1
|
Mulla MH, Norizan MN, Mohammad Rawi NF, Mohamad Kassim MH, Abdullah CK, Abdullah N, Norrrahim MNF. A review of fire performance of plant-based natural fibre reinforced polymer composites. Int J Biol Macromol 2025; 305:141130. [PMID: 39965704 DOI: 10.1016/j.ijbiomac.2025.141130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 01/26/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Natural fibre from plant-based reinforced polymer composites (NFRPCs) offers an attractive solution for various applications due to their cost-effectiveness, sustainability, and favourable properties. These materials provide high strength and stiffness while remaining lightweight, which is especially advantageous in weight-sensitive applications. However, their susceptibility to high flammability poses a significant challenge for applications requiring robust fire resistance. Consequently, researchers and engineers face the primary task of enhancing flame retardancy and thermal stability in NFRPCs. This paper provides a comprehensive review of the flammability and flame retardancy aspects of NFRPCs, delving into critical elements such as modification methods, the interfacial bond between natural fibres and the polymer matrix, fibre type, loading ratio, fibre orientation, polymer type, and composite structure. Understanding these factors is crucial for improving material fire resistance. The paper explores various flame-retardant strategies for NFRPCs, including additives, coatings, treatments, and nanomaterial hybridization. Detailed insights into mechanisms and characterization techniques related to thermal and flame retardancy are provided, covering aspects like thermal degradation, char formation, gas-phase reactions, fire testing methods, universally accepted standards, and specific flame-retardant requirements for NFRPCs in diverse applications such as automotive, aerospace, marine, and civil construction. The discussion on future directions emphasizes the development of innovative flame-retardant materials, improving composite design and fabrication improvements, and assessing fire performance and environmental impact.
Collapse
Affiliation(s)
- Mohammed Huzaifa Mulla
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mohd Nurazzi Norizan
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Nurul Fazita Mohammad Rawi
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Mohamad Haafiz Mohamad Kassim
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Che Ku Abdullah
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Norli Abdullah
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| | - Mohd Nor Faiz Norrrahim
- Research Center for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
2
|
Wang H, Qiu Q, Li B, Hu Y, Xu L, Qiu J. Alginate-based flame-retardant coatings for sustainable fire protection: A review. Int J Biol Macromol 2025; 308:142448. [PMID: 40147670 DOI: 10.1016/j.ijbiomac.2025.142448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/06/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
With a growing global focus on sustainability, bio-based flame retardants like alginates are becoming key alternatives to conventional resource-heavy options. Sourced from renewable seaweed, alginates are esteemed for their film-forming properties, environmental compatibility, and modification versatility. These qualities make them ideal for creating flame-resistant coatings. This review examines recent progress in alginate-based flame-retardant coatings, emphasizing synthesis methods, functionalization strategies, mechanisms, and performance assessments. A comparative analysis of coating techniques is presented, including conventional coatings approaches, sol-gel processes, and layer-by-layer (LbL) assembly. Modified alginates and additive flame retardants, including metal salts and nanoparticles, are discussed in detail. The findings suggest that alginate-based coatings hold significant promise for sustainable fire protection across multiple sectors, including textiles, construction, and electronics. Future research directions are also outlined, emphasizing the optimization of formulations and scalability for industrial applications.
Collapse
Affiliation(s)
- Honglei Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Qiqing Qiu
- Hangzhou JLS Flame Retardants Chemical Co., Ltd., Hangzhou 310011, People's Republic of China
| | - Bingfeng Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yu Hu
- Hangzhou JLS Flame Retardants Chemical Co., Ltd., Hangzhou 310011, People's Republic of China
| | - Ling Xu
- Hangzhou JLS Flame Retardants Chemical Co., Ltd., Hangzhou 310011, People's Republic of China
| | - Jieqiong Qiu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
3
|
Panda S, Hajra S, Kim H, Seo J, Jeong B, Lee I, Kaja KR, Belal MA, Vivekananthan V, Khanbareh H, Bowen C, Mistewicz K, Kim HJ. An Overview of Flame-Retardant Materials for Triboelectric Nanogenerators and Future Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415099. [PMID: 39838776 DOI: 10.1002/adma.202415099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/30/2024] [Indexed: 01/23/2025]
Abstract
Triboelectric nanogenerators (TENGs) have gained significant attention for ability to convert mechanical energy into electrical energy. As the applications of TENG devices expand, their safety and reliability becomes priority, particularly where there is risk of fire or spontaneous combustion. Flame-retardant materials can be employed to address these safety concerns without compromising the performance and efficiency of TENGs. The primary focus of this review is on flame-retardant materials, including polymers, biomaterials, liquid polymers, aerogels, and carbon-based materials. The fundamental properties of these materials for TENG applications are elucidated. The characteristics of each material type are described, along with their potential to boost the safety and performance of TENGs. The importance of flame retardancy in advancing TENG technology can be projected from its usage in wearable electronics, self-powered sensors, and smart textiles. Current challenges such as material compatibility, fabrication complexity, and environmental concerns are addressed, along with proposed strategies for overcoming them. This review underscores the significance of flame-retardant materials in strengthening the functionality and safety of TENG devices, paving the way for their widespread adoption across various industries.
Collapse
Affiliation(s)
- Swati Panda
- Department of Robotics and Mechatronics, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Sugato Hajra
- Department of Robotics and Mechatronics, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Hyeonggeun Kim
- Department of Robotics and Mechatronics, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Jeonggyu Seo
- Department of Robotics and Mechatronics, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - ByeongJun Jeong
- Department of Robotics and Mechatronics, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Ingyu Lee
- Department of Robotics and Mechatronics, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Kushal Ruthvik Kaja
- Department of Robotics and Mechatronics, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Mohamed Ahmed Belal
- Department of Robotics and Mechatronics, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Venkateswaran Vivekananthan
- Center for Flexible Electronics, Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Guntur, Andhra Pradesh, 522302, India
| | - Hamideh Khanbareh
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Chris Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Krystian Mistewicz
- Institute of Physics - Centre for Science and Education, Silesian University of Technology, Krasińskiego 8, Katowice, 40-019, Poland
| | - Hoe Joon Kim
- Department of Robotics and Mechatronics, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| |
Collapse
|
4
|
Liu K, Wang Z, Pan R, Xu L, Zhu F, Zhang Y, Meng Y, Xia X. Double-layer microencapsulation of ammonium polyphosphate and its enhancement on the hydrophobicity and flame retardancy of cellulose paper. Int J Biol Macromol 2025; 284:137924. [PMID: 39577520 DOI: 10.1016/j.ijbiomac.2024.137924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Cellulose paper is a flammable and hygroscopic material, which limits its application. In this paper, melamine-formaldehyde resin (MF) and silane coupling agents were used to microencapsulate ammonium polyphosphate (Si@MFAPP) in turn and added to the fibers suspension to prepare hydrophobic and flame-retardant cellulose paper. It was found that the surface of the ammonium polyphosphate (APP) was smooth with the water solubility of 0.24 g/100 mL. After microencapsulation with MF, the surface of MFAPP became rough, and the solubility was reduced to 0.1 g/100 mL. When further encapsulation with polysiloxanes, the surface showed significantly higher roughness, and a lotus leaf-like microspherical structure was formed. Specifically, its solubility decreased to 0.04 g/100 mL. In addition, the residual char weight of Si@MFAPP at 800 °C was increased from 25.27 % to 38.56 %. The water contact angle (WCA) of MFAPP/Pulp increased from 84.23° to 90.78°, and the limiting oxygen index (LOI) increased from 31.8 % to 34.1 %, meaning that the flame retardancy was obviously raised. The WCA of Si@MFAPP/Pulp enhanced to 96.45°, and the LOI was 34.5 %, meaning that the hydrophobicity was further raised. Therefore, Si@MFAPP significantly improved the flame-retardancy and hydrophobicity of the cellulose paper.
Collapse
Affiliation(s)
- Kexin Liu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310016, China
| | - Zhangyi Wang
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310016, China
| | - Ruidong Pan
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310016, China
| | - Ling Xu
- Hangzhou JLS Flame Retardants Chemical Co. Ltd, Hangzhou 310016, China
| | - Feng Zhu
- Hangzhou JLS Flame Retardants Chemical Co. Ltd, Hangzhou 310016, China
| | - Yu Zhang
- Zhejiang Jinchang Specialty Paper Co. Ltd, Quzhou 324499, China
| | - Yu Meng
- Zhejiang Jinchang Specialty Paper Co. Ltd, Quzhou 324499, China
| | - Xinxing Xia
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310016, China.
| |
Collapse
|
5
|
Wang G, Li G, Liu Y, Niu K. Synthesis of nitrogen and phosphorus-doped chitosan derivatives for enhanced flame retardancy, smoke suppression, and mechanical properties in epoxy resin composites. Int J Biol Macromol 2024; 283:137889. [PMID: 39586440 DOI: 10.1016/j.ijbiomac.2024.137889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/14/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Biomass-based flame retardants have attracted significant academic interest due to their environmental benefits and sustainability. Nevertheless, devising straightforward, eco-friendly, and mild methodologies to synthesize flame retardants of epoxy resins (EP) remains a formidable challenge. This paper reports the successful synthesis of a novel nitrogen and phosphorus-doped chitosan derivatives flame retardant (MMCA) utilizing phytic acid, chitosan, and melamine cyanurate via electrostatic self-assembly and physical encapsulation in an acidic aqueous solution. The incorporation of 5 wt% MMCA into the EP readily achieved a UL-94 V-0 rating. This improvement can be primarily attributed to the early formation of a continuous, dense, robust, and expanded char layer during combustion, coupled with the synergistic flame retardant mechanisms of radical scavenging and the dilution of non-combustible gases. Compared to pristine EP, EP/5MMCA exhibited significant reductions of 23.7 %, 29.2 %, and 24 % in total smoke production rate, peak heat release rate, and peak smoke production rate, respectively. Moreover, the strategic introduction of MMCA also enhanced the glass transition temperature, storage modulus, and crosslinking density of EP, improving its tensile, compressive and impact properties. This study proposes a simple, viable, and environmentally sustainable strategy for the fabrication of biomass-based flame retardants, resulting in notable improvements the flame retardancy, smoke suppression, fire safety, and mechanical robustness of EP.
Collapse
Affiliation(s)
- Guangfei Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guotao Li
- College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Yunpeng Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kangmin Niu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
6
|
Ding N, Yang Y, Lu B, Zhang R, Xu P, Niu D, Yang W, Ma P. From a bio-based polyphenol diol intermedia to high-performance polyurethane elastomer: Thermal stability, reprocessability and flame retardancy. J Colloid Interface Sci 2024; 680:608-617. [PMID: 39531879 DOI: 10.1016/j.jcis.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/15/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
In this work, a novel bio-based polyphenol diol intermediate (VDP) was synthesized through a combination of aldimine condensation and addition reactions, utilizing vanillin, 4,4'diamino diphenylmethane (DDM), and 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide (DOPO) as reactants, then various contents of VDP was introduced covalently into the polyurethane backbone. The integration of VDP has notably improved the flame retardancy of polyurethane elastomer, the limiting oxygen index (LOI) of the elastomer was elevated from 23% to 30%, and reaches V-0 rating in the UL-94 vertical burning test. The enhancement of flame retardancy is attributed to the introduction of VDP units, which not only generate PO· and PO2∙ that can capture active free radicals during combustion, but also releases non-flammable gases to improve the flame-retardant effect. Moreover, the VDP enhances the decomposition activation energy values (Eα) from 109.3 to 227.6 KJ/mol at mass loss rate (α) = 10%, which is attributed to the rigid benzene ring structure of VDP that significantly enhances the intermolecular interactions within the polyurethane chains. Furthermore, the elastomer shows excellent rebound resilience and reprocessability, retaining 98.6% of its original mechanical properties after multiple cycles of hot-press remolding and solvent casting.
Collapse
Affiliation(s)
- Ning Ding
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yi Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Binbao Lu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Rui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Pengwu Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Deyu Niu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Weijun Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Xu Y, Zhang W, Yin R, Sun J, Li B, Liu L. Novel Aryl Phosphate for Improving Fire Safety and Mechanical Properties of Epoxy Resins. Polymers (Basel) 2024; 16:3049. [PMID: 39518259 PMCID: PMC11548273 DOI: 10.3390/polym16213049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Epoxy resins (EPs) are highly flammable, and traditional flame retardant modifications often lead to a significant reduction in their mechanical performance, limiting their applications in aerospace and electrical and electronic fields. In this study, a novel flame retardant, bis(4-(((diphenylphosphoryl)oxy)methyl)phenyl)phenyl phosphate (DMP), was successfully prepared and introduced into the EP matrix. When the addition of DMP was 9 wt%, the EP/9 wt% DMP thermosets passed the UL-94 V-0 rating, and their LOI was increased from 24.5% of EP to 35.0%. With the introduction of DMP, the phosphoric acid compounds from the decomposition of DMP promoted the dehydration and charring of the EP matrix, and the compact, dense char layer effectively exerted the shielding effect in the condensed phase. Meanwhile, the produced phosphorus-containing radicals played a quenching effect in the gas phase. As a result, the peak heat release rate (PHRR) and total heat release (THR) of EP/9 wt% DMP were reduced by 68.9% and 18.1% compared to pure EP. In addition, the polyaromatic structure of DMP had good compatibility with the EP matrix, and the tensile strength, flexural strength and impact strength of EP/9 wt% DMP were enhanced by 116.38%, 17.84% and 59.11% in comparison with that of pure EP. This study is valuable for expanding the application of flame-retardant EP/DMP thermosets in emerging fields.
Collapse
Affiliation(s)
- Yue Xu
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.X.); (W.Z.); (R.Y.); (B.L.)
- National and Local Joint Engineering Laboratory for Ecological Utilization of Biological Resources, Northeast Forestry University, Harbin 150040, China
| | - Wenjia Zhang
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.X.); (W.Z.); (R.Y.); (B.L.)
- National and Local Joint Engineering Laboratory for Ecological Utilization of Biological Resources, Northeast Forestry University, Harbin 150040, China
| | - Ru Yin
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.X.); (W.Z.); (R.Y.); (B.L.)
- National and Local Joint Engineering Laboratory for Ecological Utilization of Biological Resources, Northeast Forestry University, Harbin 150040, China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bin Li
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.X.); (W.Z.); (R.Y.); (B.L.)
- National and Local Joint Engineering Laboratory for Ecological Utilization of Biological Resources, Northeast Forestry University, Harbin 150040, China
| | - Lubin Liu
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Y.X.); (W.Z.); (R.Y.); (B.L.)
- National and Local Joint Engineering Laboratory for Ecological Utilization of Biological Resources, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
8
|
Zhang Y, Liu X, Wan M, Zhu Y, Zhang K. Recent Development of Functional Bio-Based Epoxy Resins. Molecules 2024; 29:4428. [PMID: 39339423 PMCID: PMC11433883 DOI: 10.3390/molecules29184428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/04/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The development of epoxy resins is mainly dependent on non-renewable petroleum resources, commonly diglycidyl ether bisphenol A (DGEBA)-type epoxy monomers. Most raw materials of these thermoset resins are toxic to the health of human beings. To alleviate concerns about the environment and health, the design and synthesis of bio-based epoxy resins using biomass as raw materials have been widely studied in recent decades to replace petroleum-based epoxy resins. With the improvement in the requirements for the performance of bio-based epoxy resins, the design of bio-based epoxy resins with unique functions has attracted a lot of attention, and bio-based epoxy resins with flame-retardant, recyclable/degradable/reprocessable, antibacterial, and other functional bio-based epoxy resins have been developed to expand the applications of epoxy resins and improve their competitiveness. This review summarizes the research progress of functional bio-based epoxy resins in recent years. First, bio-based epoxy resins were classified according to their unique function, and synthesis strategies of functional bio-based epoxy resins were discussed, then the relationship between structure and performance was revealed to guide the synthesis of functional bio-based epoxy resins and stimulate the development of more types of functional bio-based epoxy resins. Finally, the challenges and opportunities in the development of functional bio-based epoxy resins are presented.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | | | | | - Kan Zhang
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
9
|
Xiang S, Chen C, Liu F, Wang L, Feng J, Lin X, Yang H, Feng X, Wan C. Phosphorus and nitrogen supramolecule for fabricating flame-retardant, transparent and robust polyvinyl alcohol film. J Colloid Interface Sci 2024; 669:775-786. [PMID: 38744155 DOI: 10.1016/j.jcis.2024.05.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Supramolecular flame retardants have attracted increasing attention recently due to their simple and eco-friendly preparation process. In this study, a novel flame retardant HEPFR was prepared using supramolecular self-assembly technology between piperazine and 1-hydroxy ethylidene-1,1-diphosphonic acid (HEDP). It was introduced into polyvinyl alcohol (PVA) matrix to form PVA/HEPFR composite film. Subsequently, the transparency, mechanical properties, thermal stability, and flame retardancy of PVA/HEPFR films were studied. Due to the hydrogen bonded cross-linked network structure between PVA and HEPFR, the mechanical properties of PVA/HEPFR films have been improved, while maintaining good transparency. With 10 wt% addition of HEPFR, PVA films can reach the VTM-0 level in UL-94 testing. And the limiting oxygen index can be increased from 18.5% of pure PVA to 26.5%. The peak heat release rate was reduced by 61.5%. The flame retardancy and thermal stability of PVA/HEPFR films have been greatly improved. This study provides a "one stone, three birds" strategy for preparing flame-retardant, transparent, and robust PVA film.
Collapse
Affiliation(s)
- Simeng Xiang
- College of Materials Science and Engineering, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China
| | - Chiyuan Chen
- College of Materials Science and Engineering, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China
| | - Feng Liu
- College of Materials Science and Engineering, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China
| | - Linsheng Wang
- College of Materials Science and Engineering, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China
| | - Jiao Feng
- College of Materials Science and Engineering, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China
| | - Xiang Lin
- College of Materials Science and Engineering, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China
| | - Hongyu Yang
- College of Materials Science and Engineering, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China.
| | - Xiaming Feng
- College of Materials Science and Engineering, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China.
| | - Chaojun Wan
- College of Materials Science and Engineering, Chongqing University, 174 Shazhengjie, Shapingba, Chongqing 400044, China
| |
Collapse
|
10
|
Trubachev S, Paletsky A, Sosnin E, Tuzhikov O, Buravov B, Shmakov A, Chernov A, Kulikov I, Sagitov A, Hu Y, Wang X. Flame-Retardant Glass Fiber-Reinforced Epoxy Resins with Phosphorus-Containing Bio-Based Benzoxazines and Graphene. Polymers (Basel) 2024; 16:2333. [PMID: 39204553 PMCID: PMC11359654 DOI: 10.3390/polym16162333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
This paper presents a study of the flammability and thermal decomposition products of glass fiber-reinforced epoxy resin (GFRER) with the addition of cardanol-based phosphorus-containing benzoxazine monomer (CBz) and graphene and their combinations in different proportions (up to 20 wt.%). The addition of CBz alone or in combination with graphene resulted in an increase in the limiting oxygen index (LOI) and self-extinguishing in the UL-94 HB test. The flame-retardant samples had better tensile mechanical properties than the sample without additives. The differential mass-spectrometric thermal analysis (DMSTA) of the thermal decomposition products of GFRER without additives and with the addition of CBz and graphene was carried out. CBz addition promoted the thermal decomposition of high-molecular-weight products of epoxy resin decomposition in the condensed phase and at the same time decreased the time of release of low-molecular-weight thermal decomposition products into the gas phase. Graphene addition resulted in an increase in the relative intensities of high-molecular-mass peaks compared to GFRER without additives.
Collapse
Affiliation(s)
- Stanislav Trubachev
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (S.T.); (E.S.); (A.S.); (A.C.); (I.K.); (A.S.)
| | - Alexander Paletsky
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (S.T.); (E.S.); (A.S.); (A.C.); (I.K.); (A.S.)
| | - Egor Sosnin
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (S.T.); (E.S.); (A.S.); (A.C.); (I.K.); (A.S.)
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Oleg Tuzhikov
- Chair of General and Inorganic Chemistry, Volgograd Technical State University, 400005 Volgograd, Russia; (O.T.); (B.B.)
| | - Boris Buravov
- Chair of General and Inorganic Chemistry, Volgograd Technical State University, 400005 Volgograd, Russia; (O.T.); (B.B.)
| | - Andrey Shmakov
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (S.T.); (E.S.); (A.S.); (A.C.); (I.K.); (A.S.)
| | - Anatoliy Chernov
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (S.T.); (E.S.); (A.S.); (A.C.); (I.K.); (A.S.)
| | - Ilya Kulikov
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (S.T.); (E.S.); (A.S.); (A.C.); (I.K.); (A.S.)
| | - Albert Sagitov
- Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia; (S.T.); (E.S.); (A.S.); (A.C.); (I.K.); (A.S.)
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China; (Y.H.); (X.W.)
| | - Xin Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China; (Y.H.); (X.W.)
| |
Collapse
|
11
|
Hu X, Xie H, Li Y, Wang C. Photo-aging of brominated epoxy microplastics in water under simulated solar irradiation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1380-1390. [PMID: 38973384 DOI: 10.1039/d4em00208c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Microplastics have become an increasingly concerning pollutant in aquatic environments, and photodegradation is their main degradation pathway in water. Gaining insight into the transformation process of microplastics will enhance our understanding of their behavior and destiny in natural environments. This paper studied the aging process of BER microplastics in aquatic environments under simulated sunlight and investigated the changes in the physical and chemical properties of microplastics and the changes in the leachate. During the photodegradation process, BER-MPs underwent extensive oxidation and reduction in particle size, and the originally smooth surface developed numerous voids, accompanied by yellowing. Introduction of O atoms in the molecular chains increased their hydrophilicity, resulting in the polymer chains breaking away from the plastic particles and dissolving in water. Also, once BER was excited by light, environmentally persistent free radicals are produced on its surface. Moreover, the breaking of C-Br bonds occurred during the photodegradation process of BER-MPs, which suggested that tetrabromobisphenol A would be transformed during the photoaging process of BER even if it was covalently bound to BER.
Collapse
Affiliation(s)
- Xuefeng Hu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Weiyang District, Xi'an, 710021, China.
| | - Hao Xie
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Weiyang District, Xi'an, 710021, China.
| | - Yujie Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Weiyang District, Xi'an, 710021, China.
| | - Chao Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Weiyang District, Xi'an, 710021, China.
| |
Collapse
|
12
|
Chen Z, Ma T, Liu W, Yuan G, Pan X, Zhang M, Luan X, Cui Z, Xin J. Brominated Flame Retardants (BFRs) in China Over the Past Half-Century: Stocks, Flows, Fates, and Ecological Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13613-13623. [PMID: 39051121 DOI: 10.1021/acs.est.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
China is a significant producer and consumer of various brominated flame retardants (BFRs), raising environmental concerns due to their widespread presence and potential threats to ecosystems and organisms. This study adopts a life cycle perspective, combining material flow analysis, multimedia environmental modeling, and ecological risk assessment to systematically analyze the substance metabolism and ecological risks of six BFR types in China from 1970 to 2021. The findings reveal that China's cumulative BFR consumption reached 3.3 Mt, with the electronics sector being the predominant contributor at 52.1%. Consequently, 1.5 kt of BFRs were released into the environment, with 24.9%, 31.5%, and 43.6% being discharged into the air, water, and soil, respectively. Notably, the proportion of novel BFRs in emissions has steadily increased over the years, exemplified by the increase in decabromodiphenyl ethane (DBDPE) from 21.3% in 2010 to 30.1% in 2021. Geographically, BFR concentrations are higher in the eastern and southwestern regions compared to those in the northwest. Presently, certain BFRs like tetrabromobisphenol A (TBBPA) and DBDPE exhibit moderate to high ecological risks, primarily concentrated in the Shandong and Sichuan provinces. A combination of efficient recycling, emission control, and substitution with novel flame-retardant can minimize the exposure of BFRs to the environment and organisms.
Collapse
Affiliation(s)
- Zhihui Chen
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Tengyun Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wei Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Shandong Key Laboratory of Environmental Processes and Health, Shandong University, Qingdao 266237, China
| | - Gang Yuan
- Jiaozhou Branch, Qingdao Municipal Bureau of Ecology and Environment, Qingdao 266300, China
| | - Xin Pan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Mingyue Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoyu Luan
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jia Xin
- School of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
13
|
Hassan MN, Abdullah TS, Mou MB, Towsif HR. Analysis of the flame retardancy effect of boron-containing compound on polyester-cotton blended fabric. Heliyon 2024; 10:e34007. [PMID: 39071651 PMCID: PMC11277368 DOI: 10.1016/j.heliyon.2024.e34007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Flame-retardant finishing of textile materials is crucial for ensuring human safety and mitigating fire hazards. Though various textile fibers have inherent flame-resistant properties, cotton fiber has a higher affinity to burn. This research focused on developing non-durable FR treatments for cotton-rich polyester-cotton (T/C) blended products economically, using boron-containing compounds. Because of the high melting point use of borax on T/C fabric reduces the fabric's flammability. Boric acid was also used as an auxiliary substrate and Di-sodium hydrogen phosphate dihydrate was used for its cleaning and softening properties. Borax and boric acid create a layer of char when burned and stop the flame. We used the impregnation method for this finishing process. After the chemical finish on different types of T/C fabric, we completed different types of tests like 45 0 flame retardant, LOI, SEM, breaking strength, drapability, crease recovery, and water vapor transmission tests, and found the desired properties. It increased the flame retardancy and crease recovery properties but the slight reduction of the fabric strength was noticed in case of excessive coating. Water vapor transmission property also reduced gradually with the increase of chemical concentration. Since the chemicals are available in the local market and lower in cost than common FR chemicals, it is more economical.
Collapse
Affiliation(s)
- Mohammad Naim Hassan
- Department of Textile Engineering, Khulna University of Engineering & Technology, Khulna - 9203, Bangladesh
| | - Tahrim Sadman Abdullah
- Department of Textile Engineering, Khulna University of Engineering & Technology, Khulna - 9203, Bangladesh
| | - Mehrin Beg Mou
- Department of Textile Engineering, Khulna University of Engineering & Technology, Khulna - 9203, Bangladesh
| | - Hasin Raihan Towsif
- Department of Textile Engineering, Khulna University of Engineering & Technology, Khulna - 9203, Bangladesh
| |
Collapse
|
14
|
Wang C, Zhang X, Nadzir MM, Uyama H, Tang W, Fu D, Xie Z, Wang C, Wang J, Yang J. All-in-one bio-derived poly(L-lactic acid)-based composite with fire-resistance and smoke-suppression performance. Int J Biol Macromol 2024; 271:132610. [PMID: 38788876 DOI: 10.1016/j.ijbiomac.2024.132610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
The flammability of bio-derived poly(L-lactic acid) (PLA) greatly limits its application and eco-friendly multifunctional fire-fighting PLA-based composites are highly desired. In this work, a fully bio-based modified CS (C-CS) and commercially available eco-friendly ammonium polyphosphate (APP) were used as a synergistic flame retardant agent (C-CS/APP) to investigate its effects on fire-proofing performance and diverse properties of the PLA. The PLA/5%C-CS/5%APP composite exhibited excellent fire-resistant performance with anti-droplet, smoke-suppression and self-extinguishing property, and its limited oxygen index enhanced by 37 % (compared with neat PLA). This composite reached the highest V-0 fire safety rating, and its peak of heat release rate and total smoke production reduced by 26.5 % and 68.3 %, respectively. In addition, the char residue yield after the cone calorimeter test increased by 46 times in the composite, indicating an outstanding char-forming capacity. The condensed phase flame retardancy played a crucial role on the fire-fighting of this composite, that is, significantly enhanced char residue (as a physical barrier) blocked the heat exchange and O2 entry, and further suppressed the combustion reaction. Additionally, the PLA-based composite showed outstanding UV-absorption property, good anti-bacterial effect, and increased hydrophilicity and crystallizability.
Collapse
Affiliation(s)
- Chen Wang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China
| | - Xiaolei Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China
| | - Masrina Mohd Nadzir
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Wencong Tang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China
| | - Dandan Fu
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China
| | - Zhanghua Xie
- Tianjin Nengpu Science and Technology Co., Ltd, Huading New Area 1-2-10, Haitai Inovation 6 Road, Huayuan Industrial Park, Tianjin 300384, China
| | - Chenwan Wang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China.
| | - Junsheng Wang
- Tianjin Fire Research Institute of the Ministry of Emergency Management, Tianjin 300381, China.
| | - Jinjun Yang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
15
|
Dun L, Ouyang Z, Sun Q, Yue X, Wu G, Li B, Kang W, Wang Y. A Simple and Efficient Magnesium Hydroxide Modification Strategy for Flame-Retardancy Epoxy Resin. Polymers (Basel) 2024; 16:1471. [PMID: 38891418 PMCID: PMC11174588 DOI: 10.3390/polym16111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Magnesium hydroxide, as a green inorganic flame-retardancy additive, has been widely used in polymer flame retardancy. However, magnesium hydroxide is difficult to disperse with epoxy resin (EP), and its flame-retardancy performance is poor, so it is difficult to use in flame-retardant epoxy resin. In this study, an efficient magnesium hydroxide-based flame retardant (MH@PPAC) was prepared by surface modification of 2-(diphenyl phosphine) benzoic acid (PPAC) using a simple method. The effect of MH@PPAC on the flame-retardancy properties for epoxy resins was investigated, and the flame-retardancy mechanism was studied. The results show that 5 wt% MH@PPAC can increase the limiting oxygen index for EP from 24.1% to 38.9%, achieving a V-0 rating. At the same time, compared to EP, the peak heat release rate, peak smoke production rate, total smoke production rate, and peak CO generation rate for EP/5 wt% MH@PPAC composite material decreased by 53%, 45%, 51.85%, and 53.13% respectively. The cooperative effect for PPAC and MH promotes the formation of a continuous and dense char layer during the combustion process for the EP-blend material, significantly reducing the exchange for heat and combustible gases, and effectively hindering the combustion process. Additionally, the surface modification of PPAC enhances the dispersion of MH in the EP matrix, endowing EP with superior mechanical properties that meet practical application requirements, thereby expanding the application scope for flame-retardant EP-blend materials.
Collapse
Affiliation(s)
- Linan Dun
- College of Materials Science and Engineering, Northeastern University, Shenyang 110004, China; (L.D.); (Q.S.)
- Hofmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.O.); (X.Y.); (G.W.); (B.L.)
| | - Zeen Ouyang
- Hofmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.O.); (X.Y.); (G.W.); (B.L.)
| | - Qihao Sun
- College of Materials Science and Engineering, Northeastern University, Shenyang 110004, China; (L.D.); (Q.S.)
| | - Xiaoju Yue
- Hofmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.O.); (X.Y.); (G.W.); (B.L.)
| | - Guodong Wu
- Hofmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.O.); (X.Y.); (G.W.); (B.L.)
| | - Bohan Li
- Hofmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.O.); (X.Y.); (G.W.); (B.L.)
| | - Weidong Kang
- Jinxi Industries Group Co., Ltd., Taiyuan 030000, China;
| | - Yuanhao Wang
- College of Materials Science and Engineering, Northeastern University, Shenyang 110004, China; (L.D.); (Q.S.)
- Hofmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China; (Z.O.); (X.Y.); (G.W.); (B.L.)
| |
Collapse
|
16
|
Dong X, Dai GW, Xie L, Li DL, Sun Z, Liu S. Heat-triggered shape recovery, EMI shielding and flame retardant: A novel cellulose/M(OH)(OCH 3)@dopamine@Ag (M=Co, Ni) nanopaper for early fire alarm. Int J Biol Macromol 2024; 264:130270. [PMID: 38423423 DOI: 10.1016/j.ijbiomac.2024.130270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Fire alarm systems are essential for protecting lives and properties from fire hazards. However, most of the existing fire alarm nanopapers rely on the resistance reduction after heating, which requires direct contact with the flame. In this study, we present a novel fire alarm nanopaper (CMPA) based on heat-triggered shape recovery. The CMPA is composed of hydroxypropyl methyl cellulose (HPMC) as the matrix and 2D nanomaterials M(OH)(OCH3) as fillers. When the temperature of CMPA exceeded the glass transition, the thrice-folded CMPA-1.0 flattened in 30s and connected to the alarm circuit based on its conductive surface. According to the results, the CMPA-1.0 with a thickness of about 0.2 mm had an efficient electromagnetic shielding of 42.1 dB. Moreover, the CMPA-1.0 self-extinguished rapidly after being ignited with its original shape preserved. The peak heat release rate of CMPA-1.0 was 108.9 W/g, which was 61.9 % lower than that of HPMC. Furthermore, the thermal conductivity of CMPA-1.0 reached to 0.317 W m-1 K-1, which was 40.8 % higher than that of HPMC, reducing the heat accumulation effectively. This work shows that CMPA is an ideal material for sensitive and safe early fire alarm, and the strategy based on heat-triggered shape recovery is promising in fire alarm application.
Collapse
Affiliation(s)
- Xiang Dong
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China.
| | - Guo-Wei Dai
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Le Xie
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - De-Long Li
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Zhiyu Sun
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Song Liu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| |
Collapse
|
17
|
Yu Y, Chen J, Ding A, Wang C, Wang Y, Yang L. Synthesis of a Novel P/N-Triazine-Containing Ring Flame Retardant and Its Application in Epoxy Resin. Polymers (Basel) 2024; 16:871. [PMID: 38611130 PMCID: PMC11013841 DOI: 10.3390/polym16070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
To meet the environmental protection and flame retardancy requirements for epoxy resins (EPs) in certain fields, in this study, a novel triazine-ring-containing DOPO-derived compound (VDPD), derived from vanillin, 2,4-Diamino-6-phenyl-1,3,5-triazine, and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), was synthesized using a one-pot method. Flame-retardant epoxy resin (FREP) was prepared by adding various ratios of VDPD to EP and curing with 4,4-diaminodiphenylmethane (DDM). The curing behavior, thermal stability, mechanical properties, and flame-retardant properties of the FREP were examined in various tests. According to the results, when the amount of VDPD added to the EP increased, the glass transition temperature of the FREP decreased linearly, and the flame-retardant properties gradually improved. With a 0.4 wt.% P content, the vertical burning rating of EP/DDM/VDPD-0.4 (according to the theoretical content of VDPD) reached the V-0 level, and the LOI value reached 33.1%. In addition, the results of a CCT showed that the peak heat release rate (PHRR) of EP/DDM/VDPD-0.4 decreased by 32% in comparison with that of the EP. Furthermore, compared with those of the EP, the tensile strength of EP/DDM/VDPD-0.4 decreased from 80.2 MPa to 74.3 MPa, only decreasing by 6 MPa, and the tensile modulus increased. Overall, VDPD can maintain the mechanical properties of EP and effectively improve its flame-retardant properties.
Collapse
Affiliation(s)
- Yi Yu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (C.W.); (Y.W.)
| | - Junlei Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (C.W.); (Y.W.)
| | - Anxin Ding
- Institute of Advanced Material Manufacturing Technology, Wuhan University of Technology, Wuhan 430070, China;
| | - Changzeng Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (C.W.); (Y.W.)
| | - Yunfei Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (C.W.); (Y.W.)
| | - Ling Yang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (Y.Y.); (C.W.); (Y.W.)
| |
Collapse
|
18
|
Zhang T, Liu Y. Preparation of High-Transparency Phosphenanthrene-Based Flame Retardants and Studies of Their Flame-Retardant Properties. Polymers (Basel) 2023; 15:4665. [PMID: 38139917 PMCID: PMC10747229 DOI: 10.3390/polym15244665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Transparency is an important property for polymer flame retardants, especially epoxy resin (EP) flame retardants, and flame-retardant epoxy resins that maintain a high transparency and low chromatic aberration play important roles in the optical, lighting, and energy industries. Herein, a DOPO-based flame retardant 6,6'-((sulfonylbis(4,1-phenylene))bis(oxy))bis(dibenzo[c,e][1,2]oxaphosphinine 6-oxide) with a high transparency and low chromatic aberration was prepared via the classical Atherton-Todd reaction and named SBPDOPO. Its chemical structure was characterized with Fourier IR spectroscopy and NMR spectroscopy. An EP loaded with 7 wt% SBPDOPO passed the UL-94 V-0 rating with an LOI value of 32.1%, and the peak heat release rate, total heat release, and total smoke production were reduced by 34.1%, 31.6%, and 27.7%, respectively, compared with those of pure EP. In addition, the addition of SBPDOPO improved the thermal stability, residual mass, and glass transition temperature of the EP. On this basis, the EP containing 7 wt% SBPDOPO maintained a high transparency and low color aberration, with a transmittance of 94% relative to that of pure EP and a color aberration ΔE of 1.63. Finally, the flame-retardant mechanism of SBPDOPO was analyzed, which demonstrated that it exerted both gas-phase and condensed-phase flame-retardant effects, and that SBPDOPO/EP had high potential for application scenarios in which both flame retardancy and transparency are needed. SBPDOPO/EP has great potential for applications requiring both flame retardancy and transparency.
Collapse
Affiliation(s)
- Tao Zhang
- School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Yong Liu
- School of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
- Work Safety Key Laboratory on Prevention and Control of Gas and Roof Disasters for Southern Coal Mines, Hunan University of Science and Technology, Xiangtan 411201, China
- Hunan Provincial Key Laboratory of Safe Mining Techniques of Coal Mines, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
19
|
Dallaev R, Pisarenko T, Papež N, Sadovský P, Holcman V. A Brief Overview on Epoxies in Electronics: Properties, Applications, and Modifications. Polymers (Basel) 2023; 15:3964. [PMID: 37836013 PMCID: PMC10574936 DOI: 10.3390/polym15193964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
This paper offers a short overview of epoxy resins, encompassing their diverse characteristics, variants, chemical modifications, curing processes, and intriguing electrical properties. Epoxies, valued for their multifunctional attributes, serve as fundamental materials across industries. In the realm of dielectric strength, epoxy resins play a crucial role in electrical insulation. This paper discusses the mechanisms governing dielectric breakdown, strategies to enhance dielectric strength, and the impact of various fillers and additives on insulation performance. Through an exploration of recent research and advancements, this paper delves into the spectrum of epoxy properties, the array of subspecies and variants, their chemical adaptability, and the intricacies of curing. The examination of electrical resistance and conductivity, with a focus on their frequency-dependent behavior, forms a pivotal aspect of the discussion. By shedding light on these dimensions, this review provides a concise yet holistic understanding of epoxies and their role in shaping modern materials science.
Collapse
Affiliation(s)
- Rashid Dallaev
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, Czech Republic; (T.P.); (N.P.); (V.H.)
| | | | | | - Petr Sadovský
- Department of Physics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 2848/8, 61600 Brno, Czech Republic; (T.P.); (N.P.); (V.H.)
| | | |
Collapse
|
20
|
Xiang S, Feng J, Yang H, Feng X. Synthesis and Applications of Supramolecular Flame Retardants: A Review. Molecules 2023; 28:5518. [PMID: 37513390 PMCID: PMC10383342 DOI: 10.3390/molecules28145518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The development of different efficient flame retardants (FRs) to improve the fire safety of polymers has been a hot research topic. As the concept of green sustainability has gradually been raised to the attention of the whole world, it has even dominated the research direction of all walks of life. Therefore, there is an urgent calling to explore the green and simple preparation methods of FRs. The development of supramolecular chemistry in the field of flame retardancy is expanding gradually. It is worth noting that the synthesis of supramolecular flame retardants (SFRs) based on non-covalent bonds is in line with the current concepts of environmental protection and multi-functionality. This paper introduces the types of SFRs with different dimensions. SFRs were applied to typical polymers to improve their flame retardancy. The influence on mechanical properties and other material properties under the premise of flame retardancy was also summarized.
Collapse
Affiliation(s)
- Simeng Xiang
- College of Materials Science and Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Jiao Feng
- College of Materials Science and Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Hongyu Yang
- College of Materials Science and Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| | - Xiaming Feng
- College of Materials Science and Engineering, Chongqing University, Shapingba, Chongqing 400044, China
| |
Collapse
|
21
|
Huang Z, Li F, Huang M, Meng W, Rao W, Lei Y, Yu C. Preparation of Naphthalene-Based Flame Retardant for High Fire Safety and Smoke Suppression of Epoxy Resin. Molecules 2023; 28:molecules28114287. [PMID: 37298763 DOI: 10.3390/molecules28114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
One of the current challenges in the development of flame retardants is the preparation of an environmentally friendly multi-element synergistic flame retardant to improve the flame retardancy, mechanical performance, and thermal performance of composites. This study synthesized an organic flame retardant (APH) using (3-aminopropyl) triethoxysilane (KH-550), 1,4-phthalaadehyde, 1,5-diaminonaphthalene, and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) as raw materials, through the Kabachnik-Fields reaction. Adding APH to epoxy resin (EP) composites could greatly improve their flame retardancy. For instance, UL-94 with 4 wt% APH/EP reached the V-0 rating and had an LOI as high as 31.2%. Additionally, the peak heat release rate (PHRR), average heat release rate (AvHRR), total heat release (THR), and total smoke produced (TSP) of 4% APH/EP were 34.1%, 31.8%, 15.2%, and 38.4% lower than EP, respectively. The addition of APH improved the mechanical performance and thermal performance of the composites. After adding 1% APH, the impact strength increased by 15.0%, which was attributed to the good compatibility between APH and EP. The TG and DSC analyses revealed that the APH/EP composites that incorporated rigid naphthalene ring groups had higher glass transition temperatures (Tg) and a higher amount of char residue (C700). The pyrolysis products of APH/EP were systematically investigated, and the results revealed that flame retardancy of APH was realized by the condensed-phase mechanism. APH has good compatibility with EP, excellent thermal performance, enhanced mechanical performance and rational flame retardancy, and the combustion products of the as-prepared composites complied with the green and environmental protection standards which are also broadly applied in industry.
Collapse
Affiliation(s)
- Ziqin Huang
- College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin 541004, China
| | - Fangli Li
- College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin 541004, China
| | - Mingyan Huang
- College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin 541004, China
| | - Wenqiao Meng
- College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin 541004, China
| | - Wenhui Rao
- College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin 541004, China
| | - Yuan Lei
- China Antimony Corporation, Nanning 530001, China
| | - Chuanbai Yu
- College of Materials Science and Engineering, Guilin University of Technology (GUT), Guilin 541004, China
| |
Collapse
|
22
|
Chulikavit N, Huynh T, Wang C, Yuen ACY, Khatibi A, Mouritz A, Kandare E. Engineering mycelium fungi into an effective char-forming thermal protection material via alkaline deacetylation. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
23
|
Guo C, Peng Q, Wei H, Liu J, Hu X, Peng J, Ma J, Ye X, Yang J. Phosphorus-Containing Flame-Retardant Benzocyclobutylene Composites with High Thermal Stability and Low CTE. ACS OMEGA 2023; 8:9464-9474. [PMID: 36936317 PMCID: PMC10018689 DOI: 10.1021/acsomega.2c08159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
As a component of printed circuit substrate, copper clad laminate (CCL) needs to meet the performance requirements of heat resistance, flame retardancy, and low coefficient of thermal expansion (CTE), which, respectively, affects the stability, safety, and processability of terminal electronic products. In this paper, benzocyclobutylene (BCB)-functionalized phosphorus-oxygen flame retardant composites were prepared through introducing the BCB groups, and the performance was researched by thermogravimetric analysis, microcombustion calorimetry, and thermomechanical analysis. The research results show that these phosphorus oxide compounds containing BCB groups show good thermal stability and low total heat release (THR) after thermal curing, and the more BCB groups on the phosphorus oxide monomers, the better the thermal stability and flame retardancy of cured resins. The Td5 and THR of the composite (M3) are as high as 443 °C and 23.1 kJ/g, respectively. In addition, the CTE of M3 is as low as 16.71 ppm/°C. Introduction of BCB groups which can be crosslinked through heat to improve the thermal stability, flame retardancy, and reduced CTE of traditional organophosphorus flame retardant materials. These materials are expected to be good candidates for CCL substrates for electronic circuits.
Collapse
Affiliation(s)
- Chao Guo
- School
of Materials and Chemistry, Southwest University
of Science and Technology, Mianyang 621010, China
- State
Key Laboratory of Environmentally-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qiuxia Peng
- School
of Materials Science and Engineering, Sichuan
University of Science & Engineering, Zigong 643000, China
| | - Hubo Wei
- School
of Materials and Chemistry, Southwest University
of Science and Technology, Mianyang 621010, China
- State
Key Laboratory of Environmentally-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jiaying Liu
- School
of Materials and Chemistry, Southwest University
of Science and Technology, Mianyang 621010, China
- State
Key Laboratory of Environmentally-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xinyu Hu
- School
of Materials and Chemistry, Southwest University
of Science and Technology, Mianyang 621010, China
- State
Key Laboratory of Environmentally-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Juan Peng
- School
of Materials and Chemistry, Southwest University
of Science and Technology, Mianyang 621010, China
- State
Key Laboratory of Environmentally-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jiajun Ma
- School
of Materials and Chemistry, Southwest University
of Science and Technology, Mianyang 621010, China
- State
Key Laboratory of Environmentally-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xu Ye
- School
of Materials and Chemistry, Southwest University
of Science and Technology, Mianyang 621010, China
- School
of Continuing Education, Southwest University
of Science and Technology, Mianyang 621010, China
| | - Junxiao Yang
- School
of Materials and Chemistry, Southwest University
of Science and Technology, Mianyang 621010, China
- State
Key Laboratory of Environmentally-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
24
|
Chen Y, Zeng Y, Wu Y, Chen T, Qiu R, Liu W. Flame-Retardant and Recyclable Soybean Oil-Based Thermosets Enabled by the Dynamic Phosphate Ester and Tannic Acid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5963-5973. [PMID: 36650640 DOI: 10.1021/acsami.2c21279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The demands of safety and sustainability have driven the development of intrinsic flame-retardant biobased polymers from renewable materials. Herein, a mechanically robust, good flame-retardant, and recyclable thermoset was developed from renewable epoxidized soybean oil (ESO) by using 2-hydroxyethyl methacrylate phosphate (HEMAP) as the reactive flame retardant and tannic acid (TA) as the charring agent. The flame resistance of the obtained ESO-based thermoset achieved the highest UL-94 of V-0 rating and a limited oxygen index value of 26.7% due to the synergistic flame-retardant effect of phosphate and TA. The flame-retardant mechanisms of the gaseous phase and condensed phase were fully investigated by thermogravimetric infrared, scanning electron microscopy-energy-dispersive spectrometry, X-ray photoelectron spectroscopy, and Raman spectra. It is confirmed that the incorporation of phosphate and TA could effectively promote the formation of dense carbon layers and delay the pyrolysis of long aliphatic chains. The ternary crosslinking of ESO, HEMAP, and TA via free-radical polymerization and epoxy-ring opening reaction resulted in a rigid network with a high crosslink density, bestowing the thermoset with superior tensile strength (20.0 MPa), flexural strength (36.3 MPa), and bonding strength (16.7 MPa on steel). Moreover, the ESO-based thermoset exhibited a fast stress relaxation behavior due to the transesterification of dynamic β-hydroxyl phosphate esters, which enables the network with thermal-healing ability and recyclability. This study explores a feasible method to prepare an intrinsic flame-retardant polymer from commercially available and renewable vegetable oils and natural polyphenols.
Collapse
Affiliation(s)
- Yizhen Chen
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou350108, P. R. China
| | - Yong Zeng
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou350108, P. R. China
| | - Yuchao Wu
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou350108, P. R. China
| | - Tingting Chen
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou350108, P. R. China
| | - Renhui Qiu
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou350108, P. R. China
| | - Wendi Liu
- College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou350108, P. R. China
| |
Collapse
|
25
|
Chen J, Zhang Y, He F, Ying J, Li S, Peng L, Wu Q, Fan Z, Jiang B. Facile synthesis of intrinsically flame‐retardant epoxy thermosets with high mechanical properties from lignin derivatives. J Appl Polym Sci 2023. [DOI: 10.1002/app.53636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jituo Chen
- College of Chemistry and Materials Engineering Zhejiang A & F University Hangzhou People's Republic of China
| | - Yuxiang Zhang
- College of Chemistry and Materials Engineering Zhejiang A & F University Hangzhou People's Republic of China
| | - Feng He
- Zhejiang Longsheng Chemical Research Institute Co., Ltd. Shaoxing People's Republic of China
| | - Jun Ying
- College of Chemistry and Materials Engineering Zhejiang A & F University Hangzhou People's Republic of China
| | - Shi‐Neng Li
- College of Chemistry and Materials Engineering Zhejiang A & F University Hangzhou People's Republic of China
| | - Li Peng
- ZJU‐Hangzhou Global Scientific and Technological Innovation Center, School of Micro‐Nano Electronics Zhejiang University Hangzhou People's Republic of China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou People's Republic of China
| | - Qiang Wu
- College of Chemistry and Materials Engineering Zhejiang A & F University Hangzhou People's Republic of China
| | - Zhiqiang Fan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou People's Republic of China
| | - Baiyu Jiang
- College of Chemistry and Materials Engineering Zhejiang A & F University Hangzhou People's Republic of China
| |
Collapse
|
26
|
Epoxidation of Terminalia catappa L. Seed oil: Optimization reaction. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1016/j.sajce.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
27
|
Xu SD, Gu S, Pu XL, Xiao YF, Lu JH, Wang YZ, Chen L. In situ phase separation of novel phosphorus-containing polyester in epoxy resins towards simultaneously improved thermal conductivity and fire safety. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
28
|
Mohd Sabee MMS, Itam Z, Beddu S, Zahari NM, Mohd Kamal NL, Mohamad D, Zulkepli NA, Shafiq MD, Abdul Hamid ZA. Flame Retardant Coatings: Additives, Binders, and Fillers. Polymers (Basel) 2022; 14:2911. [PMID: 35890685 PMCID: PMC9324192 DOI: 10.3390/polym14142911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
This review provides an intensive overview of flame retardant coating systems. The occurrence of flame due to thermal degradation of the polymer substrate as a result of overheating is one of the major concerns. Hence, coating is the best solution to this problem as it prevents the substrate from igniting the flame. In this review, the descriptions of several classifications of coating and their relation to thermal degradation and flammability were discussed. The details of flame retardants and flame retardant coatings in terms of principles, types, mechanisms, and properties were explained as well. This overview imparted the importance of intumescent flame retardant coatings in preventing the spread of flame via the formation of a multicellular charred layer. Thus, the intended intumescence can reduce the risk of flame from inherently flammable materials used to maintain a high standard of living.
Collapse
Affiliation(s)
- Mohd Meer Saddiq Mohd Sabee
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| | - Zarina Itam
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Salmia Beddu
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Nazirul Mubin Zahari
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Nur Liyana Mohd Kamal
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Daud Mohamad
- Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia; (S.B.); (N.M.Z.); (N.L.M.K.); (D.M.)
| | - Norzeity Amalin Zulkepli
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| | - Mohamad Danial Shafiq
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| | - Zuratul Ain Abdul Hamid
- Emerging Polymer Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (M.M.S.M.S.); (N.A.Z.); (M.D.S.)
| |
Collapse
|