1
|
Chyerochana N, Huynh QT, Jaitham U, Phitsuwan P, Aryusuk K, Hongsibsong S, Chen KF, Chang KL. Sustainable Production of High-Performance Bioplastics from Agricultural and Industrial Biomass Waste by Integrating Deep Eutectic Solvent (DES) Pretreatment and Acetylation Processes. ACS OMEGA 2025; 10:10949-10961. [PMID: 40160754 PMCID: PMC11947807 DOI: 10.1021/acsomega.4c09059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 04/02/2025]
Abstract
This study explores the production of bioplastic films from sugar cane bagasse, wood pulp waste, and boxboard waste using a three-step, sustainable process. First, cellulose was extracted from the biomass through a deep eutectic solvent (DES) pretreatment system composed of choline chloride, ethylene glycol, and oxalic acid (ChCl-EG-OA), which effectively removed lignin and enabled an efficient alkaline treatment for hemicellulose removal. Among the biomass sources, sugar cane bagasse yielded the highest cellulose content (72.86%), followed by wood pulp waste (43.82%) and boxboard waste (38.81%). In the second phase, optimal conditions for cellulose acetylation were established. Wood pulp waste achieved the highest cellulose acetate yield (81.25%), followed by boxboard waste (70.78%) and sugar cane bagasse (47.2%). Wood pulp waste-derived cellulose acetate also exhibited the highest acetyl content and degree of substitution (DS) at 2.83. In the final phase, bioplastic films derived from boxboard waste demonstrated superior mechanical properties, with a tensile strength of 11.23 MPa and elongation of 3.14%. In contrast, wood pulp waste-derived plastic exhibited moderate tensile strength (4.56 MPa) and minimal elongation (1.0%), while sugar cane bagasse-derived plastic showed the weakest performance. The study further highlights the adaptability of mixed-source bioplastics, as a blend of boxboard and wood pulp waste achieved a tensile strength of 7.26 MPa and elongation of 1.63%, illustrating the potential to enhance bioplastic properties through a biomass source combination. This approach contributes to the advancement of sustainable, high-performance bioplastics for a broad range of applications.
Collapse
Affiliation(s)
- Natcha Chyerochana
- Division
of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkuntien, Bangkok 10140, Thailand
| | - Quang Tam Huynh
- Institute
of Environmental Engineering, National Sun
Yat-Sen University, Kaohsiung 804, Taiwan
| | - Udomsap Jaitham
- School
of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Paripok Phitsuwan
- Division
of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkuntien, Bangkok 10140, Thailand
| | - Kornkanok Aryusuk
- Division
of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkuntien, Bangkok 10140, Thailand
| | - Surat Hongsibsong
- School
of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Environment,
Occupational Health Sciences and Non-Communicable Disease Center of
Excellence, Research Institute for Health Sciences, Chiang Mai University, Chiang
Mai 50200, Thailand
| | - Ku-Fan Chen
- Department
of Civil Engineering, National Chi Nan University, Nantou 545, Taiwan
| | - Ken-Lin Chang
- Institute
of Environmental Engineering, National Sun
Yat-Sen University, Kaohsiung 804, Taiwan
- Net Zero
Emissions and Resource Recycling Technology Research Center, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department
of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center
for Emerging Contaminants Research, National
Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
2
|
Chen Y, Huang M, Fu Y, Gao T, Gan Z, Meng F. Construction of polylactic acid plastisphere microbiota for enhancing nitrate reduction in denitrification biofilters. BIORESOURCE TECHNOLOGY 2025; 417:131853. [PMID: 39577778 DOI: 10.1016/j.biortech.2024.131853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Developing methods for reusing biodegradable plastics, like polylactic acid (PLA) straws, is highly needed. Here, PLAs were applied to substitute traditional commercial ceramic media (CCM) in denitrification biofilters. During long-term operation, replacing CCM with PLA significantly enhanced nitrate removal efficiency from 32.68-54.39 % to 41.64-66.26 %. Ammonia nitrogen effluent maintained below 0.5 mg/L in all reactors. PLA plastisphere shaped unique microbial communities, i.e., denitrifying bacteria Bacillus, Pseudomonas and Acidovorax preferred to inhabit or degrade PLA. Compared to CCM biofilms, PLA diminished the importance of stochastic process in biofilm assembly of PLA plastisphere. Metagenomic sequencing suggested that PLA biofilms possessed greater metabolic capabilities of denitrification and glycolysis compared to CCM. Additionally, Bacillus strain P01 isolated from PLA plastisphere demonstrated strong PLA depolymerization. Overall, this study revealed that PLA serves as carbon source and biofilm carrier, offering a promising approach to integrating plastic reuse with wastewater treatment.
Collapse
Affiliation(s)
- Yanxi Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Mengzhen Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Yue Fu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Tianyu Gao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Zhihao Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China.
| |
Collapse
|
3
|
Erkul SN, Ucaroglu S. The Effect of Applying Treatment Sludge and Vermicompost to Soil on the Biodegradability of Poly(lactic acid) and Poly(3-Hydroxybutyrate). Polymers (Basel) 2025; 17:352. [PMID: 39940554 PMCID: PMC11820099 DOI: 10.3390/polym17030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
In this study, the biodegradability of poly(lactic acid) (PLA), the most widely produced bioplastic, and poly(3-hydroxybutyrate) (PHB), known for its very biodegradability, was investigated in soil and soil amended with nitrogen sources, such as treatment sludge and vermicompost. Biodegradability was evaluated over 180 days by measuring the amount of carbon dioxide (CO2) and analyzing samples with scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). PLA showed a low biodegradation (6%) in soil, but this increased to 40% in soil amended with treatment sludge and 45% in soil amended with vermicompost. PHB completely degraded within 90 days in soil; however, this process extended to 120 days in soil amended with vermicompost and 150 days in soil amended with treatment sludge. The organic and microbial content of the amendments enhanced PLA biodegradation, while PHB degradation slowed after 50 days as microorganisms prioritized other organic matter. SEM and FTIR analyses after 60 days showed more intense degradation of both bioplastics in soil amended with vermicompost. These findings highlight the potential of treatment sludge and vermicompost for improving bioplastic degradation, contributing to sustainable waste management and soil enhancement.
Collapse
Affiliation(s)
- Seyma Nur Erkul
- Environmental Engineering Department, Faculty of Engineering, Bursa Uludag University, Bursa 16059, Turkey;
- BUTEKOM Bursa Technology Coordination and R&D Center, Bursa 16245, Turkey
| | - Selnur Ucaroglu
- Environmental Engineering Department, Faculty of Engineering, Bursa Uludag University, Bursa 16059, Turkey;
| |
Collapse
|
4
|
Liu L, Liu C, Fu R, Nie F, Zuo W, Tian Y, Zhang J. Full-chain analysis on emerging contaminants in soil: Source, migration and remediation. CHEMOSPHERE 2024; 363:142854. [PMID: 39019170 DOI: 10.1016/j.chemosphere.2024.142854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Emerging contaminants (ECs) are gaining attention due to their prevalence and potential negative impacts on the environment and human health. This paper provides a comprehensive review of the status and trends of soil pollution caused by ECs, focusing on their sources, migration pathways, and environmental implications. Significant ECs, including plastics, synthetic polymers, pharmaceuticals, personal care products, plasticizers, and flame retardants, are identified due to their widespread use and toxicity. Their presence in soil is attributed to agricultural activities, urban waste, and wastewater irrigation. The review explores both horizontal and vertical migration pathways, with factors such as soil type, organic matter content, and moisture levels influencing their distribution. Understanding the behavior of ECs in soil is critical to mitigating their long-term risks and developing effective soil remediation strategies. The paper also examines the advantages and disadvantages of in situ and ex situ treatment approaches for ECs, highlighting optimal physical, chemical, and biological treatment conditions. These findings provide a fundamental basis for addressing the challenges and governance of soil pollution induced by ECs.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chunrui Liu
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - RunZe Fu
- Queen Mary School Hainan, Beijing University of Posts and Telecommunications, Lingshui Le'an International Education Innovation Pilot Zone, Hainan Province, 016000, China
| | - Fandi Nie
- Liaozhong District No. 1 Senior High School, No.139, Zhengfu Road, Liaozhong District, Shenyang, 110000, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
5
|
Lee YM, Kim KW, Yang JY, Kim BJ. Enhanced Crystallization of Sustainable Polylactic Acid Composites Incorporating Recycled Industrial Cement. Polymers (Basel) 2024; 16:1666. [PMID: 38932014 PMCID: PMC11207649 DOI: 10.3390/polym16121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Globally, the demand for single-use plastics has increased due to the rising demand for food delivery and household goods. This has led to environmental challenges caused by indiscriminate dumping and disposal. To address this issue, non-degradable plastics are being replaced with biodegradable alternatives. Polylactic acid (PLA) is a type of biodegradable plastic that has excellent mechanical properties. However, its applications are limited due to its low crystallinity and brittleness. Studies have been conducted to combat these limitations using carbon or inorganic nucleating agents. In this study, waste cement and PLA were mixed to investigate the effect of the hybrid inorganic nucleating agent on the crystallinity and mechanical properties of PLA. Waste cement accelerated the lamellar growth of PLA and improved its crystallinity. The results indicate that the flexural and impact strengths increased by approximately 3.63% and 76.18%, respectively.
Collapse
Affiliation(s)
- Yong-Min Lee
- Research & Development Division, Korea Carbon Industry Promotion Agency, Jeonju 54852, Republic of Korea; (Y.-M.L.); (K.-W.K.)
| | - Kwan-Woo Kim
- Research & Development Division, Korea Carbon Industry Promotion Agency, Jeonju 54852, Republic of Korea; (Y.-M.L.); (K.-W.K.)
| | - Jae-Yeon Yang
- Research & Development Division, Korea Carbon Industry Promotion Agency, Jeonju 54852, Republic of Korea; (Y.-M.L.); (K.-W.K.)
| | - Byung-Joo Kim
- Department of Materials Science and Chemical Engineering, Jeonju University, Jeonju 55069, Republic of Korea
- Material Application Research Institute, Jeonju University, Jeonju 55069, Republic of Korea
| |
Collapse
|
6
|
Munhoz DR, Meng K, Wang L, Lwanga EH, Geissen V, Harkes P. Exploring the potential of earthworm gut bacteria for plastic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172175. [PMID: 38575018 DOI: 10.1016/j.scitotenv.2024.172175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
The use of plastic mulch films in agriculture leads to the inevitable accumulation of plastic debris in soils. Here, we explored the potential of earthworm gut-inhabiting bacterial strains (Mycobacterium vanbaalenii (MV), Rhodococcus jostii (RJ), Streptomyces fulvissimus (SF), Bacillus simplex (BS), and Sporosarcina globispora (SG) to degrade plastic films (⌀ = 15 mm) made from commonly used polymers: low-density polyethylene film (LDPE-f), polylactic acid (PLA-f), polybutylene adipate terephthalate film (PBAT-f), and a commercial biodegradable mulch film, Bionov-B® (composed of Mater-Bi, a feedstock with PBAT, PLA and other chemical compounds). A 180-day experiment was conducted at room temperature (x̄ =19.4 °C) for different strain-plastic combinations under a low carbon media (0.1× tryptic soy broth). Results showed that the tested strain-plastic combinations did not facilitate the degradation of LDPE-f (treated with RJ and SF), PBAT-f (treated with BS and SG), and Bionov-B (treated with BS, MV, and SG). However, incubating PLA-f with SF triggered a reduction in the molecular weights and an increase in crystallinity. Therefore, we used PLA-f as model plastic to study the influence of temperature ("room temperature" & "30 °C"), carbon source ("carbon-free" & "low carbon supply"), and strain interactions ("single strains" & "strain mixtures") on PLA degradation. SF and SF + RJ treatments significantly fostered PLA degradation under 30 °C in a low-carbon media. PLA-f did not show any degradation in carbon-free media treatments. The competition between different strains in the same system likely hindered the performance of PLA-degrading strains. A positive correlation between the final pH of culture media and PLA-f weight loss was observed, which might reflect the pH-dependent hydrolysis mechanism of PLA. Our results situate SF and its co-culture with RJ strains as possible accelerators of PLA degradation in temperatures below PLA glass transition temperature (Tg). Further studies are needed to test the bioremediation feasibility in soils.
Collapse
Affiliation(s)
- Davi R Munhoz
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands.
| | - Ke Meng
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| | - Lang Wang
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| | - Esperanza Huerta Lwanga
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands; Agroecología, El Colegio de la Frontera Sur, Unidad Campeche, Av Polígono s/n, Cd. Industrial, Lerma, Campeche, Mexico
| | - Violette Geissen
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| | - Paula Harkes
- Soil Physics and Land Management Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708PB Wageningen, the Netherlands
| |
Collapse
|
7
|
Parolini M, De Felice B, Gazzotti S, Sugni M, Ortenzi MA. Comparison of the potential toxicity induced by microplastics made of polyethylene terephthalate (PET) and polylactic acid (PLA) on the earthworm Eiseniafoetida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123868. [PMID: 38556148 DOI: 10.1016/j.envpol.2024.123868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/02/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
A growing number of studies have demonstrated that microplastic (MP) contamination is widespread in terrestrial ecosystems. A wide array of MPs made of conventional, fossil-based polymers differing in size and shape has been detected in soils worldwide. Recently, also MPs made of bioplastics have been found in soils, but there is a dearth of information concerning their toxicity on soil organisms. This study aimed at exploring the potential toxicity induced by the exposure for 28 days to irregular shaped and differently sized MPs made of a fossil-based (polyethylene terephthalate - PET) and a bioplastic (polylactic acid - PLA) polymer on the earthworm Eisenia foetida. Two amounts (1 g and 10 g/kg of soil, corresponding to 0.1% and 1% of soil weight) of both MP types were administered to the earthworms. A multi-level approach was used to investigate the MP-induced effects at sub-individual and individual level. Changes in the activity of antioxidant and detoxifying enzymes, as well as in lipid peroxidation levels, were investigated at specific time-points (i.e., 7, 14, 21 and 28 days) as sub-individual responses. Histological analyses were performed to assess effects at tissue level, while the change in digging activity was considered as a proxy of behavioral effects. Earthworms ingested MPs made of both the polymers. MPs made of PET did not induce any adverse effect at none of the biological levels. In contrast, MPs made of PLA caused the modulation of earthworms' oxidative status as showed by a bell-shaped activity of superoxide dismutase coupled with an increase in glutathione peroxidase activity. However, neither oxidative and tissue damage, nor behavioral alteration occurred. These findings suggest that the exposure to bio-based MPs can cause higher toxicity compared to fossil-based MPs.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy.
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Stefano Gazzotti
- Department of Chemistry, University of Milan, via Golgi 19, I-20133, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, via Celoria 26, I-20133 Milan, Italy
| | - Marco Aldo Ortenzi
- Department of Chemistry, University of Milan, via Golgi 19, I-20133, Milan, Italy
| |
Collapse
|
8
|
Mayekar PC, Auras R. Accelerating Biodegradation: Enhancing Poly(lactic acid) Breakdown at Mesophilic Environmental Conditions with Biostimulants. Macromol Rapid Commun 2024; 45:e2300641. [PMID: 38206571 DOI: 10.1002/marc.202300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Poly(lactic acid) (PLA) has garnered interest due to its low environmental footprint and ability to replace conventional polymers and be disposed of in industrial composting environments. Although PLA is compostable when subjected to a suitable set of conditions, its broader acceptance in industrial composting facilities has been affected adversely due to longer degradation timeframes than the readily biodegradable organic waste fraction. PLA must be fully exposed to thermophilic conditions for prolonged periods to biodegrade, which has restricted its adoption and hindered its acceptance in industrial composting facilities, negating its home composting potential. Thus, enhancing PLA biodegradation is crucial to expand its acceptance. PLA's biodegradability is investigated in a compost matrix under mesophilic conditions at 37 °C for 180 days by biostimulating the compost environment with skim milk, gelatin, and ethyl lactate to enhance the different stages of PLA biodegradation. The evolved CO2, number average molecular weight (Mn), and crystallinity evolution are tracked. To achieve a Mn ≲ 10 kDa for PLA, the biodegradation rate is accelerated by 15% by adding skim milk, 25% by adding gelatin, and 22% by adding ethyl lactate. This work shows potential techniques to help biodegrade PLA in home composting setting by adding biostimulants.
Collapse
Affiliation(s)
- Pooja C Mayekar
- The School of Packaging, Michigan State University, 157 Packaging Building, 448 Wilson Rd, East Lansing, MI, 48824, USA
| | - Rafael Auras
- The School of Packaging, Michigan State University, 157 Packaging Building, 448 Wilson Rd, East Lansing, MI, 48824, USA
| |
Collapse
|
9
|
Theobald B, Risani R, Donaldson L, Bridson JH, Kingsbury JM, Pantos O, Weaver L, Lear G, Pochon X, Zaiko A, Smith DA, Anderson R, Davy B, Davy S, Doake F, Masterton H, Audrezet F, Maday SDM, Wallbank JA, Barbier M, Greene AF, Parker K, Harris J, Northcott GL, Abbel R. An investigation into the stability and degradation of plastics in aquatic environments using a large-scale field-deployment study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170301. [PMID: 38272094 DOI: 10.1016/j.scitotenv.2024.170301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The fragmentation of plastic debris is a key pathway to the formation of microplastic pollution. These disintegration processes depend on the materials' physical and chemical characteristics, but insight into these interrelationships is still limited, especially under natural conditions. Five plastics of known polymer/additive compositions and processing histories were deployed in aquatic environments and recovered after six and twelve months. The polymer types used were linear low density polyethylene (LLDPE), oxo-degradable LLDPE (oxoLLDPE), poly(ethylene terephthalate) (PET), polyamide-6 (PA6), and poly(lactic acid) (PLA). Four geographically distinct locations across Aotearoa/New Zealand were chosen: three marine sites and a wastewater treatment plant (WWTP). Accelerated UV-weathering under controlled laboratory conditions was also carried out to evaluate artificial ageing as a model for plastic degradation in the natural environment. The samples' physical characteristics and surface microstructures were studied for each deployment location and exposure time. The strongest effects were found for oxoLLDPE upon artificial ageing, with increased crystallinity, intense surface cracking, and substantial deterioration of its mechanical properties. However, no changes to the same extent were found after recovery of the deployed material. In the deployment environments, the chemical nature of the plastics was the most relevant factor determining their behaviours. Few significant differences between the four aquatic locations were identified, except for PA6, where indications for biological surface degradation were found only in seawater, not the WWTP. In some cases, artificial ageing reasonably mimicked the changes which some plastic properties underwent in aquatic environments, but generally, it was no reliable model for natural degradation processes. The findings from this study have implications for the understanding of the initial phases of plastic degradation in aquatic environments, eventually leading to microplastics formation. They can also guide the interpretation of accelerated laboratory ageing for the fate of aquatic plastic pollution, and for the testing of aged plastic samples.
Collapse
Affiliation(s)
| | | | | | - James H Bridson
- Scion, Rotorua 3010, New Zealand; University of Canterbury, Christchurch 8140, New Zealand
| | - Joanne M Kingsbury
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Olga Pantos
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Gavin Lear
- University of Auckland, Auckland 1010, New Zealand
| | - Xavier Pochon
- University of Auckland, Auckland 1010, New Zealand; Cawthron Institute, Nelson 7010, New Zealand
| | | | | | | | - Ben Davy
- Scion, Rotorua 3010, New Zealand
| | | | - Fraser Doake
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Hayden Masterton
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - François Audrezet
- University of Auckland, Auckland 1010, New Zealand; Cawthron Institute, Nelson 7010, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rajeshkumar L, Kumar PS, Ramesh M, Sanjay MR, Siengchin S. Assessment of biodegradation of lignocellulosic fiber-based composites - A systematic review. Int J Biol Macromol 2023; 253:127237. [PMID: 37804890 DOI: 10.1016/j.ijbiomac.2023.127237] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Lignocellulosic fiber-reinforced polymer composites are the most extensively used modern-day materials with low density and better specific strength specifically developed to render better physical, mechanical, and thermal properties. Synthetic fiber-reinforced composites face some serious issues like low biodegradability, non-environmentally friendly, and low disposability. Lignocellulosic or natural fiber-reinforced composites, which are developed from various plant-based fibers and animal-based fibers are considered potential substitutes for synthetic fiber composites because they are characterized by lightweight, better biodegradability, and are available at low cost. It is very much essential to study end-of-life (EoL) conditions like biodegradability for the biocomposites which occur commonly after their service life. During biodegradation, the physicochemical arrangement of the natural fibers, the environmental conditions, and the microbial populations, to which the natural fiber composites are exposed, play the most influential factors. The current review focuses on a comprehensive discussion of the standards and assessment methods of biodegradation in aerobic and anaerobic conditions on a laboratory scale. This review is expected to serve the materialists and technologists who work on the EoL behaviour of various materials, particularly in natural fiber-reinforced polymer composites to apply these standards and test methods to various classes of biocomposites for developing sustainable materials.
Collapse
Affiliation(s)
- L Rajeshkumar
- Centre for Machining and Materials Testing, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - P Sathish Kumar
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| | - M Ramesh
- Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, India
| | - M R Sanjay
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand.
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| |
Collapse
|
11
|
Jang Y, Kim M, Kim Y, Yu J, Kim SK, Han J, Kim YH, Min J. Enhancing biodegradation of PBAT through bio-stimulation using Pseudozyma jejuensis for effective plastic waste reduction. CHEMOSPHERE 2023; 340:139867. [PMID: 37597621 DOI: 10.1016/j.chemosphere.2023.139867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
Polybutylene adipate-co-terephthalate (PBAT) is a flexible and biodegradable material that finds applications in mulching film and the food packaging industry. In this study, we aimed to address the global plastic waste problem by developing an improved biodegradation system for PBAT. Our focus was on utilizing the biodegradation capabilities of Pseudozyma jejuensis, a microorganism known for its ability to decompose Polycaprolactam (PCL). Through bio-stimulation, we aimed to enhance the growth mechanism of P. jejuensis and optimize PBAT biodegradation. Our results demonstrated significant structural changes in the PBAT film, as revealed by FT-IR analysis. Moreover, FE-SEM imaging exhibited evident surface erosion and pitting, indicating physical alterations due to biodegradation. These findings provide strong evidence for the efficiency of our developed biodegradation system. To fully harness the potential of this system and enable its practical implementation, further research is warranted to optimize and scale up the process. Our work contributes to the ongoing efforts to combat the global plastic waste crisis, offering a valuable solution for the efficient biodegradation of PBAT.
Collapse
Affiliation(s)
- Yewon Jang
- School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| | - Minseo Kim
- School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| | - Yeji Kim
- School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| | - Jaeyoung Yu
- School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| | - Sung-Kon Kim
- School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| | - Jeehoon Han
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University, Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| | - Jiho Min
- School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
12
|
Olivito F, Jagdale P, Oza G. Synthesis and Biodegradation Test of a New Polyether Polyurethane Foam Produced from PEG 400, L-Lysine Ethyl Ester Diisocyanate (L-LDI) and Bis-hydroxymethyl Furan (BHMF). TOXICS 2023; 11:698. [PMID: 37624203 PMCID: PMC10457969 DOI: 10.3390/toxics11080698] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
In this paper we produced a bio-based polyether-polyurethane foam PU1 through the prepolymer method. The prepolymer was obtained by the reaction of PEG 400 with L-Lysine ethyl ester diisocyanate (L-LDI). The freshly prepared prepolymer was extended with 2,5-bis(hydroxymethyl)furan (BHMF) to produce the final polyurethane. The renewable chemical BHMF was produced through the chemical reduction of HMF by sodium borohydride. HMF was produced by a previously reported procedure from fructose using choline chloride and ytterbium triflate. To evaluate the degradation rate of the foam PU1, we tested the chemical stability by soaking it in a 10% sodium hydroxide solution. The weight loss was only 12% after 30 days. After that, we proved that enzymatic hydrolysis after 30 days using cholesterol esterase was more favoured than hydrolysis with NaOH, with a weight loss of 24%, probably due to the hydrophobic character of the PU1 and a better adhesion of the enzyme on the surface with respect to water. BHMF was proved to be of crucial importance for the enzymatic degradation assay at 37 °C in phosphate buffer solution, because it represents the breaking point inside the polyurethane chain. Soil burial degradation test was monitored for three months to evaluate whether the joint activity of sunlight, climate changes and microorganisms, including bacteria and fungi, could further increase the biodegradation. The unexpected weight loss after soil burial degradation test was 45% after three months. This paper highlights the potential of using sustainable resources to produce new biodegradable materials.
Collapse
Affiliation(s)
- Fabrizio Olivito
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Cubo 12C, 87036 Cosenza, Italy
| | - Pravin Jagdale
- Circular Carbon GmbH, Europaring 4, 94315 Straubing, Germany;
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Mexico;
| |
Collapse
|
13
|
Bher A, Cho Y, Auras R. Boosting Degradation of Biodegradable Polymers. Macromol Rapid Commun 2023; 44:e2200769. [PMID: 36648129 DOI: 10.1002/marc.202200769] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/05/2023] [Indexed: 01/18/2023]
Abstract
Biodegradation of polymers in composting conditions is an alternative end-of-life (EoL) scenario for contaminated materials collected through the municipal solid waste management system, mainly when mechanical or chemical methods cannot be used to recycle them. Compostability certification requirements are time-consuming and expensive. Therefore, approaches to accelerate the biodegradation of these polymers in simulated composting conditions can facilitate and speed up the evaluation and selection of potential compostable polymer alternatives and inform faster methods to biodegrade these polymers in real composting. This review highlights recent trends, challenges, and future strategies to accelerate biodegradation by modifying the polymer properties/structure and the compost environment. Both abiotic and biotic methods show potential for accelerating the biodegradation of biodegradable polymers. Abiotic methods, such as the incorporation of additives, reduction of molecular weight, reduction of size and reactive blending, are potentially the most straightforward, providing a level of technology that allows for easy adoption and adaptability. Novel methods, including the concept of self-immolative and triggering the scission of polymer chains in specific conditions, are increasingly sought. In terms of biotic methods, dispersion/encapsulation of enzymes during the processing step, biostimulation of the environment, and bioaugmentation with specific microbial strains during the biodegradation process are promising to accelerate biodegradation.
Collapse
Affiliation(s)
- Anibal Bher
- School of Packaging, Michigan State University, East Lansing, MI, 48824, USA
| | - Yujung Cho
- School of Packaging, Michigan State University, East Lansing, MI, 48824, USA
| | - Rafael Auras
- School of Packaging, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
14
|
Mistry AN, Kachenchart B, Pinyakong O, Assavalapsakul W, Jitpraphai SM, Somwangthanaroj A, Luepromchai E. Bioaugmentation with a defined bacterial consortium: A key to degrade high molecular weight polylactic acid during traditional composting. BIORESOURCE TECHNOLOGY 2023; 367:128237. [PMID: 36332866 DOI: 10.1016/j.biortech.2022.128237] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Polylactic acid (PLA) is commercialized as a compostable bio-thermoplastic. PLA degrades under industrial composting conditions where elevated temperatures are maintained for a long timeframe. However, these conditions cannot be achieved in a non-industrial compost pile. Therefore, this study aims to degrade high molecular weight PLA films by adding a PLA-degrading bacterial consortium (EAc) comprised of Nocardioides zeae EA12, Stenotrophomonas pavanii EA33, Gordonia desulfuricans EA63, and Chitinophaga jiangningensis EA02 during traditional composting. With EAc-bioaugmentation, PLA films (5-30% w/w) had complete disintegration (35 d), 77-82% molecular weight reduction (16 d), and higher CO2 liberation and mineralization than non-bioaugmented composting. Bacterial community analyses showed that EAc-bioaugmentation increased the relative abundance of Schlegelella, a known polymer degrader, and interacted positively with beneficial indigenous microbes like Bacillus, Schlegelella and Thermopolyspora. The bioaugmentation also decreased compost phytotoxicity. Hence, consortium EAc shows potential in PLA-waste treatment applications, such as backyard and small-scale composting.
Collapse
Affiliation(s)
- Avnish Nitin Mistry
- International Program in Hazardous Substance and Environmental Management (IP-HSM), Graduate School, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand
| | - Boonlue Kachenchart
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
| | - Onruthai Pinyakong
- Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Wanchai Assavalapsakul
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Somrudee Meprasert Jitpraphai
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Anongnat Somwangthanaroj
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Ekawan Luepromchai
- Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand; Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
15
|
Li X, Lin Y, Liu M, Meng L, Li C. A review of research and application of polylactic acid composites. J Appl Polym Sci 2022. [DOI: 10.1002/app.53477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Xiangrui Li
- Key Laboratory of Wood Materials Science and Engineering, School of Materials Science and Engineering Beihua University Jilin China
| | - Yu Lin
- Key Laboratory of Wood Materials Science and Engineering, School of Materials Science and Engineering Beihua University Jilin China
| | - Mingli Liu
- Key Laboratory of Wood Materials Science and Engineering, School of Materials Science and Engineering Beihua University Jilin China
| | - Lipeng Meng
- Forestry Resource Utilization Institute Jilin Forestry Scientific Research Institute Jilin China
| | - Chunfeng Li
- Key Laboratory of Wood Materials Science and Engineering, School of Materials Science and Engineering Beihua University Jilin China
| |
Collapse
|
16
|
Zhu X, Ren Q, Li W, Wu M, Weng Z, Wang J, Zheng W, Wang L. In situ nanofibrillar fully-biobased poly (lactic acid)/poly (ethylene 2,5-furandicarboxylate) composites with promoted crystallization kinetics, mechanical properties, and heat resistance. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Mironov VV, Trofimchuk ES, Zagustina NA, Ivanova OA, Vanteeva AV, Bochkova EA, Ostrikova VV, Zhang S. Solid-Phase Biodegradation of Polylactides (Review). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
18
|
Rapid biodegradation of high molecular weight semi-crystalline polylactic acid at ambient temperature via enzymatic and alkaline hydrolysis by a defined bacterial consortium. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Comparison of polylactic acid biodegradation ability of Brevibacillus brevis and Bacillus amyloliquefaciens and promotion of PLA biodegradation by soytone. Biodegradation 2022; 33:477-487. [PMID: 35788449 DOI: 10.1007/s10532-022-09993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
Polylactic acid (PLA), a biodegradable plastic, is used to substitute commercial plastics in various fields such as disposable packaging materials and mulching films. Although the biodegradation of PLA under submerged or composting conditions is accelerated, increasing the biodegradability of PLA under soil burial conditions is still a challenge. This study reviews and compares the PLA biodegradation ability of Bacillus amyloliquefaciens and Brevibacillus brevis, both PLA-degrading bacteria. The biodegradation ability of a single bacteria in non-composting conditions was evaluated. In addition, in terms of biostimulation, PLA biodegradation according to nitrogen sources was compared. As a result, a higher PLA biodegradation ability was found in B. brevis than in B. amyloliquefaciens. Moreover, it was confirmed that the biodegradation of the PLA film was increased by using soytone as a nitrogen source in both bacteria. Controlling the nitrogen source could be a new way to increase the biodegradation of PLA.
Collapse
|
20
|
Jiang Y, Zhang Y, Cao M, Li J, Wu M, Zhang H, Zheng S, Liu H, Yang M. Combining 'grafting to' and 'grafting from' to synthesize comb-like NCC-g-PLA as a macromolecular modifying agent of PLA. NANOTECHNOLOGY 2021; 32:385601. [PMID: 34130270 DOI: 10.1088/1361-6528/ac0b63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/15/2021] [Indexed: 06/12/2023]
Abstract
The surface modification of nano particles is very important in nanotechnology. Grafting from (GF) and grafting to (GT) are two main methods to prepare surface modified nanoparticles like nanocellulose crystalline (NCC) grafted with polylactic acid (PLA) chains. In the GF method, the NCC can get high grafting degree but short side chains to improve its compatibility with the polymer matrix. The GT method can help obtain long side chains to increase the chain entanglements but owns low grafting density. To take the advantage of both methods, a mixed modification method combining GT and GF methods was put forward to synthesize comb-like NCC-g-PLA (NP) as a macromolecular modifying agent of PLA. Firstly, GT Method was used to obtain long side-chain NP to improve chain entanglement. Secondly, the GF method was applied to obtain NP-g-PLA (NPL) and NP-g-PDLA (NPD) with additional short side chains to improve its dispersion and compatibility in the PLA matrix. The products showed an enhanced nucleation effect, the degree of crystallinity (Xc) of PLA composites increased almost four times with only 1 wt% NPD or NPL. What's more, the storage modulus and loss modulus of the composite melts also increased with 1 wt% NPL or NPD. The NPD/PLA shows a higher effect than NPL/PLA owning to stronger interaction originated from the stereocomplex (SC) network of PLA matrix with PDLA short chains in NPD.
Collapse
Affiliation(s)
- Yuanping Jiang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Yunxiu Zhang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Minghui Cao
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Jiali Li
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Miaomiao Wu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Han Zhang
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Shaodi Zheng
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, People's Republic of China
| | - Hesheng Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, People's Republic of China
- East China Jiaotong University, Nanchang 330013, People's Republic of China
| | - Mingbo Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| |
Collapse
|