using such haplotypes to highlight regions for sequencing may lead to the identification of the underlying causal variants.
Collapse
|
26
|
Blacker CJ, Lewis CP, Frye MA, Veldic M. Metabotropic glutamate receptors as emerging research targets in bipolar disorder. Psychiatry Res 2017; 257:327-337. [PMID: 28800512 DOI: 10.1016/j.psychres.2017.07.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/02/2017] [Accepted: 07/29/2017] [Indexed: 01/03/2023]
Abstract
Glutamatergic dysregulation is implicated in the neuropathology of bipolar disorder (BD). There is increasing interest in investigating the role of metabotropic glutamate receptors (mGluRs) in BD and as a target for treatment intervention. Bipolar mGluR studies (published January 1992-April 2016) were identified via PubMed, Embase, Web of Science, and Scopus. Full-text screening, data extraction, and quality appraisal were conducted in duplicate, with strict inclusion and exclusion criteria. The initial literature search for mGluRs in BD, including non-bipolar mood disorders and primary psychotic disorders, identified 1544 articles. 61 abstracts were selected for relevance, 16 articles met full inclusion criteria, and three additional articles were found via citations. Despite limited literature, studies demonstrated: single nucleotide polymorphisms (SNPs) associated with BD, including a GRM3 SNP associated with greater likelihood of psychosis (rs6465084), mRNA binding protein Fragile X Mental Retardation Protein associated with altered mGluR1/5 activity in BD populations, and lithium decreasing mGluR5 expression and mGluR-mediated intracellular calcium signaling. Limited research has been performed on the role of mGluRs in BD, but results highlight the importance of ongoing study. Future directions for research of mGluRs in BD include GRM polymorphisms, epigenetic regulation, intracellular proteins, and pharmacologic interactions.
Collapse
Affiliation(s)
- Caren J Blacker
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Charles P Lewis
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
27
|
Rohde PD, Gaertner B, Ward K, Sørensen P, Mackay TFC. Genomic Analysis of Genotype-by-Social Environment Interaction for Drosophila melanogaster Aggressive Behavior. Genetics 2017; 206:1969-1984. [PMID: 28550016 PMCID: PMC5560801 DOI: 10.1534/genetics.117.200642] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023] Open
Abstract
Human psychiatric disorders such as schizophrenia, bipolar disorder, and attention-deficit/hyperactivity disorder often include adverse behaviors including increased aggressiveness. Individuals with psychiatric disorders often exhibit social withdrawal, which can further increase the probability of conducting a violent act. Here, we used the inbred, sequenced lines of the Drosophila Genetic Reference Panel (DGRP) to investigate the genetic basis of variation in male aggressive behavior for flies reared in a socialized and socially isolated environment. We identified genetic variation for aggressive behavior, as well as significant genotype-by-social environmental interaction (GSEI); i.e., variation among DGRP genotypes in the degree to which social isolation affected aggression. We performed genome-wide association (GWA) analyses to identify genetic variants associated with aggression within each environment. We used genomic prediction to partition genetic variants into gene ontology (GO) terms and constituent genes, and identified GO terms and genes with high prediction accuracies in both social environments and for GSEI. The top predictive GO terms significantly increased the proportion of variance explained, compared to prediction models based on all segregating variants. We performed genomic prediction across environments, and identified genes in common between the social environments that turned out to be enriched for genome-wide associated variants. A large proportion of the associated genes have previously been associated with aggressive behavior in Drosophila and mice. Further, many of these genes have human orthologs that have been associated with neurological disorders, indicating partially shared genetic mechanisms underlying aggression in animal models and human psychiatric disorders.
Collapse
Affiliation(s)
- Palle Duun Rohde
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus, Denmark
- ISEQ, Center for Integrative Sequencing, Aarhus University, 8000 Aarhus, Denmark
| | - Bryn Gaertner
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695
- Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Kirsty Ward
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695
- Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Peter Sørensen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Trudy F C Mackay
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695
- Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
28
|
Kim JI, Kim JW, Park JE, Park S, Hong SB, Han DH, Cheong JH, Choi JW, Lee S, Kim BN. Association of the GRIN2B rs2284411 polymorphism with methylphenidate response in attention-deficit/hyperactivity disorder. J Psychopharmacol 2017; 31:1070-1077. [PMID: 27624150 DOI: 10.1177/0269881116667707] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We investigated the possible association between two NMDA subunit gene polymorphisms (GRIN2B rs2284411 and GRIN2A rs2229193) and treatment response to methylphenidate (MPH) in attention-deficit/hyperactivity disorder (ADHD). METHODS A total of 75 ADHD patients aged 6-17 years underwent 6 months of MPH administration. Treatment response was defined by changes in scores of the ADHD-IV Rating Scale (ADHD-RS), clinician-rated Clinical Global Impression-Improvement (CGI-I), and Continuous Performance Test (CPT). The association of the GRIN2B and GRIN2A polymorphisms with treatment response was analyzed using logistic regression analyses. RESULTS The GRIN2B rs2284411 C/C genotype showed significantly better treatment response as assessed by ADHD-RS inattention ( p=0.009) and CGI-I scores ( p=0.009), and there was a nominally significant association in regard to ADHD-RS hyperactivity-impulsivity ( p=0.028) and total ( p=0.023) scores, after adjusting for age, sex, IQ, baseline Clinical Global Impression-Severity (CGI-S) score, baseline ADHD-RS total score, and final MPH dose. The GRIN2B C/C genotype also showed greater improvement at the CPT response time variability ( p<0.001). The GRIN2A G/G genotype was associated with a greater improvement in commission errors of the CPT compared to the G/A genotype ( p=0.001). CONCLUSIONS The results suggest that the GRIN2B rs2284411 genotype may be an important predictor of MPH response in ADHD.
Collapse
Affiliation(s)
- Johanna I Kim
- 1 Department of Research Planning, Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Jae-Won Kim
- 1 Department of Research Planning, Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Jong-Eun Park
- 2 Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju, Republic of Korea
| | - Subin Park
- 3 Department of Psychiatry, Seoul National Hospital, Seoul, Republic of Korea
| | - Soon-Beom Hong
- 1 Department of Research Planning, Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Doug Hyun Han
- 4 Department of Psychiatry, College of Medicine, Chung Ang University, Seoul, Republic of Korea
| | - Jae Hoon Cheong
- 5 Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Jae-Won Choi
- 1 Department of Research Planning, Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Sumin Lee
- 1 Department of Research Planning, Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- 1 Department of Research Planning, Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| |
Collapse
|
29
|
Glerup S, Bolcho U, Mølgaard S, Bøggild S, Vaegter CB, Smith AH, Nieto-Gonzalez JL, Ovesen PL, Pedersen LF, Fjorback AN, Kjolby M, Login H, Holm MM, Andersen OM, Nyengaard JR, Willnow TE, Jensen K, Nykjaer A. SorCS2 is required for BDNF-dependent plasticity in the hippocampus. Mol Psychiatry 2016; 21:1740-1751. [PMID: 27457814 DOI: 10.1038/mp.2016.108] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 04/06/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022]
Abstract
SorCS2 is a member of the Vps10p-domain receptor gene family receptors with critical roles in the control of neuronal viability and function. Several genetic studies have suggested SORCS2 to confer risk of bipolar disorder, schizophrenia and attention deficit-hyperactivity disorder. Here we report that hippocampal N-methyl-d-aspartate receptor-dependent synaptic plasticity is eliminated in SorCS2-deficient mice. This defect was traced to the ability of SorCS2 to form complexes with the neurotrophin receptor p75NTR, required for pro-brain-derived neurotrophic factor (BDNF) to induce long-term depression, and with the BDNF receptor tyrosine kinase TrkB to elicit long-term potentiation. Although the interaction with p75NTR was static, SorCS2 bound to TrkB in an activity-dependent manner to facilitate its translocation to postsynaptic densities for synaptic tagging and maintenance of synaptic potentiation. Neurons lacking SorCS2 failed to respond to BDNF by TrkB autophosphorylation, and activation of downstream signaling cascades, impacting neurite outgrowth and spine formation. Accordingly, Sorcs2-/- mice displayed impaired formation of long-term memory, increased risk taking and stimulus seeking behavior, enhanced susceptibility to stress and impaired prepulse inhibition. Our results identify SorCS2 as an indispensable coreceptor for p75NTR and TrkB in hippocampal neurons and suggest SORCS2 as the link between proBDNF/BDNF signaling and mental disorders.
Collapse
Affiliation(s)
- S Glerup
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - U Bolcho
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - S Mølgaard
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - S Bøggild
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - C B Vaegter
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - A H Smith
- Yale School of Medicine, Interdepartmental Neuroscience Program and Medical Scientist Training Program, New Haven, CT, USA
- Department of Psychiatry, VAT CT Healthcare Center, and Yale School of Medicine, New Haven, CT, USA
| | | | - P L Ovesen
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - L F Pedersen
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - A N Fjorback
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - M Kjolby
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - H Login
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - M M Holm
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - O M Andersen
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - J R Nyengaard
- MIND Center, Stereology and Electron Microscopy Laboratory, Aarhus University, Aarhus C, Denmark
| | - T E Willnow
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - K Jensen
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - A Nykjaer
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience DANDRITE- Nordic EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
30
|
Li Z, Zheng M, Abdalla BA, Zhang Z, Xu Z, Ye Q, Xu H, Luo W, Nie Q, Zhang X. Genome-wide association study of aggressive behaviour in chicken. Sci Rep 2016; 6:30981. [PMID: 27485826 PMCID: PMC4971532 DOI: 10.1038/srep30981] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/12/2016] [Indexed: 11/09/2022] Open
Abstract
In the poultry industry, aggressive behaviour is a large animal welfare issue all over the world. To date, little is known about the underlying genetics of the aggressive behaviour. Here, we performed a genome-wide association study (GWAS) to explore the genetic mechanism associated with aggressive behaviour in chickens. The GWAS results showed that a total of 33 SNPs were associated with aggressive behaviour traits (P < 4.6E-6). rs312463697 on chromosome 4 was significantly associated with aggression (P = 2.10905E-07), and it was in the intron region of the sortilin-related VPS10 domain containing receptor 2 (SORCS2) gene. In addition, biological function analysis of the nearest 26 genes around the significant SNPs was performed with Ingenuity Pathway Analysis. An interaction network contained 17 genes was obtained and SORCS2 was involved in this network, interacted with nerve growth factor (NGF), nerve growth factor receptor (NGFR), dopa decarboxylase (L-dopa) and dopamine. After knockdown of SORCS2, the mRNA levels of NGF, L-dopa and dopamine receptor genes DRD1, DRD2, DRD3 and DRD4 were significantly decreased (P < 0.05). In summary, our data indicated that SORCS2 might play an important role in chicken aggressive behaviour through the regulation of dopaminergic pathways and NGF.
Collapse
Affiliation(s)
- Zhenhui Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Ming Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Bahareldin Ali Abdalla
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Zhe Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Zhenqiang Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China.,Wens NanFang Poultry Breeding Co., Ltd., YunFu 527400, Guangdong, China
| | - Qiao Ye
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Wei Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| |
Collapse
|
31
|
Limon A, Mamdani F, Hjelm BE, Vawter MP, Sequeira A. Targets of polyamine dysregulation in major depression and suicide: Activity-dependent feedback, excitability, and neurotransmission. Neurosci Biobehav Rev 2016; 66:80-91. [PMID: 27108532 DOI: 10.1016/j.neubiorev.2016.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/09/2016] [Accepted: 04/13/2016] [Indexed: 01/19/2023]
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide characterized by altered neuronal activity in brain regions involved in the control of stress and emotion. Although multiple lines of evidence suggest that altered stress-coping mechanisms underlie the etiology of MDD, the homeostatic control of neuronal excitability in MDD at the molecular level is not well established. In this review, we examine past and current evidence implicating dysregulation of the polyamine system as a central factor in the homeostatic response to stress and the etiology of MDD. We discuss the cellular effects of abnormal metabolism of polyamines in the context of their role in sensing and modulation of neuronal, electrical, and synaptic activity. Finally, we discuss evidence supporting an allostatic model of depression based on a chronic elevation in polyamine levels resulting in self-sustained stress response mechanisms maintained by maladaptive homeostatic mechanisms.
Collapse
Affiliation(s)
- Agenor Limon
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92627, USA
| | - Firoza Mamdani
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92627, USA
| | - Brooke E Hjelm
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92627, USA
| | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92627, USA
| | - Adolfo Sequeira
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92627, USA.
| |
Collapse
|
32
|
Genome-wide association study of antidepressant response: involvement of the inorganic cation transmembrane transporter activity pathway. BMC Psychiatry 2016; 16:106. [PMID: 27091189 PMCID: PMC4836090 DOI: 10.1186/s12888-016-0813-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/11/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) represent the current frontier in pharmacogenomics. Thousands of subjects of Caucasian ancestry have been included in previous GWAS investigating antidepressant response. GWAS focused on this phenotype are lacking in Asian populations. METHODS A sample of 109 major depressive disorder (MDD) patients of Korean origin in antidepressant treatment was collected. Phenotypes were response and remission according to the Hamilton Rating Scale for Depression (HRSD). Genome-wide genotyping was performed using the Illumina Human Omni2.5-8 platform. The same phenotypes were used in the STAR*D level 1 (n = 1677) for independent replication. In order to corroborate findings and increase the comparability between the two datasets, three levels of analysis (SNPs, genes and pathways) were carried out. Bonferroni correction, permutations, and replication across samples were used to reduce the risk of false positives. RESULTS Among the genes replicated across the two samples (permutated p < 0.05 in both of them), CTNNA3 appeared promising. The inorganic cation transmembrane transporter activity pathway (GO:0022890) was associated with antidepressant response in both samples (p = 2.9e-5 and p = 0.001 in the Korean and STAR*D samples, respectively) and this pathway included CACNA1A, CACNA1C, and CACNB2 genes. CONCLUSIONS The present study supported the involvement of genes coding for subunits of L-type voltage-gated calcium channel in antidepressant efficacy across different ethnicities but replication of findings is required before any definitive statement.
Collapse
|