1
|
Liao J, Liu J, Zhou Y, Shi L, Chen YJ, Guo S, Zhang CY, Liu XY, Tao WQ, Xiang JJ, Yang-Lei, Liu G, Wang W, Kuang L, Ran LY. L1CAM + extracellular vesicles derived from the serum of adolescents with major depressive disorder induce depression-like phenotypes in adolescent mice. J Affect Disord 2025; 375:180-191. [PMID: 39842672 DOI: 10.1016/j.jad.2025.01.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/31/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND It has been reported that L1 cell adhesion molecule (L1CAM) antibody can capture neuron-derived extracellular vesicles (NDEVs) derived from peripheral blood. This antibody is significantly associated with occurrence of adult psychiatric disorders. However, the role and mechanism of L1CAM+ EVs (L1+ EVs) in adolescent with major depressive disorder (AMDD) is not well understood. This research aimed to explore the function and potential mechanism of L1+ EVs and miRNAs genes in AMDD. METHODS L1+ EVs derived from the serum of AMDD and healthy controls (HC) were transplanted into adolescent mice via tail vein. Their effects were explored using behavioral tests, hippocampal Nissl staining, and whole genome mRNA sequencing. MiRNAs expression in L1+ EVs was evaluated by whole-genome sequencing and qRT-PCR. Bioinformatics analysis was employed to explore the possible pathogenic molecular mechanisms of these miRNAs in AMDD. RESULTS Transplantation of L1+ EVs from AMDD induced depression-like behavior and hippocampal neuronal damage in adolescent mice and aberrant expression of 298 mRNA genes. The molecular signals related to MDD were enriched in the top pathways of the differentially expressed genes. Compared with HC, miR-375-3p and miR-200a-3p were upregulated in L1+ EVs from AMDD, miR-375-3p was also increased in the hippocampus of AMDD serum L1+ EVs-recipient mice. Bioinformatics analysis revealed that miR-375-3p might modulate the network of molecules associated with the MAPK pathway via protein interaction involving hippocampal differential genes Cadm2, Cacna2d1, and Casz1. CONCLUSION MiR-375-3p might contribute to L1+ EVs-induced AMDD. L1+ EVs miR-375-3p and miR-200a-3p could potentially serve as potential biomarkers for AMDD.
Collapse
Affiliation(s)
- Jing Liao
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Jie Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Yang Zhou
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Lei Shi
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Yu-Jia Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Shan Guo
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Chen-Yu Zhang
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Xin-Yi Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Wan-Qing Tao
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Jiao-Jiao Xiang
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Yang-Lei
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Gang Liu
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Li Kuang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China.
| | - Liu-Yi Ran
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China.
| |
Collapse
|
2
|
Zadegan SA, Ramirez F, Park JW, Rocha NP, Furr Stimming E, Teixeira AL. Frequency of depression in Huntington's disease: A systematic review and meta-analysis. J Huntingtons Dis 2024:18796397241301774. [PMID: 39973390 DOI: 10.1177/18796397241301774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Huntington's disease (HD) is a hereditary neurodegenerative disease characterized by a combination of motor, cognitive, and mental health issues, with depression being the most common. Despite its importance, the relationship between depression and disease progression is still debatable. OBJECTIVE The primary objective of this study was to examine the frequency of depression across different disease stages in individuals with HD. We also explored the associations between depression and other HD-related factors. METHODS This systematic review comprehensively searched MEDLINE, APA PsycINFO, and Embase databases for studies on depression in individuals with HD. Pooled depression frequencies were calculated for premanifest and manifest HD. Depression was analyzed based on HD functional stages and diagnostic tools, alongside reviewing its association with various HD factors. RESULTS We assessed 6523 records and included 104 studies. Our meta-analyses revealed that the overall frequency of depression was higher in manifest HD compared to premanifest HD (0.38 vs. 0.23). However, the progression of depression did not follow a consistent pattern, with peaks occurring in earlier rather than later stages. Additionally, the frequency of depression was lower in studies using diagnostic criteria compared to those using clinical scales (0.25 vs. 0.42). CONCLUSIONS Our findings showed that the rate of depression is high in HD and varies depending on the disease stage and the criteria used. This emphasizes the necessity for tailored and unified diagnostic criteria for depression in HD.
Collapse
Affiliation(s)
- Shayan Abdollah Zadegan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Huntington's Disease Society of America (HDSA) Center of Excellence at the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Frank Ramirez
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Huntington's Disease Society of America (HDSA) Center of Excellence at the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jung Woo Park
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Natalia Pessoa Rocha
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Huntington's Disease Society of America (HDSA) Center of Excellence at the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Erin Furr Stimming
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Huntington's Disease Society of America (HDSA) Center of Excellence at the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonio L Teixeira
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
3
|
Yu Q, Zhang L, Xu T, Shao J, Yuan F, Yang Z, Wu Y, Lyu H. Oligodendroglia-to-pericyte conversion after lipopolysaccharide exposure is gender-dependent. PLoS One 2024; 19:e0308132. [PMID: 39106252 DOI: 10.1371/journal.pone.0308132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/17/2024] [Indexed: 08/09/2024] Open
Abstract
To investigate the sex-dependent differentiation of Sox10 cells and their response to pathological conditions such as lipopolysaccharide (LPS) exposure or ischemia, we utilized Sox10 Cre-ERT2, tdTomato mice. Tamoxifen administration induced the expression of red fluorescent protein (RFP) in these cells, facilitating their subsequent tracking and analysis after LPS injection and ischemia via immunofluorescence staining. Propidium iodide (PI) was injected to label necrotic cells following LPS administration. We found that the conversion of Sox10 cells to pericytes in female mice was significantly higher than in male mice, especially in those exposed to LPS. After LPS injection, the number of PI+ necrotic cells were significantly greater in females than in males. Moreover, RFP+ cells did not co-localize with glial fibrillary acidic protein (GFAP) or cluster of differentiation 11b (CD11b). Similarly, after brain ischemia, RFP+ cells did not express cluster of differentiation 13 (CD13), neuronal nuclei (NeuN), GFAP, or ionised calcium binding adaptor molecule 1 (Iba-1). These findings indicate that the conversion of Sox10 cells to pericytes following LPS exposure is sex-dependent, with neither male nor female groups showing differentiation into other cell types after LPS exposure or under ischemic conditions. The differences in LPS-induced necrosis of pericytes between sexes may explain the variations in the conversion of Sox10 cells to pericytes in both sexes.
Collapse
Affiliation(s)
- Qingting Yu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pharmacy, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Linyuan Zhang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Xu
- Department of Pharmacy, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Jiapeng Shao
- Department of Pharmacy, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Falei Yuan
- Department of Pharmacy, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Zuisu Yang
- Department of Pharmacy, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yuncheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Lyu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Conrad CD, Peay DN, Acuña AM, Whittaker K, Donnay ME. Corticosterone disrupts spatial working memory during retention testing when highly taxed, which positively correlates with depressive-like behavior in middle-aged, ovariectomized female rats. Horm Behav 2024; 164:105600. [PMID: 39003890 PMCID: PMC11330725 DOI: 10.1016/j.yhbeh.2024.105600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Major Depressive Disorder affects 8.4 % of the U.S. population, particularly women during perimenopause. This study implemented a chronic corticosterone manipulation (CORT, a major rodent stress hormone) using middle-aged, ovariectomized female rats to investigate depressive-like behavior, anxiety-like symptoms, and cognitive ability. CORT (400 μg/ml, in drinking water) was administered for four weeks before behavioral testing began and continued throughout all behavioral assessments. Compared to vehicle-treated rats, CORT significantly intensified depressive-like behaviors: CORT decreased sucrose preference, enhanced immobility on the forced swim test, and decreased sociability on a choice task between a novel conspecific female rat and an inanimate object. Moreover, CORT enhanced anxiety-like behavior on a marble bury task by reducing time investigating tabasco-topped marbles. No effects were observed on novelty suppressed feeding or the elevated plus maze. For spatial working memory using an 8-arm radial arm maze, CORT did not alter acquisition but disrupted performance during retention. CORT enhanced the errors committed during the highest working memory load following a delay and during the last trial requiring the most items to remember; this cognitive metric positively correlated with a composite depressive-like score to reveal that as depressive-like symptoms increased, cognitive performance worsened. This protocol allowed for the inclusion of multiple behavioral assessments without stopping the CORT treatment needed to produce a MDD phenotype and to assess a battery of behaviors. Moreover, that when middle-age was targeted, chronic CORT produced a depressive-like phenotype in ovariectomized females, who also comorbidly expressed aspects of anxiety and cognitive dysfunction.
Collapse
Affiliation(s)
- Cheryl D Conrad
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States.
| | - Dylan N Peay
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Amanda M Acuña
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Kennedy Whittaker
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| | - Megan E Donnay
- Arizona State University, Department of Psychology, Box 1104, Tempe 85287, AZ, United States
| |
Collapse
|
5
|
Hen-Shoval D, Indig-Naimer T, Moshe L, Kogan NM, Zaidan H, Gaisler-Salomon I, Okun E, Mechoulam R, Shoval G, Zalsman G, Weller A. Unraveling the molecular basis of cannabidiolic acid methyl Ester's anti-depressive effects in a rat model of treatment-resistant depression. J Psychiatr Res 2024; 175:50-59. [PMID: 38704981 DOI: 10.1016/j.jpsychires.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
Major depressive disorder (MDD) stands as a significant cause of disability globally. Cannabidiolic Acid-Methyl Ester (CBDA-ME) (EPM-301, HU-580), a derivative of Cannabidiol, demonstrates immediate antidepressant-like effects, yet it has undergone only minimal evaluation in psychopharmacology. Our goal was to investigate the behavioral and potential molecular mechanisms associated with the chronic oral administration of this compound in the Wistar Kyoto (WKY) genetic model of treatment-resistant depression. Male WKY rats were subjected to behavioral assessments before and after receiving chronic (14-day) oral doses of CBDA-ME (0.5 mg/kg), 15 mg/kg of imipramine or vehicle. At the end of the study, plasma corticosterone levels and mRNA expression of various genes in the medial Prefrontal Cortex and Hippocampus were measured. Behavioral outcomes from CBDA-ME treatment indicated an antidepressant-like effect similar to imipramine, as oral ingestion reduced immobility and increased swimming duration in the Forced Swim Test. Neither treatment influenced locomotion in the Open Field Test nor preference in the Saccharin Preference Test. The behavioral impact in WKY rats coincided with reduced corticosterone serum levels, upregulated mRNA expression of Cannabinoid receptor 1, Fatty Acid Amide Hydrolase, and Corticotropin-Releasing Hormone Receptor 1, alongside downregulation of the Serotonin Transporter in the hippocampus. Additionally, there was an upregulation of CB1 mRNA expression and downregulation of Brain-Derived Neurotrophic Factor in the mPFC. These findings contribute to our limited understanding of the antidepressant effects of CBDA-ME and shed light on its potential psychopharmacological mechanisms. This discovery opens up possibilities for utilizing cannabinoids in the treatment of major depressive disorder and related conditions.
Collapse
Affiliation(s)
- D Hen-Shoval
- Psychology Department, Bar-Ilan University, Ramat Gan, Israel; Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.
| | - T Indig-Naimer
- Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - L Moshe
- Psychology Department, Bar-Ilan University, Ramat Gan, Israel; Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - N M Kogan
- Institute of Personalized and Translational Medicine, Molecular Biology, Ariel University, Ariel, 4070000, Israel
| | - H Zaidan
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - I Gaisler-Salomon
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - E Okun
- Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Israel; The Paul Feder laboratory for Alzheimer disease research, Bar-Ilan University, Ramat Gan, Israel; Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - R Mechoulam
- Institute for Drug Research, Medical Faculty, Hebrew University, Jerusalem, Israel
| | - G Shoval
- Geha Mental Health Center, Petah Tiqva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
| | - G Zalsman
- Geha Mental Health Center, Petah Tiqva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University, New York, NY, United States
| | - A Weller
- Psychology Department, Bar-Ilan University, Ramat Gan, Israel; Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
6
|
Hinchcliffe JK, Robinson ESJ. The Affective Bias Test and Reward Learning Assay: Neuropsychological Models for Depression Research and Investigating Antidepressant Treatments in Rodents. Curr Protoc 2024; 4:e1057. [PMID: 38923877 DOI: 10.1002/cpz1.1057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The Affective Bias Test (ABT) quantifies acute changes in affective state based on the affective biases they generate in an associative reward learning task. The Reward Learning Assay (RLA) provides a control assay for the ABT and reward-induced biases generated in this model are sensitive to changes in core affective state. Both tasks involve training animals to associate a specific digging substrate with a food reward. Animals learn to discriminate between two digging substrates placed in ceramic bowls, one rewarded and one unrewarded. In the ABT, the animal learns two independent substrate-reward associations with a fixed reward value following either an affective state or drug manipulation, or under control conditions. Affective biases generated are quantified in a choice test where the animals exhibit a bias (make more choices) for one of the substrates which is specifically related to affective state at the time of learning. The ABT is used to investigate biases generated during learning as well as modulation of biases associated with past experiences. The RLA follows a similar protocol, but the animal remains in the same affective state throughout and a reward-induced bias is generated by pairing one substrate with a higher value reward. The RLA provides a control to determine if drug treatments affect memory retrieval more generally. Studies in depression models and following environmental enrichment suggest that reward-induced biases are sensitive to core changes in affective state. Each task offers different insights into affective processing mechanisms and may help improve the translational validity of animal studies and benefit pre-clinical drug development. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Bowl digging and discrimination training Basic Protocol 2: The reward learning assay Basic Protocol 3: The affective bias test - new learning Basic Protocol 4: The affective bias test - modulation of affective biases associated with past experiences.
Collapse
Affiliation(s)
- Justyna K Hinchcliffe
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Emma S J Robinson
- School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
7
|
Yusupov N, Roeh S, Sotillos Elliott L, Chang S, Loganathan S, Urbina-Treviño L, Fröhlich AS, Sauer S, Ködel M, Matosin N, Czamara D, Deussing JM, Binder EB. DNA methylation patterns of FKBP5 regulatory regions in brain and blood of humanized mice and humans. Mol Psychiatry 2024; 29:1510-1520. [PMID: 38317011 PMCID: PMC11189813 DOI: 10.1038/s41380-024-02430-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024]
Abstract
Humanized mouse models can be used to explore human gene regulatory elements (REs), which frequently lie in non-coding and less conserved genomic regions. Epigenetic modifications of gene REs, also in the context of gene x environment interactions, have not yet been explored in humanized mouse models. We applied high-accuracy measurement of DNA methylation (DNAm) via targeted bisulfite sequencing (HAM-TBS) to investigate DNAm in three tissues/brain regions (blood, prefrontal cortex and hippocampus) of mice carrying the human FK506-binding protein 5 (FKBP5) gene, an important candidate gene associated with stress-related psychiatric disorders. We explored DNAm in three functional intronic glucocorticoid-responsive elements (at introns 2, 5, and 7) of FKBP5 at baseline, in cases of differing genotype (rs1360780 single nucleotide polymorphism), and following application of the synthetic glucocorticoid dexamethasone. We compared DNAm patterns in the humanized mouse (N = 58) to those in human peripheral blood (N = 447 and N = 89) and human postmortem brain prefrontal cortex (N = 86). Overall, DNAm patterns in the humanized mouse model seem to recapitulate DNAm patterns observed in human tissue. At baseline, this was to a higher extent in brain tissue. The animal model also recapitulated effects of dexamethasone on DNAm, especially in peripheral blood and to a lesser extent effects of genotype on DNAm. The humanized mouse model could thus assist in reverse translation of human findings in psychiatry that involve genetic and epigenetic regulation in non-coding elements.
Collapse
Affiliation(s)
- Natan Yusupov
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Simone Roeh
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Laura Sotillos Elliott
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Simon Chang
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Srivaishnavi Loganathan
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Anna S Fröhlich
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Susann Sauer
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Maik Ködel
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natalie Matosin
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Darina Czamara
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
8
|
Li Y, Yan X, Meng X, Yuan J. Focus on the sex-specific neural markers in the discrimination of various degrees of depression. PSYCHORADIOLOGY 2024; 4:kkae006. [PMID: 38666135 PMCID: PMC11043914 DOI: 10.1093/psyrad/kkae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Affiliation(s)
- Yaqin Li
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision, Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Xinyu Yan
- Psychologie, Sciences de l'Education et Logopédie, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Xianxin Meng
- School of Psychology, Fujian Normal University, Fuzhou 350117, China
| | - Jiajin Yuan
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision, Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| |
Collapse
|
9
|
Zheng JY, Li XX, Liu X, Zhang CC, Sun YX, Ma YN, Wang HL, Su YA, Si TM, Li JT. Fluoxetine reverses early-life stress-induced depressive-like behaviors and region-specific alterations of monoamine transporters in female mice. Pharmacol Biochem Behav 2024; 237:173722. [PMID: 38336220 DOI: 10.1016/j.pbb.2024.173722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The sex difference that females are more vulnerable to depression than males has been recently replicated in an animal model of early-life stress (ES) called the limited bedding and nesting material (LBN) paradigm. Adopting this animal model, we have previously examined the effects of ES on monoamine transporter (MATs) expression in stress-related regions in adult female mice, and the reversal effects of a novel multimodal antidepressant, vortioxetine. In this study, replacing vortioxetine with a classical antidepressant, fluoxetine, we aimed to replicate the ES effects in adult female mice and to elucidate the commonality and differences between fluoxetine and vortioxetine. We found that systemic 30-day treatment with fluoxetine successfully reversed ES-induced depression-like behaviors (especially sucrose preference) in adult female mice. At the molecular level, we largely replicated the ES effects, such as reduced serotonin transporter (SERT) expression in the amygdala and increased norepinephrine transporter (NET) expression in the medial prefrontal cortex (mPFC) and hippocampus. Similar reversal effects of fluoxetine and vortioxetine were observed, including SERT in the amygdala and NET in the mPFC, whereas different reversal effects were observed for NET in the hippocampus and vesicular monoamine transporters expression in the nucleus accumbens. Overall, these results demonstrate the validity of the LBN paradigm to induce depression-like behaviors in female mice, highlight the involvement of region-specific MATs in ES-induced depression-like behaviors, and provide insights for further investigation of neurobiological mechanisms, treatment, and prevention associated with depression in women.
Collapse
Affiliation(s)
- Jia-Ya Zheng
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Xue-Xin Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Xiao Liu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Chen-Chen Zhang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Ya-Xin Sun
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Yu-Nu Ma
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Hong-Li Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Yun-Ai Su
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China
| | - Tian-Mei Si
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China.
| | - Ji-Tao Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital/Institute of Mental Health) and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China.
| |
Collapse
|
10
|
Pape M, Miyagi M, Ritz SA, Boulicault M, Richardson SS, Maney DL. Sex contextualism in laboratory research: Enhancing rigor and precision in the study of sex-related variables. Cell 2024; 187:1316-1326. [PMID: 38490173 PMCID: PMC11219044 DOI: 10.1016/j.cell.2024.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/21/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
Understanding sex-related variation in health and illness requires rigorous and precise approaches to revealing underlying mechanisms. A first step is to recognize that sex is not in and of itself a causal mechanism; rather, it is a classification system comprising a set of categories, usually assigned according to a range of varying traits. Moving beyond sex as a system of classification to working with concrete and measurable sex-related variables is necessary for precision. Whether and how these sex-related variables matter-and what patterns of difference they contribute to-will vary in context-specific ways. Second, when researchers incorporate these sex-related variables into research designs, rigorous analytical methods are needed to allow strongly supported conclusions. Third, the interpretation and reporting of sex-related variation require care to ensure that basic and preclinical research advance health equity for all.
Collapse
Affiliation(s)
- Madeleine Pape
- Institute of Social Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Miriam Miyagi
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Stacey A Ritz
- Department of Pathology & Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Marion Boulicault
- Department of Philosophy, University of Edinburgh, Edinburgh, Scotland
| | - Sarah S Richardson
- Department of the History of Science, Harvard University, Cambridge, MA, USA; Committee on Degrees in Studies of Women, Gender, and Sexuality, Harvard University, Cambridge, MA, USA
| | - Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA, USA; Harvard-Radcliffe Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
11
|
Brazdis RM, von Zimmermann C, Lenz B, Kornhuber J, Mühle C. Peripheral Upregulation of Parkinson's Disease-Associated Genes Encoding α-Synuclein, β-Glucocerebrosidase, and Ceramide Glucosyltransferase in Major Depression. Int J Mol Sci 2024; 25:3219. [PMID: 38542193 PMCID: PMC10970259 DOI: 10.3390/ijms25063219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Due to the high comorbidity of Parkinson's disease (PD) with major depressive disorder (MDD) and the involvement of sphingolipids in both conditions, we investigated the peripheral expression levels of three primarily PD-associated genes: α-synuclein (SNCA), lysosomal enzyme β-glucocerebrosidase (GBA1), and UDP-glucose ceramide glucosyltransferase (UGCG) in a sex-balanced MDD cohort. Normalized gene expression was determined by quantitative PCR in patients suffering from MDD (unmedicated n = 63, medicated n = 66) and controls (remitted MDD n = 39, healthy subjects n = 61). We observed that expression levels of SNCA (p = 0.036), GBA1 (p = 0.014), and UGCG (p = 0.0002) were higher in currently depressed patients compared to controls and remitted patients, and expression of GBA1 and UGCG decreased in medicated patients during three weeks of therapy. Additionally, in subgroups, expression was positively correlated with the severity of depression and anxiety. Furthermore, we identified correlations between the gene expression levels and PD-related laboratory parameters. Our findings suggest that SNCA, GBA1, and UGCG analysis could be instrumental in the search for biomarkers of MDD and in understanding the overlapping pathological mechanisms underlying neuro-psychiatric diseases.
Collapse
Affiliation(s)
- Razvan-Marius Brazdis
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (B.L.); (J.K.)
| | - Claudia von Zimmermann
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (B.L.); (J.K.)
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (B.L.); (J.K.)
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (B.L.); (J.K.)
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (B.L.); (J.K.)
| |
Collapse
|
12
|
Mazza M, De Berardis D, Marano G. Keep in mind sex differences when prescribing psychotropic drugs. World J Psychiatry 2024; 14:194-198. [PMID: 38464773 PMCID: PMC10921286 DOI: 10.5498/wjp.v14.i2.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/02/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Women represent the majority of patients with psychiatric diagnoses and also the largest users of psychotropic drugs. There are inevitable differences in efficacy, side effects and long-term treatment response between men and women. Psychopharmacological research needs to develop adequately powered animal and human trials aimed to consider pharmacokinetics and pharmacodynamics of central nervous system drugs in both male and female subjects. Healthcare professionals have the responsibility to prescribe sex-specific psychopharmacotherapies with a priority to differentiate between men and women in order to minimize adverse drugs reactions, to maximize therapeutic effectiveness and to provide personalized management of care.
Collapse
Affiliation(s)
- Marianna Mazza
- Department of Neurosciences, Fondazione Policlinico Universitario A Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | | | - Giuseppe Marano
- Department of Neurosciences, Fondazione Policlinico Universitario A Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
13
|
Kim M, Kim W, Chung C. The neural basis underlying female vulnerability to depressive disorders. Anim Cells Syst (Seoul) 2023; 27:297-308. [PMID: 38023591 PMCID: PMC10653660 DOI: 10.1080/19768354.2023.2276815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Depressive disorders are more prevalent and severe in women; however, our knowledge of the underlying factors contributing to female vulnerability to depression remains limited. Additionally, females are notably underrepresented in studies seeking to understand the mechanisms of depression. Various animal models of depression have been devised, but only recently have females been included in research. In this comprehensive review, we aim to describe the sex differences in the prevalence, pathophysiology, and responses to drug treatment in patients with depression. Subsequently, we highlight animal models of depression in which both sexes have been studied, in the pursuit of identifying models that accurately reflect female vulnerability to depression. We also introduce explanations for the neural basis of sex differences in depression. Notably, the medial prefrontal cortex and the nucleus accumbens have exhibited sex differences in previous studies. Furthermore, other brain circuits involving the dopaminergic center (ventral tegmental area) and the serotonergic center (dorsal raphe nucleus), along with their respective projections, have shown sex differences in relation to depression. In conclusion, our review covers the critical aspects of sex differences in depression, with a specific focus on female vulnerability in humans and its representation in animal models, including the potential underlying mechanisms. Employing suitable animal models that effectively represent female vulnerability would benefit our understanding of the sex-dependent pathophysiology of depression.
Collapse
Affiliation(s)
- Minsoo Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - Woonhee Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
14
|
Kong CH, Park K, Kim DY, Kim JY, Kang WC, Jeon M, Min JW, Lee WH, Jung SY, Ryu JH. Effects of oleanolic acid and ursolic acid on depression-like behaviors induced by maternal separation in mice. Eur J Pharmacol 2023; 956:175954. [PMID: 37541369 DOI: 10.1016/j.ejphar.2023.175954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Oleanolic acid (OA) and ursolic acid (UA) are structural isomeric triterpenoids. Both triterpenoids have been reported to be able to improve depression. However, no studies have compared their effects in the same system. Whether OA or UA could ameliorate depression-like behaviors in maternal separation (MS)-induced depression-like model was investigated. MS model is a well-accepted mouse model that can reflect the phenotype and pathogenesis of depression. Depression is a mental illness caused by neuroinflammation or changes in neuroplasticity in certain brain regions, such as the prefrontal cortex and hippocampus. Depression-like behaviors were measured using splash test or forced swimming test. In addition, anxiety-like behaviors were also measured using the open field test or elevated plus-maze test. MS-treated female mice showed greater depression-like behaviors than male mice, and that OA improved several depression-like behaviors, whereas UA only relieved anxiety-like behavior of MS-treated mice. Microglial activation, expression levels of TNF-α, and mRNA levels of IDO1 were increased in the hippocampi of MS-treated female mice. However, OA and UA treatments attenuated such increases. In addition, expression levels of synaptophysin and PSD-95 were decreased in the hippocampi of MS-treated female mice. These decreased expression levels of synaptophysin were reversed by both OA and UA treatments, although decreased PSD-95 expression levels were only reversed by OA treatment. Our findings suggest that MS cause depression-like behaviors through female-specific neuroinflammation, changes of tryptophan metabolism, and alterations of synaptic plasticity. Our findings also suggest that OA could reverse MS-induced depression-like behaviors more effectively than UA.
Collapse
Affiliation(s)
- Chang Hyeon Kong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Do Yeon Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae Youn Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Woo Chang Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Mijin Jeon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ji Won Min
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Won Hyung Lee
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
15
|
Beaver JN, Weber BL, Ford MT, Anello AE, Ruffin KM, Kassis SK, Gilman TL. Generalization of contextual fear is sex-specifically affected by high salt intake. PLoS One 2023; 18:e0286221. [PMID: 37440571 PMCID: PMC10343085 DOI: 10.1371/journal.pone.0286221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/10/2023] [Indexed: 07/15/2023] Open
Abstract
A hallmark symptom of many anxiety disorders, and multiple neuropsychiatric disorders more broadly, is generalization of fearful responses to non-fearful stimuli. Anxiety disorders are often comorbid with cardiovascular diseases. One established, and modifiable, risk factor for cardiovascular diseases is salt intake. Yet, investigations into how excess salt consumption affects anxiety-relevant behaviors remains little explored. Moreover, no studies have yet assessed how high salt intake influences generalization of fear. Here, we used adult C57BL/6J mice of both sexes to evaluate the influence of two or six weeks of high salt consumption (4.0% NaCl), compared to controls (0.4% NaCl), on contextual fear acquisition, expression, and generalization. Further, we measured osmotic and physiological stress by quantifying serum osmolality and corticosterone levels, respectively. Consuming excess salt did not influence contextual fear acquisition nor discrimination between the context used for training and a novel, neutral context when training occurred 48 prior to testing. However, when a four week delay between training and testing was employed to induce natural fear generalization processes, we found that high salt intake selectively increases contextual fear generalization in females, but the same diet reduces contextual fear generalization in males. These sex-specific effects were independent of any changes in serum osmolality nor corticosterone levels, suggesting the behavioral shifts are a consequence of more subtle, neurophysiologic changes. This is the first evidence of salt consumption influencing contextual fear generalization, and adds information about sex-specific effects of salt that are largely missing from current literature.
Collapse
Affiliation(s)
- Jasmin N. Beaver
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States of America
| | - Brady L. Weber
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States of America
| | - Matthew T. Ford
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Anna E. Anello
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States of America
| | - Kaden M. Ruffin
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Sarah K. Kassis
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States of America
| | - T. Lee Gilman
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, Ohio, United States of America
| |
Collapse
|
16
|
Johnston JN, Greenwald MS, Henter ID, Kraus C, Mkrtchian A, Clark NG, Park LT, Gold P, Zarate CA, Kadriu B. Inflammation, stress and depression: An exploration of ketamine's therapeutic profile. Drug Discov Today 2023; 28:103518. [PMID: 36758932 PMCID: PMC10050119 DOI: 10.1016/j.drudis.2023.103518] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/13/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Well-established animal models of depression have described a proximal relationship between stress and central nervous system (CNS) inflammation - a relationship mirrored in the peripheral inflammatory biomarkers of individuals with depression. Evidence also suggests that stress-induced proinflammatory states can contribute to the neurobiology of treatment-resistant depression. Interestingly, ketamine, a rapid-acting antidepressant, can partially exert its therapeutic effects via anti-inflammatory actions on the hypothalamic-pituitary adrenal (HPA) axis, the kynurenine pathway or by cytokine suppression. Further investigations into the relationship between ketamine, inflammation and stress could provide insight into ketamine's unique therapeutic mechanisms and stimulate efforts to develop rapid-acting, anti-inflammatory-based antidepressants.
Collapse
Affiliation(s)
- Jenessa N Johnston
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Maximillian S Greenwald
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Ioline D Henter
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Kraus
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Anahit Mkrtchian
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Neil G Clark
- US School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Lawrence T Park
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Philip Gold
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Xia J, Wang H, Zhang C, Liu B, Li Y, Li K, Li P, Song C. The comparison of sex differences in depression-like behaviors and neuroinflammatory changes in a rat model of depression induced by chronic stress. Front Behav Neurosci 2023; 16:1059594. [PMID: 36703721 PMCID: PMC9872650 DOI: 10.3389/fnbeh.2022.1059594] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/01/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Clinical prevalence of major depression is higher in women than men, while the psychoneuroimmunological mechanisms underlying the differences between the two sexes are not fully understood. METHODS The present study explored sex differences in the behaviors and depressive pathological mechanisms induced by chronic unpredictable mild stress (CUMS). Depression- and anxiety-like behaviors were assessed by the sucrose preference test (SPT), force swimming test (FST), open field test (OFT), and elevated plus-maze (EPM). The enzyme-linked immunosorbent assay (ELISA) was used to measure cytokine concentrations, high-performance liquid chromatography (HPLC) was used to measure monoamine neurotransmitters and metabolite contents, and real-time quantitative PCR (qPCR) and western blotting (WB) were used to measure glial parameters in the hippocampus. RESULTS Under control conditions, female rats exhibited shorter immobility times in the FST, lower interferon (IFN)-γ, and interleukin (IL)-4 levels in the hippocampus, lower norepinephrine (NE) and homovanillic acid (HVA), and higher p75 and glial-derived neurotrophic factor (GDNF) expression than male rats. CUMS markedly reduced rat body weight gain, sucrose preference, locomotor activity, number of entries into the central zone and rearing in the OFT, as well as the number of entries into and time spent in open arms of the EPM; however, CUMS increased the immobility times of the rats of both sexes in the FST. Interestingly, more pronounced changes in sucrose preference and locomotor activity were observed in female rats than in males. Consistently, CUMS-increased glucocorticoid concentration, M1 microglial marker CD11b, and peripheral IL-1β and IL-4, while decreased hippocampal IL-10, serotonin (5-HT), dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC), and norepinephrine metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) were more significant in females than in males. CONCLUSION These data revealed possible mechanisms by which females suffer more depression than males at least in a stressful environment.
Collapse
Affiliation(s)
- Juan Xia
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Laboratory of Hematologic Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haoyin Wang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Cai Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Baiping Liu
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Yuyu Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Kangwei Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Peng Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Marine Medicine Research and Development Center of Shenzhen Institutes, Guangdong Ocean University, Shenzhen, China
| |
Collapse
|
18
|
Teal LB, Ingram SM, Bubser M, McClure E, Jones CK. The Evolving Role of Animal Models in the Discovery and Development of Novel Treatments for Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2023; 30:37-99. [PMID: 36928846 DOI: 10.1007/978-3-031-21054-9_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Historically, animal models have been routinely used in the characterization of novel chemical entities (NCEs) for various psychiatric disorders. Animal models have been essential in the in vivo validation of novel drug targets, establishment of lead compound pharmacokinetic to pharmacodynamic relationships, optimization of lead compounds through preclinical candidate selection, and development of translational measures of target occupancy and functional target engagement. Yet, with decades of multiple NCE failures in Phase II and III efficacy trials for different psychiatric disorders, the utility and value of animal models in the drug discovery process have come under intense scrutiny along with the widespread withdrawal of the pharmaceutical industry from psychiatric drug discovery. More recently, the development and utilization of animal models for the discovery of psychiatric NCEs has undergone a dynamic evolution with the application of the Research Domain Criteria (RDoC) framework for better design of preclinical to clinical translational studies combined with innovative genetic, neural circuitry-based, and automated testing technologies. In this chapter, the authors will discuss this evolving role of animal models for improving the different stages of the discovery and development in the identification of next generation treatments for psychiatric disorders.
Collapse
Affiliation(s)
- Laura B Teal
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Shalonda M Ingram
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Michael Bubser
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Elliott McClure
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, USA
| | - Carrie K Jones
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
19
|
Macrophage Migration Inhibitory Factor in Major Depressive Disorder: A Multilevel Pilot Study. Int J Mol Sci 2022; 23:ijms232415460. [PMID: 36555097 PMCID: PMC9779321 DOI: 10.3390/ijms232415460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a controversially discussed inflammatory marker in major depressive disorder (MDD). While some studies show an association of high MIF protein levels with depression, animal models have yielded conflicting results. Thus, it remains elusive as to whether MIF plays an anti- or pro-depressive role. Therefore, we aimed to examine the potential of MIF at the genetic, expression and protein levels as a risk factor and biomarker to diagnose, monitor, or predict the course of MDD. Patients with a current major depressive episode (n = 66 with, and n = 63 without, prior medication) and remitted patients (n = 39) were compared with healthy controls (n = 61). Currently depressed patients provided a second blood sample after three weeks of therapy. Depression severity was assessed by self-evaluation and clinician rating scales. We genotyped for three MIF polymorphisms and analyzed peripheral MIF expression and serum levels. The absence of minor allele homozygous individuals in the large group of 96 female patients compared with 10-16% in female controls suggests a protective effect for MDD, which was not observed in the male group. There were no significant group differences of protein and expression levels, however, both showed predictive potential for the course of depression severity in some subgroups. While MIF protein levels, but not MIF expression, decreased during treatment, they were not associated with changes in depression severity. This project is the first to investigate three biological levels of MIF in depression. The data hint toward a genetic effect in women, but do not provide robust evidence for the utility of MIF as a biomarker for the diagnosis or monitoring of MDD. The observed predictive potential requires further analysis, emphasizing future attention to confounding factors such as sex and premedication.
Collapse
|
20
|
Markov DD, Novosadova EV. Chronic Unpredictable Mild Stress Model of Depression: Possible Sources of Poor Reproducibility and Latent Variables. BIOLOGY 2022; 11:1621. [PMID: 36358321 PMCID: PMC9687170 DOI: 10.3390/biology11111621] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023]
Abstract
Major depressive disorder (MDD) is one of the most common mood disorders worldwide. A lack of understanding of the exact neurobiological mechanisms of depression complicates the search for new effective drugs. Animal models are an important tool in the search for new approaches to the treatment of this disorder. All animal models of depression have certain advantages and disadvantages. We often hear that the main drawback of the chronic unpredictable mild stress (CUMS) model of depression is its poor reproducibility, but rarely does anyone try to find the real causes and sources of such poor reproducibility. Analyzing the articles available in the PubMed database, we tried to identify the factors that may be the sources of the poor reproducibility of CUMS. Among such factors, there may be chronic sleep deprivation, painful stressors, social stress, the difference in sex and age of animals, different stress susceptibility of different animal strains, handling quality, habituation to stressful factors, various combinations of physical and psychological stressors in the CUMS protocol, the influence of olfactory and auditory stimuli on animals, as well as the possible influence of various other factors that are rarely taken into account by researchers. We assume that careful inspection of these factors will increase the reproducibility of the CUMS model between laboratories and allow to make the interpretation of the obtained results and their comparison between laboratories to be more adequate.
Collapse
|
21
|
Dion-Albert L, Bandeira Binder L, Daigle B, Hong-Minh A, Lebel M, Menard C. Sex differences in the blood-brain barrier: Implications for mental health. Front Neuroendocrinol 2022; 65:100989. [PMID: 35271863 DOI: 10.1016/j.yfrne.2022.100989] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/07/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022]
Abstract
Prevalence of mental disorders, including major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ) are increasing at alarming rates in our societies. Growing evidence points toward major sex differences in these conditions, and high rates of treatment resistance support the need to consider novel biological mechanisms outside of neuronal function to gain mechanistic insights that could lead to innovative therapies. Blood-brain barrier alterations have been reported in MDD, BD and SZ. Here, we provide an overview of sex-specific immune, endocrine, vascular and transcriptional-mediated changes that could affect neurovascular integrity and possibly contribute to the pathogenesis of mental disorders. We also identify pitfalls in current literature and highlight promising vascular biomarkers. Better understanding of how these adaptations can contribute to mental health status is essential not only in the context of MDD, BD and SZ but also cardiovascular diseases and stroke which are associated with higher prevalence of these conditions.
Collapse
Affiliation(s)
- Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Luisa Bandeira Binder
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Beatrice Daigle
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Amandine Hong-Minh
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | - Manon Lebel
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada.
| |
Collapse
|
22
|
Pitzer C, Kurpiers B, Eltokhi A. Sex Differences in Depression-Like Behaviors in Adult Mice Depend on Endophenotype and Strain. Front Behav Neurosci 2022; 16:838122. [PMID: 35368297 PMCID: PMC8969904 DOI: 10.3389/fnbeh.2022.838122] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Depression affects women nearly twice as frequently as men. In contrast, rodent models of depression have shown inconsistent results regarding sex bias, often reporting more depression-like behaviors in males. This sex discrepancy in rodents modeling depression may rely on differences in the baseline activity of males and females in depression-related behavioral tests. We previously showed that the baseline despair and anhedonia behaviors, major endophenotypes of depression, are not sex biased in young adolescent wild-type mice of C57BL/6N, DBA/2, and FVB/N strains. Since the prevalence of depression in women peaks in their reproductive years, we here investigated sex differences of the baseline depression-like behaviors in adult mice using these three strains. Similar to the results in young mice, no difference was found between adult male and female mice in behavioral tests measuring despair in both tail suspension and forced swim tests, and anhedonia in the sucrose preference test. We then extended our study and tested apathy, another endophenotype of depression, using the splash test. Adult male and female mice showed significantly different results in the baseline apathy-like behaviors depending on the investigated strain. This study dissects the complex sex effects of different depression endophenotypes, stresses the importance of considering strain, and puts forward a hypothesis of the inconsistency of results between different laboratories investigating rodent models of depression.
Collapse
Affiliation(s)
- Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
- *Correspondence: Claudia Pitzer,
| | - Barbara Kurpiers
- Interdisciplinary Neurobehavioral Core, Heidelberg University, Heidelberg, Germany
| | - Ahmed Eltokhi
- Department of Pharmacology, University of Washington, Seattle, WA, United States
- Ahmed Eltokhi,
| |
Collapse
|
23
|
Egerton S, Donoso F, Fitzgerald P, Gite S, Fouhy F, Whooley J, Dinan TG, Cryan JF, Culloty SC, Ross RP, Stanton C. Investigating the potential of fish oil as a nutraceutical in an animal model of early life stress. Nutr Neurosci 2022; 25:356-378. [PMID: 32734823 DOI: 10.1080/1028415x.2020.1753322] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background: Early life stress is a key predisposing factor for depression and anxiety disorders. Selective serotonin re-uptake inhibitors (SSRI) are frequently used as the first line of pharmacology treatment for depression but have several negative qualities, i.e. a delay or absence of effectiveness and negative side-effects. Therefore, there is a growing need for new nutraceutical-based strategies to blunt the effects of adverse-life events.Objectives: This study aimed to use the maternal separation model in rats to test the efficacy of fish oil dietary supplementation, on its own and in conjunction with the SSRI anti-depressant fluoxetine, as a treatment for depressive and anxiety-like symptoms associated with early life stress.Methods: Behavioural tests (open field test, elevated plus maze test and forced swim test) and biochemical markers (corticosterone, BDNF, brain fatty acids and short chain fatty acids) were used to analyse the effects of the dietary treatments. Gut microbial communities and relating metabolites (SCFA) were analysed to investigate possible changes in the microbiota-gut-brain axis.Results: Maternally separated rats showed depressive-like behaviours in the forced swim and open field tests. These behaviours were prevented significantly by fluoxetine administration and in part by fish oil supplementation. Associated biochemical changes reported include altered brain fatty acids, significantly lower plasma corticosterone levels (AUC) and reduced brain stem serotonin turnover, compared to untreated, maternally separated (MS) rats. Untreated MS animals had significantly lower ratios of SCFA producers such as Caldicoprobacteraceae, Streptococcaceae, Rothia, Lachnospiraceae_NC2004_group, and Ruminococcus_2, along with significantly reduced levels of total SCFA compared to non-separated animals. Compared to untreated MS animals, animals fed fish oil had significantly higher Bacteroidetes and Prevotellaceae and reduced levels of butyrate, while fluoxetine treatment resulted in significantly higher levels of Neochlamydia, Lachnoclostridium, Acetitomaculum and Stenotrophomonas and, acetate and propionate.Conclusion: Despite the limitations in extrapolating from animal behavioural data and the notable differences in pharmacokinetics between rodents and humans, the results of this study provide a further advancement into the understanding of some of the complex systems within which nutraceuticals and pharmaceuticals effect the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Sian Egerton
- School of Microbiology, University College Cork, Cork, Ireland
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Francisco Donoso
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | | | - Snehal Gite
- APC Microbiome Ireland, Cork, Ireland
- Biomarine Ingredients Ireland Ltd., Monaghan, Ireland
| | - Fiona Fouhy
- APC Microbiome Ireland, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Jason Whooley
- Biomarine Ingredients Ireland Ltd., Monaghan, Ireland
| | - Ted G Dinan
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Sarah C Culloty
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| |
Collapse
|
24
|
Olave FA, Aguayo FI, Román-Albasini L, Corrales WA, Silva JP, González PI, Lagos S, García MA, Alarcón-Mardones M, Rojas PS, Xu X, Cidlowski JA, Aliaga E, Fiedler J. Chronic restraint stress produces sex-specific behavioral and molecular outcomes in the dorsal and ventral rat hippocampus. Neurobiol Stress 2022; 17:100440. [PMID: 35252485 PMCID: PMC8894263 DOI: 10.1016/j.ynstr.2022.100440] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 01/24/2023] Open
Abstract
Stress-related disorders display differences at multiple levels according to sex. While most studies have been conducted in male rodents, less is known about comparable outcomes in females. In this study, we found that the chronic restraint stress model (2.5 h/day for 14 days) triggers different somatic responses in male and female adult rats. Chronic restraint produced a loss in sucrose preference and novel location preference in male rats. However, chronic restraint failed to produce loss of sucrose preference in females, while it improved spatial performance. We then characterized the molecular responses associated with these behaviors in the hippocampus, comparing the dorsal and ventral poles. Notably, sex- and hippocampal pole-specific transcriptional signatures were observed, along with a significant concordance between the female ventral and male dorsal profiles. Functional enrichment analysis revealed both shared and specific terms associated with each pole and sex. By looking into signaling pathways that were associated with these terms, we found an ample array of sex differences in the dorsal and, to a lesser extent, in the ventral hippocampus. These differences were mainly present in synaptic TrkB signaling, Akt pathway, and glutamatergic receptors. Unexpectedly, the effects of stress on these pathways were rather minimal and mostly dissociated from the sex-specific behavioral outcomes. Our study suggests that female rats are resilient and males susceptible to the restraint stress exposure in the sucrose preference and object location tests, while the activity of canonical signaling pathways is primarily determined by sex rather than stress in the dorsal and ventral hippocampus.
Collapse
Affiliation(s)
- Felipe A. Olave
- Laboratory of Neuroplasticity and Neurogenetics. Faculty of Chemical and Pharmaceutical Sciences. Department of Biochemistry and Molecular Biology. Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Felipe I. Aguayo
- Laboratory of Neuroplasticity and Neurogenetics. Faculty of Chemical and Pharmaceutical Sciences. Department of Biochemistry and Molecular Biology. Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Luciano Román-Albasini
- Laboratory of Neuroplasticity and Neurogenetics. Faculty of Chemical and Pharmaceutical Sciences. Department of Biochemistry and Molecular Biology. Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Wladimir A. Corrales
- Laboratory of Neuroplasticity and Neurogenetics. Faculty of Chemical and Pharmaceutical Sciences. Department of Biochemistry and Molecular Biology. Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Juan P. Silva
- Laboratory of Neuroplasticity and Neurogenetics. Faculty of Chemical and Pharmaceutical Sciences. Department of Biochemistry and Molecular Biology. Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Pablo I. González
- Laboratory of Neuroplasticity and Neurogenetics. Faculty of Chemical and Pharmaceutical Sciences. Department of Biochemistry and Molecular Biology. Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Sara Lagos
- Laboratory of Neuroplasticity and Neurogenetics. Faculty of Chemical and Pharmaceutical Sciences. Department of Biochemistry and Molecular Biology. Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - María A. García
- Laboratory of Neuroplasticity and Neurogenetics. Faculty of Chemical and Pharmaceutical Sciences. Department of Biochemistry and Molecular Biology. Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Matías Alarcón-Mardones
- Laboratory of Neuroplasticity and Neurogenetics. Faculty of Chemical and Pharmaceutical Sciences. Department of Biochemistry and Molecular Biology. Universidad de Chile, Independencia, 8380492, Santiago, Chile
| | - Paulina S. Rojas
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Xiaojiang Xu
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - John A. Cidlowski
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, 27709, USA
| | - Esteban Aliaga
- Medical Technology School and the Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
- Corresponding author. Medical Technology School, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile.
| | - Jenny Fiedler
- Laboratory of Neuroplasticity and Neurogenetics. Faculty of Chemical and Pharmaceutical Sciences. Department of Biochemistry and Molecular Biology. Universidad de Chile, Independencia, 8380492, Santiago, Chile
- Corresponding author. Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago. Chile.
| |
Collapse
|
25
|
Kang JS, Baek JH, Jung S, Chung HJ, Lee DK, Kim HJ. Ingestion of Bis(2-ethylhexyl) phthalate (DEHP) during adolescence causes depressive-like behaviors through hypoactive glutamatergic signaling in the medial prefrontal cortex. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117978. [PMID: 34426190 DOI: 10.1016/j.envpol.2021.117978] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Over the past decades, the production and use of hazardous chemicals has increased worldwide, and the incidence of neurological diseases is increasing proportionately. Among these chemicals, Bis(2-ethylhexyl) phthalate (DEHP) is the most common member of the phthalate family used as a plasticizer. The present study assessed the consequences of daily DEHP ingestion and its effects on brain functions related to depressive-like behaviors. Adolescent C57BL/6 male mice ingested different concentrations of DEHP in their diet (2, 20, and 200 mg/kg of diet), and behavioral changes in anxiety, despair, anhedonia, and sociality were investigated. DEHP exposure evoked depressive-like behaviors in a dose-dependent manner for each symptom. The levels of corticosterone and reactive oxygen species/reactive nitrogen species increased in DEHP-exposed groups, suggesting chronic stress-like responses. In the medial prefrontal cortex (mPFC), glutamate and glutamine were decreased, and glutamine synthetase showed lower activity compared to the control group, suggesting imbalanced glutamatergic signaling. Measuring the spontaneous excitatory postsynaptic current of glutamatergic neurons, we found that DEHP ingestion resulted in hypoactive glutamatergic signaling in the mPFC.
Collapse
Affiliation(s)
- Jae Soon Kang
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Ji Hyeong Baek
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Soonwoong Jung
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Hye Jin Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Dong Kun Lee
- Department of Physiology, Institute of Health Sciences, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University Medical School, 15 Jinju-daero 816 Beongil, Jinju, Gyeongnam, 52727, Republic of Korea.
| |
Collapse
|
26
|
Behavioural adaptations after antibiotic treatment in male mice are reversed by activation of the aryl hydrocarbon receptor. Brain Behav Immun 2021; 98:317-329. [PMID: 34461234 DOI: 10.1016/j.bbi.2021.08.228] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/15/2021] [Accepted: 08/21/2021] [Indexed: 01/08/2023] Open
Abstract
The intestinal microbiota plays an important role in regulating brain functions and behaviour. Microbiota-dependent changes in host physiology have been suggested to be key contributors to psychiatric conditions. However, specific host pathways modulated by the microbiota involved in behavioural control are lacking. Here, we assessed the role of the aryl hydrocarbon receptor (Ahr) in modulating microbiota-related alterations in behaviour in male and female mice after antibiotic (Abx) treatment. Mice of both sexes were treated with Abx to induce bacterial depletion. Mice were then tested in a battery of behavioural tests, including the elevated plus maze and open field tests (anxiety-like behaviour), 3 chamber test (social preference), and the tail suspension and forced swim tests (despair behaviour). Behavioural measurements in the tail suspension test were also performed after microbiota reconstitution and after administration of an Ahr agonist, β-naphthoflavone. Gene expression analyses were performed in the brain, liver, and colon by qPCR. Abx-induced bacterial depletion did not alter anxiety-like behaviour, locomotion, or social preference in either sex. A sex-dependent effect was observed in despair behaviour. Male mice had a reduction in despair behaviour after Abx treatment in both the tail suspension and forced swim tests. A similar alteration in despair behaviour was observed in Ahr knockout mice. Despair behaviour was normalized by either microbiota recolonization or Ahr activation in Abx-treated mice. Ahr activation by β-naphthoflavone was confirmed by increased expression of the Ahr-target genes Cyp1a1, Cyp1b1, and Ahrr. Our results demonstrate a role for Ahr in mediating the behaviours that are regulated by the crosstalk between the intestinal microbiota and the host. Ahr represents a novel potential modulator of behavioural conditions influenced by the intestinal microbiota.
Collapse
|
27
|
Endogenous Estrogen Influences Predator Odor-Induced Impairment of Cognitive and Social Behaviors in Aromatase Gene Deficiency Mice. Behav Neurol 2021; 2021:5346507. [PMID: 34594430 PMCID: PMC8478571 DOI: 10.1155/2021/5346507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022] Open
Abstract
Epidemiological studies have suggested that traumatic stress increases vulnerability to various mental disorders, such as dementia and psychiatric disorders. While women are more vulnerable than men to depression and anxiety, it is unclear whether endogenous estrogens are responsible for the underlying sex-specific mechanisms. In this study, the aromatase gene heterozygous (Ar+/-) mice were used as an endogenous estrogen deficiency model and age- and sex-matched wild type mice (WT) as controls to study the predator odor 2,3,5-trimethyl-3-thiazoline- (TMT-) induced short- and long-term cognitive and social behavior impairments. In addition, the changes in brain regional neurotransmitters and their associations with TMT-induced changes in behaviors were further investigated in these animals. Our results showed TMT induced immediate fear response in both Ar+/- and WT mice regardless of sexes. TMT induced an acute impairment of novel object recognition memory and long-term social behavior impairment in WT mice, particularly in females, while Ar+/- mice showed impaired novel object recognition in both sexes and TMT-elevated social behaviors, particularly in males. TMT failed to induce changes in the prepulse inhibition (PPI) test in both groups. TMT resulted in a slight increase of DOPAC/DA ratio in the cortex and a significant elevation of this ratio in the striatum of WT mice. In addition, the ratio of HIAA/5-HT was significantly elevated in the cortex of TMT-treated WT mice, which was not found in TMT-treated Ar+/- mice. Taken together, our results indicate that TMT exposure can cause cognitive and social behavior impairments as well as change catecholamine metabolism in WT mice, and endogenous estrogen deficiency might desensitize the behavioral and neurochemical responses to TMT in Ar+/- mice.
Collapse
|
28
|
Perlis RH, Ognyanova K, Quintana A, Green J, Santillana M, Lin J, Druckman J, Lazer D, Simonson MD, Baum MA, Chwe H. Gender-specificity of resilience in major depressive disorder. Depress Anxiety 2021; 38:1026-1033. [PMID: 34370885 PMCID: PMC9544406 DOI: 10.1002/da.23203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION The major stressors associated with the COVID-19 pandemic provide an opportunity to understand the extent to which protective factors against depression may exhibit gender-specificity. METHOD This study examined responses from multiple waves of a 50 states non-probability internet survey conducted between May 2020 and January 2021. Participants completed the PHQ-9 as a measure of depression, as well as items characterizing social supports. We used logistic regression models with population reweighting to examine association between absence of even mild depressive symptoms and sociodemographic features and social supports, with interaction terms and stratification used to investigate sex-specificity. RESULTS Among 73,917 survey respondents, 31,199 (42.2%) reported absence of mild or greater depression-11,011/23,682 males (46.5%) and 20,188/50,235 (40.2%) females. In a regression model, features associated with greater likelihood of depression-resistance included at least weekly attendance of religious services (odds ratio [OR]: 1.10, 95% confidence interval [CI]: 1.04-1.16) and greater trust in others (OR: 1.04 for a 2-unit increase, 95% CI: 1.02-1.06), along with level of social support measured as number of social ties available who could provide care (OR: 1.05, 95% CI: 1.02-1.07), talk to them (OR: 1.10, 95% CI: 1.07-1.12), and help with employment (OR: 1.06, 95% CI: 1.04-1.08). The first two features showed significant interaction with gender (p < .0001), with markedly greater protective effects among women. CONCLUSION Aspects of social support are associated with diminished risk of major depressive symptoms, with greater effects of religious service attendance and trust in others observed among women than men.
Collapse
Affiliation(s)
- Roy H. Perlis
- Center for Quantitative HealthMassachusetts General HospitalBostonMassachusettsUSA
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Alexi Quintana
- Network Science InstituteNortheastern UniversityBostonMassachusettsUSA
| | - Jon Green
- Network Science InstituteNortheastern UniversityBostonMassachusettsUSA
| | - Mauricio Santillana
- Computational Health Informatics ProgramBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
- Department of EpidemiologHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Jennifer Lin
- Department of Political ScienceNorthwestern UniversityEvanstonIllinoisUSA
| | - James Druckman
- Department of Political Science and Institute for Policy ResearchNorthwestern UniversityEvanstonIllinoisUSA
| | - David Lazer
- Network Science InstituteNortheastern UniversityBostonMassachusettsUSA
| | | | - Matthew A. Baum
- John F. Kennedy School of GovernmentHarvard UniversityCambridgeMassachusettsUSA
| | - Hanyu Chwe
- Network Science InstituteNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
29
|
Bartova L, Dold M, Fugger G, Kautzky A, Mitschek MMM, Weidenauer A, Hienert MG, Frey R, Mandelli L, Zohar J, Mendlewicz J, Souery D, Montgomery S, Fabbri C, Serretti A, Kasper S. Sex-related effects in major depressive disorder: Results of the European Group for the Study of Resistant Depression. Depress Anxiety 2021; 38:896-906. [PMID: 34110066 PMCID: PMC8453858 DOI: 10.1002/da.23165] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/19/2021] [Accepted: 04/19/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Sex-related effects on the evolution and phenotype of major depressive disorder (MDD) were reported previously. METHODS This European multicenter cross-sectional study compared sociodemographic, clinical, and treatment patterns between males and females in a real-world sample of 1410 in- and outpatients with current MDD. RESULTS Male MDD patients (33.1%) were rather inpatients, suffered from moderate to high suicidality levels, received noradrenergic and specific serotonergic antidepressants (ADs) as first-line AD treatment, generally higher mean AD daily doses, and showed a trend towards a more frequent administration of add-on treatments. Female MDD patients (66.9%) were rather outpatients, experienced lower suicidality levels, comorbid thyroid dysfunction, migraine, asthma, and a trend towards earlier disease onset. CONCLUSIONS The identified divergencies may contribute to the concept of male and female depressive syndromes and serve as predictors of disease severity and course, as they reflect phenomena that were repeatedly related to treatment-resistant depression (TRD). Especially the greater necessity of inpatient treatment and more complex psychopharmacotherapy in men may reflect increased therapeutic efforts undertaken to treat suicidality and to avoid TRD. Hence, considering sex may guide the diagnostic and treatment processes towards targeting challenging clinical manifestations including comorbidities and suicidality, and prevention of TRD and chronicity.
Collapse
Affiliation(s)
- Lucie Bartova
- Department of Psychiatry and PsychotherapyMedical University of ViennaViennaAustria
| | - Markus Dold
- Department of Psychiatry and PsychotherapyMedical University of ViennaViennaAustria
| | - Gernot Fugger
- Department of Psychiatry and PsychotherapyMedical University of ViennaViennaAustria
| | - Alexander Kautzky
- Department of Psychiatry and PsychotherapyMedical University of ViennaViennaAustria
| | | | - Ana Weidenauer
- Department of Psychiatry and PsychotherapyMedical University of ViennaViennaAustria
| | - Marius G. Hienert
- Department of Psychiatry and PsychotherapyMedical University of ViennaViennaAustria
| | - Richard Frey
- Department of Psychiatry and PsychotherapyMedical University of ViennaViennaAustria
| | - Laura Mandelli
- Department of Biomedical and NeuroMotor SciencesUniversity of BolognaBolognaItaly
| | - Joseph Zohar
- Psychiatric DivisionChaim Sheba Medical CenterTel HashomerIsrael
| | | | - Daniel Souery
- School of MedicineFree University of BrusselsBrusselsBelgium,Psy Pluriel ‐ European Centre of Psychological MedicineBrusselsBelgium
| | - Stuart Montgomery
- Imperial College School of MedicineUniversity of LondonLondonUnited Kingdom
| | - Chiara Fabbri
- Department of Biomedical and NeuroMotor SciencesUniversity of BolognaBolognaItaly,Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUnited Kingdom
| | - Alessandro Serretti
- Department of Biomedical and NeuroMotor SciencesUniversity of BolognaBolognaItaly
| | - Siegfried Kasper
- Department of Psychiatry and PsychotherapyMedical University of ViennaViennaAustria,Center for Brain ResearchMedical University of ViennaViennaAustria
| |
Collapse
|
30
|
Lopez J, Bagot RC. Defining Valid Chronic Stress Models for Depression With Female Rodents. Biol Psychiatry 2021; 90:226-235. [PMID: 33965195 DOI: 10.1016/j.biopsych.2021.03.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022]
Abstract
Women are twice as likely to experience depression than men, yet until recently, preclinical studies in rodents have focused almost exclusively on males. As interest in sex differences and sex-specific mechanisms of stress susceptibility increases, chronic stress models for inducing depression-relevant behavioral and physiological changes in male rodents are being applied to females, and several new models have emerged to include both males and females, yet not all models have been systematically validated in females. An increasing number of researchers seek to include female rodents in their experimental designs, asking the question "what is the ideal chronic stress model for depression in females?" We review criteria for assessing female model validity in light of key research questions and the fundamental distinction between studying sex differences and studying both sexes. In overviewing current models, we explore challenges inherent to establishing an ideal female chronic stress model, with particular emphasis on the need for standardization and adoption of validated behavioral tests sensitive to stress effects in females. Taken together, these considerations will empower female chronic stress models to provide a better understanding of stress susceptibility and allow the development of efficient sex-specific treatments.
Collapse
Affiliation(s)
- Joëlle Lopez
- Department of Psychology, McGill University, Montréal, Quebec, Canada
| | - Rosemary C Bagot
- Department of Psychology, McGill University, Montréal, Quebec, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Montréal, Quebec, Canada.
| |
Collapse
|
31
|
Kvichansky AA, Tret'yakova LV, Volobueva MN, Manolova AO, Stepanichev MY, Onufriev MV, Moiseeva YV, Lazareva NA, Bolshakov AP, Gulyaeva NV. Neonatal Proinflammatory Stress and Expression of Neuroinflammation-Associated Genes in the Rat Hippocampus. BIOCHEMISTRY (MOSCOW) 2021; 86:693-703. [PMID: 34225592 DOI: 10.1134/s0006297921060079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Differential effect of the neonatal proinflammatory stress (NPS) on the development of neuroinflammation in the hippocampus and induction of the depressive-like behavior in juvenile and adult male and female rats was studied. NPS induction by bacterial lipopolysaccharide in the neonatal period upregulated expression of the Il6 and Tnf mRNAs accompanied by the development of depressive-like behavior in the adult male rats. NPS increased expression of the mRNAs for fractalkine and its receptor in the ventral hippocampus of the juvenile male rats, but did not affect expression of mRNAs for the proinflammatory cytokines and soluble form of fractalkine. NPS downregulated expression of fractalkine mRNA in the dorsal hippocampus of juvenile males. No significant effects of NPS were found in the female rats. Therefore, the NPS induces long-term changes in the expression of neuroinflammation-associated genes in different regions of the hippocampus, which ultimately leads to the induction of neuroinflammation and development of depressive-like behavior in male rats.
Collapse
Affiliation(s)
- Alexey A Kvichansky
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
| | - Liya V Tret'yakova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Maria N Volobueva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Anna O Manolova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Mikhail Yu Stepanichev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Mikhail V Onufriev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Yulia V Moiseeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Natalia A Lazareva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Alexey P Bolshakov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| |
Collapse
|
32
|
Szoeke C, Downie SJ, Parker AF, Phillips S. Sex hormones, vascular factors and cognition. Front Neuroendocrinol 2021; 62:100927. [PMID: 34119528 DOI: 10.1016/j.yfrne.2021.100927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 11/25/2022]
Abstract
After more than a century of research, we have failed to develop a pharmacological prevention or cure for dementia. There are strong indicators that sex hormones influence cognition. In this paper we discuss the role of these hormones at the intersection between vascular disease and dementia, in light of the mounting literature covering the shared risk factors, pathological features alongside the timeline of hormonal change with the evolution of vascular and neurodegenerative disease. Interactive risk factors and the role of inflammation over the duration of disease evolution are highlighted. Our summary tables assessing the impact of estrogen-based hormone therapy on cognition over the past 45 years illustrate the effort expended to determine the ideal age for intervention and the type, dose, administration, and duration of therapy that might improve or protect cognition as well as alleviate menopausal symptoms. As the prevalence of dementia is rising and is higher in women, it is crucial we advance our knowledge from the "inconclusive" position statement on menopausal hormone therapy of the US Preventive Services Task Force.
Collapse
Affiliation(s)
- C Szoeke
- Healthy Ageing Program, Centre for Medical Research (Royal Melbourne Hospital), Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia.
| | - S J Downie
- Healthy Ageing Program, Centre for Medical Research (Royal Melbourne Hospital), Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - A F Parker
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada
| | - S Phillips
- Healthy Ageing Program, Centre for Medical Research (Royal Melbourne Hospital), Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
33
|
Millard SJ, Lum JS, Fernandez F, Weston-Green K, Newell KA. The effects of perinatal fluoxetine exposure on emotionality behaviours and cortical and hippocampal glutamatergic receptors in female Sprague-Dawley and Wistar-Kyoto rats. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110174. [PMID: 33189859 DOI: 10.1016/j.pnpbp.2020.110174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/22/2020] [Accepted: 11/09/2020] [Indexed: 01/22/2023]
Abstract
RATIONALE There is increasing concern regarding the use of selective serotonin reuptake inhibitors (SSRIs) in pregnancy. Animal studies repeatedly show increased anxiety- and depressive-like behaviours in offspring exposed perinatally to SSRIs, however much of this research is in male offspring. OBJECTIVES The primary aim of this study was to investigate the effects of perinatal SSRI exposure on emotionality-related behaviours in female offspring and associated glutamatergic markers, in Sprague-Dawley (SD) rats and in the Wistar-Kyoto (WKY) rat model of depression. Secondly, we sought to investigate the glutamatergic profile of female WKY rats that may underlie their depressive- and anxiety-like phenotype. METHODS WKY and SD rat dams were treated with the SSRI, fluoxetine (FLX; 10 mg/kg/day), or vehicle, throughout gestation and lactation (5 weeks total). Female adolescent offspring underwent behaviour testing followed by quantitative immunoblot of glutamatergic markers in the prefrontal cortex and ventral hippocampus. RESULTS Naïve female WKY offspring displayed an anxiety-like and depressive-like phenotype as well as reductions in NMDA and AMPA receptor subunits and PSD-95 in both ventral hippocampus and prefrontal cortex, compared to SD controls. Perinatal FLX treatment increased anxiety-like and forced swim immobility behaviours in SD offspring but did not influence behaviour in female WKY offspring using these tests. Perinatal FLX exposure did not influence NMDA or AMPA receptor subunit expression in female WKY or SD offspring; it did however have restricted effects on group I mGluR expression in SD and WKY offspring and reduce the glutamatergic synaptic scaffold, PSD-95. CONCLUSION These findings suggest female offspring of the WKY strain display deficits in glutamatergic markers which may be related to their depressive- and anxiety-like phenotype. While FLX exposed SD offspring displayed increases in anxiety-like and depressive-like behaviours, further studies are needed to assess the potential impact of developmental FLX exposure on the behavioural phenotype of female WKY rats.
Collapse
Affiliation(s)
- Samuel J Millard
- Molecular Horizons and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| | - Jeremy S Lum
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| | - Francesca Fernandez
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia; School of Health and Behavioural Science, Faculty of Health Sciences, Australian Catholic University, Brisbane, QLD 4014, Australia.
| | - Katrina Weston-Green
- Molecular Horizons and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| | - Kelly A Newell
- Molecular Horizons and School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| |
Collapse
|
34
|
Distinct association of plasma BDNF concentration and cognitive function in depressed patients treated with vortioxetine or escitalopram. Psychopharmacology (Berl) 2021; 238:1575-1584. [PMID: 33560444 DOI: 10.1007/s00213-021-05790-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
RATIONALE Cognitive dysfunction is frequent in major depressive disorder (MDD), and brain-derived neurotrophic factor (BDNF) is involved both in regulation of cognition and in therapeutic response in MDD. OBJECTIVES The aim of this study was to determine if baseline plasma BDNF might predict change in cognitive function in MDD patients treated with vortioxetine or escitalopram, and whether the alterations in BDNF levels correlate with changes in cognitive performance during treatment. METHODS Drug-naive or drug-free patients with MDD (N=121) were sampled and evaluated at baseline and 4 weeks after treatment initiation with vortioxetine or escitalopram. Cognitive function was evaluated using the F-A-S test, Digit Span test, and Digit Symbol Coding test. Plasma BDNF was determined using ELISA. RESULTS The results of the study indicate that both vortioxetine (V) and escitalopram (E) improved cognitive functions evaluated with F-A-S test (V: p<0.001; r=-0.427, E: p<0.001; r=-0.370), Digit Symbol Coding test (V: p<0.001; r=-0.706, E: p<0.001; r=-0.435), and Digit Span test-backward span (V: p=0.001; r=-0.311, E: p=0.042; r=-0.185), while only vortioxetine (p<0.001; r=-0.325) improved cognition evaluated with the Digit Span test-forward span. A moderate positive correlation between pretreatment plasma BDNF levels and improvement in cognitive performance was only detected in patients treated with vortioxetine (delta F-A-S test: p=0.011; r=0.325, delta Digit Span test-forward span: p=0.010, r=0.326). CONCLUSIONS These results suggest that higher baseline plasma BDNF levels might be associated with improvements in verbal fluency and working memory in vortioxetine, but not escitalopram treated patients. Vortioxetine treatment was superior in simple attention efficiency.
Collapse
|
35
|
Jiang T, Hu S, Dai S, Yi Y, Wang T, Li X, Luo M, Li K, Chen L, Wang H, Xu D. Programming changes of hippocampal miR-134-5p/SOX2 signal mediate the susceptibility to depression in prenatal dexamethasone-exposed female offspring. Cell Biol Toxicol 2021; 38:69-86. [PMID: 33619658 DOI: 10.1007/s10565-021-09590-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/09/2021] [Indexed: 12/21/2022]
Abstract
Depression is a neuropsychiatric disorder and has intrauterine developmental origins. This study aimed to confirm the depression susceptibility in offspring rats induced by prenatal dexamethasone exposure (PDE) and to further explore the intrauterine programming mechanism. Wistar rats were injected with dexamethasone (0.2 mg/kg·d) subcutaneously during the gestational days 9-20 and part of the offspring was given chronic stress at postnatal weeks 10-12. Behavioral results showed that the adult PDE female offspring was susceptible to depression, accompanied by increased hippocampal miR-134-5p expression and decreased sex-determining region Y-box 2 (SOX2) expression, as well as disorders of neural progenitor cells proliferation and hippocampal neurogenesis. The PDE female fetal rats presented consistent changes with the adult offspring, accompanied by the upregulation of glucocorticoid receptor (GR) expression and decreased sirtuin 1 (SIRT1) expression. We further found that the H3K9ac level of the miR-134-5p promoter was significantly increased in the PDE fetal hippocampus, as well as in adult offspring before and after chronic stress. In vitro, the changes of GR/SIRT1/miR-134-5p/SOX2 signal by dexamethasone were consistent with in vivo experiments, which could be reversed by GR receptor antagonist, SIRT1 agonist, and miR-134-5p inhibitor. This study confirmed that PDE led to an increased expression level as well as H3K9ac level of miR-134-5p by activating the GR/SIRT1 pathway in the fetal hippocampus and then inhibited the SOX2 expression. The programming effect mediated by the abnormal epigenetic modification could last from intrauterine to adulthood, which constitutes the intrauterine programming mechanism leading to hippocampal neurogenesis disorders and depression susceptibility in female offspring. Intrauterine programming mechanism for the increased depressive susceptibility in adult female offspring by prenatal dexamethasone exposure (PDE). GR, glucocorticoid receptor; SIRT1, sirtuin 1; SOX2, sex-determining region Y-box 2; NPCs, neuroprogenitor cells; H3K9ac, histone 3 lysine 9 acetylation; GRE, glucocorticoid response element.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Shuwei Hu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Shiyun Dai
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Yiwen Yi
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Tingting Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Xufeng Li
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Mingcui Luo
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China
| | - Ke Li
- Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Dan Xu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
36
|
Baroni C, Lionetti V. The impact of sex and gender on heart-brain axis dysfunction: current concepts and novel perspectives. Can J Physiol Pharmacol 2021; 99:151-160. [PMID: 33002366 DOI: 10.1139/cjpp-2020-0391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The heart-brain axis (HBA) recapitulates all the circuits that regulate bidirectional flow of communication between heart and brain. Several mechanisms may underlie the interdependent relationship involving heterogeneous tissues at rest and during specific target organ injury such as myocardial infarction, heart failure, arrhythmia, stroke, mood disorders, or dementia. In-depth translational studies of the HBA dysfunction under single-organ injury should include both male and female animals to develop sex- and gender-oriented prevention, diagnosis, and treatment strategies. Indeed, sex and gender are determining factors as females and males exhibit significant differences in terms of susceptibility to risk factors, age of onset, severity of symptoms, and outcome. Despite most studies having focused on the male population, we have conducted a careful appraisal of the literature investigating HBA in females. In particular, we have (i) analyzed sex-related heart and brain illnesses, (ii) recapitulated the most significant studies simultaneously conducted on cardio- and cerebro-vascular systems in female populations, and (iii) hypothesized future perspectives for the development of a gender-based approach to HBA dysfunction. Although sex- and gender-oriented research is at its infancy, the impact of sex on HBA dysfunction is opening unexpected new avenues for managing the health of female subjects exposed to risk of lifestyle multi-organ disease.
Collapse
Affiliation(s)
- Carlotta Baroni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- UOS Anesthesiology and Intensive Care Medicine, Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
37
|
Ernst M, Brähler E, Otten D, Werner AM, Tibubos AN, Reiner I, Wicke F, Wiltink J, Michal M, Nagler M, Münzel T, Wild PS, König J, Pfeiffer N, Borta A, Lackner KJ, Beutel ME. Inflammation predicts new onset of depression in men, but not in women within a prospective, representative community cohort. Sci Rep 2021; 11:2271. [PMID: 33500534 PMCID: PMC7838404 DOI: 10.1038/s41598-021-81927-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/14/2021] [Indexed: 12/28/2022] Open
Abstract
Depression has been associated with increased inflammation. However, only few large-scale, prospective studies have evaluated whether inflammation leads to new cases of depression and whether this association can be found in men and women. Longitudinal data of N = 10,357 adult participants with no evidence of depression at baseline (based on Patient Health Questionnaire (PHQ-9), lifetime diagnoses, and current antidepressant medication) were evaluated for depression 5 years later. Multivariate logistic regression models were used to predict the onset of depression based on C-reactive protein (CRP) and white blood cell count (WBC). We used interaction terms and separate analyses in men and women to investigate gender-dependent associations. Based on both markers, inflammation was predictive of new cases of depression 5 years later, even when adjusting for sociodemographic, physical health, health behavior variables, and baseline depression symptoms. As established by interaction terms and separate analyses, inflammatory markers were predictive of depression in men, but not in women. Additional predictors of new onset of depression were younger age, loneliness, smoking (only in men), cancer and less alcohol consumption (only in women). The study indicates gender differences in the etiology of depressive disorders within the community, with a greater role of physical factors in men.
Collapse
Affiliation(s)
- Mareike Ernst
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany.
| | - Elmar Brähler
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Daniëlle Otten
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Antonia M Werner
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Ana N Tibubos
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Iris Reiner
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Felix Wicke
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Jörg Wiltink
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Matthias Michal
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Markus Nagler
- Preventive Cardiology and Preventive Medicine - Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology - Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Philipp S Wild
- Preventive Cardiology and Preventive Medicine - Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jochem König
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Borta
- Boehringer Ingelheim Pharma GmbH Co KG, Ingelheim am Rhein, Germany
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Manfred E Beutel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| |
Collapse
|
38
|
Ren F, Guo R. Synaptic Microenvironment in Depressive Disorder: Insights from Synaptic Plasticity. Neuropsychiatr Dis Treat 2021; 17:157-165. [PMID: 33519203 PMCID: PMC7838013 DOI: 10.2147/ndt.s268012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
Depression is a major disease that can affect both mental and physical health, limits psychosocial functioning and diminishes the quality of life. But its complex pathogenesis remains poorly understood. The dynamic changes of synaptic structure and function, known as synaptic plasticity, occur with the changes of different cellular microenvironment and are closely related to learning and memory function. Accumulating evidence implies that synaptic plasticity is integrally involved in the pathological changes of mood disorders, especially in depressive disorder. However, the complex dynamic process of synaptic plasticity is influenced by many factors. Here, we reviewed and discussed various factors affecting synaptic plasticity in depression, and proposed a specific framework named synaptic microenvironment, which may be critical for synaptic plasticity under pathological conditions. Based on this concept, we will show how we understand the balance between the synaptic microenvironment and the synaptic plasticity network in depression. Finally, we point out the clinical significance of the synaptic microenvironment in depression.
Collapse
Affiliation(s)
- Feifei Ren
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Rongjuan Guo
- Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, People's Republic of China
| |
Collapse
|
39
|
Warren BL, Mazei-Robison MS, Robison AJ, Iñiguez SD. Can I Get a Witness? Using Vicarious Defeat Stress to Study Mood-Related Illnesses in Traditionally Understudied Populations. Biol Psychiatry 2020; 88:381-391. [PMID: 32228871 PMCID: PMC7725411 DOI: 10.1016/j.biopsych.2020.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/15/2020] [Accepted: 02/06/2020] [Indexed: 12/17/2022]
Abstract
The chronic social defeat stress model has been instrumental in shaping our understanding of neurobiology relevant to affect-related illnesses, including major depressive disorder. However, the classic chronic social defeat stress procedure is limited by its exclusive application to adult male rodents. We have recently developed a novel vicarious social defeat stress procedure wherein one mouse witnesses the physical defeat bout of a conspecific from the safety of an adjacent compartment. This witness mouse develops a similar behavioral phenotype to that of the mouse that physically experiences social defeat stress, modeling multiple aspects of major depressive disorder. Importantly, this new procedure allows researchers to perform vicarious social defeat stress in males or females and in juvenile mice, which typically are excluded from classic social defeat experiments. Here we discuss several recent advances made using this procedure and how its application provides a new preclinical approach to study the neurobiology of psychological stress-induced phenotypes.
Collapse
Affiliation(s)
- Brandon L Warren
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida
| | | | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Sergio D Iñiguez
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas.
| |
Collapse
|
40
|
Qiao Y, Zhao J, Li C, Zhang M, Wei L, Zhang X, Kurskaya O, Bi H, Gao T. Effect of combined chronic predictable and unpredictable stress on depression-like symptoms in mice. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:942. [PMID: 32953742 PMCID: PMC7475446 DOI: 10.21037/atm-20-5168] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Mental stress mainly induces depression, and predictable stress, as well as a constant bombardment of chronic unpredictable micro-stressors, always coexist in daily life. However, the combined effect of predictable and unpredictable stress on depression is still not fully understood. Methods The chronic restraint stress (CRS) is to restrain the mice for 6 h per day for 3 weeks, and the chronic unpredictable mild stress (CUMS) is to stimulate the mice with 7 different stressors for 3 weeks. We evaluated the combined effect of CRS and CUMS on depression-like symptoms using behavioral tests and investigated the action mechanism through analysis of neurotransmitters, brain-derived factors, inflammatory factors, antioxidants, and intestinal microorganisms. Results Our data suggested the combined stress of CRS and CUMS caused significant weight loss, food intake reduction, depression-like behaviors-including anhedonia, learned helplessness, and reduction in spontaneous activity-and even atrophy and severe structural damage to the hippocampus in mice. Our pathogenesis study showed that combined stress-induced the reduction of glucocorticoid receptor (GR) levels, loss of oligodendrocytes (NG2 and Olig2 cells), and inhibition of neuron proliferation in the CA1, CA3, and DG regions of the hippocampus, decreased the contents of monoamine neurotransmitters (5-HT and NE) and BDNF in the cerebral cortex, caused hyperactivity of the HPA system, led to immune dysfunction, aggravated oxidative stress, and weakened the capacity of antioxidants in mice. Compared with single stress, combined stress gave rise to a more significant diversity change of the gut microbiota. Conclusions Combined stress caused significant depression-like behaviors, atrophy, and severe structural damage to the hippocampus in mice via monoamine neurotransmitter, BDNF, HPA axis, neurogenesis, and neurodegenerative, immune, oxidative stress and gut-brain axis action pathways.
Collapse
Affiliation(s)
- Yajun Qiao
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiubo Zhao
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cen Li
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China.,CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Ming Zhang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China.,CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Lixin Wei
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China.,CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xiaoyuan Zhang
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Olga Kurskaya
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Hongtao Bi
- Qinghai Provincial Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, China
| | - Tingting Gao
- Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Nolan SO, Zachry JE, Johnson AR, Brady LJ, Siciliano CA, Calipari ES. Direct dopamine terminal regulation by local striatal microcircuitry. J Neurochem 2020; 155:475-493. [PMID: 32356315 DOI: 10.1111/jnc.15034] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
Regulation of axonal dopamine release by local microcircuitry is at the hub of several biological processes that govern the timing and magnitude of signaling events in reward-related brain regions. An important characteristic of dopamine release from axon terminals in the striatum is that it is rapidly modulated by local regulatory mechanisms. These processes can occur via homosynaptic mechanisms-such as presynaptic dopamine autoreceptors and dopamine transporters - as well heterosynaptic mechanisms such as retrograde signaling from postsynaptic cholinergic and dynorphin systems, among others. Additionally, modulation of dopamine release via diffusible messengers, such as nitric oxide and hydrogen peroxide, allows for various metabolic factors to quickly and efficiently regulate dopamine release and subsequent signaling. Here we review how these mechanisms work in concert to influence the timing and magnitude of striatal dopamine signaling, independent of action potential activity at the level of dopaminergic cell bodies in the midbrain, thereby providing a parallel pathway by which dopamine can be modulated. Understanding the complexities of local regulation of dopamine signaling is required for building comprehensive frameworks of how activity throughout the dopamine system is integrated to drive signaling and control behavior.
Collapse
Affiliation(s)
- Suzanne O Nolan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jennifer E Zachry
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Amy R Johnson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Lillian J Brady
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Cody A Siciliano
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN TN, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
42
|
Dong Y, Wang X, Zhou Y, Zheng Q, Chen Z, Zhang H, Sun Z, Xu G, Hu G. Hypothalamus-pituitary-adrenal axis imbalance and inflammation contribute to sex differences in separation- and restraint-induced depression. Horm Behav 2020; 122:104741. [PMID: 32165183 DOI: 10.1016/j.yhbeh.2020.104741] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 02/07/2023]
Abstract
Whether social contact contributes to the underlying mechanisms of depression and the observed sex differences is unclear. In this study, we subjected young male and female mice to separation- and restraint-induced stress for 4 weeks and assessed behaviors, neurotransmitter levels, hormones, and inflammatory cytokines. Results showed that, compared with controls, male mice exposed to stress displayed significant decreases in body weight and sucrose preference after 1 week. In the fourth week, they exhibited a higher degree of anxiety (open field test) and depressive-like behavior (forced swim test). Moreover, the males showed significant decreases in monoamine neurotransmitters, including norepinephrine and dopamine in striatum, and an increase in pro-inflammatory cytokines, such as tumor necrosis factor α and interleukin 1β in serum. In contrast, females showed persistent loss of weight during stress and displayed significant decreases in sucrose preference after stress. Importantly, the females but not males showed activation of the hypothalamus-pituitary-adrenal (HPA) axis, with significantly higher levels adrenocorticotropic hormone. Additionally, mRNA level of c-fos and AVP showed there was significant interaction between stress and sex. Finally, we conclude that an imbalance of the HPA axis and inflammation might be important contributors to sex differences in separation/restraint-induced depressive behavior and that changes might be mediated by c-fos and AVP.
Collapse
Affiliation(s)
- Yinfeng Dong
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xuyang Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated 6th People's Hospital, Shanghai 200233, China
| | - Yan Zhou
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiaomu Zheng
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zheng Chen
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hua Zhang
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiling Sun
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guihua Xu
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
43
|
Fang JL, Luo Y, Jin SH, Yuan K, Guo Y. Ameliorative effect of anthocyanin on depression mice by increasing monoamine neurotransmitter and up-regulating BDNF expression. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103757] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
44
|
Orellana JDY, Ribeiro MRC, Barbieri MA, Saraiva MDC, Cardoso VC, Bettiol H, Silva AAMD, Barros FC, Gonçalves H, Wehrmeister FC, Menezes AMB, Del-Ben CM, Horta BL. Mental disorders in adolescents, youth, and adults in the RPS Birth Cohort Consortium (Ribeirão Preto, Pelotas and São Luís), Brazil. CAD SAUDE PUBLICA 2020; 36:e00154319. [PMID: 32022176 DOI: 10.1590/0102-311x00154319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/21/2019] [Indexed: 01/14/2023] Open
Abstract
Although depression and anxiety are known to result in disabilities and workplace and health system losses, population-based studies on this problem are rare in Brazil. The current study assessed the prevalence of mental disorders in adolescents, youth, and adults and the relationship to sociodemographic characteristics in five birth cohorts (RPS) in Ribeirão Preto (São Paulo State), Pelotas (Rio Grande do Sul State), and São Luís (Maranhão State), Brazil. Major depressive episode, suicide risk, social phobia, and generalized anxiety disorder were assessed with the Mini International Neuropsychiatric Interview. Bootstrap confidence intervals were estimated and prevalence rates were stratified by sex and socioeconomic status in the R program. The study included 12,350 participants from the cohorts. Current major depressive episode was more prevalent in adolescents in São Luís (15.8%; 95%CI: 14.8-16.8) and adults in Ribeirão Preto (12.9%; 95%CI: 12.0-13.9). The highest prevalence rates for suicide risk were in adults in Ribeirão Preto (13.7%; 95%CI: 12.7-14.7), and the highest rates for social phobia and generalized anxiety were in youth in Pelotas, with 7% (95%CI: 6.3-7.7) and 16.5% (95%CI: 15.4-17.5), respectively. The lowest prevalence rates of suicide risk were in youth in Pelotas (8.8%; 95%CI: 8.0-9.6), social phobia in youth in Ribeirão Preto (1.8%; 95%CI: 1.5-2.2), and generalized anxiety in adolescents in São Luís (3.5%; 95%CI: 3.0-4.0). Mental disorders in general were more prevalent in women and in individuals with lower socioeconomic status, independently of the city and age, emphasizing the need for more investment in mental health in Brazil, including gender and socioeconomic determinants.
Collapse
Affiliation(s)
| | | | - Marco Antonio Barbieri
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil
| | | | - Viviane Cunha Cardoso
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil
| | - Heloísa Bettiol
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil
| | | | - Fernando C Barros
- Faculdade de Medicina, Universidade Católica de Pelotas, Pelotas, Brasil
| | - Helen Gonçalves
- Faculdade de Medicina, Universidade Federal de Pelotas, Pelotas, Brasil
| | | | | | - Cristina Marta Del-Ben
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brasil
| | | |
Collapse
|
45
|
Zhang L, Liu C, Yuan M, Huang C, Chen L, Su T, Liao Z, Gan L. Piperlongumine produces antidepressant-like effects in rats exposed to chronic unpredictable stress. Behav Pharmacol 2019; 30:722-729. [PMID: 31503069 DOI: 10.1097/fbp.0000000000000498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Piperlongumine, an alkaloid compound extracted from Peper longum L, has been reported to produce neuroprotective effects in the brain and exert various pharmacological activities such as antitumor, antiangiogenic, anti-inflammatory and analgesic properties. The aim of this study was to investigate the antidepressant-like effects and the possible mechanism of action of piperlongumine in a chronic unpredictable stress (CUS) model. We found that, with venlafaxine as a positive control, orally administered piperlongumine (12.5 and 25 mg/kg) for 7 days, not a single dose, significantly reduced immobility time in the forced swimming test, but did not alter locomotor activity in the open field test, indicating that piperlongumine has antidepressant-like effects without nonspecific motor changes. Then, using the CUS model of depression, piperlongumine was administrated orally for 4 weeks, followed by sucrose preference and forced swimming tests to evaluate the depressive-like behaviors. We found that piperlongumine reversed both the decreased sucrose preference and increased immobility time in rats exposed to CUS. In addition, piperlongumine also reversed the increase in proinflammatory cytokine levels in the hippocampus of rats in the CUS model. Altogether, the present study demonstrated that piperlongumine exhibits the antidepressant-like effects in rats, which may be mediated by the inhibition of the neuronal inflammation in the hippocampus.
Collapse
Affiliation(s)
| | - Chen Liu
- Ultrasound, Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Planchez B, Surget A, Belzung C. Animal models of major depression: drawbacks and challenges. J Neural Transm (Vienna) 2019; 126:1383-1408. [PMID: 31584111 PMCID: PMC6815270 DOI: 10.1007/s00702-019-02084-y] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Major depression is a leading contributor to the global burden of disease. This situation is mainly related to the chronicity and/or recurrence of the disorder, and to poor response to antidepressant therapy. Progress in this area requires valid animal models. Current models are based either on manipulating the environment to which rodents are exposed (during the developmental period or adulthood) or biological underpinnings (i.e. gene deletion or overexpression of candidate genes, targeted lesions of brain areas, optogenetic control of specific neuronal populations, etc.). These manipulations can alter specific behavioural and biological outcomes that can be related to different symptomatic and pathophysiological dimensions of major depression. However, animal models of major depression display substantial shortcomings that contribute to the lack of innovative pharmacological approaches in recent decades and which hamper our capabilities to investigate treatment-resistant depression. Here, we discuss the validity of these models, review putative models of treatment-resistant depression, major depression subtypes and recurrent depression. Furthermore, we identify future challenges regarding new paradigms such as those proposing dimensional rather than categorical approaches to depression.
Collapse
Affiliation(s)
| | | | - Catherine Belzung
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
- UMR 1253, iBrain, UFR Sciences et Techniques, Parc Grandmont, 37200, Tours, France.
| |
Collapse
|
47
|
Seifirad S, Haghpanah V. Inappropriate modeling of chronic and complex disorders: How to reconsider the approach in the context of predictive, preventive and personalized medicine, and translational medicine. EPMA J 2019; 10:195-209. [PMID: 31462938 PMCID: PMC6695463 DOI: 10.1007/s13167-019-00176-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022]
Abstract
Preclinical investigations such as animal modeling make the basis of clinical investigations and subsequently patient care. Predictive, preventive, and personalized medicine (PPPM) not only highlights a patient-tailored approach by choosing the right medication, the right dose at the right time point but it as well essentially requires early identification, by the means of complex and state-of-the-art technologies of unmanifested pathological processes in an individual, in order to deliver targeted prevention early enough to reverse manifestation of a pathology. Such an approach can be achieved by taking into account clinical, pathological, environmental, and psychosocial characteristics of the patients or an individual who has a suboptimal health condition. Inappropriate modeling of chronic and complex disorders, in this context, may diminish the predictive potential and slow down the development of PPPM and consequently modern healthcare. Therefore, it is the common goal of PPPM and translational medicine to find the solution for the problem we present in our review. Both, translational medicine and PPPM in parallel, essentially need accurate surrogates for misleading animal models. This study was therefore undertaken to provide shreds of evidence against the validity of animal models. Limitations of current animal models and drug development strategies based on animal modeling have been systematically discussed. Finally, a variety of potential surrogates have been suggested to change the unfavorable situation in medical research and consequently in healthcare.
Collapse
Affiliation(s)
- Soroush Seifirad
- PERFUSE Study Group, Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Weisenbach SL, Kim J, Hammers D, Konopacki K, Koppelmans V. Linking late life depression and Alzheimer's disease: mechanisms and resilience. Curr Behav Neurosci Rep 2019; 6:103-112. [PMID: 33134032 PMCID: PMC7597973 DOI: 10.1007/s40473-019-00180-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent literature linking Alzheimer's disease (AD) and late life depression (LLD). It describes shared neurobiological features associated with both conditions, as well as factors that may increase resilience to onset and severity of cognitive decline and AD. Finally, we pose a number of future research directions toward improving detection, management, and treatment of both conditions. RECENT FINDINGS Epidemiological studies have consistently shown a significant relationship between LLD and AD, with support for depression as a prodromal feature of AD, a risk factor for AD, and observation of some shared risk factors underlying both disease processes. Three major neurobiological features shared by LLD and AD include neurodegeneration, disruption to cerebrovascular functioning, and increased levels of neuroinflammation. There are also potentially modifiable factors that can increase resilience to AD and LLD, including social support, physical and cognitive engagement, and cognitive reserve. SUMMARY We propose that, in the context of depression, neurobiological events, such as neurodegeneration, cerebrovascular disease, and neuroinflammation result in a brain that is more vulnerable to the consequences of the pathophysiological features of AD, lowering the threshold for the onset of the behavioral presentation of AD (i.e., cognitive decline and dementia). We discuss factors that can increase resilience to AD and LLD, including social support, physical and cognitive engagement, and cognitive reserve. We conclude with a discussion of future research directions.
Collapse
|
49
|
Secretory Acid Sphingomyelinase in the Serum of Medicated Patients Predicts the Prospective Course of Depression. J Clin Med 2019; 8:jcm8060846. [PMID: 31200571 PMCID: PMC6617165 DOI: 10.3390/jcm8060846] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 01/31/2023] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent and devastating psychiatric illness with strong individual and societal burdens. However, biomarkers to improve the limited preventive and therapeutic approaches are scarce. Multilevel evidence suggests that the pathophysiological involvement of sphingolipids particularly increases the levels of ceramides and the ceramide hydrolyzing enzyme, acid sphingomyelinase. The activity of secretory acid sphingomyelinase (S-ASM) and routine blood parameters were determined in the serum of patients with current (unmedicated n = 63, medicated n = 66) and remitted (n = 39) MDD and healthy subjects (n = 61). Depression severity and anxiety and their 3-weeks prospective course of treatment were assessed by psychometric inventories. S-ASM activity was not different between the four groups, did not decrease during treatment, and was not lower in individuals taking medication that functionally inhibited ASM. However, S-ASM correlated positively with depression severity only in remitted patients. High enzyme activity at inclusion predicted milder clinician-evaluated and self-rated depression severity (HAM-D, MADRS, BDI-II) and state anxiety at follow-up, and was related to stronger improvement in these scores in medicated patients. S-ASM was strongly and contrariwise associated with serum lipids in unmedicated and medicated females. These findings contribute to a better understanding of the pathomechanisms underlying depression and the development of clinical strategies and biomarkers.
Collapse
|
50
|
de Almeida RN, Galvão ACDM, da Silva FS, Silva EADS, Palhano-Fontes F, Maia-de-Oliveira JP, de Araújo LSB, Lobão-Soares B, Galvão-Coelho NL. Modulation of Serum Brain-Derived Neurotrophic Factor by a Single Dose of Ayahuasca: Observation From a Randomized Controlled Trial. Front Psychol 2019; 10:1234. [PMID: 31231276 PMCID: PMC6558429 DOI: 10.3389/fpsyg.2019.01234] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/10/2019] [Indexed: 01/01/2023] Open
Abstract
Serotonergic psychedelics are emerging as potential antidepressant therapeutic tools, as suggested in a recent randomized controlled trial with ayahuasca for treatment-resistant depression. Preclinical and clinical studies have suggested that serum brain-derived neurotrophic factor (BDNF) levels increase after treatment with serotoninergic antidepressants, but the exact role of BDNF as a biomarker for diagnostic and treatment of major depression is still poorly understood. Here we investigated serum BDNF levels in healthy controls (N = 45) and patients with treatment-resistant depression (N = 28) before (baseline) and 48 h after (D2) a single dose of ayahuasca or placebo. In our sample, baseline serum BDNF levels did not predict major depression and the clinical characteristics of the patients did not predict their BDNF levels. However, at baseline, serum cortisol was a predictor of serum BDNF levels, where lower levels of serum BDNF were detected in a subgroup of subjects with hypocortisolemia. Moreover, at baseline we found a negative correlation between BDNF and serum cortisol in volunteers with eucortisolemia. After treatment (D2) we observed higher BDNF levels in both patients and controls that ingested ayahuasca (N = 35) when compared to placebo (N = 34). Furthermore, at D2 just patients treated with ayahuasca (N = 14), and not with placebo (N = 14), presented a significant negative correlation between serum BDNF levels and depressive symptoms. This is the first double-blind randomized placebo-controlled clinical trial that explored the modulation of BDNF in response to a psychedelic in patients with depression. The results suggest a potential link between the observed antidepressant effects of ayahuasca and changes in serum BDNF, which contributes to the emerging view of using psychedelics as an antidepressant. This trial is registered at http://clinicaltrials.gov (NCT02914769).
Collapse
Affiliation(s)
- Raíssa Nóbrega de Almeida
- Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
- Postgraduate Program in Psychobiology, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Cecília de Menezes Galvão
- Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
- Postgraduate Program in Psychobiology, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Flávia Santos da Silva
- Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
- Postgraduate Program in Psychobiology, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Erick Allan dos Santos Silva
- Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Fernanda Palhano-Fontes
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - João Paulo Maia-de-Oliveira
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil
- National Science and Technology Institute for Translational Medicine (INCT-TM), Natal, Brazil
- Department of Clinical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Lobão-Soares Barros de Araújo
- Onofre Lopes University Hospital, Federal University of Rio Grande do Norte, Natal, Brazil
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Bruno Lobão-Soares
- National Science and Technology Institute for Translational Medicine (INCT-TM), Natal, Brazil
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Nicole Leite Galvão-Coelho
- Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
- Postgraduate Program in Psychobiology, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
- National Science and Technology Institute for Translational Medicine (INCT-TM), Natal, Brazil
| |
Collapse
|