1
|
Ahmed S, Janaswamy S. Green fabrication of biodegradable films: Harnessing the cellulosic residue of oat straw. Int J Biol Macromol 2025; 303:140656. [PMID: 39909245 DOI: 10.1016/j.ijbiomac.2025.140656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/22/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Agricultural biomass is a sustainable source for developing biodegradable film to address mounting plastic perils. This study aims to investigate the influence of CaCl2 concentration on the properties of lignocellulose-based biodegradable film produced from oat straw biomass. Lignocellulose is extracted from oat biomass, and a green technique is employed to solubilize it in ZnCl2 solution and crosslinked with varying CaCl2 concentrations (200 mM-800 mM) to make films. The films containing 800 mM CaCl2 concentration demonstrated the lowest moisture content (12.81 ± 0.81 %), water solubility (43.91 ± 0.42), water vapor permeability (4.96 ± 0.14 × 10-11 gm-1s-1Pa-1), visible light transmittance (53.27 ± 0.69 %), and moisture absorption (42.42 ± 1.32 %). The tensile strength has increased remarkably from 4.24 ± 0.76 to 17.24 ± 3.68 MPa due to increased CaCl2 concentration from 200 mM to 800 mM. They degraded up to 83 % in soil with 20 % moisture after 28 days. Overall, films made of lignocellulose from oat straw biomass films demonstrate high strength and moisture barrier capabilities, rendering them suitable for use as food packaging materials.
Collapse
Affiliation(s)
- Shafaet Ahmed
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA
| | - Srinivas Janaswamy
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
2
|
Reshma CS, Remya S, Bindu J. A review of exploring the synthesis, properties, and diverse applications of poly lactic acid with a focus on food packaging application. Int J Biol Macromol 2024; 283:137905. [PMID: 39577526 DOI: 10.1016/j.ijbiomac.2024.137905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/02/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Polylactic acid (PLA) is an aliphatic polyester, which is primarily synthesized from renewable resources through the polycondensation or ring-opening polymerization of lactic acid (LA)/lactide. LA can be conveniently produced via the fermentation of sugars obtained from renewable sources such as corn and sugar cane. Due to its biodegradable and biocompatible nature, PLA exhibits a vast range of applications. Its advantages include non-toxicity, environmental safety, and compatibility with human biological systems. PLA finds significant use in various biomedical applications, including implants, tissue engineering, sutures, and drug delivery systems. Additionally, PLA serves as a renewable and biodegradable polymer of extensive utility in film production, offering an alternative to petrochemical-based polymers. Moreover, the properties of PLA-based films can be tailored by incorporating extracts, polysaccharides, proteins, and nano-particles. This review encompasses LA production, PLA synthesis, and diverse applications of PLA and further explores the potential of PLA in the realm of packaging.
Collapse
Affiliation(s)
- C S Reshma
- Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies Panangad, Kerala, 682506, India; Fish Processing Division, ICAR - Central Institute of Fisheries Technology (CIFT), Cochin, Kerala, 682029, India
| | - S Remya
- Fish Processing Division, ICAR - Central Institute of Fisheries Technology (CIFT), Cochin, Kerala, 682029, India.
| | - J Bindu
- Fish Processing Division, ICAR - Central Institute of Fisheries Technology (CIFT), Cochin, Kerala, 682029, India.
| |
Collapse
|
3
|
Oliver-Cuenca V, Salaris V, Muñoz-Gimena PF, Agüero Á, Peltzer MA, Montero VA, Arrieta MP, Sempere-Torregrosa J, Pavon C, Samper MD, Crespo GR, Kenny JM, López D, Peponi L. Bio-Based and Biodegradable Polymeric Materials for a Circular Economy. Polymers (Basel) 2024; 16:3015. [PMID: 39518225 PMCID: PMC11548373 DOI: 10.3390/polym16213015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Nowadays, plastic contamination worldwide is a concerning reality that can be addressed with appropriate society education as well as looking for innovative polymeric alternatives based on the reuse of waste and recycling with a circular economy point of view, thus taking into consideration that a future world without plastic is quite impossible to conceive. In this regard, in this review, we focus on sustainable polymeric materials, biodegradable and bio-based polymers, additives, and micro/nanoparticles to be used to obtain new environmentally friendly polymeric-based materials. Although biodegradable polymers possess poorer overall properties than traditional ones, they have gained a huge interest in many industrial sectors due to their inherent biodegradability in natural environments. Therefore, several strategies have been proposed to improve their properties and extend their industrial applications. Blending strategies, as well as the development of composites and nanocomposites, have shown promising perspectives for improving their performances, emphasizing biopolymeric blend formulations and bio-based micro and nanoparticles to produce fully sustainable polymeric-based materials. The Review also summarizes recent developments in polymeric blends, composites, and nanocomposite plasticization, with a particular focus on naturally derived plasticizers and their chemical modifications to increase their compatibility with the polymeric matrices. The current state of the art of the most important bio-based and biodegradable polymers is also reviewed, mainly focusing on their synthesis and processing methods scalable to the industrial sector, such as melt and solution blending approaches like melt-extrusion, injection molding, film forming as well as solution electrospinning, among others, without neglecting their degradation processes.
Collapse
Affiliation(s)
- Víctor Oliver-Cuenca
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Pedro Francisco Muñoz-Gimena
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Ángel Agüero
- Instituto Universitario de Tecnología de Materiales (IUTM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain;
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
| | - Mercedes A. Peltzer
- Laboratory of Obtention, Modification, Characterization, and Evaluation of Materials (LOMCEM), Department of Science and Technology, University of Quilmes, Bernal B1876BXD, Argentina;
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Victoria Alcázar Montero
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Marina P. Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; (V.A.M.); (M.P.A.)
- Grupo de Investigación en Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Jaume Sempere-Torregrosa
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Cristina Pavon
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Maria Dolores Samper
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (J.S.-T.); (C.P.); (M.D.S.)
| | - Gema Rodríguez Crespo
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Jose M. Kenny
- STM Group, University of Perugia, Strada Pentima 4, 05100 Terni, Italy;
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Calle Juan de la Cierva 3, 28006 Madrid, Spain; (V.O.-C.); (V.S.); (P.F.M.-G.); (G.R.C.)
| |
Collapse
|
4
|
Trivedi AK, Gupta MK. PLA based biodegradable bionanocomposite filaments reinforced with nanocellulose: development and analysis of properties. Sci Rep 2024; 14:23819. [PMID: 39394236 PMCID: PMC11470091 DOI: 10.1038/s41598-024-71619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 08/29/2024] [Indexed: 10/13/2024] Open
Abstract
The 3D printing technique has recently become more prevalent among researchers for the fabrication of nanocomposites. The low crystallinity of polylactic acid (PLA) leads to the poor mechanical and thermal properties of its 3D-printed products, which restrict their applications in many fields. To overcome the limitations of PLA, the present work aims to develop PLA-based bionanocomposite filaments with varying percentages (1, 3, and 5 wt%) of crystalline nanocellulose (CNC) through a single screw extruder. The filaments will be further utilized for the development of bionanocomposite samples to evaluate their properties. The effect of CNC reinforcement on the chemical structure of the filaments was analyzed by FTIR analysis. XRD analysis revealed that the crystallinity of the filaments was significantly improved due to the nucleating effect of CNC. The maximum crystallinity was observed in the filament containing 1 wt% CNC, which was 26% higher than the pure PLA filament. The thermal and mechanical performance of the filaments was also considerably improved after CNC reinforcement, which was confirmed by DSC-TGA and tensile test analysis. The maximum tensile strength and tensile modulus were observed to be 48.9 MPa and 1700 MPa, respectively, in the filament reinforced with 1 wt% CNC, which was 35.5% and 21.89%, respectively, higher than those of the pure PLA filament. Rheological analysis showed that the complex viscosity, storage modulus, and loss modulus of the filaments were significantly affected by the reinforcement of CNC.
Collapse
Affiliation(s)
- Alok Kumar Trivedi
- Mechanical Engineering Department, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India
| | - M K Gupta
- Mechanical Engineering Department, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, UP, India.
| |
Collapse
|
5
|
Venu Gopala Kumari S, Pakshirajan K, Pugazhenthi G. Key insights into mechanism and kinetics of biodegradation of poly (3-hydroxybutyrate)-based nanocomposite films in natural soil and river water environments. BIORESOURCE TECHNOLOGY 2024; 409:131238. [PMID: 39122131 DOI: 10.1016/j.biortech.2024.131238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The biodegradability of poly (3-hydroxybutyrate) (PHB)-based food packaging material PHB/5GS/0.7MgO, developed by incorporating 5 wt% grapeseed oil (GS) and 0.7 wt% MgO nanoparticles using solution casting route, was investigated in soil and river water environments. For comparison, the biodegradability of neat PHB films and PHB-based films loaded only with 5 wt% GS (PHB/5GS) was also studied. Remarkably, all PHB-based films showed 100 % weight loss in soil within 25 days. In contrast, the weight loss of PHB, PHB/5GS, and PHB/5GS/MgO films in river water was 27, 24, and 20 %, respectively, in 120 days. Gradual reduction in average molecular weight and carbonyl index, alongside an increase in crystallinity, opacity, and the number of chain scissions per unit mass, was observed for various PHB-based films during their degradation in soil and river water. Overall, this study demonstrated high degradation efficiency of PHB-based food packaging material in soil than in river water.
Collapse
Affiliation(s)
- Satti Venu Gopala Kumari
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kannan Pakshirajan
- Departmentof Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - G Pugazhenthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
6
|
Jaffur BN, Kumar G, Khadoo P. Production and functionalization strategies for superior polyhydroxybutyrate blend performance. Int J Biol Macromol 2024; 278:134907. [PMID: 39173809 DOI: 10.1016/j.ijbiomac.2024.134907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
This study investigates the effects of blending poly(3-hydroxybutyrate) (PHB) with microcrystalline cellulose (MCC), polylactic acid (PLA), lignin, and polyethylene glycol (PEG) on the properties of the resulting composite materials. Using a melt blending method, the composites were characterized by scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and thermogravimetric analysis (TGA). The results reveal that blending PHB with MCC, PLA, lignin, and PEG significantly enhances the thermal stability, mechanical strength, and biodegradability of the composites compared to pure PHB. Specifically, the tensile strength of PHB-PLA blends increased by up to 47.77 MPa, compared to 27.16 MPa for pure PHB. The blend with 50 % cellulose content showed the highest tensile strength of 54.91 MPa. TGA results show that the PHB-MCC and PHB-lignin blends exhibit improved thermal stability, with onset degradation temperatures rising to 294.8 °C, compared to 275 °C for pure PHB. Moreover, the PHB-lignin blend demonstrated a gradual weight loss starting at 200 °C and continuing until about 350 °C. SEM images of the blends indicate a uniform microstructure, contributing to the improved mechanical properties. The PHB-PEG blend demonstrated an elongation at break of 4.34 %, significantly higher than the 2.15 % for pure PHB, highlighting its suitability for applications requiring pliable materials. The biodegradability tests showed that PHB-PLA blends maintained consistent degradation rates, making them advantageous for applications needing controlled biodegradability. These findings suggest that blending PHB with MCC, PLA, lignin, and PEG can produce materials with enhanced properties suitable for applications in packaging, biomedical devices, and other areas where both performance and sustainability are essential.
Collapse
Affiliation(s)
- Bibi Nausheen Jaffur
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius.
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea
| | - Pratima Khadoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| |
Collapse
|
7
|
Chen J, Yang Y, Fan W, Zhu Y, Yang R, Xu Y. How surface modification of cellulose nanocrystals affects the crystallization process of poly (β-hydroxybutyrate). Int J Biol Macromol 2024; 276:134119. [PMID: 39098456 DOI: 10.1016/j.ijbiomac.2024.134119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Hydroxyl groups on the surface of cellulose nanocrystals (CNC) are modified by chemical methods, CNC and the modified CNC are used as fillers to prepare PHB/cellulose nanocomposites. The absorption peak of carbonyl group of the modified CNC (CNC-CL and CNC-LA) appears in the FT-IR spectra, which proves that the modifications are successful. Thermal stability of CNC-CL and CNC-LA is better than that of pure CNC. Pure CNC is beneficial to the nucleation of PHB, while CNC-CL and CNC-LA inhibit the nucleation of PHB. The spherulite size of PHB and its nanocomposites increases linearly over time, and the maximum growth rate of PHB spherulite exists at 90 °C. Rheological analysis shows that viscous deformation plays the dominant role in PHB, PHBC and PHBC-CL samples, while the elastic deformation is dominant in PHBC-LA. According to the rheological data, the dispersion of CNC-CL and CNC-LA in PHB is better than that of CNC. This work demonstrates the impact of modified CNC on the crystallization and viscoelastic properties of PHB. Moreover, the interface enhancement effect of modified CNC on PHB/CNC nanomaterials is revealed from the crystallization and rheology perspectives.
Collapse
Affiliation(s)
- Jianxiang Chen
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Yang Yang
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Wangxi Fan
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yunfeng Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Runmiao Yang
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yuling Xu
- Department of Materials Science and Engineering, Nanjing Tech University, Jiangsu 211816, China
| |
Collapse
|
8
|
Palaniappan M. Sustainable microcrystalline cellulose extracted from biowaste Albezia lebeck L. leaves: Biomass exfoliation and physicochemical characterization. PHYSIOLOGIA PLANTARUM 2024; 176:e14447. [PMID: 39149796 DOI: 10.1111/ppl.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 08/17/2024]
Abstract
There is a focus on sustainability when manufacturing materials. Utilizing biobased materials and replacing fossil-based products is the main research focus. Bio-composite materials are applied to packaging, filler coatings, and pharmaceuticals. Here, we used the leaves of the agro-waste plant Albizia lebeck L. to extract cellulose. Chemical treatment causing strong acid hydrolysis successfully extracted the cellulose content from the leaves. The cellulose obtained was then strengthened with polylactic acid to make a biobased film for future applications. Fourier transform spectroscopy, scanning electron microscopy, thermal analysis, particle size analysis, visible UV and elemental analysis were all used to characterize the extracted cellulose. SEM and mechanical property analysis were used to check and describe the quality of the reinforced biofilm. The greatest cellulose yield from this raw material was 50.2%. The crystallinity index and crystallite size (CI 70.3% and CS 11.29 nm) were high in the extracted cellulose. The TG (DTG) curve analysis derivative revealed cellulose particle breakdown was initiated around 305.2°C and can endure temperatures up to 600°C. Biofilms reinforced with polylactic acid cellulose (1, 2, 3, and 5% by weight %) exhibited a smooth and parallel surface. As the filler concentration increased, minor agglomeration occurred. The tensile strength of pure polylactic acid (PLA) (34.72 MPa) was extended up to 38.91 MPa for 5% filler. Similarly, Young's modulus also increased to 5.24 MPa. However, the elongation break decreases with the increase of filler content, and the least value of decrease is 7.5 MPa. Concerning prospective implementations, it is expected that the biobased film and cellulose particles will prove to be more functional.
Collapse
Affiliation(s)
- Murugesan Palaniappan
- Department of Mechanical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Ning H, Zhang Y, Lu L, Pan L. Properties and release behavior of sodium alginate-based nanocomposite active films: Effects of particle size of IRMOF-3. Int J Biol Macromol 2024; 271:132488. [PMID: 38763248 DOI: 10.1016/j.ijbiomac.2024.132488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Nanoparticles are used as fillers to improve the properties of biopolymers, and their particle size is an important parameter. This work aims to investigate the effect of particle size of isoreticular metal-organic framework-3 (IRMOF-3) on the mechanical, physical, and release properties of sodium alginate (SA)-based composite active film. In our study, IRMOF-3 with six different particle sizes was synthesized by introducing additives. IRMOF-3 loading with carvacrol (IRMOF-3/CA nanoparticles) was incorporated into the SA matrix to prepare the composite film. The characterization and testing results of films showed that the particle size of nanoparticles affected the physical morphology and chemical structure of the film. Especially smaller nanoparticles uniformly dispersed into the SA matrix more easily, forming a denser and more stable spatial network structure with SA, which could more significantly improve the tensile strength, water vapor barrier, and hydrophobic properties of the film (P < 0.05). In addition, the CA release rate from the active film could be significantly reduced by about 33.90 % even when the smallest particle size of the IRMOF-3/CA nanoparticles was added. Therefore, when IRMOF-3/CA is used as the nano-filler to develop SA-based active film, its particle size has a potential influence on the properties of the film.
Collapse
Affiliation(s)
- Haoyue Ning
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuemei Zhang
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lixin Lu
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi, Jiangsu 214122, China.
| | - Liao Pan
- Department of Packaging Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Wuxi, Jiangsu 214122, China
| |
Collapse
|
10
|
Freitas PAV, González-Martínez C, Chiralt A. Stability and Composting Behaviour of PLA-Starch Laminates Containing Active Extracts and Cellulose Fibres from Rice Straw. Polymers (Basel) 2024; 16:1474. [PMID: 38891421 PMCID: PMC11174990 DOI: 10.3390/polym16111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
The stability and composting behaviour of monolayers and laminates of poly (lactic acid) (PLA) and starch with and without active extracts and cellulose fibres from rice straw (RS) were evaluated. The retrogradation of the starch throughout storage (1, 5, and 10 weeks) gave rise to stiffer and less extensible monolayers with lower water vapour barrier capacity. In contrast, the PLA monolayers, with or without extract, did not show marked changes with storage. However, these changes were more attenuated in the bilayers that gained water vapour and oxygen barrier capacity during storage, maintaining the values of the different properties close to the initial range. The bioactivity of the active films exhibited a slight decrease during storage, so the antioxidant capacity is better preserved in the bilayers. All monolayer and bilayer films were fully composted within 90 days but with different behaviour. The bilayer assembly enhanced the biodegradation of PLA, whose monolayer exhibited a lag period of about 35 days. The active extract reduced the biodegradation rate of both mono- and bilayers but did not limit the material biodegradation within the time established in the Standard. Therefore, PLA-starch laminates, with or without the valorised fractions from RS, can be considered as biodegradable and stable materials for food packaging applications.
Collapse
Affiliation(s)
- Pedro A. V. Freitas
- Institute of Food Engineering FoodUPV, Universitat Politècnica de València, 46022 Valencia, Spain; (C.G.-M.); (A.C.)
| | | | | |
Collapse
|
11
|
Ahmed S, Janaswamy S, Yadav MP. Biodegradable films from the lignocellulosic fibers of wheat straw biomass and the effect of calcium ions. Int J Biol Macromol 2024; 264:130601. [PMID: 38442836 DOI: 10.1016/j.ijbiomac.2024.130601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Plastics are hazardous to human health, and plastic waste results in environmental pollution and ecological catastrophe. Biobased polymers from renewable sources have recently become promising for developing biodegradable packaging films. Among them, lignocellulosic residue from agricultural biomass is inexpensive, renewable, and biodegradable. This study aims to develop biodegradable films using lignocellulosic residue from wheat straw biomass. The methodology is a green process that solubilizes lignocellulosic chains using Zn2+ ions and crosslinks with Ca2+ ions of different concentrations (200-800 mM). The results reveal that the increase of Ca2+ ions significantly decreases moisture content, water solubility, water vapor permeability, transparency, and elongation of films. The tensile strength is recorded as 6.61 ± 0.07 MPa with the addition of 800 mM of CaCl2, which is approximately 2.5 times higher than commercial polyethylene films. Around 90 % of films biodegrade within a month in soil containing 20 % moisture content. Overall, lignocellulosic residue from wheat straw biomass could be an excellent replacement for synthetic polymer to fabricate strong, transparent, and biodegradable plastic films.
Collapse
Affiliation(s)
- Shafaet Ahmed
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA
| | - Srinivas Janaswamy
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Madhav P Yadav
- Sustainable Biofuels and Co-Products Research Unit, Eastern Regional Research Center, ARS, USDA, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| |
Collapse
|
12
|
Rader C, Grillo L, Weder C. Water and Oxygen Barrier Properties of All-Cellulose Nanocomposites. Biomacromolecules 2024; 25:1906-1915. [PMID: 38394342 DOI: 10.1021/acs.biomac.3c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Hydroxypropyl cellulose (HPC) is potentially interesting as a biobased, rigid food packaging material, but its stiffness and strength are somewhat low, and its water and oxygen transport rates are too high. To improve these characteristics, we investigated nanocomposites of HPC and cellulose nanocrystals (CNCs). These high-aspect-ratio nanoparticles display high stiffness and strength, and their high crystallinity renders them virtually impermeable. Exchanging the counterions of sulfate-ester decorated CNCs with cetyltrimethylammonium ions affords particles that are dispersible in ethanol (CTA.CNC) and allows solvent casting of HPC/CTA.CNC nanocomposite films, which, even at a CTA.CNC content of 90 wt %, are highly transparent. The introduction of CTA.CNC considerably increases the Young's modulus (Ey) and upper tensile strength (σUTS). For example, in the nanocomposite with 90% CTA.CNC, Ey = 7.6 GPa is increased 20-fold and σUTS = 42.7 MPa is more than doubled in comparison to HPC, whereas the extensibility (1.1%) remains appreciable. Composites with a CTA.CNC content of 70 wt % or less show a lower water vapor permeability (6.4-9.2 × 10-5 g μm m-2 s-1 Pa-1) than the neat HPC (1.5 × 10-4 g μm m-2 s-1 Pa-1), whereas the oxygen permeability (5.6 × 10-7-1.3 × 10-6 cm3 μm m-2 s-1 Pa-1) is reduced by 1 order of magnitude compared to HPC (3.2 × 10-6 cm3 μm m-2 s-1 Pa-1). The biobased nanocomposites retain their mechanical integrity at a relative humidity of 75% but readily disintegrate in water.
Collapse
Affiliation(s)
- Chris Rader
- Adolphe Merkle Institute, Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Luca Grillo
- Adolphe Merkle Institute, Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg 1700, Switzerland
| |
Collapse
|
13
|
Faba S, Arrieta MP, Romero J, Agüero Á, Torres A, Martínez S, Rayón E, Galotto MJ. Biodegradable nanocomposite poly(lactic acid) foams containing carvacrol-based cocrystal prepared by supercritical CO 2 processing for controlled release in active food packaging. Int J Biol Macromol 2024; 254:127793. [PMID: 37926308 DOI: 10.1016/j.ijbiomac.2023.127793] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/15/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Compounds derived from essential oils have been used in active packaging, but their volatility and degradability negatively affect stability and leads to high release rates. The present study aimed to develop PLA bionanocomposite foams loaded with carvacrol cocrystal by supercritical CO2 and its release into a food simulant for control release in food packaging. For this purpose, 4,4'-bipyridine was used as coformer and carvacrol as active agent. Cocrystallized closed cell foams were obtained using supercritical CO2 and were characterized in terms of their physicochemical and mechanical properties, and release kinetics to a D1 simulant were evaluated as well as the antioxidant ability. A better overall mechanical behavior due to the nanoclay promoting a higher interfacial adhesion with the polymeric matrix was revealed. A higher incorporation of carvacrol was observed in samples with higher C30B content. The incorporated cocrystals showed a decrease of one order of magnitude in the estimated effective diffusion coefficient of carvacrol and showed antioxidant activity. These results suggest that the nanocomposite foam containing carvacrol-based cocrystals could be used in active packaging systems with controlled release characteristics, especially with highly volatile compounds, and can be proposed for other fields such as biomedical applications.
Collapse
Affiliation(s)
- Simón Faba
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile.
| | - Marina P Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; Grupo de Investigación: Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Julio Romero
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering and Bioprocesses, Engineering Faculty, University of Santiago de Chile (USACH), 9170201 Santiago, Chile
| | - Ángel Agüero
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain; Institut de Tecnologia de Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Alejandra Torres
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Sara Martínez
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Emilio Rayón
- Institut de Tecnologia de Materials, Universitat Politècnica de València (UPV), Camino de Vera, s/n, Código Postal 46022 Valencia, Spain
| | - María José Galotto
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile.
| |
Collapse
|
14
|
Jaffur BN, Kumar G, Jeetah P, Ramakrishna S, Bhatia SK. Current advances and emerging trends in sustainable polyhydroxyalkanoate modification from organic waste streams for material applications. Int J Biol Macromol 2023; 253:126781. [PMID: 37696371 DOI: 10.1016/j.ijbiomac.2023.126781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
The current processes for producing polyhydroxyalkanoates (PHAs) are costly, owing to the high cost of cultivation feedstocks, and the need to sterilise the growth medium, which is energy-intensive. PHA has been identified as a promising biomaterial with a wide range of potential applications and its functionalization from waste streams has made significant advances recently, which can help foster the growth of a circular economy and waste reduction. Recent developments and novel approaches in the functionalization of PHAs derived from various waste streams offer opportunities for addressing these issues. This study focuses on the development of sustainable, efficient, and cutting-edge methods, such as advanced bioprocess engineering, novel catalysts, and advances in materials science. Chemical techniques, such as epoxidation, oxidation, and esterification, have been employed for PHA functionalization, while enzymatic and microbial methods have indicated promise. PHB/polylactic acid blends with cellulose fibers showed improved tensile strength by 24.45-32.08 % and decreased water vapor and oxygen transmission rates while PHB/Polycaprolactone blends with a 1:1 ratio demonstrated an elongation at break four to six times higher than pure PHB, without altering tensile strength or elastic modulus. Moreover, PHB films blended with both polyethylene glycol and esterified sodium alginate showed improvements in crystallinity and decreased hydrophobicity.
Collapse
Affiliation(s)
- Bibi Nausheen Jaffur
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius.
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental, Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea
| | - Pratima Jeetah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Shashi Kant Bhatia
- Department of Biological Engineering, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
15
|
Weng Y, Dunn CB, Qiang Z, Ren J. Immobilization of Protease K with ZIF-8 for Enhanced Stability in Polylactic Acid Melt Processing and Catalytic Degradation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37971900 DOI: 10.1021/acsami.3c11979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Polylactic acid (PLA) is a biodegradable alternative to petroleum-based polymers for improving environmental sustainability of our society. However, the limited degradation rate and environmental conditions for PLA-based products remain significant challenges for their broader use in various applications. While Proteinase K (Pro K) from Tritirachium album has been demonstrated to efficiently degrade PLA, its autocatalytic degradation function in composite films is underexplored. Here, this work reports a strategy that encapsulates Pro K with zeolitic imidazole framework-8 (ZIF-8) in situ, combining a PLA matrix to prepare Pro K@ZIF-8/PLA films through solvent casting. The method is scalable and commercially viable, and the pH and thermal stability of the Pro K enzyme are significantly enhanced after immobilization. The enzyme can retain 61.8% of its initial activity after annealing at 160 °C for 10 min, allowing for its use in the melt processing of filler-containing PLA films. As a result, Pro K@ZIF-8/PLA films in buffer solutions exhibit stable degradation rates, which can be extended to PLA decomposition in acidic environments. Moreover, the enzyme in Pro K@ZIF-8/PLA films prepared by thermoforming remains active sufficiently to degrade PLA with a weight loss of up to 15% in 2 weeks. These results further indicate that our strategy can be broadly applicable for melt processing and controlled degradation of PLA materials with immobilized enzymes, allowing for its transformative impact for promoting environmental sustainability.
Collapse
Affiliation(s)
- Yiming Weng
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Carmen B Dunn
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Zhe Qiang
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
16
|
Siddiqui SA, Sundarsingh A, Bahmid NA, Nirmal N, Denayer JFM, Karimi K. A critical review on biodegradable food packaging for meat: Materials, sustainability, regulations, and perspectives in the EU. Compr Rev Food Sci Food Saf 2023; 22:4147-4185. [PMID: 37350102 DOI: 10.1111/1541-4337.13202] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/22/2023] [Accepted: 06/04/2023] [Indexed: 06/24/2023]
Abstract
The development of biodegradable packaging is a challenge, as conventional plastics have many advantages in terms of high flexibility, transparency, low cost, strong mechanical characteristics, and high resistance to heat compared with most biodegradable plastics. The quality of biodegradable materials and the research needed for their improvement for meat packaging were critically evaluated in this study. In terms of sustainability, biodegradable packagings are more sustainable than conventional plastics; however, most of them contain unsustainable chemical additives. Cellulose showed a high potential for meat preservation due to high moisture control. Polyhydroxyalkanoates and polylactic acid (PLA) are renewable materials that have been recently introduced to the market, but their application in meat products is still limited. To be classified as an edible film, the mechanical properties and acceptable control over gas and moisture exchange need to be improved. PLA and cellulose-based films possess the advantage of protection against oxygen and water permeation; however, the addition of functional substances plays an important role in their effects on the foods. Furthermore, the use of packaging materials is increasing due to consumer demand for natural high-quality food packaging that serves functions such as extended shelf-life and contamination protection. To support the importance moving toward biodegradable packaging for meat, this review presented novel perspectives regarding ecological impacts, commercial status, and consumer perspectives. Those aspects are then evaluated with the specific consideration of regulations and perspective in the European Union (EU) for employing renewable and ecological meat packaging materials. This review also helps to highlight the situation regarding biodegradable food packaging for meat in the EU specifically.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Department for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | | | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Yogyakarta, Indonesia
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Keikhosro Karimi
- Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
17
|
Vidal CP, Velásquez E, Gavara R, Hernández-Muñoz P, Muñoz-Shugulí C, José Galotto M, de Dicastillo CL. Modeling the release of an antimicrobial agent from multilayer film containing coaxial electrospun polylactic acid nanofibers. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
18
|
Yu C, Feng J, Feng K, Mo Z, He Y, Wang Q, Yu A, Leng Z, Shi P, Liu Y. Effect of multi‐epoxy compatibilizers with branched structures on enhancing mechanical and compatibility of
PLA
/starch composite. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Chongdong Yu
- School of Packaging and Materials Engineering Hunan University of Technology Zhuzhou People's Republic of China
| | - Jianxiang Feng
- School of Packaging and Materials Engineering Hunan University of Technology Zhuzhou People's Republic of China
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province Zhuzhou People's Republic of China
| | - Kailin Feng
- School of Packaging and Materials Engineering Hunan University of Technology Zhuzhou People's Republic of China
| | - Zhixiang Mo
- School of Packaging and Materials Engineering Hunan University of Technology Zhuzhou People's Republic of China
| | - Yulin He
- School of Packaging and Materials Engineering Hunan University of Technology Zhuzhou People's Republic of China
| | - Qingting Wang
- School of Packaging and Materials Engineering Hunan University of Technology Zhuzhou People's Republic of China
| | - Anyang Yu
- School of Packaging and Materials Engineering Hunan University of Technology Zhuzhou People's Republic of China
| | - Zhiwen Leng
- School of Packaging and Materials Engineering Hunan University of Technology Zhuzhou People's Republic of China
| | - Pu Shi
- School of Packaging and Materials Engineering Hunan University of Technology Zhuzhou People's Republic of China
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province Zhuzhou People's Republic of China
| | - Yuejun Liu
- School of Packaging and Materials Engineering Hunan University of Technology Zhuzhou People's Republic of China
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province Zhuzhou People's Republic of China
| |
Collapse
|
19
|
Biodegradation of PLA/CNC composite modified with non-ionic surfactants. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
20
|
Patel MK, Zaccone M, De Brauwer L, Nair R, Monti M, Martinez-Nogues V, Frache A, Oksman K. Improvement of Poly(lactic acid)-Poly(hydroxy butyrate) Blend Properties for Use in Food Packaging: Processing, Structure Relationships. Polymers (Basel) 2022; 14:5104. [PMID: 36501498 PMCID: PMC9736990 DOI: 10.3390/polym14235104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
Poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB)-based nanocomposite films were prepared with bio-based additives (CNCs and ChNCs) and oligomer lactic acid (OLA) compatibilizer using extrusion and then blown to films at pilot scale. The aim was to identify suitable material formulations and nanocomposite production processes for film production at a larger scale targeting food packaging applications. The film-blowing process for both the PLA-PHB blend and CNC-nanocomposite was unstable and led to non-homogeneous films with wrinkles and creases, while the blowing of the ChNC-nanocomposite was stable and resulted in a smooth and homogeneous film. The optical microscopy of the blown nanocomposite films indicated well-dispersed chitin nanocrystals while the cellulose crystals were agglomerated to micrometer-size particles. The addition of the ChNCs also resulted in the improved mechanical performance of the PLA-PHB blend due to well-dispersed crystals in the nanoscale as well as the interaction between biopolymers and the chitin nanocrystals. The strength increased from 27 MPa to 37 MPa compared to the PLA-PHB blend and showed almost 36 times higher elongation at break resulting in 10 times tougher material. Finally, the nanocomposite film with ChNCs showed improved oxygen barrier performance as well as faster degradation, indicating its potential exploitation for packaging applications.
Collapse
Affiliation(s)
- Mitul Kumar Patel
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Marta Zaccone
- Proplast, Via Roberto di Ferro 86, 15122 Alessandria, Italy
| | - Laurens De Brauwer
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Gent, Belgium
| | - Rakesh Nair
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, 9042 Gent, Belgium
| | - Marco Monti
- Proplast, Via Roberto di Ferro 86, 15122 Alessandria, Italy
| | | | - Alberto Frache
- Department of Applied Science and Technology and Local INSTM Unit, Politecnico di Torino, Viale Teresa Michel 5, 15121 Alessandria, Italy
| | - Kristiina Oksman
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187 Luleå, Sweden
- Mechanical & Industrial Engineering (MIE), University of Toronto, Toronto, ON M5S 3G8, Canada
- Wallenberg Wood Science Center (WWSC), Luleå University of Technology, SE-97187 Luleå, Sweden
| |
Collapse
|
21
|
Ferri JM, Aldas M, Rayon E, Samper MD, Lozano-Pérez AA. The Influence of Different Sustainable Silk-Based Fillers on the Thermal and Mechanical Properties of Polylactic Acid Composites. Polymers (Basel) 2022; 14:5016. [PMID: 36433143 PMCID: PMC9695667 DOI: 10.3390/polym14225016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
In this work, different silk fillers combined with maleinized corn oil (MCO), as environmentally friendly plasticizers, were used to modify the mechanical and thermal properties of polylactic acid (PLA) composites. Melt extrusion and injection were used to obtain samples with a content of 10 wt.% of MCO and 0.5 phr of different silk fillers: crushed silk (CS), silk fibroin microparticles (SFM), and silk fibroin nanoparticles (SFN). PLA formulation with 10 wt.% of MCO and 0.5 g of CS per hundred grams of composite (phr) showed the highest increase in mechanical ductile properties with an increase in elongation at break of approximately 1400%, compared with PLA. Differential scanning calorimetry (DSC) showed a decrease of 2 °C in their glass transition temperature with the addition of different silk fillers. In addition, SFM and SFN increase the degree of crystallinity of PLA. This increment was also confirmed by infrared spectroscopy analysis. Field emission scanning electron microscopy (FESEM) images revealed a good dispersion of the different silk fillers. Among them, PLA formulation with 10 wt.% MCO and 0.5 phr of SFN, showed an optimal balance between maximum resistance and elongation at break, with 52.0 MPa and 10.8%, respectively, improving elongation at break by 635%. Furthermore, all samples were satisfactorily disintegrated under composting conditions.
Collapse
Affiliation(s)
- José Miguel Ferri
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Alicante, Spain
| | - Miguel Aldas
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Alicante, Spain
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, Quito 170517, Ecuador
| | - Emilio Rayon
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Alicante, Spain
| | - Maria Dolores Samper
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Alicante, Spain
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, Quito 170517, Ecuador
| | - Antonio Abel Lozano-Pérez
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA), 30150 La Alberca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca; 30120 El Palmar, Murcia, Spain
| |
Collapse
|
22
|
Faba S, Arrieta MP, Agüero Á, Torres A, Romero J, Rojas A, Galotto MJ. Processing Compostable PLA/Organoclay Bionanocomposite Foams by Supercritical CO 2 Foaming for Sustainable Food Packaging. Polymers (Basel) 2022; 14:4394. [PMID: 36297972 PMCID: PMC9612032 DOI: 10.3390/polym14204394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
This article proposes a foaming method using supercritical carbon dioxide (scCO2) to obtain compostable bionanocomposite foams based on PLA and organoclay (C30B) where this bionanocomposite was fabricated by a previous hot melt extrusion step. Neat PLA films and PLA/C30B films (1, 2, and 3 wt.%) were obtained by using a melt extrusion process followed by a film forming process obtaining films with thicknesses between 500 and 600 μm. Films were further processed into foams in a high-pressure cell with scCO2 under constant conditions of pressure (25 MPa) and temperature (130 °C) for 30 min. Bionanocomposite PLA foams evidenced a closed cell and uniform cell structure; however, neat PLA presented a poor cell structure and thick cell walls. The thermal stability was significantly enhanced in the bionanocomposite foam samples by the good dispersion of nanoclays due to scCO2, as demonstrated by X-ray diffraction analysis. The bionanocomposite foams showed improved overall mechanical performance due to well-dispersed nanoclays promoting increased interfacial adhesion with the polymeric matrix. The water uptake behavior of bionanocomposite foams showed that they practically did not absorb water during the first week of immersion in water. Finally, PLA foams were disintegrated under standard composting conditions at higher rates than PLA films, showing their sustainable character. Thus, PLA bionanocomposite foams obtained by batch supercritical foaming seem to be a sustainable option to replace non-biodegradable expanded polystyrene, and they represent a promising alternative to be considered in applications such as food packaging and other products.
Collapse
Affiliation(s)
- Simón Faba
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Marina P. Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Grupo de Investigación: Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Ángel Agüero
- Instituto de Tecnología de Materiales (ITM), Universidad Politécnica de Valencia (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Alejandra Torres
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Julio Romero
- Laboratory of Membrane Separation Processes (LabProSeM), Department of Chemical Engineering and Bioprocesses, Engineering Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - Adrián Rojas
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| | - María José Galotto
- Packaging Innovation Center (LABEN), Department of Food Science and Technology, Faculty of Technology, Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago de Chile (USACH), Santiago 9170201, Chile
| |
Collapse
|
23
|
Raza ZA, Rehman MSU, Riaz S. Zinc sulfide mediation of poly(hydroxybutyrate)/poly(lactic acid) nanocomposite film for potential UV protection applications. Int J Biol Macromol 2022; 222:2072-2082. [DOI: 10.1016/j.ijbiomac.2022.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
|
24
|
Kumari SVG, Pakshirajan K, Pugazhenthi G. Recent advances and future prospects of cellulose, starch, chitosan, polylactic acid and polyhydroxyalkanoates for sustainable food packaging applications. Int J Biol Macromol 2022; 221:163-182. [PMID: 36067847 DOI: 10.1016/j.ijbiomac.2022.08.203] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 12/26/2022]
Abstract
Cellulose, starch, chitosan, polylactic acid, and polyhydroxyalkanoates are seen as promising alternatives to conventional plastics in food packaging. However, the application of these biopolymers in the food packaging industry on a commercial scale is limited due to their poor performance and processing characteristics and high production cost. This review aims to provide an insight into the recent advances in research that address these limitations. Loading of nanofillers into polymer matrix could improve thermal, mechanical, and barrier properties of biopolymers. Blending of biopolymers also offers the possibility of acquiring newer materials with desired characteristics. However, nanofillers tend to agglomerate when loaded above an optimum level in the polymer matrix. This article throws light on different methods adopted by researchers to achieve uniform dispersion of nanofillers in bionanocomposites. Furthermore, different processing methods available for converting biopolymers into different packaging forms are discussed. In addition, the potential utilization of agricultural, brewery, and industrial wastes as feedstock for the production of biopolymers, and integrated biorefinery concept that not only keep the total production cost of biopolymers low but are also environment-friendly, are discussed. Finally, future research prospects in this field and the possible contribution of biopolymers to sustainable development are presented. This review will certainly be helpful to researchers working on sustainable food packaging, and companies exploring pilot projects to scale up biopolymer production for industrial applications.
Collapse
Affiliation(s)
- Satti Venu Gopala Kumari
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kannan Pakshirajan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - G Pugazhenthi
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
25
|
Innovative solutions and challenges to increase the use of Poly(3-hydroxybutyrate) in food packaging and disposables. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Masek A, Kosmalska A. Technological limitations in obtaining and using cellulose biocomposites. Front Bioeng Biotechnol 2022; 10:912052. [PMID: 36061440 PMCID: PMC9429818 DOI: 10.3389/fbioe.2022.912052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Among the many possible types of polymer composite materials, the most important are nanocomposites and biocomposites, which have received tremendous attention in recent years due to their unique properties. The fundamental benefits of using biocomposites as alternative materials to “petroleum-based” products are certainly shaping current development trends and setting directions for future research and applications of polymer composites. A dynamic growth of the production and sale of biocomposites is observed in the global market, which results not only from the growing interest and demand for this type of materials, but also due to the fact that for the developed and modified, thus improved materials, the area of their application is constantly expanding. Already today, polymer composites with plant raw materials are used in various sectors of the economy. In particular, this concerns the automotive and construction industries, as well as widely understood packaging. Bacterial cellulose, for example, also known as bionanocellulose, as a natural polymer with specific and unique properties, has been used extensively,primarily in numerous medical applications. Intensive research is also being carried out into composites with natural fibres composed mainly of organic compounds such as cellulose, hemicellulose and lignin. However, three aspects seem to be associated with the popularisation of biopolymers: performance, processing and cost. This article provides a brief overview of the topic under discussion. What can be the technological limitations considering the methods of obtaining polymer composites with the use of plant filler and the influence on their properties? What properties of cellulose constitute an important issue from the point of view of its applicability in polymers, in the context of compatibility with the polymer matrix and processability? What can be the ways of changing these properties through modifications, which may be crucial from the point of view of the development directions of biopolymers and bioplastics, whose further new applications will be related, among others, to the enhancement of properties? There still seems to be considerable potential to improve the cellulose material composites being produced, as well as to improve the efficiency of their manufacturing. Nevertheless, the material still needs to be well optimized before it can replace conventional materials at the industrial level in the near future. Typically, various studies discuss their comparison in terms of production, properties and highly demanding applications of plant or bacterial nanocellulose. Usually, aspects of each are described separately in the literature. In the present review, several important data are gathered in one place, providing a basis for comparing the types of cellulose described. On the one hand, this comparison aims to demonstrate the advantage of bacterial cellulose over plant cellulose, due to environmental protection and its unique properties. On the other hand, it aims to prepare a more comprehensive point of view that can objectively help in deciding which cellulosic raw material may be more suitable for a particular purpose, bacterial cellulose or plant cellulose.
Collapse
|
27
|
Iglesias-Montes ML, Soccio M, Siracusa V, Gazzano M, Lotti N, Cyras VP, Manfredi LB. Chitin Nanocomposite Based on Plasticized Poly(lactic acid)/Poly(3-hydroxybutyrate) (PLA/PHB) Blends as Fully Biodegradable Packaging Materials. Polymers (Basel) 2022; 14:polym14153177. [PMID: 35956691 PMCID: PMC9370966 DOI: 10.3390/polym14153177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Fully bio-based poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) blends plasticized with tributyrin (TB), and their nanocomposite based on chitin nanoparticles (ChNPs) was developed using melt mixing followed by a compression molding process. The combination of PHB and ChNPs had an impact on the crystallinity of the plasticized PLA matrix, thus improving its oxygen and carbon dioxide barrier properties as well as displaying a UV light-blocking effect. The addition of 2 wt% of ChNP induced an improvement on the initial thermal degradation temperature and the overall migration behavior of blends, which had been compromised by the presence of TB. All processed materials were fully disintegrated under composting conditions, suggesting their potential application as fully biodegradable packaging materials.
Collapse
Affiliation(s)
- Magdalena L. Iglesias-Montes
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Facultad de Ingeniería, Universidad Nacional de Mar del Plata—Consejo de Investigaciones Científicas y Técnicas, Mar del Plata 7600, Argentina; (M.L.I.-M.); (V.P.C.)
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131 Bologna, Italy;
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40126 Bologna, Italy
- Correspondence: (M.S.); (L.B.M.); Tel.: +39-0512090360 (M.S.); +54-2236260600 (L.B.M.)
| | - Valentina Siracusa
- Chemical Science Department, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Massimo Gazzano
- Institute of Organic Synthesis and Photoreactivity, National Research Council, 40129 Bologna, Italy;
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131 Bologna, Italy;
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center for Agro-Food Research, CIRI-AGRO, University of Bologna, 40126 Bologna, Italy
| | - Viviana P. Cyras
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Facultad de Ingeniería, Universidad Nacional de Mar del Plata—Consejo de Investigaciones Científicas y Técnicas, Mar del Plata 7600, Argentina; (M.L.I.-M.); (V.P.C.)
| | - Liliana B. Manfredi
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Facultad de Ingeniería, Universidad Nacional de Mar del Plata—Consejo de Investigaciones Científicas y Técnicas, Mar del Plata 7600, Argentina; (M.L.I.-M.); (V.P.C.)
- Correspondence: (M.S.); (L.B.M.); Tel.: +39-0512090360 (M.S.); +54-2236260600 (L.B.M.)
| |
Collapse
|
28
|
Teaima M, Yasser M, Elfar N, Shoueir K, El-Nabarawi M, Helal D. Construction of sublingual trilaminated Eszopiclone fast dissolving film for the treatment of Insomnia: Formulation, characterization and In vivo clinical comparative pharmacokinetic study in healthy human subjects. PLoS One 2022; 17:e0266019. [PMID: 35679274 PMCID: PMC9182695 DOI: 10.1371/journal.pone.0266019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/11/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Disturbed sleep can cause to m health problems such as cognitive impairment, depressed mood, and negative effects on cardiovascular, endocrine, and immune function. This study formulates and optimizes Eszopiclone trilaminate fast dissolving film.
Methods
Prepared Eszopiclone trilaminate fast dissolving film (Eszopiclone TFDF) was characterized by disintegration time, drug release, tensile strength (TS), percentage elongation (EB%), folding endurance, taste masking test, and in vitro dissolution test. The selected formulas were F2 (0.5% xanthan gum, 10% propylene glycol), F4 (3% sodium alginate, 10% propylene glycol) and F6 (1.5% pullulan, 10% propylene glycol) were subjected to in vivo study compared to conventional Lunesta® tablet.
Results
The results indicated that disintegration time was in the range of 940 m. Drug release was found to be in the field of 78.51%–99.99%, while TS values and EB% differed from 11.12 to 25.74 (MPa) and 25.38%–36.43%, respectively. The folding endurance went between 200 and 300 times. All formulas exhibited acceptable uniformity content, surface pH, film thickness, and a good taste feeling.
Conclusion
F4 had the highest Cmax (39.741 ± 6.785-μg/l) and lower Tmax (1.063 hr) among other formulas and conventional tablets. Therefore, FDFs’ technology could increase the therapeutic effect of Eszopiclone.
Collapse
Affiliation(s)
- Mahmoud Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- * E-mail:
| | - Mohamed Yasser
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Nehal Elfar
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Kamel Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Doaa Helal
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| |
Collapse
|
29
|
Popa MS, Frone AN, Panaitescu DM. Polyhydroxybutyrate blends: A solution for biodegradable packaging? Int J Biol Macromol 2022; 207:263-277. [PMID: 35257732 DOI: 10.1016/j.ijbiomac.2022.02.185] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 11/05/2022]
Abstract
Poly (3-hydroxybutyrate) (PHB) is a valuable bio-based and biodegradable polymer that may substitute common polymers in packaging and biomedical applications provided that the production cost is reduced and some properties improved. Blending PHB with other biodegradable polymers is the most simple and accessible route to reduce costs and to improve properties. This review provides a comprehensive overview on the preparation, properties and application of the PHB blends with other biodegradable polyesters such as medium-chain-length polyhydroxyalkanoates, poly(ε-caprolactone), poly(lactic acid), poly(butylene succinate), poly(propylene carbonate) and poly (butylene adipate-co-terephthalate) or polysaccharides and their derivatives. A special attention has been paid to the miscibility of PHB with these polymers and the compatibilizing methods used to improve the dispersion and interface. The changes in the PHB morphology, thermal, mechanical and barrier properties induced by the second polymer have been critically analyzed in view of industrial application. The biodegradability and recyclability strategies of the PHB blends were summarized along with the processing techniques adapted to the intended application. This review provides the tools for a better understanding of the relation between the micro/nanostructure of PHB blends and their properties for the further development of PHB blends as solutions for biodegradable packaging.
Collapse
Affiliation(s)
- Marius Stelian Popa
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, Bucharest 060021, Romania
| | - Adriana Nicoleta Frone
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, Bucharest 060021, Romania
| | - Denis Mihaela Panaitescu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, Bucharest 060021, Romania.
| |
Collapse
|
30
|
Priselac D, Mahović Poljaček S, Tomašegović T, Leskovac M. Blends Based on Poly(ε-Caprolactone) with Addition of Poly(Lactic Acid) and Coconut Fibers: Thermal Analysis, Ageing Behavior and Application for Embossing Process. Polymers (Basel) 2022; 14:1792. [PMID: 35566960 PMCID: PMC9102015 DOI: 10.3390/polym14091792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
In this research a biodegradable blend of poly(ɛ-caprolactone) (PCL) and poly(lactic acid) (PLA) is proposed as a new material for the production of a relief printing plate used for special applications on packaging materials, i.e., the embossing process. Coconut fibers (CFs) were added as a natural filler to PCL/PLA blends to improve the functional properties of the prepared blends. Thermal, mechanical and surface analyses were performed on the unaged and artificially aged blends. The results showed that CF has been proven to optimize the hardness of the blend, which is crucial for the production of relief plate for embossing applications. The lowest hardness was measured on neat PCL (53.30° Sh D) and the highest value on PCL/PLA/CF 70/30/3.0 blend (60.13° Sh D). Stronger interfacial interactions were present at the PLA/CF interface because the interfacial free energy is closer to zero and the work of adhesion and spreading coefficient are higher than for the PCL/CF interface. The results of thermal analysis of unaged and aged blends showed that ageing for 3 weeks resulted in significantly lower thermal stability, especially for neat PCL and PCL/PLA 80/20 blends. Blends with a higher content of PLA and CF showed a slightly increased ageing resistance, which is attributed to the increased crystallinity of PLA after ageing due to the addition of CF showed in the DSC diagrams.
Collapse
Affiliation(s)
- Dino Priselac
- Faculty of Graphic Arts, University of Zagreb, 10000 Zagreb, Croatia
| | | | | | - Mirela Leskovac
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
31
|
A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications. Catalysts 2022. [DOI: 10.3390/catal12030319] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polyhydroxyalkanoates, or PHAs, belong to a class of biopolyesters where the biodegradable PHA polymer is accumulated by microorganisms as intracellular granules known as carbonosomes. Microorganisms can accumulate PHA using a wide variety of substrates under specific inorganic nutrient limiting conditions, with many of the carbon-containing substrates coming from waste or low-value sources. PHAs are universally thermoplastic, with PHB and PHB copolymers having similar characteristics to conventional fossil-based polymers such as polypropylene. PHA properties are dependent on the composition of its monomers, meaning PHAs can have a diverse range of properties and, thus, functionalities within this biopolyester family. This diversity in functionality results in a wide array of applications in sectors such as food-packaging and biomedical industries. In order for PHAs to compete with the conventional plastic industry in terms of applications and economics, the scale of PHA production needs to grow from its current low base. Similar to all new polymers, PHAs need continuous technological developments in their production and material science developments to grow their market opportunities. The setup of end-of-life management (biodegradability, recyclability) system infrastructure is also critical to ensure that PHA and other biobased biodegradable polymers can be marketed with maximum benefits to society. The biobased nature and the biodegradability of PHAs mean they can be a key polymer in the materials sector of the future. The worldwide scale of plastic waste pollution demands a reformation of the current polymer industry, or humankind will face the consequences of having plastic in every step of the food chain and beyond. This review will discuss the aforementioned points in more detail, hoping to provide information that sheds light on how PHAs can be polymers of the future.
Collapse
|
32
|
Atomization of Microfibrillated Cellulose and Its Incorporation into Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Reactive Extrusion. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study focuses on the preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) films that were reinforced with cellulose microstructures to obtain new green composite materials for sustainable food packaging applications. The atomization of suspensions of microfibrillated cellulose (MFC) successfully allowed the formation of ultrathin cellulose structures of nearly 3 µm that were, thereafter, melt-mixed at 2.5, 5, and 10 wt % with PHBV and subsequently processed into films by thermo-compression. The most optimal results were attained for the intermediate MFC content of 5 wt %, however, the cellulose microstructures showed a low interfacial adhesion with the biopolyester matrix. Thus, two reactive compatibilizers were explored in order to improve the properties of the green composites, namely the multi-functional epoxy-based styrene-acrylic oligomer (ESAO) and the combination of triglycidyl isocyanurate (TGIC) with dicumyl peroxide (DCP). The chemical, optical, morphological, thermal, mechanical, and barrier properties against water and aroma vapors and oxygen were analyzed in order to determine the potential application of these green composite films in food packaging. The results showed that the incorporation of MFC yielded contact transparent films, whereas the reactive extrusion with TGIC and DCP led to green composites with enhanced thermal stability, mechanical strength and ductility, and barrier performance to aroma vapor and oxygen. In particular, this compatibilized green composite film was thermally stable up to ~280 °C, whereas it showed an elastic modulus (E) of above 3 GPa and a deformation at break (ɛb) of 1.4%. Moreover, compared with neat PHBV, its barrier performance to limonene vapor and oxygen was nearly improved by nine and two times, respectively.
Collapse
|
33
|
Fu D, Ding Y, Guo R, Zhang J, Wang H, Niu B, Yan H. Polylactic acid/polyvinyl alcohol-quaternary ammonium chitosan double-layer films doped with novel antimicrobial agent CuO@ZIF-8 NPs for fruit preservation. Int J Biol Macromol 2022; 195:538-546. [PMID: 34914914 DOI: 10.1016/j.ijbiomac.2021.12.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 11/30/2022]
Abstract
ZIF-8, a subclass of metal organic frameworks (MOFs), was employed as the CuO carriers because of its high surface areas and good dispersibility. A novel antibacterial agent CuO@ZIF-8 was synthesized by environmentally-friendly direct calcination strategy, and introduced into the composite double-layer films for packing materials. The double-layer films were prepared via solution casting method with polylactic acid (PLA) and polyvinyl alcohol (PVA)-quaternary ammonium chitosan as the matrix of outer layer and inner layer, respectively; and CuO@ZIF-8 nanoparticles were introduced into the PVA-quaternary ammonium chitosan layer. The double-layer films exhibited superior antibacterial activity resulted from the uniform dispersion of CuO by ZIF-8 carriers. The elongation at break was enhanced and up to 17.13%, about 2.4-fold that of PLA films. Meanwhile, the films provided low water vapor permeability and strong UV-barrier ability which were attributed to the lay-by-layer casting, CuO@ZIF-8 doping and TiO2 addition. Cherry tomato preservation experiment revealed that the composite films retarded the growth of harmful microorganisms on the fruit surface. MTT assay confirmed the cytocompatibility of the films. The easily fabricated double-layer films presented potential possibility in the field of biodegradable food packaging.
Collapse
Affiliation(s)
- Dongsheng Fu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China
| | - Yuanzheng Ding
- Department of Clinical Medicine, Fenyang college of Shanxi Medical University, Fenyang 032200, China
| | - Ruijie Guo
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China.
| | - Jie Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China
| | - Huifang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China
| | - Baolong Niu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China
| | - Hong Yan
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China.
| |
Collapse
|
34
|
Ortega F, Versino F, López OV, García MA. Biobased composites from agro-industrial wastes and by-products. EMERGENT MATERIALS 2022; 5:873-921. [PMID: 34849454 PMCID: PMC8614084 DOI: 10.1007/s42247-021-00319-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/14/2021] [Indexed: 05/09/2023]
Abstract
The greater awareness of non-renewable natural resources preservation needs has led to the development of more ecological high-performance polymeric materials with new functionalities. In this regard, biobased composites are considered interesting options, especially those obtained from agro-industrial wastes and by-products. These are low-cost raw materials derived from renewable sources, which are mostly biodegradable and would otherwise typically be discarded. In this review, recent and innovative academic studies on composites obtained from biopolymers, natural fillers and active agents, as well as green-synthesized nanoparticles are presented. An in-depth discussion of biobased composites structures, properties, manufacture, and life-cycle assessment (LCA) is provided along with a wide up-to-date overview of the most recent works in the field with appropriate references. Potential uses of biobased composites from agri-food residues such as active and intelligent food packaging, agricultural inputs, tissue engineering, among others are described, considering that the specific characteristics of these materials should match the proposed application.
Collapse
Affiliation(s)
- Florencia Ortega
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Florencia Versino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Olivia Valeria López
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km.7 (8000), Bahía Blanca, Argentina
| | - María Alejandra García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| |
Collapse
|
35
|
Utilization of bio-polymeric additives for a sustainable production strategy in pulp and paper manufacturing: A comprehensive review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
36
|
Obtaining Active Polylactide (PLA) and Polyhydroxybutyrate (PHB) Blends Based Bionanocomposites Modified with Graphene Oxide and Supercritical Carbon Dioxide (scCO 2)-Assisted Cinnamaldehyde: Effect on Thermal-Mechanical, Disintegration and Mass Transport Properties. Polymers (Basel) 2021; 13:polym13223968. [PMID: 34833267 PMCID: PMC8621613 DOI: 10.3390/polym13223968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022] Open
Abstract
Bionanocomposites based on Polylactide (PLA) and Polyhydroxybutyrate (PHB) blends were successfully obtained through a combined extrusion and impregnation process using supercritical CO2 (scCO2). Graphene oxide (GO) and cinnamaldehyde (Ci) were incorporated into the blends as nano-reinforcement and an active compound, respectively, separately, and simultaneously. From the results, cinnamaldehyde quantification values varied between 5.7% and 6.1% (w/w). When GO and Ci were incorporated, elongation percentage increased up to 16%, and, therefore, the mechanical properties were improved, with respect to neat PLA. The results indicated that the Ci diffusion through the blends and bionanocomposites was influenced by the nano-reinforcing incorporation. The disintegration capacity of the developed materials decreased with the incorporation of GO and PHB, up to 14 and 23 days of testing, respectively, without compromising the biodegradability characteristics of the final material.
Collapse
|
37
|
Tyagi P, Salem KS, Hubbe MA, Pal L. Advances in barrier coatings and film technologies for achieving sustainable packaging of food products – A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Characterization of Magnesium-Polylactic Acid Films Casted on Different Substrates and Doped with Diverse Amounts of CTAB. Molecules 2021; 26:molecules26164811. [PMID: 34443399 PMCID: PMC8398461 DOI: 10.3390/molecules26164811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
Polylactic acid (PLA) is a good candidate for the manufacture of polymeric biodegradable biomaterials. The inclusion of metallic particles and surfactants solves its mechanical limitations and improves its wettability, respectively. In this work, cetyltrimethylammonium bromide (CTAB) and magnesium particles have been incorporated into PLA films to evaluate the changes produced in the polymeric matrix cast on glass and silicone substrates. For this purpose, the surface of the films has been characterized by means of contact angle measurements and ToF-SIMS. Depth profiles and SEM images of the cross sections of the films have also been obtained to study their morphology. The results show that the CTAB in the polymer matrix with and without magnesium improves the wettability of the films, making them more suitable for cell adhesion. The higher the hydrophilicity, the higher the surfactant concentration. The depth profiles show, for the first time, that, depending on the surfactant concentration and the presence of Mg, there is a layer-like distribution near the surface where, in addition to the CTAB + PLA mixture, a surfactant exclusion zone can be seen. This new structure could be relevant in in vitro/in vivo situations when the degradation processes remove the film components in a sequential form.
Collapse
|
39
|
Perez-Nakai A, Lerma-Canto A, Domingez-Candela I, Garcia-Garcia D, Ferri JM, Fombuena V. Comparative Study of the Properties of Plasticized Polylactic Acid with Maleinized Hemp Seed Oil and a Novel Maleinized Brazil Nut Seed Oil. Polymers (Basel) 2021; 13:polym13142376. [PMID: 34301132 PMCID: PMC8309596 DOI: 10.3390/polym13142376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, for the first time, Brazil nut seed oil was chemically modified with maleic anhydride to obtain maleinized Brazil nut seed oil (MBNO). The same process was developed to obtain maleinized hemp seed oil (MHO). The use of MBNO and MHO was studied as bio-based plasticizers by incorporating them with different contents ranging from 0 to 10 phr in a polylactic acid (PLA) matrix. By means of mechanical, thermal and thermomechanical characterization techniques, the properties of the different formulations were studied to evaluate the plasticizing effect of the MBNO and MHO. With the addition of both plasticizers, a significant increase in ductile properties was observed, reaching an increase in elongation at break of 643% with 7.5 phr MBNO and 771% with 10 phr MHO compared to neat PLA. In addition, it has been observed that the mechanical resistant properties do not decrease, since the oils enhance the crystallization of PLA by increasing the free volume between its chains and counteracting the effect. Finally, a disintegration test was carried out under thermophilic conditions at 58 °C for 27 days, demonstrating that the incorporation of MHO and MBNO does not significantly affect the biodegradability of neat PLA.
Collapse
Affiliation(s)
- Aina Perez-Nakai
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (A.P.-N.); (A.L.-C.); (D.G.-G.); (J.M.F.)
| | - Alejandro Lerma-Canto
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (A.P.-N.); (A.L.-C.); (D.G.-G.); (J.M.F.)
| | - Ivan Domingez-Candela
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell s/n, 03801 Alcoy, Spain;
| | - Daniel Garcia-Garcia
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (A.P.-N.); (A.L.-C.); (D.G.-G.); (J.M.F.)
| | - Jose Miguel Ferri
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (A.P.-N.); (A.L.-C.); (D.G.-G.); (J.M.F.)
| | - Vicent Fombuena
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (A.P.-N.); (A.L.-C.); (D.G.-G.); (J.M.F.)
- Correspondence:
| |
Collapse
|
40
|
Mtibe A, Motloung MP, Bandyopadhyay J, Ray SS. Synthetic Biopolymers and Their Composites: Advantages and Limitations-An Overview. Macromol Rapid Commun 2021; 42:e2100130. [PMID: 34216411 DOI: 10.1002/marc.202100130] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/20/2021] [Indexed: 12/17/2022]
Abstract
Recently, polymer science and engineering research has shifted toward the development of environmentally benign polymers to reduce the impact of plastic leakage on the ecosystems. Stringent regulations and concerns regarding conventional polymers are the main driving forces for the development of renewable, biodegradable, sustainable, and environmentally benign materials. Although biopolymers can alleviate plastic-related pollution, several factors dictate the utilization of biopolymers. Herein, an overview of the potential and limitations of synthetic biopolymers and their composites in the context of environmentally benign materials for a sustainable future are presented. The synthetic biopolymer market, technical advancements for different applications, lifecycle analysis, and biodegradability are covered. The current trends, challenges, and opportunities for bioplastic recycling are also discussed. In summary, this review is expected to provide guidelines for future development related to synthetic biopolymer-based sustainable polymeric materials suitable for various applications.
Collapse
Affiliation(s)
- Asanda Mtibe
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - Mpho Phillip Motloung
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa.,Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, Johannesburg, South Africa
| | - Jayita Bandyopadhyay
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| |
Collapse
|
41
|
Jo J, Kim H, Jeong SY, Park C, Hwang HS, Koo B. Changes in Mechanical Properties of Polyhydroxyalkanoate with Double Silanized Cellulose Nanocrystals Using Different Organosiloxanes. NANOMATERIALS 2021; 11:nano11061542. [PMID: 34208072 PMCID: PMC8230657 DOI: 10.3390/nano11061542] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 01/27/2023]
Abstract
Polyhydroxyalkanoate (PHA) is a biodegradable plastic with great potential for tackling plastic waste and marine pollution issues, but its commercial applications have been limited due to its poor processability. In this study, surface-modified cellulose nanocrystals were used to improve the mechanical properties of PHA composites produced via a melt-extrusion process. Double silanization was conducted to obtain hydrophobically treated CNC-based fillers, using tetraethyl orthosilicate (TEOS) and methyltrimethoxysilane (MTMS). The morphology, particle size distributions, and surface characteristics of the silanized CNCs and their compatibility with a PHA polymer matrix differed by the organosiloxane treatment and drying method. It was confirmed that the double silanized CNCs had hydrophobic surface characteristics and narrow particle size distributions, and thereby showed excellent dispersibility in a PHA matrix. Adding hydrophobically treated CNCs to form a PHA composite, the elongation at break of the PHA composites was improved up to 301%, with little reduction of Young's modulus, compared to pure PHA. Seemingly, the double silanized CNCs added played a similar role to a nucleation agent in the PHA composite. It is expected that such high ductility can improve the mechanical properties of PHA composites, making them more suitable for commercial applications.
Collapse
Affiliation(s)
- Jaemin Jo
- Green and Sustainable Materials R&D Department, Korea Institute of industrial Technology, 89 Yangdaegiro-gil, Cheonan-si 31056, Korea; (J.J.); (S.-Y.J.); (H.S.H.)
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Seoul 01897, Korea;
| | - Hyeyun Kim
- Green and Sustainable Materials R&D Department, Korea Institute of industrial Technology, 89 Yangdaegiro-gil, Cheonan-si 31056, Korea; (J.J.); (S.-Y.J.); (H.S.H.)
- Correspondence: (H.K.); (B.K.); Tel.: +82-04-1598-8478 (H.K.); +82-04-1589-8409 (B.K.)
| | - So-Yeon Jeong
- Green and Sustainable Materials R&D Department, Korea Institute of industrial Technology, 89 Yangdaegiro-gil, Cheonan-si 31056, Korea; (J.J.); (S.-Y.J.); (H.S.H.)
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Seoul 01897, Korea;
| | - Ha Soo Hwang
- Green and Sustainable Materials R&D Department, Korea Institute of industrial Technology, 89 Yangdaegiro-gil, Cheonan-si 31056, Korea; (J.J.); (S.-Y.J.); (H.S.H.)
- R&D Center, OomphChem Inc., 1223-24 Cheonan-daero, Cheonan-si 31080, Korea
| | - Bonwook Koo
- Green and Sustainable Materials R&D Department, Korea Institute of industrial Technology, 89 Yangdaegiro-gil, Cheonan-si 31056, Korea; (J.J.); (S.-Y.J.); (H.S.H.)
- Correspondence: (H.K.); (B.K.); Tel.: +82-04-1598-8478 (H.K.); +82-04-1589-8409 (B.K.)
| |
Collapse
|
42
|
Beltrán FR, Arrieta MP, Elena Antón D, Lozano-Pérez AA, Cenis JL, Gaspar G, de la Orden MU, Martínez Urreaga J. Effect of Yerba Mate and Silk Fibroin Nanoparticles on the Migration Properties in Ethanolic Food Simulants and Composting Disintegrability of Recycled PLA Nanocomposites. Polymers (Basel) 2021; 13:polym13121925. [PMID: 34200571 PMCID: PMC8230047 DOI: 10.3390/polym13121925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 11/29/2022] Open
Abstract
The main objective of the present research is to study the effect of the incorporation of low amounts of silk fibroin nanoparticles (SFNs) and yerba mate nanoparticles (YMNs) on the migration phenomenon into ethanolic food simulants as well as on the disintegrability under composting conditions of mechanically recycled polylactic acid (PLA). Recycled PLA was obtained under simulated recycling conditions by melt processing virgin PLA into films and further subjecting them to an accelerated aging process, which involved photochemical, thermal, and hydrothermal aging steps followed by an intense washing step. SFNs were extracted from Bombyx mori cocoons and YMNs from yerba mate waste. Then, recycled PLA was melted, reprocessed, and reinforced with either 1%wt. of SFNs or YMNs, by melt extrusion, and further processed into films by compression molding. The obtained nanocomposites were exposed to ethanolic food simulants (ethanol 10% v/v, simulant A and ethanol 50% v/v, simulant D1) and the structural, thermal, and mechanical properties were studied before and after the exposure to the food simulants. The migration levels in both food simulants were below the overall migration limits required for food contact materials. The materials were disintegrated under simulated composting conditions at the laboratory scale level and it was observed that the nanoparticles delayed the disintegration rate of the recycled PLA matrix, but nanocomposites were fully disintegrated in less than one month.
Collapse
Affiliation(s)
- Freddys R. Beltrán
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Universidad Politécnica de Madrid, E.T.S.I. Industriales, 28006 Madrid, Spain; (F.R.B.); (D.E.A.); (G.G.); (J.M.U.)
- Grupo de Investigación Polímeros Caracterización y Aplicaciones (POLCA), Madrid, Spain;
| | - Marina P. Arrieta
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Universidad Politécnica de Madrid, E.T.S.I. Industriales, 28006 Madrid, Spain; (F.R.B.); (D.E.A.); (G.G.); (J.M.U.)
- Grupo de Investigación Polímeros Caracterización y Aplicaciones (POLCA), Madrid, Spain;
- Correspondence: ; Tel.: +34-910-677-301
| | - Diego Elena Antón
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Universidad Politécnica de Madrid, E.T.S.I. Industriales, 28006 Madrid, Spain; (F.R.B.); (D.E.A.); (G.G.); (J.M.U.)
| | - Antonio A. Lozano-Pérez
- Depertamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), 30150 Murcia, Spain; (A.A.L.-P.); (J.L.C.)
| | - José L. Cenis
- Depertamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), 30150 Murcia, Spain; (A.A.L.-P.); (J.L.C.)
| | - Gerald Gaspar
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Universidad Politécnica de Madrid, E.T.S.I. Industriales, 28006 Madrid, Spain; (F.R.B.); (D.E.A.); (G.G.); (J.M.U.)
- Grupo de Investigación Polímeros Caracterización y Aplicaciones (POLCA), Madrid, Spain;
| | - María U. de la Orden
- Grupo de Investigación Polímeros Caracterización y Aplicaciones (POLCA), Madrid, Spain;
- Deparamento de Química Orgánica, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Joaquín Martínez Urreaga
- Departamento de Ingeniería Química Industrial y Medio Ambiente, Universidad Politécnica de Madrid, E.T.S.I. Industriales, 28006 Madrid, Spain; (F.R.B.); (D.E.A.); (G.G.); (J.M.U.)
- Grupo de Investigación Polímeros Caracterización y Aplicaciones (POLCA), Madrid, Spain;
| |
Collapse
|
43
|
Aldas M, Ferri JM, Motoc DL, Peponi L, Arrieta MP, López-Martínez J. Gum Rosin as a Size Control Agent of Poly(Butylene Adipate-Co-Terephthalate) (PBAT) Domains to Increase the Toughness of Packaging Formulations Based on Polylactic Acid (PLA). Polymers (Basel) 2021; 13:polym13121913. [PMID: 34201407 PMCID: PMC8229187 DOI: 10.3390/polym13121913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/03/2022] Open
Abstract
Gum rosin (GR) was used as a natural additive to improve the compatibility between polylactic acid, PLA, and poly(butylene adipate-co-terephthalate, PBAT, blended with 20 wt.% of PBAT (PLA/PBAT). The PBAT was used as a soft component to increase the ductility of PLA and its fracture toughness. The coalescence of the PBAT domains was possible due to the plasticization effect of the GR component. These domains contributed to increasing the toughness of the final material due to the variation and control of the PBAT domains’ size and consequently, reducing the stress concentration points. The GR was used in contents of 5, 10, 15, and 20 phr. Consequently, the flexural properties were improved and the impact resistance increased up to 80% in PLA/PBAT_15GR with respect to the PLA/PBAT formulation. Field emission scanning electron microscope (FESEM) images allowed observing that the size of PBAT domains of 2–3 µm was optimal to reduce the impact stress. Differential scanning calorimetry (DSC) analysis showed a reduction of up to 8 °C on the PLA melting temperature and up to 5.3 °C of the PLA glass transition temperature in the PLA/PBAT_20GR formulation, which indicates an improvement in the processability of PLA. Finally, transparent films with improved oxygen barrier performance and increased hydrophobicity were obtained suggesting the potential interest of these blends for the food packaging industry.
Collapse
Affiliation(s)
- Miguel Aldas
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), 03801 Alcoy, Spain;
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, 170517 Quito, Ecuador
- Correspondence: (M.A.); (J.M.F.); Tel.: +593-999-736-444 (M.A.); +34-699-495-982 (J.M.F.)
| | - José Miguel Ferri
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), 03801 Alcoy, Spain;
- Correspondence: (M.A.); (J.M.F.); Tel.: +593-999-736-444 (M.A.); +34-699-495-982 (J.M.F.)
| | - Dana Luca Motoc
- Department of Automotive and Transport Engineering, Transilvania University of Brasov, Eroilor Av., 500036 Brasov, Romania;
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Marina Patricia Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain;
- Grupo de Investigación: Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Juan López-Martínez
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), 03801 Alcoy, Spain;
| |
Collapse
|
44
|
Effect of Cellulose and Cellulose Nanocrystal Contents on the Biodegradation, under Composting Conditions, of Hierarchical PLA Biocomposites. Polymers (Basel) 2021; 13:polym13111855. [PMID: 34199684 PMCID: PMC8199790 DOI: 10.3390/polym13111855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
In this work, the effect of microfibrillated cellulose (MFC) and cellulose nanocrystals (CNCs) on the biodegradation, under composting conditions, of hierarchical PLA biocomposites (HBCs) was studied using a full 22 factorial experimental design. The HBCs were prepared by extrusion processing and were composted for 180 days. At certain time intervals, the specimens were removed from the compost for their chemical, thermal and morphological characterizations. An ANOVA analysis was carried out at different composting times to study MFC and CNCs’ effects on biodegradation. The specimen’s mass loss and molecular weight loss were selected as independent variables. The results show that the presence of MFC enhances the PLA biodegradation, while with CNCs it decreases. However, when both cellulosic fibers are present, a synergistic effect was evident—i.e., in the presence of the MFC, the inclusion of the CNCs accelerates the HBCs biodegradation. Analysis of the ANOVA results confirms the relevance of the synergistic role between both cellulosic fibers over the HBC biodegradation under composting conditions. The results also suggest that during the first 90 days of incubation, the hydrolytic PLA degradation prevails, whereas, beyond that, the enzymatic microbial biodegradation dominates. The SEM results show MFC’s presence enhances the surface biodeterioration to a greater extent than the CNCs and that their simultaneous presence enhances PLA biodegradation. The SEM results also indicate that the biodegradation process begins from hydrophilic cellulosic fibers and promotes PLA biodegradation.
Collapse
|
45
|
Wu F, Misra M, Mohanty AK. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101395] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Development of Polylactic Acid Thermoplastic Starch Formulations Using Maleinized Hemp Oil as Biobased Plasticizer. Polymers (Basel) 2021; 13:polym13091392. [PMID: 33922939 PMCID: PMC8123297 DOI: 10.3390/polym13091392] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, hemp seed oil was reacted with maleic anhydride in an ene reaction to obtain maleinized hemp seed oil (MHO). The use of MHO as a plasticizer and compatibilizer has been studied for polylactic acid (PLA) and thermoplastic starch (TPS) blends (80/20, respectively). By mechanical, thermal and morphological characterizations, the addition of MHO provides a dual effect, acting as plasticizer and compatibilizer between these two partially miscible biopolymers. The addition of MHO up to 7.5 phr (parts by weight of MHO per hundred parts of PLA and TPS) revealed a noticeable increase in the ductile properties, reaching an elongation at break 155% higher than the PLA/TPS blend. Furthermore, contrary to what has been observed with maleinized oils such as linseed oil, the thermal properties do not decrease significantly as a result of the plasticizing effect, due to the compatibilizing behavior of the MHO and the natural antioxidants present in the oil. Finally, a disintegration test was carried out in aerobic conditions at 58 °C, for 24 days, to demonstrate that the incorporation of the MHO, although causing a slight delay, does not impair the biodegradability of the blend, obtaining total degradation in 24 days.
Collapse
|
47
|
Mohammadi M, Heuzey MC, Carreau PJ, Taguet A. Morphological and Rheological Properties of PLA, PBAT, and PLA/PBAT Blend Nanocomposites Containing CNCs. NANOMATERIALS 2021; 11:nano11040857. [PMID: 33801672 PMCID: PMC8065413 DOI: 10.3390/nano11040857] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022]
Abstract
Morphological and rheological properties of poly(lactic acid), PLA (semicrystalline and amorphous), and poly(butylene adipate-co-terephthalate), PBAT, and their blends (75 wt%/25 wt%; PLA/PBAT) were investigated in the presence of cellulose nanocrystals (CNCs) prepared from solution casting followed by melt mixing. For the solution casting step, the CNCs were either incorporated into the matrix, the dispersed phase, or both. The dispersion and distribution of the CNCs in the neat polymers and localization in their blends were analyzed via scanning electron microscopy (SEM) and atomic force microscopy (AFM). The highly dispersed CNCs in the solution cast nanocomposites were agglomerated after melt mixing. In the blends with 1 wt% CNCs, the nanoparticles were mostly localized on the surface of the PBAT droplets irrespective of their initial localization. The rheological behavior of the single polymer matrix nanocomposites and their blends was determined in dynamic and transient shear flow in the molten state. Upon melt mixing the complex viscosity and storage modulus of the solution cast nanocomposites decreased markedly due to re-agglomeration of the CNCs. Under shearing at 0.1 s−1, a significant droplet coalescence was observed in the neat blends, but was prevented by the presence of the CNCs at the interface in the blend nanocomposites.
Collapse
Affiliation(s)
- Mojtaba Mohammadi
- Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, École Polytechnique de Montréal, Montreal, QC H3T 1J4, Canada; (M.M.); (M.-C.H.)
| | - Marie-Claude Heuzey
- Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, École Polytechnique de Montréal, Montreal, QC H3T 1J4, Canada; (M.M.); (M.-C.H.)
| | - Pierre J. Carreau
- Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, École Polytechnique de Montréal, Montreal, QC H3T 1J4, Canada; (M.M.); (M.-C.H.)
- Correspondence:
| | - Aurélie Taguet
- Polymers Composites and Hybrids (PCH), IMT Mines Ales, 30319 Ales, France;
| |
Collapse
|
48
|
Iglesias-Montes ML, Luzi F, Dominici F, Torre L, Manfredi LB, Cyras VP, Puglia D. Migration and Degradation in Composting Environment of Active Polylactic Acid Bilayer Nanocomposites Films: Combined Role of Umbelliferone, Lignin and Cellulose Nanostructures. Polymers (Basel) 2021; 13:polym13020282. [PMID: 33467159 PMCID: PMC7830319 DOI: 10.3390/polym13020282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 01/12/2023] Open
Abstract
This study was dedicated to the functional characterization of innovative poly(lactic acid) (PLA)-based bilayer films containing lignocellulosic nanostructures (cellulose nanocrystals (CNCs) or lignin nanoparticles (LNPs)) and umbelliferone (UMB) as active ingredients (AIs), prepared to be used as active food packaging. Materials proved to have active properties associated with the antioxidant action of UMB and LNPs, as the combination of both ingredients in the bilayer formulations produced a positive synergic effect inducing the highest antioxidant capacity. The results of overall migration for the PLA bilayer systems combining CNCs or LNPs and UMB revealed that none of these samples exceeded the overall migration limit required by the current normative for food packaging materials in both non-polar and polar simulants. Finally, all the hydrophobic monolayer and bilayer films were completely disintegrated in composting conditions in less than 18 days of incubation, providing a good insight on the potential use of these materials for application as active and compostable food packaging.
Collapse
Affiliation(s)
- Magdalena L. Iglesias-Montes
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata-Consejo de Investigaciones Científicas y Técnicas (CONICET), Av. Colón 10850, 7600 Mar del Plata, Argentina; (M.L.I.-M.); (L.B.M.); (V.P.C.)
| | - Francesca Luzi
- Civil and Environmental Engineering Department, UdR INSTM, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy; (F.L.); (F.D.); (L.T.)
| | - Franco Dominici
- Civil and Environmental Engineering Department, UdR INSTM, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy; (F.L.); (F.D.); (L.T.)
| | - Luigi Torre
- Civil and Environmental Engineering Department, UdR INSTM, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy; (F.L.); (F.D.); (L.T.)
| | - Liliana B. Manfredi
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata-Consejo de Investigaciones Científicas y Técnicas (CONICET), Av. Colón 10850, 7600 Mar del Plata, Argentina; (M.L.I.-M.); (L.B.M.); (V.P.C.)
| | - Viviana P. Cyras
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata-Consejo de Investigaciones Científicas y Técnicas (CONICET), Av. Colón 10850, 7600 Mar del Plata, Argentina; (M.L.I.-M.); (L.B.M.); (V.P.C.)
| | - Debora Puglia
- Civil and Environmental Engineering Department, UdR INSTM, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy; (F.L.); (F.D.); (L.T.)
- Correspondence: ; Tel.: +39-0744-492916
| |
Collapse
|
49
|
Thermal stability, hydrophobicity and antioxidant potential of ultrafine poly (lactic acid)/rice husk lignin fibers. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-020-00083-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Banerjee R, Ray SS. An overview of the recent advances in polylactide‐based sustainable nanocomposites. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25623] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ritima Banerjee
- Department of Chemical Engineering Calcutta Institute of Technology Howrah India
| | - Suprakas Sinha Ray
- Centre for Nanostructures and Advanced Materials, DSI‐CSIR Nanotechnology Innovation Centre Council for Scientific and Industrial Research Pretoria South Africa
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| |
Collapse
|