1
|
Rathore P, Montz B, Hung SH, Pandey PK, Perry SL, Emrick T, Schiffman JD. Electrospinning of Self-Assembling Oligopeptides into Nanofiber Mats: The Impact of Peptide Composition and End Groups. Biomacromolecules 2025; 26:1604-1613. [PMID: 39907636 DOI: 10.1021/acs.biomac.4c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Low-molecular-weight oligopeptides can be electrospun into nanofiber mats. However, the mechanism underlying their electrospinnability is not well-understood. In this study, we used solid-phase peptide synthesis to produce the oligopeptide FFKK, to which the aromatic end-capping groups naphthalene, pyrene, and tetraphenylporphyrin were attached. Nuclear magnetic resonance, circular dichroism, and electrospray ionization mass spectrometry were used to characterize the oligopeptide structures. We investigated the effect of end-caps and oligopeptide concentration on their self-assembly as well as on their electrospinnability in fluorinated solvents. All oligopeptides with aromatic end-caps were amenable to electrospinning. Attenuated total reflectance Fourier transform infrared spectroscopy and microrheology results support the hypothesis that at sufficiently high concentrations, the self-assembled structures interact strongly, which facilitates electrospinning. Moreover, the results from this fundamental study can be extended to nonpeptidic small molecules possessing strong intermolecular interactions.
Collapse
Affiliation(s)
- Prerana Rathore
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Brian Montz
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Shao-Hsiang Hung
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Pankaj Kumar Pandey
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Todd Emrick
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
2
|
Dini VA, Kiebala DJ, Genovese D, Zaccheroni N, Calvino C, Contini E, Weder C, Schrettl S, Gualandi C. In Situ Monitoring of Mechanofluorescence in Polymeric Nanofibers. Macromol Rapid Commun 2024:e2400855. [PMID: 39714132 DOI: 10.1002/marc.202400855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Mechanofluorescent polymers represent a promising class of materials exhibiting fluorescence changes in response to mechanical stimuli. One approach to fabricating these polymers involves incorporating aggregachromic dyes, whose emission properties are governed by the intermolecular distance, which can, in turn, be readily altered by microstructural changes in the surrounding polymer matrix during mechanical deformation. In this study, a mechanofluorescent additive featuring excimer-forming oligo(p-phenylene vinylene) dyes (tOPV) is incorporated into electrospun polyurethane fibers, producing mats of fibers with diameters ranging from 300 to 700 nm. The influence of the additive concentration and fiber orientation on the mechanofluorescent response under tensile deformation is investigated. In situ fluorescence spectroscopy and microscopy imaging reveal a strain-dependent change of the fluorescence color from orange to yellow or green, with a more pronounced response in prealigned fibers. Stresses experienced by the nanofibers during elongation are mapped in real-time. The data reveal that forces initially concentrate in fibers that are aligned parallel to the applied strain, and only later redistribute as other fibers once they also align. These findings advance the understanding of force transfer within fibrous polymer mats and are expected to facilitate the development of self-reporting nanofibers for applications in load-bearing devices, wearable technologies, and mechanochromic textiles.
Collapse
Affiliation(s)
- Valentina A Dini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy
| | - Derek J Kiebala
- Adolphe Merkle Institute (AMI), Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
- National Competence Center in Research Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
- Department of Chemistry, Johannes Gutenberg University of Mainz, 55128, Mainz, Germany
| | - Damiano Genovese
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy
- INSTM UdR of Bologna, University of Bologna, Via Selmi 2, Bologna, 40126, Italy
| | - Nelsi Zaccheroni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy
- INSTM UdR of Bologna, University of Bologna, Via Selmi 2, Bologna, 40126, Italy
| | - Céline Calvino
- Adolphe Merkle Institute (AMI), Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Emma Contini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy
- INSTM UdR of Bologna, University of Bologna, Via Selmi 2, Bologna, 40126, Italy
| | - Christoph Weder
- Adolphe Merkle Institute (AMI), Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
- National Competence Center in Research Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Stephen Schrettl
- Adolphe Merkle Institute (AMI), Polymer Chemistry and Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
- National Competence Center in Research Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
- TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 2, 85354, Freising, Germany
| | - Chiara Gualandi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy
- INSTM UdR of Bologna, University of Bologna, Via Selmi 2, Bologna, 40126, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, Bologna, 40136, Italy
| |
Collapse
|
3
|
Toufanian S, Sharma M, Xu F, Tayebi SS, McCabe C, Piliouras E, Hoare T. Electrospun "Hard-Soft" Interpenetrating Nanofibrous Tissue Scaffolds Facilitating Enhanced Mechanical Strength and Cell Proliferation. ACS Biomater Sci Eng 2024; 10:6887-6902. [PMID: 39367819 DOI: 10.1021/acsbiomaterials.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
"Soft" hydrogel-based macroporous scaffolds have been widely used in tissue engineering and drug delivery applications due to their hydrated interfaces and macroporous structures, but have drawbacks related to their weak mechanics and often weak adhesion to cells. In contrast, "hard" poly(caprolactone) (PCL) electrospun fibrous networks have desirable mechanical strength and ductility but offer minimal interfacial hydration and thus limited capacity for cell proliferation. Herein, we demonstrate the fabrication of interpenetrating nanofibrous networks based on coelectrospun PCL and poly(oligoethylene glycol methacrylate) (POEGMA) nanofibers that exhibit the mechanical benefits of PCL but the interfacial hydration benefits of hydrogels. The electrospinning process results in partially aligned but interpenetrating fiber network with minimal internal phase separation, leading to anisotropic but strong mechanical properties even in the hydrated state; apparent ultimate tensile strengths of the swollen scaffolds ranged from 429 ± 39 kPa in the direction of fiber alignment (longitudinal) to 86 ± 25 kPa perpendicular to fiber alignment (cross-longitudinal), typical of PCL-based scaffolds and enabling efficient suture retention in different directions. However, contact angle measurements indicate hydrogel-like interfacial properties due to the presence of the interpenetrating POEGMA network. C2C12 myoblast proliferation in the PCL-POEGMA scaffolds was 50% higher than that observed on PCL-only scaffolds, a result attributed to the presence of the more hydrophilic POEGMA interpenetrating nanofiber network. Overall, this method is demonstrated to represent a facile single-step strategy to fabricate strong macroporous but still interfacially hydrophilic scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Samaneh Toufanian
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Mya Sharma
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Fei Xu
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Seyed Saeid Tayebi
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Christina McCabe
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Elaina Piliouras
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
4
|
Du C, Jiang Y, Junejo SA, Jia X, Zhang B, Huang Q. Metal-anchored oxidized starch-pullulan nanofiber films enhance ethylene adsorption and banana preservation. Int J Biol Macromol 2024; 282:137399. [PMID: 39521234 DOI: 10.1016/j.ijbiomac.2024.137399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The development of novel strategies to control ethylene accumulation of fruit is crucial for improving food preservation and reducing spoilage-related losses. In this study, an oxidized starch-pullulan (OS-PUL) nanofiber films were prepared with silver, copper, and iron to control ethylene accumulation. The starch nanofiber film exhibited an average diameter of 96 nm at an OS-PUL concentration of 25 % (wt/wt). Adsorption test showed the maximum ethylene adsorption capacity (21.86 mg·m-2) of metal-nanofiber film with typical hierarchical microporous and mesoporous structure. Oxidized starch-pullulan-metal-nanofiber film extended the shelf life of bananas from 8 to 15 days by efficiently absorbing ethylene. This work will contribute to the development of innovative packaging materials with ethylene adsorption properties, which can help reduce food waste.
Collapse
Affiliation(s)
- Chunwei Du
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shahid Ahmed Junejo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiangze Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Bin Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China
| | - Qiang Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China.
| |
Collapse
|
5
|
Jones S, VandenHeuvel S, Luengo Martinez A, Birur R, Burgeson E, Gilbert I, Baker A, Wolf M, Raghavan SA, Rogers S, Cosgriff-Hernandez E. Suspension electrospinning of decellularized extracellular matrix: A new method to preserve bioactivity. Bioact Mater 2024; 41:640-656. [PMID: 39280898 PMCID: PMC11401211 DOI: 10.1016/j.bioactmat.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Decellularized extracellular matrices (dECM) have strong regenerative potential as tissue engineering scaffolds; however, current clinical options for dECM scaffolds are limited to freeze-drying its native form into sheets. Electrospinning is a versatile scaffold fabrication technique that allows control of macro- and microarchitecture. It remains challenging to electrospin dECM, which has led researchers to either blend it with synthetic materials or use enzymatic digestion to fully solubilize the dECM. Both strategies reduce the innate bioactivity of dECM and limit its regenerative potential. Herein, we developed a new suspension electrospinning method to fabricate a pure dECM fibrous mesh that retains its innate bioactivity. Systematic investigation of suspension parameters was used to identify critical rheological properties required to instill "spinnability," including homogenization, concentration, and particle size. Homogenization enhanced particle interaction to impart the requisite elastic behavior to withstand electrostatic drawing without breaking. A direct correlation between concentration and viscosity was observed that altered fiber morphology; whereas, particle size had minimal impact on suspension properties and fiber morphology. The versatility of this new method was demonstrated by electrospinning dECM with three common decellularization techniques (Abraham, Badylak, Luo) and tissue sources (intestinal submucosa, heart, skin). Bioactivity retention after electrospinning was confirmed using cell proliferation, angiogenesis, and macrophage polarization assays. Collectively, these findings provide a framework for researchers to electrospin dECM for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Sarah Jones
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sabrina VandenHeuvel
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Andres Luengo Martinez
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ruchi Birur
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Eric Burgeson
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Champaign, IL, 61820, USA
| | - Isabelle Gilbert
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Aaron Baker
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Matthew Wolf
- Cancer Biomaterials Engineering Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Shreya A Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Simon Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Champaign, IL, 61820, USA
| | | |
Collapse
|
6
|
Neves BV, Ramos SDP, Trindade LGD, Nass P, Jacob-Lopes E, Zepka LQ, Braga ARC, de Rosso VV. Spinning gold: Unraveling the bioaccessibility and bioavailability of Pitanga's carotenoid microfibers. Food Res Int 2024; 196:115101. [PMID: 39614574 DOI: 10.1016/j.foodres.2024.115101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
The design and development of nanoparticle- and microparticle-based delivery systems incorporating carotenoids into carrier materials offers multiple advantages, including enhancing the bio-efficacy of these compounds due to improving their bioaccessibility and bioavailability. This study introduced pitanga saponified carotenoid extract (PSCE) and pitanga non-saponified carotenoid extract (PSCE) in a 12 % zein/1 %PEO solution and electrospun for fiber production. Then, the fibers were characterized, and their bioaccessibility and bioavailability were also evaluated. The average mean diameter of carotenoid non-saponified microfiber (CNSM) and saponified (CSM) was 5.76 ± 1.7 μm and 4.92 ± 1.4 μm, respectively, indicating that the saponification process reduces the viscosity of the solution resulting in the development of finer microfibers. Carotenoid encapsulation efficiency ranged between 10.3 % and 8.43 % for saponified and non-saponified extracts, respectively. Surprisingly, no carotenoid release was detected from both microfibers after 72 h. Carotenoid bioaccessibility was higher in pitanga pulp compared to both microfibers. The xanthophylls showed higher bioavailability in pitanga pulp. The study's results suggest that the microfibers' structure significantly influenced carotenoid release and cellular absorption more than the chemical structure of carotenoids themselves.
Collapse
Affiliation(s)
- Bruna Vitoria Neves
- Nutrition and Food Service Research Center, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136 CEP 11015-02, Santos, São Paulo, Brazil
| | - Sergiana Dos Passos Ramos
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos 11015-020 SP, Brazil
| | - Letícia Guerreiro da Trindade
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Silva Jardim Street, 136, Vila Mathias, Santos 11015-020 SP, Brazil; Department of Chemical Engineering, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Diadema, São Paulo 09972-270, Brazil
| | - Pricila Nass
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), Santa Maria RS 97105-900, Brazil
| | - Eduardo Jacob-Lopes
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), Santa Maria RS 97105-900, Brazil
| | - Leila Queiroz Zepka
- Department of Food Technology and Science, Federal University of Santa Maria (UFSM), Santa Maria RS 97105-900, Brazil
| | - Anna Rafaela Cavalcante Braga
- Nutrition and Food Service Research Center, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136 CEP 11015-02, Santos, São Paulo, Brazil; Department of Chemical Engineering, Universidade Federal de São Paulo (UNIFESP), Campus Diadema, Diadema, São Paulo 09972-270, Brazil
| | - Veridiana Vera de Rosso
- Nutrition and Food Service Research Center, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim 136 CEP 11015-02, Santos, São Paulo, Brazil.
| |
Collapse
|
7
|
Liu J, Dong Z, Huan K, He Z, Zhang Q, Deng D, Luo L. Application of the Electrospinning Technique in Electrochemical Biosensors: An Overview. Molecules 2024; 29:2769. [PMID: 38930834 PMCID: PMC11206051 DOI: 10.3390/molecules29122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Electrospinning is a cost-effective and flexible technology for producing nanofibers with large specific surface areas, functionalized surfaces, and stable structures. In recent years, electrospun nanofibers have attracted more and more attention in electrochemical biosensors due to their excellent morphological and structural properties. This review outlines the principle of electrospinning technology. The strategies of producing nanofibers with different diameters, morphologies, and structures are discussed to understand the regulation rules of nanofiber morphology and structure. The application of electrospun nanofibers in electrochemical biosensors is reviewed in detail. In addition, we look towards the future prospects of electrospinning technology and the challenge of scale production.
Collapse
Affiliation(s)
- Jie Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China;
| | - Zhong Dong
- College of Sciences, Shanghai University, Shanghai 200444, China; (Z.D.); (K.H.)
| | - Ke Huan
- College of Sciences, Shanghai University, Shanghai 200444, China; (Z.D.); (K.H.)
| | - Zhangchu He
- College of Sciences, Shanghai University, Shanghai 200444, China; (Z.D.); (K.H.)
| | - Qixian Zhang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200436, China
- Shaoxing Institute of Technology, Shanghai University, Shaoxing 312000, China
| | - Dongmei Deng
- College of Sciences, Shanghai University, Shanghai 200444, China; (Z.D.); (K.H.)
| | - Liqiang Luo
- College of Sciences, Shanghai University, Shanghai 200444, China; (Z.D.); (K.H.)
| |
Collapse
|
8
|
Feng Y, Bazzar M, Hernaez M, Barreda D, Mayes AG, González Z, Melendi-Espina S. Unveiling the potential of cellulose, chitosan and polylactic acid as precursors for the production of green carbon nanofibers with controlled morphology and diameter. Int J Biol Macromol 2024; 269:132152. [PMID: 38723811 DOI: 10.1016/j.ijbiomac.2024.132152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/30/2024]
Abstract
Carbon nanofibers (CNFs) are very promising materials with application in many fields, such as sensors, filtration systems, and energy storage devices. This study aims to explore the use of eco-friendly biopolymers for CNF production, finding novel, suitable and sustainable precursors and thus prioritising environmentally conscious processes and ecological compatibility. Polymeric nanofibers (PNFs) using cellulose acetate, polylactic acid, and chitosan as precursors were successfully prepared via electrospinning. Rheological testing was performed to determine suitable solution concentrations for the production of PNFs with controlled diameter and appropriate morphology. Their dimensions and structure were found to be significantly influenced by the solution concentration and electrospinning flow rate. Subsequently, the electrospun green nanofibers were subject to stabilisation and carbonisation to convert them into CNFs. Thermal behaviour and chemical/structural changes of the nanofibers during stabilisation were investigated by means of thermogravimetric analysis and Fourier-transform infrared spectroscopy, while the final morphology of the fibers after stabilisation and carbonisation was examined through scanning electron microscopy to determine the optimal stabilisation parameters. The optimal fabrication parameters for cellulose and chitosan-based CNFs with excellent morphology and thermal stability were successfully established, providing valuable insight and methods for the sustainable and environmentally friendly synthesis of these promising materials.
Collapse
Affiliation(s)
- Yifan Feng
- School of Engineering, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Masoomeh Bazzar
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Miguel Hernaez
- School of Engineering, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Daniel Barreda
- Instituto de Ciencia y Tecnología del Carbono (INCAR), CSIC, Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - Andrew G Mayes
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK
| | - Zoraida González
- Instituto de Ciencia y Tecnología del Carbono (INCAR), CSIC, Francisco Pintado Fe 26, Oviedo 33011, Spain
| | - Sonia Melendi-Espina
- School of Engineering, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, UK.
| |
Collapse
|
9
|
Ramacciotti F, Sciutto G, Cazals L, Biagini D, Reale S, Degano I, Focarete ML, Mazzeo R, Thoury M, Bertrand L, Gualandi C, Prati S. Microporous electrospun nonwovens combined with green solvents for the selective peel-off of thin coatings from painting surfaces. J Colloid Interface Sci 2024; 663:869-879. [PMID: 38447401 DOI: 10.1016/j.jcis.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Over the last few decades, significant research efforts have been devoted to developing new cleaning systems aimed at preserving cultural heritage. One of the main objectives is to selectively remove aged or undesirable coatings from painted surfaces while preventing the cleaning solvent from permeating and engaging with the pictorial layers. In this work, we propose the use of electrospun polyamide 6,6 nonwovens in conjunction with a green solvent (dimethyl carbonate). By adjusting the electrospinning parameters, we produced three distinct nonwovens with varying average fiber diameters, ranging from 0.4 μm to 2 μm. These samples were characterized and tested for their efficacy in removing dammar varnish from painted surfaces. In particular, the cleaning process was monitored using macroscale PL (photoluminescence) imaging in real-time, while post-application examination of the mats was performed through scanning electron microscopy. The solvent evaporation rate from the different nonwovens was evaluated using gravimetric analysis and Proton Transfer Reaction- Time-of-Flight. It was observed that the application of the nonwovens with small or intermediate pore sizes for the removal of the terpenic varnish resulted in the swollen resin being absorbed into the mats, showcasing a peel-off effect. Thus, this protocol eliminates the need for further potentially detrimental removal procedures involving cotton swabs. The experimental data suggests that the peel-off effect relates to the microporosity of the mats, which enhances the capillary rise of the swollen varnish. Furthermore, the application of these systems to historical paintings underwent preliminary validation using a real painting from the 20th century.
Collapse
Affiliation(s)
- Francesca Ramacciotti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Giorgia Sciutto
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Laure Cazals
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190 Gif-sur-Yvette, France
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Serena Reale
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Ilaria Degano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Maria Letizia Focarete
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy; INSTM UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; Health Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia Bologna, Italy
| | - Rocco Mazzeo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Mathieu Thoury
- Université Paris-Saclay, CNRS, Ministère de la Culture, UVSQ, MNHN, Institut Photonique d'Analyse Non-destructive Européen des Matériaux Anciens, Saint-Aubin, 91192, France
| | - Loïc Bertrand
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190 Gif-sur-Yvette, France
| | - Chiara Gualandi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy; INSTM UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy.
| | - Silvia Prati
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
10
|
Meng Z, Löser L, Saalwächter K, Gasser U, Klok HA. Disulfide-Cross-Linked Tetra-PEG Gels. Macromolecules 2024; 57:3058-3065. [PMID: 38616809 PMCID: PMC11008237 DOI: 10.1021/acs.macromol.3c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
The preparation of polymer gels via cross-linking of four-arm star-shaped poly(ethylene glycol) (Tetra-PEG) precursors is an attractive strategy to prepare networks with relatively well-defined topologies. Typically, Tetra-PEG gels are obtained by cross-linking heterocomplementary reactive Tetra-PEG precursors. This study, in contrast, explores the cross-linking of self-reactive, thiol-end functional Tetra-PEG macromers to form disulfide-cross-linked gels. The structure of the disulfide-cross-linked Tetra-PEG gels was studied with multiple-quantum NMR (MQ-NMR) spectroscopy and small-angle neutron scattering (SANS) experiments. In line with earlier simulation studies, these experiments showed a strong dependence of the relative fractions of the different network connectivities on the concentration of the thiol-end functional Tetra-PEG macromer that was used for the synthesis of the networks. Disulfide-cross-linked Tetra-PEG gels prepared at macromer concentrations below the overlap concentration (c = 0.66c*) primarily feature defect connectivity motifs, such as primary loops and dangling ends. For networks prepared at macromer concentrations above the overlap concentration, the fraction of single-link connectivities was found to be similar to that in amide-cross-linked Tetra-PEG gels obtained by heterocomplementary cross-linking of N-hydroxysuccinimide ester and amine functional Tetra-PEG macromers. Since disulfide bonds are susceptible to reductive cleavage, these disulfide-cross-linked gels are of interest, e.g., as reduction-sensitive hydrogels for a variety of biomedical applications.
Collapse
Affiliation(s)
- Zhao Meng
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
- Swiss
National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Lucas Löser
- Institut
für Physik - NMR, Martin-Luther Universität
Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle (Saale), Germany
| | - Kay Saalwächter
- Institut
für Physik - NMR, Martin-Luther Universität
Halle-Wittenberg, Betty-Heimann-Str. 7, 06120 Halle (Saale), Germany
| | - Urs Gasser
- Laboratory
for Neutron Scattering and Imaging (LNS), Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Harm-Anton Klok
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
- Swiss
National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| |
Collapse
|
11
|
Zhao Y, Ming J, Cai S, Wang X, Ning X. One-step fabrication of polylactic acid (PLA) nanofibrous membranes with spider-web-like structure for high-efficiency PM 0.3 capture. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133232. [PMID: 38141315 DOI: 10.1016/j.jhazmat.2023.133232] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/09/2023] [Indexed: 12/25/2023]
Abstract
High-efficiency air filters are in high demand to protect human health from the threat of ultrafine particulate matters (PM). However, most commercial air filters are less effective for PM0.3 capture and/or still suffer from undesirable pressure drops. They are also typically petroleum-based. Herein, a double-jet synchronous electrospinning technology was demonstrated to fabricate spider-web-like polylactic acid (PLA) nanofibrous membranes (SPNM) in one step. The properties of spinning solutions were regulated to construct favorable multi-scale nanofiber and bead structures that mimicked the structural units in spider-webs. The as-prepared SPNM exhibited excellent filtration efficiency (99.87 %) and high quality factor (0.321 Pa-1) against the PM0.3, while presenting an attractively low pressure drop (19 Pa). Additionally, the filtration performance of SPNM was almost completely preserved during 10-cycle tests and the 6-month long-term tests, showing excellent function stability and durability. Benefiting from its good hydrophobicity (WCA = 143.2°), SPNM also presented a satisfactory filtration efficiency (>99.37 %) with low pressure drop (18 Pa) at an environment with humidity at 90 % against PM0.3. Furthermore, the unique structure increased the mechanical strength of SPNM, facilitating the processability for practical applications. Overall, this work may shed light on a promising approach for developing biomass-based, highly efficient filtration materials with hierarchical structures.
Collapse
Affiliation(s)
- Yintao Zhao
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, China; Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, Shandong, China
| | - Jinfa Ming
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, China; Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, Shandong, China
| | - Shunzhong Cai
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, China; Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, Shandong, China
| | - Xuefang Wang
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, China; Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, Shandong, China.
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, China; Shandong Center for Engineered Nonwovens, Qingdao University, Qingdao 266071, Shandong, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, Shandong, China.
| |
Collapse
|
12
|
Türkoğlu GC, Khomarloo N, Mohsenzadeh E, Gospodinova DN, Neznakomova M, Salaün F. PVA-Based Electrospun Materials-A Promising Route to Designing Nanofiber Mats with Desired Morphological Shape-A Review. Int J Mol Sci 2024; 25:1668. [PMID: 38338946 PMCID: PMC10855838 DOI: 10.3390/ijms25031668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Poly(vinyl alcohol) is one of the most attractive polymers with a wide range of uses because of its water solubility, biocompatibility, low toxicity, good mechanical properties, and relatively low cost. This review article focuses on recent advances in poly(vinyl alcohol) electrospinning and summarizes parameters of the process (voltage, distance, flow rate, and collector), solution (molecular weight and concentration), and ambient (humidity and temperature) in order to comprehend the influence on the structural, mechanical, and chemical properties of poly(vinyl alcohol)-based electrospun matrices. The importance of poly(vinyl alcohol) electrospinning in biomedical applications is emphasized by exploring a literature review on biomedical applications including wound dressings, drug delivery, tissue engineering, and biosensors. The study also highlights a new promising area of particles formation through the electrospraying of poly(vinyl alcohol). The limitations and advantages of working with different poly(vinyl alcohol) matrices are reviewed, and some recommendations for the future are made to advance this field of study.
Collapse
Affiliation(s)
- Gizem Ceylan Türkoğlu
- Department of Textile Engineering, Dokuz Eylul University, İzmir 35397, Turkey;
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
| | - Niloufar Khomarloo
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, Junia, F-59000 Lille, France
| | - Elham Mohsenzadeh
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, Junia, F-59000 Lille, France
| | - Dilyana Nikolaeva Gospodinova
- Faculty of Electrical Engineering, Department of Electrical Apparatus, Technical University of Sofia, 1156 Sofia, Bulgaria;
| | - Margarita Neznakomova
- Faculty of Industrial Technology, Department of Material Science and Technology of Materials, Technical University of Sofia, 1000 Sofia, Bulgaria;
| | - Fabien Salaün
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
| |
Collapse
|
13
|
Rovelli R, Cecchini B, Zavagna L, Azimi B, Ricci C, Esin S, Milazzo M, Batoni G, Danti S. Emerging Multiscale Biofabrication Approaches for Bacteriotherapy. Molecules 2024; 29:533. [PMID: 38276612 PMCID: PMC10821506 DOI: 10.3390/molecules29020533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Bacteriotherapy is emerging as a strategic and effective approach to treat infections by providing putatively harmless bacteria (i.e., probiotics) as antagonists to pathogens. Proper delivery of probiotics or their metabolites (i.e., post-biotics) can facilitate their availing of biomaterial encapsulation via innovative manufacturing technologies. This review paper aims to provide the most recent biomaterial-assisted strategies proposed to treat infections or dysbiosis using bacteriotherapy. We revised the encapsulation processes across multiscale biomaterial approaches, which could be ideal for targeting different tissues and suit diverse therapeutic opportunities. Hydrogels, and specifically polysaccharides, are the focus of this review, as they have been reported to better sustain the vitality of the live cells incorporated. Specifically, the approaches used for fabricating hydrogel-based devices with increasing dimensionality (D)-namely, 0D (i.e., particles), 1D (i.e., fibers), 2D (i.e., fiber meshes), and 3D (i.e., scaffolds)-endowed with probiotics, were detailed by describing their advantages and challenges, along with a future overlook in the field. Electrospinning, electrospray, and 3D bioprinting were investigated as new biofabrication methods for probiotic encapsulation within multidimensional matrices. Finally, examples of biomaterial-based systems for cell and possibly post-biotic release were reported.
Collapse
Affiliation(s)
- Roberta Rovelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy (B.A.)
| | - Beatrice Cecchini
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy (B.A.)
| | - Lorenzo Zavagna
- PEGASO Doctoral School of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Bahareh Azimi
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy (B.A.)
| | - Claudio Ricci
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy (B.A.)
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.E.); (G.B.)
| | - Mario Milazzo
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy (B.A.)
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (S.E.); (G.B.)
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy (B.A.)
| |
Collapse
|
14
|
Taborda M, Catalan KN, Orellana N, Bezjak D, Enrione J, Acevedo CA, Corrales TP. Micropatterned Nanofiber Scaffolds of Salmon Gelatin, Chitosan, and Poly(vinyl alcohol) for Muscle Tissue Engineering. ACS OMEGA 2023; 8:47883-47896. [PMID: 38144088 PMCID: PMC10733945 DOI: 10.1021/acsomega.3c06436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023]
Abstract
The development of scaffolds that mimic the aligned fibrous texture of the extracellular matrix has become an important requirement in muscle tissue engineering. Electrospinning is a widely used technique to fabricate biomimetic scaffolds. Therefore, a biopolymer blend composed of salmon gelatin (SG), chitosan (Ch), and poly(vinyl alcohol) (PVA) was developed by electrospinning onto a micropatterned (MP) collector, resulting in a biomimetic scaffold for seeding muscle cells. Rheology and surface tension studies were performed to determine the optimum solution concentration and viscosity for electrospinning. The scaffold microstructure was analyzed using SEM to determine the nanofiber's diameter and orientation. Blends of SG/Ch/PVA exhibited better electrospinnability and handling properties than pure PVA. The resulting scaffolds consist of a porous surface (∼46%), composed of a random fiber distribution, for a flat collector and scaffolds with regions of aligned nanofibers for the MP collector. The nanofiber diameters are 141 ± 2 and 151 ± 2 nm for the flat and MP collector, respectively. In vitro studies showed that myoblasts cultured on scaffold SG/Ch/PVA presented a high rate of cell growth. Furthermore, the aligned nanofibers on the SG/Ch/PVA scaffold provide a suitable platform for myoblast alignment.
Collapse
Affiliation(s)
- María
I. Taborda
- Centro
de Biotecnología, Universidad Técnica
Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
- Programa
de doctorado en Biotecnología, Pontificia
Universidad Católica de Valparaíso−Universidad
Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
| | - Karina N. Catalan
- Departamento
de Física, Universidad Técnica
Federico Santa María, Av. España 1680, Valparaíso 2340000, Chile
| | - Nicole Orellana
- Centro
de Biotecnología, Universidad Técnica
Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
| | - Dragica Bezjak
- Centro
de Biotecnología, Universidad Técnica
Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
- Programa
de doctorado en Biotecnología, Pontificia
Universidad Católica de Valparaíso−Universidad
Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
| | - Javier Enrione
- Escuela
de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Monseñor Álvaro del Portillo 12455, Las Condes, Santiago 7550000, Chile
| | - Cristian A. Acevedo
- Centro
de Biotecnología, Universidad Técnica
Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
- Departamento
de Física, Universidad Técnica
Federico Santa María, Av. España 1680, Valparaíso 2340000, Chile
- Centro
Científico Tecnológico de Valparaíso (CCTVAL), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
| | - Tomas P. Corrales
- Centro
de Biotecnología, Universidad Técnica
Federico Santa María, Avenida España 1680, Valparaíso 2340000, Chile
- Departamento
de Física, Universidad Técnica
Federico Santa María, Av. España 1680, Valparaíso 2340000, Chile
- Millenium
Nucleus in NanoBioPhysics (NNBP), Valparaíso 2340000, Chile
| |
Collapse
|
15
|
Ilango PR, Savariraj AD, Huang H, Li L, Hu G, Wang H, Hou X, Kim BC, Ramakrishna S, Peng S. Electrospun Flexible Nanofibres for Batteries: Design and Application. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
16
|
Shangguan WJ, Mei XD, Chen HP, Hu S, Xu CL, Wang L, Lv KF, Huang QL, Xu HL, Cao LD. Biodegradable electrospun fibers as sustained-release carriers of insect pheromones for field trapping of Spodoptera litura (Lepidoptera: Noctuidae). PEST MANAGEMENT SCIENCE 2023; 79:4774-4783. [PMID: 37474484 DOI: 10.1002/ps.7673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Insect pheromones are highly effective and environmentally friendly, and are widely used in the monitoring and trapping of pests. However, many researchers have found that various factors such as ultraviolet light and temperature in the field environment can accelerate the volatilization of pheromones, thus affecting the actual control effect. In recent years, electrospinning technology has demonstrated remarkable potential in the preparation of sustained carriers. Moreover, the utilization of biodegradable materials in electrospinning presents a promising avenue for the advancement of eco-friendly carriers. RESULTS In this study, homogeneous and defect-free pheromone carriers were obtained by electrospinning using fully biodegradable polyhydroxybutyrate materials and pheromones of Spodoptera litura. The electrospun fibers with porous structure could continuously release pheromone (the longest can be ≤80 days). They also had low light transmission, hydrophobic protection. More importantly, the pheromone-loaded electrospun fiber carriers showed stable release and good trapping effect in the field. They could trap pests for at least 7 weeks in the field environment without other light stabilizers added. CONCLUSION Sustained-release carriers constructed by electrospinning and green materials could improve the efficacy of pheromones and ensure environmental friendliness, and provided a tool for the management of S. litura and other pests and sustainable development of agricultural. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen-Jie Shangguan
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiang-Dong Mei
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui-Ping Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuai Hu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chun-Li Xu
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Wang
- Pherobio Technology Co. Ltd., Beijing, China
| | - Kai-Fei Lv
- Pherobio Technology Co. Ltd., Beijing, China
| | - Qi-Liang Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong-Liang Xu
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Li-Dong Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Rajeev M, Helms CC. A Study of the Relationship between Polymer Solution Entanglement and Electrospun PCL Fiber Mechanics. Polymers (Basel) 2023; 15:4555. [PMID: 38231998 PMCID: PMC10707761 DOI: 10.3390/polym15234555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Electrospun fibers range in size from nanometers to micrometers and have a multitude of potential applications that depend upon their morphology and mechanics. In this paper, we investigate the effect of polymer solution entanglement on the mechanical properties of individual electrospun polycaprolactone (PCL) fibers. Multiple concentrations of PCL, a biocompatible polymer, were dissolved in a minimum toxicity solvent composed of acetic acid and formic acid. The number of entanglements per polymer (ne) in solution was calculated using the polymer volume fraction, and the resultant electrospun fiber morphology and mechanics were measured. Consistent electrospinning of smooth fibers was achieved for solutions with ne ranging from 3.8 to 4.9, and the corresponding concentration of 13 g/dL to 17 g/dL PCL. The initial modulus of the resultant fibers did not depend upon polymer entanglement. However, the examination of fiber mechanics at higher strains, performed via lateral force atomic force microscopy (AFM), revealed differences among the fibers formed at various concentrations. Average fiber extensibility increased by 35% as the polymer entanglement number increased from a 3.8 ne solution to a 4.9 ne solution. All PCL fibers displayed strain-hardening behavior. On average, the stress increased with strain to the second power. Therefore, the larger extensibilities at higher ne also led to a more than double increase in fiber strength. Our results support the role of polymer entanglement in the mechanical properties of electrospun fiber at large strains.
Collapse
|
18
|
Hu Z, Qin Z, Qu Y, Wang F, Huang B, Chen G, Liu X, Yin L. Cell electrospinning and its application in wound healing: principles, techniques and prospects. BURNS & TRAUMA 2023; 11:tkad028. [PMID: 37719178 PMCID: PMC10504149 DOI: 10.1093/burnst/tkad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 09/19/2023]
Abstract
Currently, clinical strategies for the treatment of wounds are limited, especially in terms of achieving rapid wound healing. In recent years, based on the technique of electrospinning (ES), cell electrospinning (C-ES) has been developed to better repair related tissues or organs (such as skin, fat and muscle) by encapsulating living cells in a microfiber or nanofiber environment and constructing 3D living fiber scaffolds. Therefore, C-ES has promising prospects for promoting wound healing. In this article, C-ES technology and its advantages, the differences between C-ES and traditional ES, the parameters suitable for maintaining cytoactivity, and material selection and design issues are summarized. In addition, we review the application of C-ES in the fields of biomaterials and cells. Finally, the limitations and improved methods of C-ES are discussed. In conclusion, the potential advantages, limitations and prospects of C-ES application in wound healing are presented.
Collapse
Affiliation(s)
- Zonghao Hu
- Department of Implantology, School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Zishun Qin
- Department of Implantology, School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Yue Qu
- Department of Implantology, School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Feng Wang
- Department of Implantology, School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Benheng Huang
- Department of Implantology, School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Gaigai Chen
- Department of Implantology, School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoyuan Liu
- Department of Implantology, School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Lihua Yin
- Department of Implantology, School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
19
|
Xia M, Ji S, Fu Y, Dai J, Zhang J, Ma X, Liu R. Alumina Ceramic Nanofibers: An Overview of the Spinning Gel Preparation, Manufacturing Process, and Application. Gels 2023; 9:599. [PMID: 37623054 PMCID: PMC10453887 DOI: 10.3390/gels9080599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
As an important inorganic material, alumina ceramic nanofibers have attracted more and more attention because of their excellent thermal stability, high melting point, low thermal conductivity, and good chemical stability. In this paper, the preparation conditions for alumina spinning gel, such as the experimental raw materials, spin finish aid, aging time, and so on, are briefly introduced. Then, various methods for preparing the alumina ceramic nanofibers are described, such as electrospinning, solution blow spinning, centrifugal spinning, and some other preparation processes. In addition, the application of alumina ceramic nanofibers in thermal insulation, high-temperature filtration, catalysis, energy storage, water restoration, sound absorption, bioengineering, and other fields are described. The wide application prospect of alumina ceramic nanofibers highlights its potential as an advanced functional material with various applications. This paper aims to provide readers with valuable insights into the design of alumina ceramic nanofibers and to explore their potential applications, contributing to the advancement of various technologies in the fields of energy, environment, and materials science.
Collapse
Affiliation(s)
- Meng Xia
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China; (M.X.); (S.J.); (Y.F.); (J.D.)
| | - Shuyu Ji
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China; (M.X.); (S.J.); (Y.F.); (J.D.)
| | - Yijun Fu
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China; (M.X.); (S.J.); (Y.F.); (J.D.)
| | - Jiamu Dai
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China; (M.X.); (S.J.); (Y.F.); (J.D.)
| | - Junxiong Zhang
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China; (M.X.); (S.J.); (Y.F.); (J.D.)
| | - Xiaomin Ma
- National Equipment New Material & Technology (Jiangsu) Co., Ltd., Suzhou 215100, China;
| | - Rong Liu
- School of Textile & Clothing, National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China; (M.X.); (S.J.); (Y.F.); (J.D.)
| |
Collapse
|
20
|
Tahir M, Vicini S, Sionkowska A. Electrospun Materials Based on Polymer and Biopolymer Blends-A Review. Polymers (Basel) 2023; 15:1654. [PMID: 37050268 PMCID: PMC10096894 DOI: 10.3390/polym15071654] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
This review covers recent developments and progress in polymer and biopolymer blending and material preparation by electrospinning. Electrospinning is a technique that is used to produce nanofibers to improve the quality of membranes. Electrospun nanofibers are highly applicable in biomedical sciences, supercapacitors, and in water treatment following metal ion adsorption. The key affecting factors of electrospinning have been checked in the literature to obtain optimal conditions of the electrospinning process. Future research directions and outlooks have been suggested to think about innovative ideas for research in this field.
Collapse
Affiliation(s)
- Muhammad Tahir
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry, University of Genova, 16146 Genoa, Italy
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7, 87-100 Torun, Poland
| |
Collapse
|
21
|
In-situ forming dynamic covalently crosslinked nanofibers with one-pot closed-loop recyclability. Nat Commun 2023; 14:1182. [PMID: 36864024 PMCID: PMC9981754 DOI: 10.1038/s41467-023-36709-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
Polymeric nanofibers are attractive nanomaterials owing to their high surface-area-to-volume ratio and superior flexibility. However, a difficult choice between durability and recyclability continues to hamper efforts to design new polymeric nanofibers. Herein, we integrate the concept of covalent adaptable networks (CANs) to produce a class of nanofibers ⎯ referred to dynamic covalently crosslinked nanofibers (DCCNFs) via electrospinning systems with viscosity modulation and in-situ crosslinking. The developed DCCNFs possess homogeneous morphology, flexibility, mechanical robustness, and creep resistance, as well as good thermal and solvent stability. Moreover, to solve the inevitable issues of performance degradation and crack of nanofibrous membranes, DCCNF membranes can be one-pot closed-loop recycled or welded through thermal-reversible Diels-Alder reaction. This study may unlock strategies to fabricate the next generation nanofibers with recyclable features and consistently high performance via dynamic covalent chemistry for intelligent and sustainable applications.
Collapse
|
22
|
Sangroniz L, Fernández M, Santamaria A. Polymers and rheology: A tale of give and take. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
23
|
Sharma D, Srivastava S, Kumar S, Sharma PK, Hassani R, Dailah HG, Khalid A, Mohan S. Biodegradable Electrospun Scaffolds as an Emerging Tool for Skin Wound Regeneration: A Comprehensive Review. Pharmaceuticals (Basel) 2023; 16:325. [PMID: 37259465 PMCID: PMC9965065 DOI: 10.3390/ph16020325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 12/25/2023] Open
Abstract
Skin is designed to protect various tissues, and because it is the largest and first human bodily organ to sustain damage, it has an incredible ability to regenerate. On account of extreme injuries or extensive surface loss, the normal injury recuperating interaction might be inadequate or deficient, bringing about risky and disagreeable circumstances that request the utilization of fixed adjuvants and tissue substitutes. Due to their remarkable biocompatibility, biodegradability, and bioactive abilities, such as antibacterial, immunomodulatory, cell proliferative, and wound mending properties, biodegradable polymers, both synthetic and natural, are experiencing remarkable progress. Furthermore, the ability to convert these polymers into submicrometric filaments has further enhanced their potential (e.g., by means of electrospinning) to impersonate the stringy extracellular grid and permit neo-tissue creation, which is a basic component for delivering a mending milieu. Together with natural biomaterial, synthetic polymers are used to solve stability problems and make scaffolds that can dramatically improve wound healing. Biodegradable polymers, commonly referred to as biopolymers, are increasingly used in other industrial sectors to reduce the environmental impact of material and energy usage as they are fabricated using renewable biological sources. Electrospinning is one of the best ways to fabricate nanofibers and membranes that are very thin and one of the best ways to fabricate continuous nanomaterials with a wide range of biological, chemical, and physical properties. This review paper concludes with a summary of the electrospinning (applied electric field, needle-to-collector distance, and flow rate), solution (solvent, polymer concentration, viscosity, and solution conductivity), and environmental (humidity and temperature) factors that affect the production of nanofibers and the use of bio-based natural and synthetic electrospun scaffolds in wound healing.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi 110017, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi 110017, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Rym Hassani
- Department of Mathematics, University College AlDarb, Jazan University, Jazan 45142, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum P.O. Box 2404, Sudan
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Science, Saveetha Dental College, Saveetha University, Chennai 600077, India
| |
Collapse
|
24
|
Shen R, Guo Y, Wang S, Tuerxun A, He J, Bian Y. Biodegradable Electrospun Nanofiber Membranes as Promising Candidates for the Development of Face Masks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1306. [PMID: 36674061 PMCID: PMC9858797 DOI: 10.3390/ijerph20021306] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Aerosol particles, such as the widespread COVID-19 recently, have posed a great threat to humans. Combat experience has proven that masks can protect against viruses; however, the epidemic in recent years has caused serious environmental pollution from plastic medical supplies, especially masks. Degradable filters are promising candidates to alleviate this problem. Degradable nanofiber filters, which are developed by the electrospinning technique, can achieve superior filtration performance. This review focuses on the basic introduction to air filtration, the general aspects of face masks, and nanofibers. Furthermore, the progress of the state of art degradable electrospun nanofiber filters have been summarized, such as silk fibroin (SF), polylactic acid (PLA), chitosan, cellulose, and zein. Finally, the challenges and future development are highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | - Ye Bian
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| |
Collapse
|
25
|
Feng J, Xu Z, Jiang L, Sui X. Functional properties of soybean isolate protein as influenced by its critical overlap concentration. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Acosta M, Santiago MD, Irvin JA. Electrospun Conducting Polymers: Approaches and Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15248820. [PMID: 36556626 PMCID: PMC9782039 DOI: 10.3390/ma15248820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 05/14/2023]
Abstract
Inherently conductive polymers (CPs) can generally be switched between two or more stable oxidation states, giving rise to changes in properties including conductivity, color, and volume. The ability to prepare CP nanofibers could lead to applications including water purification, sensors, separations, nerve regeneration, wound healing, wearable electronic devices, and flexible energy storage. Electrospinning is a relatively inexpensive, simple process that is used to produce polymer nanofibers from solution. The nanofibers have many desirable qualities including high surface area per unit mass, high porosity, and low weight. Unfortunately, the low molecular weight and rigid rod nature of most CPs cannot yield enough chain entanglement for electrospinning, instead yielding polymer nanoparticles via an electrospraying process. Common workarounds include co-extruding with an insulating carrier polymer, coaxial electrospinning, and coating insulating electrospun polymer nanofibers with CPs. This review explores the benefits and drawbacks of these methods, as well as the use of these materials in sensing, biomedical, electronic, separation, purification, and energy conversion and storage applications.
Collapse
Affiliation(s)
- Mariana Acosta
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
| | - Marvin D. Santiago
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Jennifer A. Irvin
- Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, TX 78666, USA
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
- Correspondence:
| |
Collapse
|
27
|
Salimbeigi G, Cahill PA, McGuinness GB. Solvent system effects on the physical and mechanical properties of electrospun Poly(ε-caprolactone) scaffolds for in vitro lung models. J Mech Behav Biomed Mater 2022; 136:105493. [PMID: 36252423 DOI: 10.1016/j.jmbbm.2022.105493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Mechanical properties are among the key considerations for the design and fabrication of complex tissue models and implants. In addition to the choice of material and the processing technique, the solvent system can significantly influence the mechanical properties of scaffolds. Poly(ε-caprolactone) (PCL) has been abundantly used to develop constructs, fibrous in particular, for pharmaceutical and biomedical research due to the flexibility offered by PCL-based fibrous matrices. The effect of solvent type on the morphological features of electrospun fibres has been extensively studied. Nevertheless, comprehensive studies on the impact of the solvent system on the mechanical properties of electrospun PCL fibres are lacking. This study elucidates the relationship between topographical, physical and mechanical properties of electrospun PCL fibrous meshes upon using various solvent systems. The results of the mechanical investigation highlight the significance of inter-fibre bonds on the mechanical properties of the bulk membranes and that the option of altering the solvent system composition could be considered for tuning the mechanical properties of the PCL scaffolds to serve specific biomedical application requirements. The applicability of the developed membranes as artificial ECM (Extracellular matrix) in the lung will then be investigated and compared to the commercial Polycarbonate (PC) membranes that are often used for in vitro lung models.
Collapse
Affiliation(s)
- G Salimbeigi
- Centre for Medical Engineering Research, School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - P A Cahill
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - G B McGuinness
- Centre for Medical Engineering Research, School of Mechanical & Manufacturing Engineering, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
28
|
de Moraes Segundo JDDP, Constantino JSF, Calais GB, de Moura Junior CF, de Moraes MOS, da Fonseca JHL, Tsukamoto J, Monteiro RRDC, Andrade FK, d’Ávila MA, Arns CW, Beppu MM, Vieira RS. Virucidal PVP-Copper Salt Composites against Coronavirus Produced by Electrospinning and Electrospraying. Polymers (Basel) 2022; 14:polym14194157. [PMID: 36236105 PMCID: PMC9570984 DOI: 10.3390/polym14194157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Electrospinning technology was used to produced polyvinylpyrrolidone (PVP)-copper salt composites with structural differences, and their virucidal activity against coronavirus was investigated. The solutions were prepared with 20, 13.3, 10, and 6.6% w/v PVP containing 3, 1.0, 0.6, and 0.2% w/v Cu (II), respectively. The rheological properties and electrical conductivity contributing to the formation of the morphologies of the composite materials were observed by scanning electron microscopy (SEM). SEM images revealed the formation of electrospun PVP-copper salt ultrafine composite fibers (0.80 ± 0.35 µm) and electrosprayed PVP-copper salt composite microparticles (1.50 ± 0.70 µm). Energy-dispersive X-ray spectroscopy (EDS) evidenced the incorporation of copper into the produced composite materials. IR spectra confirmed the chemical composition and showed an interaction of Cu (II) ions with oxygen in the PVP resonant ring. Virucidal composite fibers inactivated 99.999% of coronavirus within 5 min of contact time, with moderate cytotoxicity to L929 cells, whereas the virucidal composite microparticles presented with a virucidal efficiency of 99.999% within 1440 min of exposure, with low cytotoxicity to L929 cells (mouse fibroblast). This produced virucidal composite materials have the potential to be applied in respirators, personal protective equipment, self-cleaning surfaces, and to fabric coat personal protective equipment against SARS-CoV-2, viral outbreaks, or pandemics.
Collapse
Affiliation(s)
- João de Deus Pereira de Moraes Segundo
- Department of Chemical Engineering, Federal University of Ceará, Fortaleza 60455-760, Brazil
- Department of Materials and Bioprocess Engineering, University of Campinas, Campinas 13083-852, Brazil
- Department of Manufacturing and Materials Engineering, University of Campinas, Campinas 13083-860, Brazil
- Correspondence: (J.d.D.P.d.M.S.); (R.S.V.)
| | | | - Guilherme Bedeschi Calais
- Department of Materials and Bioprocess Engineering, University of Campinas, Campinas 13083-852, Brazil
| | | | - Maria Oneide Silva de Moraes
- Thematic Laboratory of Microscopy and Nanotechnology, National Institute of Amazonian Research, Manaus 69067-001, Brazil
| | | | - Junko Tsukamoto
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-970, Brazil
| | | | - Fábia Karine Andrade
- Department of Chemical Engineering, Federal University of Ceará, Fortaleza 60455-760, Brazil
| | - Marcos Akira d’Ávila
- Department of Manufacturing and Materials Engineering, University of Campinas, Campinas 13083-860, Brazil
| | - Clarice Weis Arns
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-970, Brazil
| | - Marisa Masumi Beppu
- Department of Materials and Bioprocess Engineering, University of Campinas, Campinas 13083-852, Brazil
| | - Rodrigo Silveira Vieira
- Department of Chemical Engineering, Federal University of Ceará, Fortaleza 60455-760, Brazil
- Correspondence: (J.d.D.P.d.M.S.); (R.S.V.)
| |
Collapse
|
29
|
Effect of amylose content on the preparation for carboxymethyl starch/pullulan electrospun nanofibers and their properties as encapsulants of thymol. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Gautam B, Huang MR, Ali SA, Yan AL, Yu HH, Chen JT. Smart Thermoresponsive Electrospun Nanofibers with On-Demand Release of Carbon Quantum Dots for Cellular Uptake. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40322-40330. [PMID: 35994422 DOI: 10.1021/acsami.2c10810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Developing a smart responsive surface for on-demand delivery of organic, inorganic, and biological cargo in vitro cellular uptake is always in constant demand. Herein, we present carbon quantum dot (CQD)-loaded (poly(N-isopropylacrylamide) (PNIPAAm)/poly(methyl methacrylate (PMMA)) blend nanofiber sheets having a thermoresponsive nature. As a model cargo, fluorescent CQDs are used for the demonstration of the on-demand delivery mechanism. In addition, a thermoresponsive nature is produced by the PNIPAAm polymer in the nanofiber matrix while the PMMA polymer provides extra stability and firmness to the nanofibers against the sudden dissolution of the nanofibers in aqueous media. The synthesis of CQDs and their loading into a blend nanofiber matrix are confirmed using fluorescence spectrophotometry, transmission electron microscopy, and fluorescence microscopy. The morphologies and diameters of the nanofibers are analyzed by scanning electron microscopy. Burst effect analysis proves that 30% (w/w) PNIPAAm-containing nanofibers possess the highest stability with the least dissolution in aqueous media. Thermoresponsiveness of the nanofibers is further confirmed through water contact angle measurements. Quantitative fluorescence results show that more than 80% of loaded CQDs can be released upon thermal stimulation. The fluorescence micrographs reveal that the blend nanofiber sheets can effectively improve the cellular uptake of CQDs by simply increasing the local concentrations via applying thermal stimulation as the released mechanism.
Collapse
Affiliation(s)
- Bhaskarchand Gautam
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Meng-Ru Huang
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Syed Atif Ali
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Smart Organic Material Laboratory, Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Taiwan International Graduate Program (TIGP), Sustainable Chemical Science and Technology (SCST), Academia Sinica, Taipei 115, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Ai-Ling Yan
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hsiao-Hua Yu
- Smart Organic Material Laboratory, Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Taiwan International Graduate Program (TIGP), Sustainable Chemical Science and Technology (SCST), Academia Sinica, Taipei 115, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
31
|
Lee J, Nam C, Lee H. Polyolefin-based electrospun fibrous matrices embedded with magnetic nanoparticles for effective removal of viscous oils. CHEMOSPHERE 2022; 303:135161. [PMID: 35654235 DOI: 10.1016/j.chemosphere.2022.135161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
In this work, we present a poly (ethylene-co-1-octene)-based fibrous matrix prepared via electrospinning for highly efficient removal of viscous oils. The sorbent consisting of linear low density polyethylene (LLDPE) allows selective absorption of crude oil spills at the water surface without the need for additional isolation of the matrix prior to the refining process. Moreover, the high specific pore volume of the LLDPE sorbent with uniform fibrous morphology was shown to enable the sorbent reach 81.5 ± 5.9% of its equilibrium absorption capacity within 5 min. Furthermore, magnetic nanoparticles (MNP) are incorporated into each fiber comprising the matrix to facilitate the recovery process via external magnetic field without altering the intrinsic absorption capacity. We envision that these sorbents offer a sustainable route for the quick and thorough clean-up of spilled oil due to their high absorption capacity, fast absorption rate, ease of recovery, and absence of secondary waste.
Collapse
Affiliation(s)
- Jaewook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Changwoo Nam
- Organic Materials and Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deogjin-dong, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, South Korea.
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
32
|
Behrouzinia S, Ahmadi H, Abbasi N, Javadi AA. Experimental investigation on a combination of soil electrokinetic consolidation and remediation of drained water using composite nanofiber-based electrodes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155562. [PMID: 35504389 DOI: 10.1016/j.scitotenv.2022.155562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/13/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
A novel electrokinetic geosynthetic (EKG) can be efficient in achieving multiple objectives. In this study, a new EKG as an electrode and a drainage channel in the electro-osmotic consolidation was fabricated by electrospun nanofibers containing graphene nanoparticles (GNs) attached to a carbon fiber substrate. To investigate the effectiveness of the fabricated electrodes in electro-osmotic consolidation and remediation of water drained from the system, an experimental apparatus was constructed while considering loading capability in expanded ranges and applying the electric field, and was filled with copper (Cu)-contaminated kaolinite. Experiments were divided into control (CT) and EKG groups, and three categories, C-EK, ES1-EK, and ES2-EK (using carbon fiber, electrospun nanofibers containing 1 wt% GNs, and electrospun nanofibers consisting of 2 wt% GNs, respectively). All the experiments were conducted with the same conditions, loading, drainage condition, and duration. However, EKG experiments were performed by employing the electric field under the vertical pressure in the range of 7-113 kPa, while the CT was conducted without the electric field. According to experimental results, 18 wt% polymethyl methacrylate in the dimethylformamide solvent containing 1 and 2 wt% GNs was selected for making a nanofibrous layer on the carbon fiber. The average diameters of the fibers were 404 ± 36 and 690 ± 62 nm and yielded at 1 and 2 wt% GNs, respectively. The results revealed that using the EKG accelerated kaolinite consolidation. The average degree of consolidation was 68 and 85% in the CT and EKG experiments, respectively. Furthermore, the fabricated electrodes were highly effective as a drainage channel for remediating water drained from the system. Moreover, the highest Cu removal efficiency was obtained in ES2-EK (97%) and ES1-EK (92%), respectively. Conversely, the lowest Cu removal efficiency was observed in the C-EK group (85%).
Collapse
Affiliation(s)
| | - Hojjat Ahmadi
- Department of Water Engineering, Urmia University, Iran.
| | - Nader Abbasi
- Agricultural Engineering Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Akbar A Javadi
- Department of Engineering, College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter EX4 4QF, UK
| |
Collapse
|
33
|
Nanofiber Carriers of Therapeutic Load: Current Trends. Int J Mol Sci 2022; 23:ijms23158581. [PMID: 35955712 PMCID: PMC9368923 DOI: 10.3390/ijms23158581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
The fast advancement in nanotechnology has prompted the improvement of numerous methods for the creation of various nanoscale composites of which nanofibers have gotten extensive consideration. Nanofibers are polymeric/composite fibers which have a nanoscale diameter. They vary in porous structure and have an extensive area. Material choice is of crucial importance for the assembly of nanofibers and their function as efficient drug and biomedicine carriers. A broad scope of active pharmaceutical ingredients can be incorporated within the nanofibers or bound to their surface. The ability to deliver small molecular drugs such as antibiotics or anticancer medications, proteins, peptides, cells, DNA and RNAs has led to the biomedical application in disease therapy and tissue engineering. Although nanofibers have shown incredible potential for drug and biomedicine applications, there are still difficulties which should be resolved before they can be utilized in clinical practice. This review intends to give an outline of the recent advances in nanofibers, contemplating the preparation methods, the therapeutic loading and release and the various therapeutic applications.
Collapse
|
34
|
Ayodeji OJ, Khyum MMO, Afolabi RT, Smith E, Kendall R, Ramkumar S. Preparation of surface-functionalized electrospun PVA nanowebs for potential remedy for SARS-CoV-2. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 7:100128. [PMID: 37520801 PMCID: PMC9278001 DOI: 10.1016/j.hazadv.2022.100128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 08/01/2023]
Abstract
Infections with coronaviruses remain a burden that is negatively affecting human life. The use of metal oxides to prevent and control the spread of severe acute respiratory syndrome coronavirus (SARS-CoV-2) has been widely studied. However, the use of metal oxides in masks to enhance the performances of barrier face coverings in trapping and neutralizing SARS-CoV-2 remained unexplored. In the present study, we explore the possibility of developing surface functional PVA/ZnO electrospun nanowebs to be used as a component of multilayer barrier face coverings. Polyvinyl alcohol (PVA) and zinc acetate (ZnA) nanowebs were electrospun as precursor samples. After calcination at 400 degrees centigrade under a controlled atmosphere of nitrogen gas, product nanowebs containing ZnO (PVA/ZnO) were obtained. The presence of ZnO was determined using an attenuated total reflectance Fourier Transform Infrared (FT-IR) spectrometer. This study inspired the possibility of developing surface-functional materials to produce enhanced performance masks against the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Olukayode J Ayodeji
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, 79416, United States
| | - Mirza M O Khyum
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, 79416, United States
| | - Racheal T Afolabi
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, 79416, United States
| | - Ernest Smith
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, 79416, United States
| | - Ron Kendall
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, 79416, United States
| | - Seshadri Ramkumar
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas, 79416, United States
| |
Collapse
|
35
|
Maggay IV, Yu ML, Wang DM, Chiang CH, Chang Y, Venault A. Strategy to prepare skin-free and macrovoid-free polysulfone membranes via the NIPS process. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Han W, Wang L, Li Q, Ma B, He C, Guo X, Nie J, Ma G. A Review: Current Status and Emerging Developments on Natural Polymer‐Based Electrospun Fibers. Macromol Rapid Commun 2022; 43:e2200456. [DOI: 10.1002/marc.202200456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/03/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Weisen Han
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Liangyu Wang
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Qin Li
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Bomou Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai 201620 P. R. China
| | - Chunju He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Donghua University Shanghai 201620 P. R. China
| | - Xuefeng Guo
- Changzhou Vocational Institute of Textile and Garment School of Textile 53 Gehu Middle Road Changzhou Jiangsu 213164 P.R. China
| | - Jun Nie
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Guiping Ma
- Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
37
|
Poly(L-lactic acid)/poly(ethylene oxide) based composite electrospun fibers loaded with magnesium-aluminum layered double hydroxide nanoparticles. Int J Biol Macromol 2022; 217:562-571. [PMID: 35839957 DOI: 10.1016/j.ijbiomac.2022.07.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/03/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
Two types of MgAl layered double hydroxide nanoparticles, MgAl LDH, at Mg:Al ratio of 2:1 and 3:1were prepared and used as inorganic fillers to improve the mechanical properties of poly(lactic acid)/poly(ethylene oxide) (PLA/PEO) electrospun composite fibers. Their detailed structural characterization was performed using X-ray diffraction (XRD) and transmission electron spectroscopy (TEM) techniques. Spectroscopic, thermal, mechanical, and morphological properties of the electrospun composite fibers, and cell proliferation on their surface, were examined. XRD and TEM analyses showed that the LDH nanoparticles were 50 nm in size and the Mg:Al ratio did not affect the average spacing between crystal layers. Fourier transform infrared (FTIR) and thermal analyses (TA) revealed the compatibility of the filler and the polymer matrix. The nanoparticles considerably improved the mechanical properties of the electrospun mats. The tensile strength and elongation at break values of the composite samples increased from 0.22 MPA to 0.40 MPa and 12.2 % to 45.66 %, respectively, resulting from the interaction between LDH and the polymer matrix. Scanning electron microscopy (SEM) and MTT analyses demonstrated that the electrospun composite fibers supported the SaOS-2 cells attachment and proliferation on the fiber surfaces, along with their suitable cytocompatibility.
Collapse
|
38
|
García-Fuentevilla L, Rubio-Valle JF, Martín-Sampedro R, Valencia C, Eugenio ME, Ibarra D. Different Kraft lignin sources for electrospun nanostructures production: Influence of chemical structure and composition. Int J Biol Macromol 2022; 214:554-567. [PMID: 35752340 DOI: 10.1016/j.ijbiomac.2022.06.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/05/2022]
Abstract
This work focuses on the structural features and physicochemical properties of different Kraft lignins and how they can influence the electrospinning process to obtain nanostructures. Structural features of Kraft lignins were characterized by Nuclear Magnetic Resonance, Size Exclusion Chromatography, Fourier-transform Infrared Spectroscopy, and thermal analysis, whereas chemical composition was analyzed by standard method. The addition of cellulose acetate (CA) improves the electrospinning process of Kraft lignins (KL). Thus, solutions of KL/CA at 30 wt% with a KL:CA weight ratio of 70:30 were prepared and then physicochemical and rheologically characterized. The morphology of electrospun nanostructures depends on the intrinsic properties of the solutions and the chemical structure and composition of Kraft lignins. Then, surface tension, electrical conductivity and viscosity of eucalypt/CA and poplar/CA solutions were suitable to obtain electrospun nanostructures based on uniform cross-linked nanofibers with a few beaded fibers. It could be related with the higher purity and higher linear structure, phenolic content and S/G ratios of lignin samples. However, the higher values of electrical conductivity and viscosity of OTP/CA solutions resulted in electrospun nanostructure with micro-sized particles connected by thin fibers, due to a lower purity, S/G ratio and phenolic content and higher branched structure in OTP lignin.
Collapse
Affiliation(s)
| | - José F Rubio-Valle
- Pro2TecS-Chemical Process and Product Technology Research Centre, Departamento de Ingeniería Química, ETSI, Campus de "El Carmen", Universidad de Huelva, 21071 Huelva, Spain
| | | | - Concepción Valencia
- Pro2TecS-Chemical Process and Product Technology Research Centre, Departamento de Ingeniería Química, ETSI, Campus de "El Carmen", Universidad de Huelva, 21071 Huelva, Spain
| | - María E Eugenio
- Forest Research Center, INIA-CSIC, Ctra. de la Coruña, km 7.5., 28040 Madrid, Spain.
| | - David Ibarra
- Forest Research Center, INIA-CSIC, Ctra. de la Coruña, km 7.5., 28040 Madrid, Spain
| |
Collapse
|
39
|
Tang N, Chen Y, Li Y, Yu B. 2D Polymer Nanonets: Controllable Constructions and Functional Applications. Macromol Rapid Commun 2022; 43:e2200250. [PMID: 35524950 DOI: 10.1002/marc.202200250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/24/2022] [Indexed: 11/12/2022]
Abstract
Two-dimensional (2D) polymer nanonets have demonstrated great potential in various application fields due to their integrated advantages of ultrafine diameter, small pore size, high porosity, excellent interconnectivity, and large specific surface area. Here, a comprehensive overview of the controlled constructions of the polymer nanonets derived from electrospinning/netting, direct electronetting, self-assembly of cellulose nanofibers, and nonsolvent-induced phase separation is provided. Then, the widely researched multifunctional applications of polymer nanonets in filtration, sensor, tissue engineering, and electricity are also given. Finally, the challenges and possible directions for further developing the polymer nanonets are also intensively highlighted. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ning Tang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yu Chen
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuyao Li
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Bin Yu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
40
|
Shabanloo R, Akbari S, Mirsalehi M. Hybrid electrospun scaffolds based on polylactic acid/ PAMAM dendrimer/gemini surfactant for enhancement of synergistic antibacterial ability for biomedical application. Biomed Mater 2022; 17. [PMID: 35487203 DOI: 10.1088/1748-605x/ac6bd7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/29/2022] [Indexed: 11/11/2022]
Abstract
Hybrid electrospun scaffolds based on poly (L-lactic acid) (PLLA) / poly (amidoamine) (PAMAM-G2) dendrimer / gemini surfactant were fabricated for the enhancement of synergistic antibacterial activities. The second generation of poly (amidoamine) (PAMAM-G2) and cationic gemini surfactant were utilized to functionalize the optimum electrospun scaffolds. The gelatination process was utilized to improve the wettability of PLLA scaffolds to extend cell attachment and cell proliferation. PLLA nanofibrous scaffolds were characterized by energy dispersion X-ray (EDX), Scanning electron microscopy (SEM) images, mechanical properties, water contact angle, Fourier transform infrared (FTIR) spectroscopy, zeta potential and antibacterial assessment. In vitro cell biocompatibility was evaluated by MTT assay and morphology of PC-12 cells cultured on hybrid nanofibrous scaffolds and gelatinized ones. The results indicated that the optimum scaffolds could successfully modify the characteristics of PLLA scaffolds leading to much more appropriate physical and chemical properties. In addition, gelatinized nanofibrous scaffolds reveal more wettability enhancing cell attachment and proliferation. Furthermore, using poly (amidoamine) (PAMAM-G2) and gemini surfactant reveals synergetic antibacterial activity due to the competition between both cationic groups of PAMAM and gemini surfactant. Finally, improved cell adhesion and cell viability on modified scaffolds were confirmed. These favorable properties give a chance for these scaffolds to be used in a wide variety of biomedical applications.
Collapse
Affiliation(s)
- Rasool Shabanloo
- Textile engineering, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran, Iran 1591634311, Tehran, 1591634311, Iran (the Islamic Republic of)
| | - Somaye Akbari
- Department of Textile Engineering, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, Tehran, Iran 1591634311, Tehran, Tehran, 1591634311, Iran (the Islamic Republic of)
| | - Marjan Mirsalehi
- Iran University of Medical Sciences, Iran University of Medical Sciences Shahid Hemmat Highway Tehran 14496-14535, IRAN, Tehran, Tehran, 1449614535, Iran (the Islamic Republic of)
| |
Collapse
|
41
|
Chen L, Ru C, Zhang H, Zhang Y, Wang H, Hu X, Li G. Progress in Electrohydrodynamic Atomization Preparation of Energetic Materials with Controlled Microstructures. Molecules 2022; 27:2374. [PMID: 35408765 PMCID: PMC9000604 DOI: 10.3390/molecules27072374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Constructing ingenious microstructures, such as core-shell, laminate, microcapsule and porous microstructures, is an efficient strategy for tuning the combustion behaviors and thermal stability of energetic materials (EMs). Electrohydrodynamic atomization (EHDA), which includes electrospray and electrospinning, is a facile and versatile technique that can be used to process bulk materials into particles, fibers, films and three-dimensional (3D) structures with nanoscale feature sizes. However, the application of EHDA in preparing EMs is still in its initial development. This review summarizes the progress of research on EMs prepared by EHDA over the last decade. The morphology and internal structure of the produced materials can be easily altered by varying the operation and precursor parameters. The prepared EMs composed of zero-dimensional (0D) particles, one-dimensional (1D) fibers and two-dimensional (2D) films possess precise microstructures with large surface areas, uniformly dispersed components and narrow size distributions and show superior energy release rates and combustion performances. We also explore the reasons why the fabrication of 3D EM structures by EHDA is still lacking. Finally, we discuss development challenges that impede this field from moving out of the laboratory and into practical application.
Collapse
Affiliation(s)
- Lihong Chen
- Fire & Explosion Protection Laboratory, Northeastern University, Shenyang 110819, China; (L.C.); (G.L.)
- College of Forensic Science, Criminal Investigation Police University of China, Shenyang 110035, China; (H.Z.); (Y.Z.)
- Key Laboratory of Impression Evidence Examination and Identification Technology, Ministry of Public Security, Shenyang 110035, China
| | - Chengbo Ru
- College of Forensic Science, Criminal Investigation Police University of China, Shenyang 110035, China; (H.Z.); (Y.Z.)
- Key Laboratory of Impression Evidence Examination and Identification Technology, Ministry of Public Security, Shenyang 110035, China
| | - Hongguo Zhang
- College of Forensic Science, Criminal Investigation Police University of China, Shenyang 110035, China; (H.Z.); (Y.Z.)
- Key Laboratory of Impression Evidence Examination and Identification Technology, Ministry of Public Security, Shenyang 110035, China
| | - Yanchun Zhang
- College of Forensic Science, Criminal Investigation Police University of China, Shenyang 110035, China; (H.Z.); (Y.Z.)
- Key Laboratory of Impression Evidence Examination and Identification Technology, Ministry of Public Security, Shenyang 110035, China
| | - Hongxing Wang
- Graduate School, Shenyang Ligong University, Shenyang 110159, China;
| | - Xiuli Hu
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China;
| | - Gang Li
- Fire & Explosion Protection Laboratory, Northeastern University, Shenyang 110819, China; (L.C.); (G.L.)
| |
Collapse
|
42
|
Shen H, Zhou Z, Wang H, Chen J, Zhang M, Han M, Shen Y, Shuai D. Photosensitized Electrospun Nanofibrous Filters for Capturing and Killing Airborne Coronaviruses under Visible Light Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4295-4304. [PMID: 35262328 PMCID: PMC8938841 DOI: 10.1021/acs.est.2c00885] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/25/2022] [Indexed: 05/11/2023]
Abstract
To address the challenge of the airborne transmission of SARS-CoV-2, photosensitized electrospun nanofibrous membranes were fabricated to effectively capture and inactivate coronavirus aerosols. With an ultrafine fiber diameter (∼200 nm) and a small pore size (∼1.5 μm), optimized membranes caught 99.2% of the aerosols of the murine hepatitis virus A59 (MHV-A59), a coronavirus surrogate for SARS-CoV-2. In addition, rose bengal was used as the photosensitizer for membranes because of its excellent reactivity in generating virucidal singlet oxygen, and the membranes rapidly inactivated 97.1% of MHV-A59 in virus-laden droplets only after 15 min irradiation of simulated reading light. Singlet oxygen damaged the virus genome and impaired virus binding to host cells, which elucidated the mechanism of disinfection at a molecular level. Membrane robustness was also evaluated, and in general, the performance of virus filtration and disinfection was maintained in artificial saliva and for long-term use. Only sunlight exposure photobleached membranes, reduced singlet oxygen production, and compromised the performance of virus disinfection. In summary, photosensitized electrospun nanofibrous membranes have been developed to capture and kill airborne environmental pathogens under ambient conditions, and they hold promise for broad applications as personal protective equipment and indoor air filters.
Collapse
Affiliation(s)
- Hongchen Shen
- Department of Civil and Environmental Engineering,
The George Washington University, Washington, Washington D.C.
20052, United States
| | - Zhe Zhou
- Department of Civil and Environmental Engineering,
The George Washington University, Washington, Washington D.C.
20052, United States
| | - Haihuan Wang
- Department of Civil and Environmental Engineering,
The George Washington University, Washington, Washington D.C.
20052, United States
| | - Jiahao Chen
- Department of Civil and Environmental Engineering,
The George Washington University, Washington, Washington D.C.
20052, United States
| | - Mengyang Zhang
- Department of Civil and Environmental Engineering,
The George Washington University, Washington, Washington D.C.
20052, United States
| | - Minghao Han
- Department of Chemical and Environmental Engineering,
University of California, Riverside, Riverside, California
92521, United States
| | - Yun Shen
- Department of Chemical and Environmental Engineering,
University of California, Riverside, Riverside, California
92521, United States
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering,
The George Washington University, Washington, Washington D.C.
20052, United States
| |
Collapse
|
43
|
Peterson GW, Epps TH. Impact of zinc salt counterion on poly(ethylene oxide) solution viscosity, conductivity, and ability to generate electrospun MOF/nanofiber composites. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Kordjazi Z, Ajji A. Development of TiO2 photocatalyzed EC/HTPB based oxygen scavenging mats by electrospinning method for packaging applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Superwettable neuron-inspired polyurethane nanofibrous materials with efficient selective separation performance towards various fluids. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Ramlow H, Marangoni C, Motz G, Machado RAF. Statistical optimization of polysilazane-derived ceramic: Electrospinning with and without organic polymer as a spinning aid for manufacturing thinner fibers. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
47
|
Sánchez-Cid P, Rubio-Valle JF, Jiménez-Rosado M, Pérez-Puyana V, Romero A. Effect of Solution Properties in the Development of Cellulose Derivative Nanostructures Processed via Electrospinning. Polymers (Basel) 2022; 14:665. [PMID: 35215578 PMCID: PMC8874405 DOI: 10.3390/polym14040665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/19/2022] Open
Abstract
In the last few years, electrospinning has proved to be one of the best methods for obtaining membranes of a micro and nanometric fiber size. This method mainly consists in the spinning of a polymeric or biopolymeric solution in solvents, promoted by the difference in the electric field between the needle and collector, which is finally deposited as a conjunction of randomly oriented fibers. The present work focuses on using cellulose derivatives (namely cellulose acetate and ethylcellulose), based on the revaluation of these byproducts and waste products of biorefinery, to produce nanostructured nanofiber through electrospinning with the objective of establishing a relation between the initial solutions and the nanostructures obtained. In this sense, a complete characterization of the biopolymeric solutions (physicochemical and rheological properties) and the resulting nanostructures (microstructural and thermal properties) was carried out. Therefore, solutions with different concentrations (5, 10, 15, and 20 wt%) of the two cellulose derivatives and different solvents with several proportions between them were used to establish their influence on the properties of the resulting nanostructures. The results show that the solutions with 10 wt% in acetic acid/H2O and 15 wt% in acetone/N,N-dimethylformamide of cellulose acetate and 5 wt% of ethylcellulose in acetone/N,N-dimethylformamide, exhibited the best properties, both in the solution and nanostructure state.
Collapse
Affiliation(s)
- Pablo Sánchez-Cid
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain; (V.P.-P.); (A.R.)
| | - José Fernando Rubio-Valle
- Pro2TecS—Chemical Process and Product Technology Research Centre, Department Ingeniería Química, ETSI, Campus de “El Carmen”, Universidad de Huelva, 21071 Huelva, Spain;
| | - Mercedes Jiménez-Rosado
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| | - Víctor Pérez-Puyana
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain; (V.P.-P.); (A.R.)
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain; (V.P.-P.); (A.R.)
| |
Collapse
|
48
|
|
49
|
Merchiers J, Reddy NK, Sharma V. Extensibility-Enriched Spinnability and Enhanced Sorption and Strength of Centrifugally Spun Polystyrene Fiber Mats. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jorgo Merchiers
- Institute for Materials research (IMO-IMOMEC), Hasselt University, B-3590 Diepenbeek, Belgium
- IMEC vzw-Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Naveen K. Reddy
- Institute for Materials research (IMO-IMOMEC), Hasselt University, B-3590 Diepenbeek, Belgium
- IMEC vzw-Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
50
|
Physico-chemical analysis of electrospun fibers - A systematic approach. Eur J Pharm Biopharm 2022; 171:60-71. [PMID: 35007695 DOI: 10.1016/j.ejpb.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Electrospun fibers emerged as promising drug delivery systems for various pharmaceutical applications due to their favorable properties. However, while for established drug delivery systems (e.g. tablets or capsules) standardized analytical procedures exist, the methodologies for characterization of electrospun fibers differ widely in the literature. Unfortunately, this situation impedes comparison of different studies and consequently hampers translation of the results into clinics. Thus, there is an urgent need for systematic studies evaluating different analytical techniques for their validity to characterize and differentiate different electrospun fibers. In this study, we aimed to identify a predictive and robust toolset of complementary analytical techniques allowing for comprehensive and discriminative evaluation of electrospun fibers. For this purpose, we fabricated two drug-loaded model formulations with contrastive physico-chemical properties and drug release kinetics. Different analytical techniques were applied for physico-chemical characterization of the spinning solutions as well as of the fibers. Each analytical method was evaluated with regard to discriminative power and individual limitations. The introduction of novel analytical approaches such as automated low-volume release testing may further advance the field of electrospinning. By combining complementary analytical methods, including spectral composition analysis, morphology visualization, characterization of physico-chemical properties and drug release kinetics, as well as the application of multivariate data analysis, we were able to establish a robust and predictive toolset, which can support comparability of future electrospinning studies and the translation from the lab bench into clinics.
Collapse
|