1
|
Gedik B, Erdem MA. Electrospun PCL membranes for localized drug delivery and bone regeneration. BMC Biotechnol 2025; 25:31. [PMID: 40275261 PMCID: PMC12023437 DOI: 10.1186/s12896-025-00965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Bone loss caused by cysts, tumors, trauma, and other factors is a significant challenge in medicine and dentistry. Effective bone regeneration is essential for accelerated healing and improved bone volume. While systemic drug supplementation helps, local delivery through gbr/gtr membranes is preferred for targeted treatment with minimal systemic effects. This study aims to develop drug-loaded gbr membranes using electrospinning to enhance localized drug delivery and tissue regeneration. METHODS Polycaprolactone (PCL) membranes were produced via electrospinning with various concentrations and solvent ratios. Therapeutic agents-pentoxifylline, carrageenan, and sodium fluoride-were incorporated into the membranes. Morphological analysis was performed using scanning electron microscopy (SEM), mechanical properties were assessed through tensile testing, structural characterization was done via Fourier-transform infrared spectroscopy (FTIR), and thermal properties were evaluated with thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Drug release behavior was studied using UV-Vis spectrophotometry. RESULTS SEM revealed optimal fiber morphology in membranes with 10% PCL and 1% pentoxifylline, 0.5% NaF, and 1% carrageenan. Tensile strength was highest in 10% PCL membranes (2.5 MPa), outperforming 12% PCL (1.8 MPa). FTIR and TGA confirmed successful drug incorporation and thermal stability, with decomposition temperatures ranging from 395 °C to 510.9 °C. UV-Vis showed effective drug release, with 2% pentoxifylline achieving the highest release at 2 h (34%) and 4 h (62%), demonstrating enhanced performance for localized drug delivery. CONCLUSIONS PCL-based electrospun membranes with therapeutic agents were successfully developed, exhibiting promising characteristics for localized drug delivery and tissue regeneration. These membranes showed comparable mechanical properties to commercial GBR/GTR membranes. Future research should focus on optimizing formulations and evaluating clinical efficacy.
Collapse
Affiliation(s)
- Betul Gedik
- Faculty of Dentistry Department of Oral and Maxillofacial Surgery, Istanbul University, Prof. Dr. Cavit Orhan Tutengil Street No: 4 Vezneciler Fatih, Istanbul, Turkey.
| | - Mehmet Ali Erdem
- Faculty of Dentistry Department of Oral and Maxillofacial Surgery, Istanbul University, Prof. Dr. Cavit Orhan Tutengil Street No: 4 Vezneciler Fatih, Istanbul, Turkey
| |
Collapse
|
2
|
Prahaladan V, Poluri N, Napoli M, Castro C, Yildiz K, Berry-White BA, Lu P, Salas-de la Cruz D, Hu X. Protein and Polysaccharide Fibers via Air Jet Spinning: Emerging Techniques for Biomedical and Sustainable Applications. Int J Mol Sci 2024; 25:13282. [PMID: 39769047 PMCID: PMC11675784 DOI: 10.3390/ijms252413282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
Polymers play a critical role in the biomedical and sustainable materials fields, serving as key resources for both research and product development. While synthetic and natural polymers are both widely used, synthetic polymers have traditionally dominated due to their ability to meet the specific material requirements of most fiber fabrication methods. However, synthetic polymers are derived from non-renewable resources, and their production raises environmental and health concerns. Natural polymers, on the other hand, are derived from renewable biological sources and include a subset known as biopolymers, such as proteins and polysaccharides, which are produced by living organisms. These biopolymers are naturally abundant and offer benefits such as biodegradability and non-toxicity, making them especially suitable for biomedical and green applications. Recently, air jet spinning has emerged as a promising method for fabricating biopolymer fibers, valued for its simplicity, cost-effectiveness, and safety-advantages that stand out compared to the more conventional electrospinning process. This review examines the methods and mechanisms of air jet spinning, drawing on empirical studies and practical insights to highlight its advantages over traditional fiber production techniques. By assembling natural biopolymers into micro- and nanofibers, this novel fabrication method demonstrates strong potential for targeted applications, including tissue engineering, drug delivery, air filtration, food packaging, and biosensing, utilizing various protein and polysaccharide sources.
Collapse
Affiliation(s)
- Varsha Prahaladan
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (V.P.); (N.P.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Nagireddy Poluri
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (V.P.); (N.P.)
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | - Makara Napoli
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Connor Castro
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Kerem Yildiz
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (V.P.); (N.P.)
| | - Brea-Anna Berry-White
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| | - Ping Lu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| | | | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; (V.P.); (N.P.)
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
3
|
Du C, Jiang Y, Junejo SA, Jia X, Zhang B, Huang Q. Metal-anchored oxidized starch-pullulan nanofiber films enhance ethylene adsorption and banana preservation. Int J Biol Macromol 2024; 282:137399. [PMID: 39521234 DOI: 10.1016/j.ijbiomac.2024.137399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The development of novel strategies to control ethylene accumulation of fruit is crucial for improving food preservation and reducing spoilage-related losses. In this study, an oxidized starch-pullulan (OS-PUL) nanofiber films were prepared with silver, copper, and iron to control ethylene accumulation. The starch nanofiber film exhibited an average diameter of 96 nm at an OS-PUL concentration of 25 % (wt/wt). Adsorption test showed the maximum ethylene adsorption capacity (21.86 mg·m-2) of metal-nanofiber film with typical hierarchical microporous and mesoporous structure. Oxidized starch-pullulan-metal-nanofiber film extended the shelf life of bananas from 8 to 15 days by efficiently absorbing ethylene. This work will contribute to the development of innovative packaging materials with ethylene adsorption properties, which can help reduce food waste.
Collapse
Affiliation(s)
- Chunwei Du
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shahid Ahmed Junejo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiangze Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Bin Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China
| | - Qiang Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; China-Singapore International Joint Research Institute, Guangzhou 511363, China.
| |
Collapse
|
4
|
Filimon A, Serbezeanu D, Dobos AM, Onofrei MD, Bargan A, Rusu D, Rimbu CM. Electrospun Membranes Based on Quaternized Polysulfones: Rheological Properties-Electrospinning Mechanisms Relationship. Polymers (Basel) 2024; 16:1503. [PMID: 38891450 PMCID: PMC11174964 DOI: 10.3390/polym16111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Composite membranes based on a polymer mixture solution of quaternized polysulfone (PSFQ), cellulose acetate phthalate (CAP), and polyvinylidene fluoride (PVDF) for biomedical applications were successfully obtained through the electrospinning technique. To ensure the polysulfone membranes' functionality in targeted applications, the selection of electrospinning conditions was essential. Moreover, understanding the geometric characteristics and morphology of fibrous membranes is crucial in designing them to meet the performance standards necessary for future biomedical applications. Thus, the viscosity of the solutions used in the electrospinning process was determined, and the morphology of the electrospun membranes was examined using scanning electron microscopy (SEM). Investigations on the surfaces of electrospun membranes based on water vapor sorption data have demonstrated that their surface properties dictate their biological ability more than their specific surfaces. Furthermore, in order to understand the different macromolecular rearrangements of membrane structures caused by physical interactions between the polymeric chains as well as by the orientation of functional groups during the electrospinning process, Fourier transform infrared (FTIR) spectroscopy was used. The applicability of composite membranes in the biomedical field was established by bacterial adhesion testing on the surface of electrospun membranes using Escherichia coli and Staphylococcus aureus microorganisms. The biological experiments conducted establish a foundation for future applications of these membranes and validate their effectiveness in specific fields.
Collapse
Affiliation(s)
- Anca Filimon
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Alley 41A, 700487 Iasi, Romania; (D.S.); (A.M.D.); (M.D.O.); (A.B.); (D.R.)
| | - Diana Serbezeanu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Alley 41A, 700487 Iasi, Romania; (D.S.); (A.M.D.); (M.D.O.); (A.B.); (D.R.)
| | - Adina Maria Dobos
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Alley 41A, 700487 Iasi, Romania; (D.S.); (A.M.D.); (M.D.O.); (A.B.); (D.R.)
| | - Mihaela Dorina Onofrei
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Alley 41A, 700487 Iasi, Romania; (D.S.); (A.M.D.); (M.D.O.); (A.B.); (D.R.)
| | - Alexandra Bargan
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Alley 41A, 700487 Iasi, Romania; (D.S.); (A.M.D.); (M.D.O.); (A.B.); (D.R.)
| | - Daniela Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Alley 41A, 700487 Iasi, Romania; (D.S.); (A.M.D.); (M.D.O.); (A.B.); (D.R.)
| | - Cristina Mihaela Rimbu
- Department of Public Health, University of Life Science Iasi, 8 Mihail Sadoveanu Alley, 707027 Iasi, Romania;
| |
Collapse
|
5
|
Ginesi RE, Draper ER. Methods of changing low molecular weight gel properties through gelation kinetics. SOFT MATTER 2024; 20:3887-3896. [PMID: 38691131 DOI: 10.1039/d4sm00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Low molecular weight gels continue to attract notable interest, with many potential applications. However, there are still significant gaps in our understanding of these systems and the correlation between the pre-gel and final gel states. The kinetics of the gelation process plays a crucial role in the bulk properties of the hydrogel and presents an opportunity to fine-tune these systems to meet the requirements of the chosen application. Therefore, it is possible to use a single gelator for multiple applications. This review discusses four ways to modify the pre-gelled structures before triggering gelation. Such modifications can enhance the material's intended performance, which may result in significant advancements in high-tech areas, such as drug delivery, cell culturing, electronics, and tissue engineering.
Collapse
Affiliation(s)
- Rebecca E Ginesi
- School of Chemistry, University of Glasgow, Glasgow, UK, G12 8QQ, UK.
| | - Emily R Draper
- School of Chemistry, University of Glasgow, Glasgow, UK, G12 8QQ, UK.
| |
Collapse
|
6
|
Tariq A, Behravesh AH, Utkarsh, Rizvi G. Statistical Modeling and Optimization of Electrospinning for Improved Morphology and Enhanced β-Phase in Polyvinylidene Fluoride Nanofibers. Polymers (Basel) 2023; 15:4344. [PMID: 38006068 PMCID: PMC10674670 DOI: 10.3390/polym15224344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
The fabrication of PVDF-based nanofiber mats with enhanced β-phase using electrospinning and post processing was optimized using Taguchi design methodology. The parameters studied include the concentration of PVDF in the DMF (Dimethylformamide) solvent, applied voltage, flow rate, and drum speed. A reliable statistical model was obtained for the fabrication of bead-free PVDF nanofibers with a high fraction of β-phase (F(β)%). The validity of this model was verified through comprehensive regression analysis. The optimized electrospinning parameters were determined to be a 23 wt% PVDF solution, 20 kV voltage, a flow rate of 1 mL/h, and a drum speed of 1200 revolutions per minute.
Collapse
Affiliation(s)
| | | | | | - Ghaus Rizvi
- Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON L1G 0C5, Canada
| |
Collapse
|
7
|
Carriles J, Nguewa P, González-Gaitano G. Advances in Biomedical Applications of Solution Blow Spinning. Int J Mol Sci 2023; 24:14757. [PMID: 37834204 PMCID: PMC10572924 DOI: 10.3390/ijms241914757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
In recent years, Solution Blow Spinning (SBS) has emerged as a new technology for the production of polymeric, nanocomposite, and ceramic materials in the form of nano and microfibers, with similar features to those achieved by other procedures. The advantages of SBS over other spinning methods are the fast generation of fibers and the simplicity of the experimental setup that opens up the possibility of their on-site production. While producing a large number of nanofibers in a short time is a crucial factor in large-scale manufacturing, in situ generation, for example, in the form of sprayable, multifunctional dressings, capable of releasing embedded active agents on wounded tissue, or their use in operating rooms to prevent hemostasis during surgical interventions, open a wide range of possibilities. The interest in this spinning technology is evident from the growing number of patents issued and articles published over the last few years. Our focus in this review is on the biomedicine-oriented applications of SBS for the production of nanofibers based on the collection of the most relevant scientific papers published to date. Drug delivery, 3D culturing, regenerative medicine, and fabrication of biosensors are some of the areas in which SBS has been explored, most frequently at the proof-of-concept level. The promising results obtained demonstrate the potential of this technology in the biomedical and pharmaceutical fields.
Collapse
Affiliation(s)
- Javier Carriles
- Department of Chemistry, Facultad de Ciencias, University of Navarra, 31080 Pamplona, Spain;
| | - Paul Nguewa
- ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, University of Navarra, Irunlarrea 1, 31080 Pamplona, Spain
| | | |
Collapse
|
8
|
Ravasi E, Melocchi A, Arrigoni A, Chiappa A, Gennari CGM, Uboldi M, Bertarelli C, Zema L, Briatico Vangosa F. Electrospinning of pullulan-based orodispersible films containing sildenafil. Int J Pharm 2023; 643:123258. [PMID: 37479102 DOI: 10.1016/j.ijpharm.2023.123258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Feasibility of electrospinning in the manufacturing of sildenafil-containing orodispersible films (ODFs) intended to enhance oxygenation and to reduce pulmonary arterial pressure in pediatric patients was evaluated. Given the targeted subjects, the simplest and safest formulation was chosen, using water as the only solvent and pullulan, a natural polymer, as the sole fiber-forming agent. A systematic characterization in terms of shear and extensional viscosity as well as surface tension of solutions containing different amounts of pullulan and sildenafil was carried out. Accordingly, electrospinning parameters enabling the continuous production, at the highest possible rate, of defect-free fibers with uniform diameter in the nanometer range were assessed. Morphology, microstructure, drug content and relevant solid state as well as ability of the resulting non-woven films to interact with aqueous fluids were evaluated. To better define the role of the fibrous nanostructure on the performance of ODFs, analogous films were produced by spin- and blade-coating and tested. Interestingly, the disintegration process of electrospun products turned out to be the fastest (i.e. occurring within few s) and compliant with Ph. Eur. and USP limits, making relevant ODFs particularly promising for increasing sildenafil bioavailability, thus lowering its dosages.
Collapse
Affiliation(s)
- Elisabetta Ravasi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Alessia Arrigoni
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Arianna Chiappa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Chiara Grazia Milena Gennari
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Chiara Bertarelli
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy.
| | - Francesco Briatico Vangosa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| |
Collapse
|
9
|
Banerjee R, Ray SS. Role of Rheology in Morphology Development and Advanced Processing of Thermoplastic Polymer Materials: A Review. ACS OMEGA 2023; 8:27969-28001. [PMID: 37576638 PMCID: PMC10413379 DOI: 10.1021/acsomega.3c03310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
This review presents fundamental knowledge and recent advances pertaining to research on the role of rheology in polymer processing, highlights the knowledge gap between the function of rheology in various processing operations and the importance of rheology in the development, characterization, and assessment of the morphologies of polymeric materials, and offers ideas for enhancing the processabilities of polymeric materials in advanced processing operations. Rheology plays a crucial role in the morphological evolution of polymer blends and composites, influencing the type of morphology in the case of blends and the quality of dispersion in the cases of both blends and composites. The rheological characteristics of multiphase polymeric materials provide valuable information on the morphologies of these materials, thereby rendering rheology an important tool for morphological assessment. Although rheology extensively affects the processabilities of polymeric materials in all processing operations, this review focuses on the roles of rheology in film blowing, electrospinning, centrifugal jet spinning, and the three-dimensional printing of polymeric materials, which are advanced processing operations that have gained significant research interest. This review offers a comprehensive overview of the fundamentals of morphology development and the aforementioned processing techniques; moreover, it covers all vital aspects related to the tailoring of the rheological characteristics of polymeric materials for achieving superior morphologies and high processabilities of these materials in advanced processing operations. Thus, this article provides a direction for future advancements in polymer processing. Furthermore, the superiority of elongational flow over shear flow in enhancing the quality of dispersion in multiphase polymeric materials and the role of extensional rheology in the advanced processing operations of these materials, which have rarely been discussed in previous reviews, have been critically analyzed in this review. In summary, this article offers new insights into the use of rheology in material and product development during advanced polymer-processing operations.
Collapse
Affiliation(s)
- Ritima Banerjee
- Department
of Chemical Engineering, Calcutta Institute
of Technology, Banitabla, Uluberia, Howrah, 711316 West Bengal, India
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Suprakas Sinha Ray
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology
Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| |
Collapse
|
10
|
Emadzadeh B, Naji-Tabasi S, Bostan A, Ghorani B. An insight into Iranian natural hydrocolloids: Applications and challenges in health-promoting foods. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Pattnaik S, Swain K, Ramakrishna S. Optimal delivery of poorly soluble drugs using electrospun nanofiber technology: Challenges, state of the art, and future directions. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1859. [PMID: 36193733 DOI: 10.1002/wnan.1859] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022]
Abstract
Poor aqueous solubility of both, existing drug molecules and those which are currently in the developmental stage, have posed a great challenge to pharmaceutical scientists because they often exhibit poor dissolution behavior and subsequent poor and erratic bioavailability. This has triggered extensive research to explore nanotechnology-based technology platforms for possible rescue. Recently, nanofibers have been exploited widely for diverse biomedical applications including for drug delivery. Electrospun nanofibers are capable of preserving the homogeneously loaded therapeutic agents in amorphous state potentialy impairing devitrification. The present review aims at providing an overview of the various key factors that affect the electrospinning process and characteristics of the nanofibers while fabrication of drug loaded nanofibers for poorly soluble drug candidates. The review explores various methodological advancements in the electrospinning process and set-ups for production scale-up. The various types of electrospun nanofibers (like simple matrix, core-sheath, Janus, and inclusion complex nanofibers) that have been exploited for the delivery of poorly soluble drugs are also critically assessed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Satyanarayan Pattnaik
- Division of Advanced Drug Delivery, Talla Padmavathi College of Pharmacy, Warangal, India
| | - Kalpana Swain
- Division of Advanced Drug Delivery, Talla Padmavathi College of Pharmacy, Warangal, India
| | - Seeram Ramakrishna
- NUS Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
The Elasticity of Polymer Melts and Solutions in Shear and Extension Flows. Polymers (Basel) 2023; 15:polym15041051. [PMID: 36850333 PMCID: PMC9961469 DOI: 10.3390/polym15041051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
This review is devoted to understanding the role of elasticity in the main flow modes of polymeric viscoelastic liquids-shearing and extension. The flow through short capillaries is the central topic for discussing the input of elasticity to the effects, which are especially interesting for shear. An analysis of the experimental data made it possible to show that the energy losses in such flows are determined by the Deborah and Weissenberg numbers. These criteria are responsible for abnormally high entrance effects, as well as for mechanical losses in short capillaries. In addition, the Weissenberg number determines the threshold of the flow instability due to the liquid-to-solid transition. In extension, this criterion shows whether deformation takes place as flow or as elastic strain. However, the stability of a free jet in extension depends not only on the viscoelastic properties of a polymeric substance but also on the driving forces: gravity, surface tension, etc. An analysis of the influence of different force combinations on the shape of the stretched jet is presented. The concept of the role of elasticity in the deformation of polymeric liquids is crucial for any kind of polymer processing.
Collapse
|
13
|
Tindell RK, Busselle LP, Holloway JL. Magnetic fields enable precise spatial control over electrospun fiber alignment for fabricating complex gradient materials. J Biomed Mater Res A 2023; 111:778-789. [PMID: 36594559 DOI: 10.1002/jbm.a.37492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023]
Abstract
Musculoskeletal interfacial tissues consist of complex gradients in structure, cell phenotype, and biochemical signaling that are important for function. Designing tissue engineering strategies to mimic these types of gradients is an ongoing challenge. In particular, new fabrication techniques that enable precise spatial control over fiber alignment are needed to better mimic the structural gradients present in interfacial tissues, such as the tendon-bone interface. Here, we report a modular approach to spatially controlling fiber alignment using magnetically-assisted electrospinning. Electrospun fibers were highly aligned in the presence of a magnetic field and smoothly transitioned to randomly aligned fibers away from the magnetic field. Importantly, magnetically-assisted electrospinning allows for spatial control over fiber alignment at sub-millimeter resolution along the length of the fibrous scaffold similar to the native structural gradient present in many interfacial tissues. The versatility of this approach was further demonstrated using multiple electrospinning polymers and different magnet configurations to fabricate complex fiber alignment gradients. As expected, cells seeded onto gradient fibrous scaffolds were elongated and aligned on the aligned fibers and did not show a preferential alignment on the randomly aligned fibers. Overall, this fabrication approach represents an important step forward in creating gradient fibrous materials, where such materials are promising as tissue-engineered scaffolds for regenerating functional musculoskeletal interfacial tissues.
Collapse
Affiliation(s)
- Raymond Kevin Tindell
- Chemical Engineering, School of Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, USA
| | - Lincoln P Busselle
- Chemical Engineering, School of Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, USA
| | - Julianne L Holloway
- Chemical Engineering, School of Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
14
|
Pan W, Lin J. Efficient centrifugal spinning of soda lignin for the production of activated carbon nanofibers with highly porous structure. Int J Biol Macromol 2022; 222:1433-1442. [DOI: 10.1016/j.ijbiomac.2022.09.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
15
|
Hai AM, Yue Z, Beirne S, Wallace G. Electrowriting of silk fibroin: Towards
3D
fabrication for tissue engineering applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.53349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Abdul Moqeet Hai
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM, Innovation Campus University of Wollongong Wollongong New South Wales Australia
- Institute of Polymer and Textile Engineering University of the Punjab Lahore Pakistan
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM, Innovation Campus University of Wollongong Wollongong New South Wales Australia
| | - Stephen Beirne
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM, Innovation Campus University of Wollongong Wollongong New South Wales Australia
| | - Gordon Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM, Innovation Campus University of Wollongong Wollongong New South Wales Australia
| |
Collapse
|
16
|
Effect of amylose content on the preparation for carboxymethyl starch/pullulan electrospun nanofibers and their properties as encapsulants of thymol. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Martin AMV, Flores DC, Siacor FDC, Taboada EB, Tan NPB. Preparation of mango peel-waste pectin-based nanofibers by solution blow spinning (SBS). NANOTECHNOLOGY 2022; 33:495602. [PMID: 35994941 DOI: 10.1088/1361-6528/ac8b8b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
An essential prerequisite for successful solution blow spinning (SBS) is the presence of effective molecular entanglements of polymers in the solution. However, the fabrication of biopolymer fibers is not as straightforward as synthetic polymers. Particularly for biopolymers such as pectin, molecular entanglements are essential but insufficient for successful spinning through the SBS production method. Such a challenge is due to the biopolymer's complex nature. However, incorporating an easily spinnable polymer precursor, such as polyacrylonitrile (PAN), to pectin effectively enabled the production of fibers from the SBS process. In this process, PAN-assisted pectin nanofibers are produced with average diameters ranging from 410.75 ± 3.73 to 477.09 ± 6.60 nm using a feed flow rate of 5 ml h-1, air pressure of 3 bars, syringe tip to collector distance at 30 cm, and spinning time of 10 min. PAN in DMSO solvent at different volume ratios (i.e. 35%-55% v/v) was critical in assisting pectin to produce nanofibers. The addition of a high molecular weight polymer, PAN, to pectin also improved the viscoelasticity of the solution, eventually contributing to its successful SBS process. Furthermore, the composite SBS-spun fibers obtained suggest that its formation is concentration-dependent.
Collapse
Affiliation(s)
- Alvin Mar V Martin
- Department of Chemical Engineering, University of San Carlos, Nasipit, Talamban, Cebu City, 6000, The Philippines
| | - Dharyl C Flores
- Department of Chemical Engineering, University of San Carlos, Nasipit, Talamban, Cebu City, 6000, The Philippines
| | - Francis Dave C Siacor
- Department of Chemical Engineering, University of San Carlos, Nasipit, Talamban, Cebu City, 6000, The Philippines
| | - Evelyn B Taboada
- Department of Chemical Engineering, University of San Carlos, Nasipit, Talamban, Cebu City, 6000, The Philippines
| | - Noel Peter B Tan
- Department of Chemical Engineering, College of Technology, University of San Agustin, Iloilo City, 5000, The Philippines
- Center for Advanced New Materials, Engineering, and Emerging Technologies (CANMEET), University of San Agustin, Iloilo City, 5000, The Philippines
| |
Collapse
|
18
|
Electrospinning and its potential in fabricating pharmaceutical dosage form. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Kianfar P, Nguyen Trieu H, Dalle Vacche S, Tsantilis L, Bongiovanni R, Vitale A. Solvent-free electrospinning of liquid polybutadienes and their in-situ photocuring. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Topuz F, Oldal DG, Szekely G. Valorization of Polyethylene Terephthalate (PET) Plastic Wastes as Nanofibrous Membranes for Oil Removal: Sustainable Solution for Plastic Waste and Oil Pollution. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fuat Topuz
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Diana G. Oldal
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Gyorgy Szekely
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
21
|
Lv CJ, Hao B, Yasin A, Yue X, Ma PC. Molecular and structural design of polyacrylonitrile-based membrane for oil-water separation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Scalable production of ultrafine polyaniline fibres for tactile organic electrochemical transistors. Nat Commun 2022; 13:2101. [PMID: 35440125 PMCID: PMC9018749 DOI: 10.1038/s41467-022-29773-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/30/2022] [Indexed: 11/08/2022] Open
Abstract
The development of continuous conducting polymer fibres is essential for applications ranging from advanced fibrous devices to frontier fabric electronics. The use of continuous conducting polymer fibres requires a small diameter to maximize their electroactive surface, microstructural orientation, and mechanical strength. However, regularly used wet spinning techniques have rarely achieved this goal due primarily to the insufficient slenderization of rapidly solidified conducting polymer molecules in poor solvents. Here we report a good solvent exchange strategy to wet spin the ultrafine polyaniline fibres. The slow diffusion between good solvents distinctly decreases the viscosity of protofibers, which undergo an impressive drawing ratio. The continuously collected polyaniline fibres have a previously unattained diameter below 5 µm, high energy and charge storage capacities, and favorable mechanical performance. We demonstrated an ultrathin all-solid organic electrochemical transistor based on ultrafine polyaniline fibres, which operated as a tactile sensor detecting pressure and friction forces at different levels.
Collapse
|
23
|
Ozmen D, Akinalan Balik B, Argin S, Yildirim‐Mavis C, Toker OS. Large amplitude oscillatory shear (LAOS) measurements as a promising tool to predict electrospinnability of pectin solutions. J Appl Polym Sci 2022. [DOI: 10.1002/app.51652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Duygu Ozmen
- Chemical and Metallurgical Engineering Faculty, Food Engineering Department Yildiz Technical University Istanbul Turkey
| | - Busra Akinalan Balik
- Faculty of Engineering, Department of Food Engineering Yeditepe University Istanbul Turkey
| | - Sanem Argin
- Faculty of Engineering, Department of Food Engineering Yeditepe University Istanbul Turkey
| | - Cigdem Yildirim‐Mavis
- Faculty of Health Sciences, Department of Nutrition and Dietetics Haliç University Istanbul Turkey
| | - Omer Said Toker
- Chemical and Metallurgical Engineering Faculty, Food Engineering Department Yildiz Technical University Istanbul Turkey
| |
Collapse
|
24
|
Merchiers J, Reddy NK, Sharma V. Extensibility-Enriched Spinnability and Enhanced Sorption and Strength of Centrifugally Spun Polystyrene Fiber Mats. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jorgo Merchiers
- Institute for Materials research (IMO-IMOMEC), Hasselt University, B-3590 Diepenbeek, Belgium
- IMEC vzw-Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Naveen K. Reddy
- Institute for Materials research (IMO-IMOMEC), Hasselt University, B-3590 Diepenbeek, Belgium
- IMEC vzw-Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
25
|
Musilová L, Achbergerová E, Vítková L, Kolařík R, Martínková M, Minařík A, Mráček A, Humpolíček P, Pecha J. Cross-Linked Gelatine by Modified Dextran as a Potential Bioink Prepared by a Simple and Non-Toxic Process. Polymers (Basel) 2022; 14:polym14030391. [PMID: 35160381 PMCID: PMC8838658 DOI: 10.3390/polym14030391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/28/2022] Open
Abstract
Essential features of well-designed materials intended for 3D bioprinting via microextrusion are the appropriate rheological behavior and cell-friendly environment. Despite the rapid development, few materials are utilizable as bioinks. The aim of our work was to design a novel cytocompatible material facilitating extrusion-based 3D printing while maintaining a relatively simple and straightforward preparation process without the need for harsh chemicals or radiation. Specifically, hydrogels were prepared from gelatines coming from three sources—bovine, rabbit, and chicken—cross-linked by dextran polyaldehyde. The influence of dextran concentration on the properties of hydrogels was studied. Rheological measurements not only confirmed the strong shear-thinning behavior of prepared inks but were also used for capturing cross-linking reaction kinetics and demonstrated quick achievement of gelation point (in most cases < 3 min). Their viscoelastic properties allowed satisfactory extrusion, forming a self-supported multi-layered uniformly porous structure. All gelatin-based hydrogels were non-cytototoxic. Homogeneous cells distribution within the printed scaffold was confirmed by fluorescence confocal microscopy. In addition, no disruption of cells structure was observed. The results demonstrate the great potential of the presented hydrogels for applications related to 3D bioprinting.
Collapse
Affiliation(s)
- Lenka Musilová
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlín, Czech Republic; (L.M.); (L.V.); (A.M.)
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic; (R.K.); (M.M.); (P.H.)
| | - Eva Achbergerová
- CEBIA-Tech, Faculty of Applied Informatics, Tomas Bata University in Zlín, Nad Stráněmi 4511, 760 05 Zlín, Czech Republic; (E.A.); (J.P.)
| | - Lenka Vítková
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlín, Czech Republic; (L.M.); (L.V.); (A.M.)
| | - Roman Kolařík
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic; (R.K.); (M.M.); (P.H.)
| | - Martina Martínková
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic; (R.K.); (M.M.); (P.H.)
| | - Antonín Minařík
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlín, Czech Republic; (L.M.); (L.V.); (A.M.)
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic; (R.K.); (M.M.); (P.H.)
| | - Aleš Mráček
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlín, Czech Republic; (L.M.); (L.V.); (A.M.)
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic; (R.K.); (M.M.); (P.H.)
- Correspondence:
| | - Petr Humpolíček
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 275, 760 01 Zlín, Czech Republic; (L.M.); (L.V.); (A.M.)
- Centre of Polymer Systems, Tomas Bata University in Zlín, tř. Tomáše Bati 5678, 760 01 Zlín, Czech Republic; (R.K.); (M.M.); (P.H.)
| | - Jiří Pecha
- CEBIA-Tech, Faculty of Applied Informatics, Tomas Bata University in Zlín, Nad Stráněmi 4511, 760 05 Zlín, Czech Republic; (E.A.); (J.P.)
| |
Collapse
|
26
|
Poly(vinylidene fluoride)/poly(styrene-co-acrylic acid) nanofibers as potential materials for blood separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Ewaldz E, Randrup J, Brettmann B. Solvent Effects on the Elasticity of Electrospinnable Polymer Solutions. ACS POLYMERS AU 2021; 2:108-117. [PMID: 36855340 PMCID: PMC9954283 DOI: 10.1021/acspolymersau.1c00041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultrafine fibers manufactured through electrospinning are a frontrunner for advanced fiber applications, but transitioning from potential to commercial applications for ultrafine fibers requires a better understanding of the behavior of polymer solutions in electrospinning to enable the design of more complex spinning dopes. In complex fluids, there are viscoelastic stresses and microstructural transitions that alter free surface flows. These may not be seen in shear rheology; therefore, an in-depth analysis of the extensional rheological behavior must be performed. In this work, we use dripping-onto-substrate rheometry to characterize the extensional viscosities of electrospinning dopes from four polymer solutions commonly used in electrospinning (low- and high-molecular-weight polyvinylpyrrolidone in methanol and water as well as poly(ethylene oxide) and poly(vinyl alcohol) in water). We link the electrospinnability, characterized through fiber morphology, to the extensional rheological properties for semidilute and entangled polymer solutions and show that high-surface-tension solvents require higher extensional viscosities and relaxation times to form smooth fibers and that the Deborah and Ohnesorge numbers are a promising method of determining electrospinnability. Through this tie between solvent characteristics, viscoelasticity, and electrospinnability, we will enable the design of more complex spinning dopes amenable to applications in wearable electronics, pharmaceuticals, and more.
Collapse
Affiliation(s)
- Elena Ewaldz
- Materials
Science and Engineering, Georgia Institute
of Technology, 711 Ferst Drive, Atlanta, Georgia 30332, United
States
| | - Joshua Randrup
- Chemical
and Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United
States
| | - Blair Brettmann
- Materials
Science and Engineering, Georgia Institute
of Technology, 711 Ferst Drive, Atlanta, Georgia 30332, United
States,Chemical
and Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United
States,
| |
Collapse
|
28
|
Electro-hydrodynamic processing for encapsulation of probiotics: A review on recent trends, technological development, challenges and future prospect. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Merchiers J, Martínez Narváez CDV, Slykas C, Reddy NK, Sharma V. Evaporation and Rheology Chart the Processability Map for Centrifugal Force Spinning. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jorgo Merchiers
- Institute for Materials Research (IMO-IMOMEC), Hasselt University, B-3590 Diepenbeek, Belgium
- IMEC vzw−Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | | | - Cheryl Slykas
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60608, United States
| | - Naveen K. Reddy
- Institute for Materials Research (IMO-IMOMEC), Hasselt University, B-3590 Diepenbeek, Belgium
- IMEC vzw−Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Vivek Sharma
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60608, United States
| |
Collapse
|
30
|
Tuancharoensri N, Ross G, Punyodom W, Mahasaranon S, Jongjitwimol J, Topham PD, Ross S. Multifunctional core–shell electrospun nanofibrous fabrics of poly(vinyl alcohol)/silk sericin (core) and poly(lactide‐
co
‐glycolide) (shell). POLYM INT 2021. [DOI: 10.1002/pi.6319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Gareth Ross
- Department of Chemistry, Faculty of Science Naresuan University Phitsanulok Thailand
- Biopolymer Group, Excellent Center of Biomaterials, Department of Chemistry Faculty of Science, Naresuan University Phitsanulok Thailand
| | - Winita Punyodom
- Center of Excellence in Materials Science and Technology Chiang Mai University Chiang Mai Thailand
- Department of Chemistry, Faculty of Science Chiang Mai University Chiang Mai Thailand
| | - Sararat Mahasaranon
- Department of Chemistry, Faculty of Science Naresuan University Phitsanulok Thailand
- Biopolymer Group, Excellent Center of Biomaterials, Department of Chemistry Faculty of Science, Naresuan University Phitsanulok Thailand
| | - Jirapas Jongjitwimol
- Clinical Microbiology, Department of Medical Technology Faculty of Allied Health Sciences, Naresuan University Phitsanulok Thailand
| | - Paul D Topham
- Aston Institute of Materials Research Aston University Birmingham UK
| | - Sukunya Ross
- Department of Chemistry, Faculty of Science Naresuan University Phitsanulok Thailand
- Biopolymer Group, Excellent Center of Biomaterials, Department of Chemistry Faculty of Science, Naresuan University Phitsanulok Thailand
| |
Collapse
|
31
|
Preparation of carboxymethyl starch/polyvinyl-alcohol electrospun composite nanofibers from a green approach. Int J Biol Macromol 2021; 190:601-606. [PMID: 34508720 DOI: 10.1016/j.ijbiomac.2021.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
A green approach for the preparation of starch-based composite nanofibers using electrospinning was developed. The water-soluble sodium carboxymethyl starch (CMS) with DS 0.31 was prepared. The addition of co-blending polymer polyvinyl-alcohol (PVA) was attempted to improve the CMS solution spinnability, which blends from aqueous solution were prepared at different CMS/PVA weight ratios. The solution parameters including viscosity, surface tension and conductivity were measured and the morphologies of nanofibers were observed by SEM. Smooth, continuous, and defect-free nanofibers were successfully obtained range from the blend of CMS/PVA weight ratios of 10:90 to 80:20. Diameter distribution diagrams suggested that the diameter of the nanofibers reduced with the concentration of CMS increasing. This is the first report that the thin nanofiber (135.29 nm) with bead-free was obtained at the maximal CMS content of 50.0 wt% in the CMS/PVA blend. This study provided a green approach to produce starch-based nano-scale fibers.
Collapse
|
32
|
Merchiers J, Martínez Narváez CDV, Slykas C, Buntinx M, Deferme W, D'Haen J, Peeters R, Sharma V, Reddy NK. Centrifugally spun poly(ethylene oxide) fibers rival the properties of electrospun fibers. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jorgo Merchiers
- Institute for Materials Research (IMO‐IMOMEC), Hasselt University Diepenbeek Belgium
- IMEC vzw Division IMOMEC Diepenbeek Belgium
| | | | - Cheryl Slykas
- Department of Chemical Engineering University of Illinois at Chicago Chicago Illinois 60608 USA
| | - Mieke Buntinx
- Institute for Materials Research (IMO‐IMOMEC), Hasselt University Diepenbeek Belgium
- IMEC vzw Division IMOMEC Diepenbeek Belgium
| | - Wim Deferme
- Institute for Materials Research (IMO‐IMOMEC), Hasselt University Diepenbeek Belgium
- IMEC vzw Division IMOMEC Diepenbeek Belgium
| | - Jan D'Haen
- Institute for Materials Research (IMO‐IMOMEC), Hasselt University Diepenbeek Belgium
- IMEC vzw Division IMOMEC Diepenbeek Belgium
| | - Roos Peeters
- Institute for Materials Research (IMO‐IMOMEC), Hasselt University Diepenbeek Belgium
- IMEC vzw Division IMOMEC Diepenbeek Belgium
| | - Vivek Sharma
- Department of Chemical Engineering University of Illinois at Chicago Chicago Illinois 60608 USA
| | - Naveen K. Reddy
- Institute for Materials Research (IMO‐IMOMEC), Hasselt University Diepenbeek Belgium
- IMEC vzw Division IMOMEC Diepenbeek Belgium
| |
Collapse
|
33
|
Behere I, Ingavle G. In vitro and in vivo advancement of multifunctional electrospun nanofiber scaffolds in wound healing applications: Innovative nanofiber designs, stem cell approaches, and future perspectives. J Biomed Mater Res A 2021; 110:443-461. [PMID: 34390324 DOI: 10.1002/jbm.a.37290] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/30/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023]
Abstract
The skin is one of the most essential tissues in the human body, interacting with the outside environment and shielding the body from diseases and excessive water loss. Hydrogels, decellularized porcine dermal matrix, and lyophilized polymer scaffolds have all been used in studies of skin wound repair, wound dressing, and skin tissue engineering, however, these materials cannot replicate the nanofibrous architecture of the skin's native extracellular matrix (ECM). Electrospun nanofibers are a fascinating new form of nanomaterials with tremendous potential across a broad spectrum of applications in the biomedical field, including wound dressings, wound healing scaffolds, regenerative medicine, bioengineering of skin tissue, and multifaceted drug delivery. This article reviews recent in vitro and in vivo developments in multifunctional electrospun nanofibers (MENs) for wound healing. This review begins with an introduction to the electrospinning process, its principle, and the processing parameters which have a significant impact on the nanofiber properties. It then discusses the various geometries and advantages of MEN scaffolds produced by different innovative electrospinning techniques for wound healing applications when used in combination with stem cells. This review also discusses some of the possible future nanofiber-based models that could be used. Finally, we conclude with potential perspectives and conclusions in this area.
Collapse
Affiliation(s)
- Isha Behere
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Ganesh Ingavle
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
34
|
Wang C, Hashimoto T, Wang Y. Extension Rate and Bending Instability of Electrospinning Jets: the Role of the Electric Field. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chi Wang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | | | - Yu Wang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| |
Collapse
|
35
|
An Overview of the Design of Chitosan-Based Fiber Composite Materials. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5060160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chitosan composite fibrous materials continue to generate significant interest for wastewater treatment, food packaging, and biomedical applications. This relates to the relatively high surface area and porosity of such fibrous chitosan materials that synergize with their unique physicochemical properties. Various methods are involved in the preparation of chitosan composite fibrous materials, which include the modification of the biopolymer that serve to alter the solubility of chitosan, along with post-treatment of the composite materials to improve the water stability or to achieve tailored functional properties. Two promising methods to produce such composite fibrous materials involve freeze-drying and electrospinning. Future developments of such composite fibrous materials demands an understanding of the various modes of preparation and methods of structural characterization of such materials. This review contributes to an understanding of the structure–property relationships of composite fibrous materials that contain chitosan, along with an overview of recent advancements concerning their preparation.
Collapse
|
36
|
Self Standing Mats of Blended Polyaniline Produced by Electrospinning. NANOMATERIALS 2021; 11:nano11051269. [PMID: 34065931 PMCID: PMC8151508 DOI: 10.3390/nano11051269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 01/26/2023]
Abstract
Conducting nanofibers of polyaniline (PANI) doped with camphor-10-sulfonic acid (HCSA) and blended with different polymers, such as polymethyl methacrylate (PMMA) and polyvinyl acetate (PVAc), have been fabricated using the electrospinning technique. Scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA) were utilized to characterize the morphology and the thermal stability of PANI-blended fibers. An extensive study was performed to understand the copolymer influence on both the structural and surface properties of the realized conductive thin films. Samples main electrical characteristics, as conductivity, specific capacitance and electrochemical performances were tested. The better mats were obtained with the use of PVAc copolymer, which showed a conductivity value two orders of magnitude higher than the PMMA system. Aiming at further improving the electrochemical features of these blended mats, hybrid fibers based on PANI/PVAc/graphene oxide and PANI/PVAc/iron oxide were also produced and characterized. The obtained mats were potentially addressed to numerous practical fields, including sensors, health applications, smart devices and multifunctional textile materials.
Collapse
|
37
|
Mulholland EJ, McErlean EM, Dunne N, McCarthy HO. Design of a novel electrospun PVA platform for gene therapy applications using the CHAT peptide. Int J Pharm 2021; 598:120366. [PMID: 33561501 DOI: 10.1016/j.ijpharm.2021.120366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/02/2023]
Abstract
The electrospinning of polymers has previously shown excellent potential for localised gene therapy. Thus, it was proposed that for the first time, the cell-penetrating CHAT peptide could be utilised to deliver DNA via electrospun nanofibres for localised gene therapy treatment. CHAT is an effective delivery system that encapsulates pDNA to form nanoparticles with the physicochemical characteristics for cellular uptake and protein generation. In this study, the production of smooth, bead-free PVA nanofibres by electrospinning was optimised through a Design of Experiments approach. Bead-free PVA nanofibres were consistently produced using the optimised parameters as follows: applied voltage (8 kV); collector-emitter distance (8 cm); polymer flow rate (4 µL/min); polymer concentration (9 wt% polymer); PVA MW (146-180 kDa). PVA nanofibres were subsequently crosslinked in 1 vol% glutaraldehyde in methanol to confer stability under aqueous conditions with minimal change to morphology, and no compromise to biocompatibility. Nanoparticles of CHAT/pDNA were synthesised and incorporated into the crosslinked nanofibres via soak-loading. Evaluation studies indicated that 100% of the loaded cargo was released within 48 h from the nanofibres. Furthermore, the released pDNA retained structural integrity and functionality as confirmed by gel electrophoresis and transfection studies in NCTC-929 fibroblast cells. Taken together, this data demonstrates that delivery of CHAT/pDNA nanoparticles from electrospun PVA nanofibres represents a solution for localised gene therapy.
Collapse
Affiliation(s)
- E J Mulholland
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - E M McErlean
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - N Dunne
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - H O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
38
|
Wang Y, Wang C. Extension rate and bending behavior of electrospinning jet: The role of solution conductivity. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Dejob L, Toury B, Tadier S, Grémillard L, Gaillard C, Salles V. Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review. Acta Biomater 2021; 123:123-153. [PMID: 33359868 DOI: 10.1016/j.actbio.2020.12.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
The field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and architectures are possible. In particular, the electrospinning process can reproduce the fibrillar structure of bone ECM by stretching a viscoelastic solution under an electrical field. With this method, nano/micrometer-sized fibres can be produced, with an adjustable chemical composition. Therefore, by shaping bioactive ceramics such as silica, bioactive glasses and calcium phosphates through electrospinning, promising properties for their use in BTE can be obtained. This review focuses on the in situ synthesis and simultaneous electrospinning of bioceramic-based fibres while the reasons for using each material are correlated with its bioactivity. Theoretical and practical considerations for the synthesis and electrospinning of these materials are developed. Finally, investigations into the in vitro and in vivo bioactivity of different systems using such inorganic fibres are exposed.
Collapse
Affiliation(s)
- Léa Dejob
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France; Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Bérangère Toury
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France
| | - Solène Tadier
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Laurent Grémillard
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Claire Gaillard
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Vincent Salles
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France.
| |
Collapse
|
40
|
Subbotin AV. Features of the Behavior of a Polymer Solution Jet in Electrospinning. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Using the numerical analysis of the force balance equation and the rheological equation of the model of finitely extensible chains, the dynamics of a charged jet during the electrospinning of a polymer solution and the orientation of macromolecules in the jet are studied. In fairly weak electric fields, the jet always remains rectilinear, while in strong fields the straight section of the jet has a finite length, after which the motion of the jet becomes unstable. This behavior is due to the competition between inertial and viscoelastic forces, with viscoelasticity dominating in strong fields. It is found that polymer chains in the jet are strongly stretched along the flow direction.
Collapse
|
41
|
|
42
|
Peer P, Zelenkova J, Filip P, Lovecka L. An Estimate of the Onset of Beadless Character of Electrospun Nanofibers Using Rheological Characterization. Polymers (Basel) 2021; 13:polym13020265. [PMID: 33466955 PMCID: PMC7829922 DOI: 10.3390/polym13020265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/14/2023] Open
Abstract
Electrospinning represents the very effective process of producing nanofibrous mats. This process is influenced by a number of mutually and strongly interlaced entry parameters (characteristics of polymer, solvent, process parameters) and their participation in the resulting nanofiber quality. The appearance of nanofibers is a result of the necessary primary experimental parameter setting within an acceptable range. However, finer analysis of nanofiber quality depends on the proper choice of these individual factors. The aim of this contribution is to evaluate one of the key factors—polymer concentration—with respect to the presence or absence of bead formation. This passage can be approximated by rheological oscillatory measurements when a sudden decrease in phase angle indicates this change. It replaces otherwise time- and cost-consuming trial-and-error experiments. This approach was tested using three different materials: solutions of poly(vinylidene fluoride-co-hexafluoropropylene), poly(vinyl butyral), and poly(ethylene oxide).
Collapse
Affiliation(s)
- Petra Peer
- Institute of Hydrodynamics, Czech Academy of Sciences, 166 12 Prague, Czech Republic; (J.Z.); (P.F.)
- Correspondence:
| | - Jana Zelenkova
- Institute of Hydrodynamics, Czech Academy of Sciences, 166 12 Prague, Czech Republic; (J.Z.); (P.F.)
| | - Petr Filip
- Institute of Hydrodynamics, Czech Academy of Sciences, 166 12 Prague, Czech Republic; (J.Z.); (P.F.)
| | - Lenka Lovecka
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic;
| |
Collapse
|
43
|
Gong X, Kalantari M, Aslanzadeh S, Boluk Y. Interfacial interactions and electrospinning of cellulose nanocrystals dispersions in polymer solutions: a review. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1847137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xiaoyu Gong
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Mahsa Kalantari
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Samira Aslanzadeh
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Yaman Boluk
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
44
|
Electrospun polyvinyl alcohol (PVA) nanofibers as carriers for hormones (IAA and GA3) delivery in seed invigoration for enhancing germination and seedling vigor of agricultural crops (groundnut and black gram). Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03435-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Suresh S, Becker A, Glasmacher B. Impact of Apparatus Orientation and Gravity in Electrospinning-A Review of Empirical Evidence. Polymers (Basel) 2020; 12:polym12112448. [PMID: 33105879 PMCID: PMC7690589 DOI: 10.3390/polym12112448] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/29/2022] Open
Abstract
Electrospinning is a versatile fibre fabrication method with applications from textile to tissue engineering. Despite the appearance that the influencing parameters of electrospinning are fully understood, the effect of setup orientation has not been thoroughly investigated. With current burgeoning interest in modified and specialised electrospinning apparatus, it is timely to review the impact of this seldom-considered parameter. Apparatus configuration plays a major role in the morphology of the final product. The primary difference between spinning setups is the degree to which the electrical force and gravitational force contribute. Since gravity is much lower in magnitude when compared with the electrostatic force, it is thought to have no significant effect on the spinning process. But the shape of the Taylor cone, jet trajectory, fibre diameter, fibre diameter distribution, and overall spinning efficiency are all influenced by it. In this review paper, we discuss all these developments and more. Furthermore, because many research groups build their own electrospinning apparatus, it would be prudent to consider this aspect as particular orientations are more suitable for certain applications.
Collapse
Affiliation(s)
- Sinduja Suresh
- Institute for Multiphase Processes (IMP), Leibniz University Hannover, 30823 Garbsen, Hannover, Germany;
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- Hannover Medical School (MHH), 30625 Hannover, Germany
- Correspondence: (S.S.); (A.B.)
| | - Alexander Becker
- Institute for Multiphase Processes (IMP), Leibniz University Hannover, 30823 Garbsen, Hannover, Germany;
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- Correspondence: (S.S.); (A.B.)
| | - Birgit Glasmacher
- Institute for Multiphase Processes (IMP), Leibniz University Hannover, 30823 Garbsen, Hannover, Germany;
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| |
Collapse
|
46
|
Wang C, Hashimoto T. A Scenario of a Fiber Formation Mechanism in Electrospinning: Jet Evolves Assemblies of Phase-Separated Strings That Eventually Split into As-spun Fibers Observed on the Grounded Collector. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chi Wang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC
| | | |
Collapse
|
47
|
Orientation and Aggregation of Polymer Chains in the Straight Electrospinning Jet. MATERIALS 2020; 13:ma13194295. [PMID: 32993019 PMCID: PMC7578949 DOI: 10.3390/ma13194295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022]
Abstract
The dynamics of a straight section of a jet arising during the electrospinning of a polymer solution without entanglements, and the orientation of polymer chains in the jet were explored based on the analysis of the forces balance equation and the rheological equation of the finitely extensible nonlinear elastic model. Two modes of the jet behavior were predicted. At relatively low volumetric flow rates, the straight jet has a limited length, after that, its rectilinear motion becomes impossible, while at higher flow rates, the jet always remains straightforward. It is shown that polymer chains in a jet can be strongly stretched, which leads to phase separation in a spinning solution. Aggregation of the stretched chains was also studied and the parameters of the emerging inhomogeneous structure were predicted.
Collapse
|
48
|
Wang C, Hashimoto T, Wang Y, Lai HY, Kuo CH. Formation of Dissipative Structures in the Straight Segment of Electrospinning Jets. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chi Wang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | | | - Yu Wang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Hsin-Yi Lai
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Chih-Hsien Kuo
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| |
Collapse
|
49
|
Cavo M, Serio F, Kale NR, D'Amone E, Gigli G, Del Mercato LL. Electrospun nanofibers in cancer research: from engineering of in vitro 3D cancer models to therapy. Biomater Sci 2020; 8:4887-4905. [PMID: 32830832 DOI: 10.1039/d0bm00390e] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electrospinning is historically related to tissue engineering due to its ability to produce nano-/microscale fibrous materials with mechanical and functional properties that are extremely similar to those of the extracellular matrix of living tissues. The general interest in electrospun fibrous matrices has recently expanded to cancer research both as scaffolds for in vitro cancer modelling and as patches for in vivo therapeutic delivery. In this review, we examine electrospinning by providing a brief description of the process and overview of most materials used in this process, discussing the effect of changing the process parameters on fiber conformations and assemblies. Then, we describe two different applications of electrospinning in service of cancer research: firstly, as three-dimensional (3D) fibrous materials for generating in vitro pre-clinical cancer models; and secondly, as patches encapsulating anticancer agents for in vivo delivery.
Collapse
Affiliation(s)
- Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| | | | | | | | | | | |
Collapse
|
50
|
Deshawar D, Gupta K, Chokshi P. Electrospinning of polymer solutions: An analysis of instability in a thinning jet with solvent evaporation. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122656] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|