1
|
Mazzali D, Rath G, Röntgen A, Roy Chowdhury V, Vendruscolo M, Resmini M. Sustainable and Surfactant-Free Synthesis of Negatively Charged Acrylamide Nanogels for Biomedical Applications. Macromolecules 2025; 58:1206-1213. [PMID: 39958486 PMCID: PMC11823596 DOI: 10.1021/acs.macromol.4c02128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/01/2024] [Accepted: 12/24/2024] [Indexed: 02/18/2025]
Abstract
Nanogels offer unique advantages, like high surface-to-volume ratio, scalable synthetic methods, and easily tailored formulations, that allow us to control size and introduce stimuli-responsive properties. Their potential for drug delivery is significant due to their biocompatibility, high drug loading capacity, and controlled and sustained drug release. The development of greener and sustainable processes is essential for large-scale applications. We report the synthesis in water of covalently cross-linked acrylamide-based nanogels, both neutral and negatively charged, with varying amounts of acryloyl-l-proline, using high-dilution radical polymerization, without the need for surfactants. The use of a water-based synthesis resulted in nanogels with high monomer conversions and chemical yields, as well as lower polydispersity and smaller particle sizes for the negatively charged nanogels, leading to a more efficient synthetic methodology, with reduced loss of starting materials, higher potential for scalability, and reduction in costs. The suitability of these nanogels for biomedical applications was supported by cytotoxicity studies showing no significant reduction in viability on a human neuroblastoma cell line.
Collapse
Affiliation(s)
- Davide Mazzali
- Department
of Chemistry, SPCS, Queen Mary University
of London, London E1 4NS, U.K.
| | - Gabriela Rath
- Department
of Chemistry, SPCS, Queen Mary University
of London, London E1 4NS, U.K.
| | - Alexander Röntgen
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Vaidehi Roy Chowdhury
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Marina Resmini
- Department
of Chemistry, SPCS, Queen Mary University
of London, London E1 4NS, U.K.
| |
Collapse
|
2
|
Keihankhadiv S, Neugebauer D. Simple strategy of the use of pharmaceutically functionalized ionic liquids in a new generation of polymer nanocarriers for the combined delivery of ionic p-aminosalicylate and ampicillin. Int J Pharm 2024; 662:124483. [PMID: 39029636 DOI: 10.1016/j.ijpharm.2024.124483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Single and dual bioactive linear poly(ionic liquid)s (PIL) were synthesized for use as nanocarriers in drug delivery systems (DDS). These PILs were obtained through the (co)polymerization of the choline-based monomeric ionic liquids (MIL) with pharmaceutical anions possessing antibacterial properties, specifically [2-(methacryloyloxy)ethyl]trimethyl-ammonium with ampicillin and p-aminosalicylate (TMAMA/AMP and TMAMA/PAS). The copolymers exhibited varying chain lengths defined by a degree of polymerization (DPn = 122-370), and differing contents of ionic fraction and drugs (TMAMA 61-92 %, AMP 61-93 % and PAS 16-21 %). These parameters were adjustable by the monomer conversion (33-92 %) and the initial ratio of comonomers. In aqueous solution, the polymer particles reached nanosizes, i.e. 190-328 nm for AMP systems and 200-235 nm for AMP/PAS systems. In the release process, the pharmaceutical anions were released through exchange by phosphate anions in PBS at pH 7.4 at 37 °C. Depending on the copolymer composition the release of AMP was attained in 72-100 % (11.1-19.5 µg/mL) within 26 h by the single drug systems, while the dual drug systems released 61-100 % of AMP (14.8-24.7 µg/mL) and 82-100 % of PAS (3.1-4.8 µg/mL) within 72 h. The effectiveness in the drug delivery of the designed TMAMA polymers seems to be promising for future applications in antibiotic therapy and the combined therapy.
Collapse
Affiliation(s)
- Shadi Keihankhadiv
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland.
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland.
| |
Collapse
|
3
|
Khodadadi Yazdi M, Zarrintaj P, Saeb MR, Mozafari M, Bencherif SA. Progress in ATRP-derived materials for biomedical applications. PROGRESS IN MATERIALS SCIENCE 2024; 143:101248. [DOI: 10.1016/j.pmatsci.2024.101248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
4
|
Murphy AC, Oldenkamp HF, Peppas NA. A highly tuneable inverse emulsion polymerization for the synthesis of stimuli-responsive nanoparticles for biomedical applications. Biomater Sci 2024; 12:1707-1715. [PMID: 38334980 PMCID: PMC10965376 DOI: 10.1039/d3bm01765f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Polymeric nanomaterials have seen widespread use in biomedical applications as they are highly tuneable to achieve the desired stimuli-responsiveness, targeting, biocompatibility, and degradation needed for fields such as drug delivery and biosensing. However, adjustments to composition and the introduction of new monomers often necessitate reoptimization of the polymer synthesis to achieve the target parameters. In this study, we explored the use of inverse emulsion polymerization to prepare a library of polymeric nanoparticles with variations in pH and temperature response and examined the impact of overall batch volume and the volume of the aqueous phase on nanoparticle size and composition. We were able to prepare copolymeric nanoparticles using three different nonionic and three different anionic comonomers. Varying the non-ionizable comonomers, acrylamide (AAm), 2-hydroxyethyl methacrylate, and N-isopropylacrylamide (NIPAM), was found to alter the mass percentage of methacrylic acid (MAA) incorporated (from 26.7 ± 3.5 to 45.8 ± 1.8 mass%), the critical swelling pH (from 5.687 ± 0.194 to 6.637 ± 0.318), and the volume swelling ratio (from 1.389 ± 0.064 to 2.148 ± 0.037). Additionally, the use of NIPAM was found to allow for temperature-responsive behavior. Varying the ionizable comonomers, MAA, itaconic acid, and 2-acrylamido-2-methylpropane sulfonic acid (AMPSA), was found to significantly alter the critical swelling pH and, in the case of AMPSA, remove the pH-responsive behavior entirely. Finally, we found that for the base P(AAm-co-MAA) formulation, the pH-responsive swelling behavior was independent of the scale of the reaction; however, variations in the aqueous volume relative to the volume of the continuous phase significantly affected both the nanoparticle size and the critical swelling pH.
Collapse
Affiliation(s)
- Andrew C Murphy
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Heidi F Oldenkamp
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
5
|
Kousalová J, Šálek P, Pavlova E, Konefał R, Kobera L, Brus J, Kočková O, Etrych T. Biodegradable Covalently Crosslinked Poly[ N-(2-Hydroxypropyl) Methacrylamide] Nanogels: Preparation and Physicochemical Properties. Polymers (Basel) 2024; 16:263. [PMID: 38257062 PMCID: PMC10821105 DOI: 10.3390/polym16020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Recently, suitably sized polymer-based nanogels containing functional groups for the binding of biologically active substances and ultimately degradable to products that can be removed by glomerular filtration have become extensively studied systems in the field of drug delivery. Herein, we designed and tailored the synthesis of hydrophilic and biodegradable poly[N-(2-hydroxypropyl) methacrylamide-co-N,N'-bis(acryloyl) cystamine-co-6-methacrylamidohexanoyl hydrazine] (PHPMA-BAC-BMH) nanogels. The facile and versatile dispersion polymerization enabled the preparation of nanogels with a diameter below 50 nm, which is the key parameter for efficient and selective passive tumor targeting. The effects of the N,N'-bis(acryloyl) cystamine crosslinker, polymerization composition, and medium including H2O/MetCel and H2O/EtCel on the particle size, particle size distribution, morphology, and polymerization kinetics and copolymer composition were investigated in detail. We demonstrated the formation of a 38 nm colloidally stable PHPMA-BAC-BMH nanogel with a core-shell structure that can be rapidly degraded in the presence of 10 mM glutathione solution under physiologic conditions. The nanogels were stable in an aqueous solution modeling the bloodstream; thus, these nanogels have the potential to become highly important carriers in the drug delivery of various molecules.
Collapse
Affiliation(s)
| | - Petr Šálek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského Nám. 2, 162 00 Prague, Czech Republic; (J.K.); (E.P.); (R.K.); (L.K.); (J.B.); (O.K.); (T.E.)
| | | | | | | | | | | | | |
Collapse
|
6
|
Wang Y, Lorandi F, Fantin M, Matyjaszewski K. Atom transfer radical polymerization in dispersed media with low-ppm catalyst loading. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
7
|
In situ encapsulation of biologically active ingredients into polymer particles by polymerization in dispersed media. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2022.101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Makhathini SS, Mdanda S, Kondiah PJ, Kharodia ME, Rumbold K, Alagidede I, Pathak Y, Bulbulia Z, Rants’o TA, Kondiah PPD. Biomedicine Innovations and Its Nanohydrogel Classifications. Pharmaceutics 2022; 14:2839. [PMID: 36559335 PMCID: PMC9787506 DOI: 10.3390/pharmaceutics14122839] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
As one of the most cutting-edge and promising polymer crosslinked network nanoparticle systems. Polymer nano-sized hydrogels (nanogels) have been a hot topic in the biomedical field over the last few decades. Due to their unique characteristics, which include their relatively high drug encapsulation efficiency, ease of preparation, high tunability, low toxicity, high stability in serum and responsive behavior to a range of stimuli to facilitate drug release. Nanogels are thought to be the next generation of drug delivery systems that can completely change the way that drug delivery systems have an impact on patients' lives. Nanogels have demonstrated significant potential in a variety of fields, including chemotherapy, diagnosis, organ targeting, and delivery of bioactive molecules of different dimensions. However, the lack of substantial clinical data from nanogels becomes one of the major barriers to translating the nanogel concept into a practical therapeutic application for many disease conditions. In addition, nanogel safety profiles have been the major concern that hinders it advancement to the clinical trial phase. This review aims to emphasize the unique properties of nanogels as delivery systems for a variety of bioactive molecules over other nano-delivery systems. Also, this review attempts to give insight into the recent progress in nanogels as a carrier in the field of nanomedicine to overcome complex biological barriers. Relevant scientific data and clinical rationale for the development and the potential use of nanogel as a carrier for targeted therapeutic interventions are discussed. Finally, the concluding points of this review highlight the importance of understanding the long-term toxicity profile of nanogel within the biological system to fully understand their biocompatibility.
Collapse
Affiliation(s)
- Sifiso S. Makhathini
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Sipho Mdanda
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pariksha J. Kondiah
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Moosa E. Kharodia
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Karl Rumbold
- FH Campus Wien, University of Applied Sciences, Vienna, Höchstädtpl. 6, 1200 Wien, Austria
| | - Imhotep Alagidede
- Simon Diedong Dombo University of Business and Integrated Development Studies, Bamahu Box WA64 Wa, Upper West Region, Ghana
- Wits Business School, University of the Witwatersrand, 2 St Davids Pl &, St Andrew Rd, Parktown, Johannesburg 2193, South Africa
| | - Yashwant Pathak
- USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, MDC 030, Tampa, FL 33612-4749, USA
- Faculty of Pharmacy, Airlangga University, Surabaya 60115, East Java, Indonesia
| | - Zain Bulbulia
- Policy Research & Advisory Services Branch, Gauteng Office of Premier, 1 Central Place 30 Rahima Moosa Street Newtown, Johannesburg 2113, South Africa
| | - Thankhoe A. Rants’o
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pierre P. D. Kondiah
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown, Johannesburg 2193, South Africa
- USF Health Taneja College of Pharmacy, University of South Florida, 12901 Bruce B Downs Blvd, MDC 030, Tampa, FL 33612-4749, USA
- Pearson College London Alumni (Pearson plc), London WC1V 7BH, UK
| |
Collapse
|
9
|
Simakova A, Averick S, Jazani AM, Matyjaszewski K. Controlling Size and Surface Chemistry of Cationic Nanogels by Inverse Microemulsion ATRP. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Antonina Simakova
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 United States
| | - Saadyah Averick
- Laboratory for Biomolecular Medicine Allegheny Health Network Research Institute Allegheny General Hospital Pittsburgh Pittsburgh PA 15212 United States
| | - Arman Moini Jazani
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 United States
| | | |
Collapse
|
10
|
Schork FJ. In Support of Commercial Applications of Miniemulsion Polymerization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- F. Joseph Schork
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology 311 Ferst Street, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
11
|
Biglione C, Neumann‐Tran TMP, Kanwal S, Klinger D. Amphiphilic micro‐ and nanogels: Combining properties from internal hydrogel networks, solid particles, and micellar aggregates. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Catalina Biglione
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin Berlin Germany
| | | | - Sidra Kanwal
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin Berlin Germany
| | - Daniel Klinger
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin Berlin Germany
| |
Collapse
|
12
|
Keskin D, Zu G, Forson AM, Tromp L, Sjollema J, van Rijn P. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioact Mater 2021; 6:3634-3657. [PMID: 33898869 PMCID: PMC8047124 DOI: 10.1016/j.bioactmat.2021.03.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
The implementation of nanotechnology to develop efficient antimicrobial systems has a significant impact on the prospects of the biomedical field. Nanogels are soft polymeric particles with an internally cross-linked structure, which behave as hydrogels and can be reversibly hydrated/dehydrated (swollen/shrunken) by the dispersing solvent and external stimuli. Their excellent properties, such as biocompatibility, colloidal stability, high water content, desirable mechanical properties, tunable chemical functionalities, and interior gel-like network for the incorporation of biomolecules, make them fascinating in the field of biological/biomedical applications. In this review, various approaches will be discussed and compared to the newly developed nanogel technology in terms of efficiency and applicability for determining their potential role in combating infections in the biomedical area including implant-associated infections.
Collapse
Affiliation(s)
| | | | | | - Lisa Tromp
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| |
Collapse
|
13
|
Langlois L, Akhtar N, Tam KC, Dixon B, Reid G. Fishing for the right probiotic: Host-microbe interactions at the interface of effective aquaculture strategies. FEMS Microbiol Rev 2021; 45:6284803. [PMID: 34037775 DOI: 10.1093/femsre/fuab030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Effective aquaculture management strategies are paramount to global food security. Growing demands stimulate the intensification of production and create the need for practices that are both economically viable and environmentally sustainable. Importantly, pathogenic microbes continue to be detrimental to fish growth and survival. In terms of host health, the intestinal mucosa and its associated consortium of microbes have a critical role in modulating fitness and present an attractive opportunity to promote health at this interface. In light of this, the administration of probiotic microorganisms is being considered as a means to restore and sustain health in fish. Current evidence suggests that certain probiotic strains might be able to augment immunity, enhance growth rate, and protect against infection in salmonids, the most economically important family of farmed finfish. This review affirms the relevance of host-microbe interactions in salmonids in light of emerging evidence, with an emphasis on intestinal health. In addition, the current understanding of the mode of action of probiotics in salmonid fish is discussed, along with delivery systems that can effectively carry the living microbes.
Collapse
Affiliation(s)
- Luana Langlois
- Canadian Centre for Human Microbiome and Probiotics Research, Lawson Health Research Institute, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada.,Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, N6A 5C1, London, Ontario, Canada
| | - Nadeem Akhtar
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, Ontario, Canada.,Department of Biology, University of Waterloo, 200 University Avenue W, N2L 3G1, Waterloo, Ontario, Canada
| | - Kam C Tam
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, Ontario, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Avenue W, N2L 3G1, Waterloo, Ontario, Canada
| | - Gregor Reid
- Canadian Centre for Human Microbiome and Probiotics Research, Lawson Health Research Institute, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada.,Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, N6A 5C1, London, Ontario, Canada.,Department of Surgery, The University of Western Ontario, St. Joseph's Health Care London, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada
| |
Collapse
|
14
|
Elzayat A, Adam-Cervera I, Álvarez-Bermúdez O, Muñoz-Espí R. Nanoemulsions for synthesis of biomedical nanocarriers. Colloids Surf B Biointerfaces 2021; 203:111764. [PMID: 33892282 DOI: 10.1016/j.colsurfb.2021.111764] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022]
Abstract
Nanoemulsions are kinetically stabilized emulsions with droplet sizes in the nanometer scale. These nanodroplets are able to confine spaces in which reactions of polymerization or precipitation can take place, leading to the formation of particles and capsules that can act as nanocarriers for biomedical applications. This review discusses the different possibilities of using nanoemulsions for preparing biomedical nanocarriers. According to the chemical nature, nanocarriers prepared in nanoemulsions are classified in polymeric, inorganic, or hybrid. The main synthetic strategies for each type are revised, including miniemulsion polymerization, nanoemulsion-solvent evaporation, spontaneous emulsification, sol-gel processes, and combination of different techniques to form multicomponent materials.
Collapse
Affiliation(s)
- Asmaa Elzayat
- Institute of Materials Science (ICMUV), Universitat de València, c/ Catedràtic José Beltrán 2, 46980 Paterna, Spain; Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Inés Adam-Cervera
- Institute of Materials Science (ICMUV), Universitat de València, c/ Catedràtic José Beltrán 2, 46980 Paterna, Spain
| | - Olaia Álvarez-Bermúdez
- Institute of Materials Science (ICMUV), Universitat de València, c/ Catedràtic José Beltrán 2, 46980 Paterna, Spain
| | - Rafael Muñoz-Espí
- Institute of Materials Science (ICMUV), Universitat de València, c/ Catedràtic José Beltrán 2, 46980 Paterna, Spain.
| |
Collapse
|
15
|
Lattke YM, Corbin DA, Sartor SM, McCarthy BG, Miyake GM, Damrauer NH. Interrogation of O-ATRP Activation Conducted by Singlet and Triplet Excited States of Phenoxazine Photocatalysts. J Phys Chem A 2021; 125:3109-3121. [PMID: 33826326 DOI: 10.1021/acs.jpca.1c00855] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Organocatalyzed ATRP (O-ATRP) is a growing field exploiting organic chromophores as photoredox catalysts (PCs) that engage in dissociative electron-transfer (DET) activation of alkyl-halide initiators following absorption of light. Characterizing DET rate coefficients (kact) and photochemical yields across various reaction conditions and PC photophysical properties will inform catalyst design and efficient use during polymerization. The studies described herein consider a class of phenoxazine PCs, where synthetic handles of core substitution and N-aryl substitution enable tunability of the electronic and spin characters of the catalyst excited state as well as DET reaction driving force (ΔGET0). Using Stern-Volmer quenching experiments through variation of the diethyl 2-bromo-2-methylmalonate (DBMM) initiator concentration, collisional quenching is observed. Eight independent measurements of kact are reported as a function of ΔGET0 for four PCs: four triplet reactants and four singlets with kact values ranging from 1.1 × 108 M-1 s-1, where DET itself controls the rate, to 4.8 × 109 M-1 s-1, where diffusion is rate-limiting. This overall data set, as well as a second one inclusive of five literature values from related systems, is readily modeled with only a single parameter of reorganization energy under the frameworks of the adiabatic Marcus electron-transfer theory and Marcus-Savéant theory of DET. The results provide a predictive map where kact can be estimated if ΔGET0 is known and highlight that DET in these systems appears insensitive to PC reactant electronic and spin properties outside of their impact on the driving force. Next, on the basis of measured kact values in selected PC systems and knowledge of their photophysics, we also consider activation yields specific to the reactant spin states as the DBMM initiator concentration is varied. In N-naphthyl-containing PCs characterized by near-unity intersystem crossing, the T1 is certainly an important driver for efficient DET. However, at DBMM concentrations common to polymer synthesis, the S1 is also active and drives 33% of DET reaction events. Even in systems with low yields of ISC, such as in N-phenyl-containing PCs, reaction yields can be driven to useful values by exploiting the S1 under high DBMM concentration conditions. Finally, we have quantified photochemical reaction quantum yields, which take into account potential product loss processes after electron-transfer quenching events. Both S1 and T1 reactant states produce the PC•+ radical cation with a common yield of 71%, thus offering no evidence for spin selectivity in deleterious back electron transfer. The subunity PC•+ yields suggest that some combination of solvent (DMAc) oxidation and energy-wasting back electron transfer is likely at play and these pathways should be factored in subsequent mechanistic considerations.
Collapse
Affiliation(s)
- Yisrael M Lattke
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Daniel A Corbin
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Steven M Sartor
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Blaine G McCarthy
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Niels H Damrauer
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
16
|
Nanogels Capable of Triggered Release. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 178:99-146. [PMID: 33665715 DOI: 10.1007/10_2021_163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This chapter provides an overview of soft and environmentally sensitive polymeric nanosystems, which are widely known as nanogels. These particles keep great promise to the area of drug delivery due to their high biocompatibility with body fluids and tissues, as well as due to their ability to encapsulate and release the loaded drugs in a controlled manner. For a long period of time, the controlled drug delivery systems were designed to provide long-termed or sustained release. However, some medical treatments such as cancer chemotherapy, protein and gene delivery do not require the prolonged release of the drug in the site of action. In contrast, the rapid increase of the drug concentration is needed for gaining the desired biological effect. Being very sensitive to surrounding media and different stimuli, nanogels can undergo physico-chemical transitions or chemical changes in their structure. Such changes can result in more rapid release of the drugs, which is usually referred to as triggered drug release. Herein we give the basic information on nanogel unique features, methods of sensitive nanogels preparation, as well as on main mechanisms of triggered release. Additionally, the triggered release of low-molecular drugs and biomacromolecules are discussed.
Collapse
|
17
|
Mohammadi M, Arabi L, Alibolandi M. Doxorubicin-loaded composite nanogels for cancer treatment. J Control Release 2020; 328:171-191. [PMID: 32866591 DOI: 10.1016/j.jconrel.2020.08.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023]
Abstract
Nanogels as a versatile vehicle for doxorubicin have attracted great attention during the last decade. Since a nanogel composite device transport encapsulated drugs to the site of action and release them in a desirable time-frame, it could provide higher therapeutic effect. By implementation of different polymers, polymer/inorganic NPs and various crosslinking chemistry, it is possible to fabricate novel composite nanogel systems with favorable characteristics such as smart intelligent systems or multipurpose platforms. Due to high stability, good drug loading capacity for hydrophobic and hydrophilic agents, nanogels introduce great opportunity in pharmaceutical innovations. Composite nanogels show capability in gene, drug and diagnostic agents' delivery while providing an ideal platform for theranostic purposes as multifunctional systems. Doxorubicin as an anticancer agent is widely used against numerous cancers. Due to high systemic toxicity of doxorubicin, there is still need for its safe and specific delivery to the site of action. In this regard, so many efforts have been put in by the researchers for preparation of different nanogel formulations of doxorubicin in order to produce more efficient formulations. This review focuses on design, fabrication, advantages and disadvantages of composite nanogel-based doxorubicin formulations.
Collapse
Affiliation(s)
- Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Wang X, Peng Y, Peña J, Xing J. Preparation of ultrasmall nanogels by facile emulsion-free photopolymerization at 532 nm. J Colloid Interface Sci 2020; 582:711-719. [PMID: 32911416 DOI: 10.1016/j.jcis.2020.08.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/15/2020] [Indexed: 01/07/2023]
Abstract
Nanogels have been widely prepared and characterized in recent years due to their unique advantages. Here, an effective, original, and facile method of emulsion-free photopolymerization at 532 nm without surfactant was developed to prepare nanogels based on poly(ethylene glycol) diacrylate (PEGDA). The 532 nm continuous laser with symmetrical energy distribution like a three-dimensional shape of a straw hat was used to control the reaction region. The self-emulsification of PEGDA in water was studied and PEGDA micelles were directly cross-linked by controlling the laser energy. The number of micelles participating in the microreaction region and the double bond crosslinking between micellar aggregates and inside micelles were reasonably regulated. The size of the nanogels could be effectively modulated by controlling reaction parameters including laser power, monomer concentration, initiator concentration, and reaction time. Finally, ultrasmall nanogels with around 30 nm in size were prepared by balancing double bond crosslinking between micellar aggregates and inside micelles.
Collapse
Affiliation(s)
- Xiaoying Wang
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Yuanyuan Peng
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Jhair Peña
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, No. 135 Yaguan Road, Haihe Education Park, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
19
|
Devnarain N, Osman N, Fasiku VO, Makhathini S, Salih M, Ibrahim UH, Govender T. Intrinsic stimuli-responsive nanocarriers for smart drug delivery of antibacterial agents-An in-depth review of the last two decades. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1664. [PMID: 32808486 DOI: 10.1002/wnan.1664] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Antibiotic resistance due to suboptimal targeting and inconsistent antibiotic release at bacterial infection sites has driven the formulation of stimuli-responsive nanocarriers for antibacterial therapy. Unlike conventional nanocarriers, stimuli-responsive nanocarriers have the ability to specifically enhance targeting and drug release profiles. There has been a significant escalation in the design and development of novel nanomaterials worldwide; in particular, intrinsic stimuli-responsive antibiotic nanocarriers, due to their enhanced activity, improved targeted delivery, and superior potential for bacterial penetration and eradication. Herein, we provide an extensive and critical review of pH-, enzyme-, redox-, and ionic microenvironment-responsive nanocarriers that have been reported in literature to date, with an emphasis on the mechanisms of drug release, the nanomaterials used, the nanosystems constructed and the antibacterial efficacy of the nanocarriers. The review also highlights further avenues of research for optimizing their potential and commercialization. This review confirms the potential of intrinsic stimuli-responsive nanocarriers for enhanced drug delivery and antibacterial killing. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nawras Osman
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria Oluwaseun Fasiku
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sifiso Makhathini
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohammed Salih
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Usri H Ibrahim
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
20
|
Abstract
A comprehensive overview of the fundamentals of emulsion polymerization and related processes is presented with the object of providing theoretical and practical understanding to researchers considering use of these methods for synthesis of polymer colloids across a wide range of applications. Hence, the overview has been written for a general scientific audience with no prior knowledge assumed. Succinct introductions are given to key topics of background science to assist the reader. Importance is placed on ensuring mechanistic understanding of these complex polymerizations and how the processes can be used to create polymer colloids that have particles with well-defined properties and morphology. Mathematical equations and associated theory are given where they enhance understanding and learning and where they are particularly useful for practical application. Practical guidance also is given for new researchers so that they can begin using the various processes effectively and in ways that avoid common mistakes.
Collapse
Affiliation(s)
- Peter A Lovell
- Department of Materials, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - F Joseph Schork
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
21
|
Molaei SM, Adelnia H, Seif AM, Nasrollah Gavgani J. Sulfonate-functionalized polyacrylonitrile-based nanoparticles; synthesis, and conversion to pH-sensitive nanogels. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04543-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Kumar P, Liu B, Behl G. A Comprehensive Outlook of Synthetic Strategies and Applications of Redox‐Responsive Nanogels in Drug Delivery. Macromol Biosci 2019; 19:e1900071. [PMID: 31298803 DOI: 10.1002/mabi.201900071] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/03/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Parveen Kumar
- Laboratory of Functional Molecules and Materials School of Physics and Optoelectronic EngineeringShandong University of Technology Xincun West Road 266 Zibo 255000 China
| | - Bo Liu
- Laboratory of Functional Molecules and Materials School of Physics and Optoelectronic EngineeringShandong University of Technology Xincun West Road 266 Zibo 255000 China
| | - Gautam Behl
- Pharmaceutical and Molecular Biotechnology Research CentreDepartment of ScienceWaterford Institute of Technology Cork Road Waterford X91K0EK Republic of Ireland
| |
Collapse
|
23
|
Raghupathi K, Kumar V, Sridhar U, Ribbe AE, He H, Thayumanavan S. Role of Oligoethylene Glycol Side Chain Length in Responsive Polymeric Nanoassemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7929-7936. [PMID: 31095400 DOI: 10.1021/acs.langmuir.9b00676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An oft-desired feature of a responsive nanomaterial is that it should undergo disassembly or morphological change upon application of a specific stimulus. The extent of response has been found to depend on factors such as the nature and the number of responsive functionalities incorporated into these particles. In this work, the length of oligoethylene glycol (OEG) side chains associated with the polymers has been shown to greatly influence the responsive behavior of polymeric nanoparticles. The integrity of these OEG-based polymeric assemblies was found to depend not only on the chemical cross-links but also on the physical cross-links in these aggregates in cases where the polymer chains bear long OEG side chains. The physical cross-linking in longer OEG side chain containing polymeric nanogels is present in the form of crystalline domains. Our results here highlight that these ethylene glycol-based hydrophilic units are not to be ignored as spectator units with water-solubilization characteristics but must be analyzed in the context of assembly stabilization and triggerability with the targeted stimulus.
Collapse
|
24
|
|
25
|
Wang Y, Guo L, Dong S, Cui J, Hao J. Microgels in biomaterials and nanomedicines. Adv Colloid Interface Sci 2019; 266:1-20. [PMID: 30776711 DOI: 10.1016/j.cis.2019.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 11/28/2022]
Abstract
Microgels are colloidal particles with crosslinked polymer networks and dimensions ranging from tens of nanometers to micrometers. Specifically, smart microgels are fascinating capable of responding to biological signals in vivo or remote triggers and making the possible for applications in biomaterials and biomedicines. Therefore, how to fundamentally design microgels is an urgent problem to be solved. In this review, we put forward our important fundamental opinions on how to devise the intelligent microgels for cancer therapy, biosensing and biological lubrication. We focus on the design ideas instead of specific implementation process by employing reverse synthesis analysis to programme the microgels at the original stage. Moreover, special insights will be, for the first time, as far as we know, dedicated to the particles completely composed of DNA or proteins into microgel systems. These are discussed in detail in this review. We expect to give readers a broad overview of the design criteria and practical methodologies of microgels according to the application fields, as well as to propel the further developments of highly interesting concepts and materials.
Collapse
Affiliation(s)
- Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Luxuan Guo
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China.
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China.
| |
Collapse
|
26
|
Eslami P, Rossi F, Fedeli S. Hybrid Nanogels: Stealth and Biocompatible Structures for Drug Delivery Applications. Pharmaceutics 2019; 11:E71. [PMID: 30736486 PMCID: PMC6409538 DOI: 10.3390/pharmaceutics11020071] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 01/12/2023] Open
Abstract
Considering nanogels, we have focused our attention on hybrid nanosystems for drug delivery and biomedical purposes. The distinctive strength of these structures is the capability to join the properties of nanosystems with the polymeric structures, where versatility is strongly demanded for biomedical applications. Alongside with the therapeutic effect, a non-secondary requirement of the nanosystem is indeed its biocompatibility. The importance to fulfill this aim is not only driven by the priority to reduce, as much as possible, the inflammatory or the immune response of the organism, but also by the need to improve circulation lifetime, biodistribution, and bioavailability of the carried drugs. In this framework, we have therefore gathered the hybrid nanogels specifically designed to increase their biocompatibility, evade the recognition by the immune system, and overcome the self-defense mechanisms present in the bloodstream of the host organism. The works have been essentially organized according to the hybrid morphologies and to the strategies adopted to fulfill these aims: Nanogels combined with nanoparticles or with liposomes, and involving polyethylene glycol chains or zwitterionic polymers.
Collapse
Affiliation(s)
- Parisa Eslami
- Laboratory of Molecular Magnetism (LaMM), Department of Chemistry "Ugo Shiff", University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milano, Italy.
| | - Stefano Fedeli
- Colorobbia Research Center (CERICOL), via Pietramarina 53, 50053 Sovigliana Vinci, Italy.
| |
Collapse
|
27
|
Zhu H, Cavalieri F, Ashokkumar M. Ultrasound‐Assisted Synthesis of Cross‐Linked Poly(ethylene glycol) Nanostructures with Hydrophobic Core and Hydrophilic Shell. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haiyan Zhu
- School of Chemistry University of Melbourne Victoria 3010 Australia
| | - Francesca Cavalieri
- Department of Chemical Engineering University of Melbourne Victoria 3010 Australia
| | | |
Collapse
|
28
|
Xu J, Ren X, Gao G. Salt-inactive hydrophobic association hydrogels with fatigue resistant and self-healing properties. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.07.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Quan F, Zhang A, Cheng F, Cui L, Liu J, Xia Y. Biodegradable Polymeric Architectures via Reversible Deactivation Radical Polymerizations. Polymers (Basel) 2018; 10:E758. [PMID: 30960683 PMCID: PMC6403716 DOI: 10.3390/polym10070758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 01/27/2023] Open
Abstract
Reversible deactivation radical polymerizations (RDRPs) have proven to be the convenient tools for the preparation of polymeric architectures and nanostructured materials. When biodegradability is conferred to these materials, many biomedical applications can be envisioned. In this review, we discuss the synthesis and applications of biodegradable polymeric architectures using different RDRPs. These biodegradable polymeric structures can be designed as well-defined star-shaped, cross-linked or hyperbranched via smartly designing the chain transfer agents and/or post-polymerization modifications. These polymers can also be exploited to fabricate micelles, vesicles and capsules via either self-assembly or cross-linking methodologies. Nanogels and hydrogels can also be prepared via RDRPs and their applications in biomedical science are also discussed. In addition to the synthetic polymers, varied natural precursors such as cellulose and biomolecules can also be employed to prepare biodegradable polymeric architectures.
Collapse
Affiliation(s)
- Fengyu Quan
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China.
| | - Aitang Zhang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China.
| | - Fangfang Cheng
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China.
| | - Liang Cui
- College of Materials Science and Engineering, Linyi University, Linyi 276000, China.
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China.
- College of Materials Science and Engineering, Linyi University, Linyi 276000, China.
| | - Yanzhi Xia
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
30
|
Petr Š, Jana D, Peter Č, Ewa P, Vladimír P. Poly(amino acid)-based nanogel by horseradish peroxidase catalyzed crosslinking in an inverse miniemulsion. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4318-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Mueller E, Alsop RJ, Scotti A, Bleuel M, Rheinstädter MC, Richtering W, Hoare T. Dynamically Cross-Linked Self-Assembled Thermoresponsive Microgels with Homogeneous Internal Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1601-1612. [PMID: 29261314 DOI: 10.1021/acs.langmuir.7b03664] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The internal morphology of temperature-responsive degradable poly(N-isopropylacrylamide) (PNIPAM) microgels formed via an aqueous self-assembly process based on hydrazide and aldehyde-functionalized PNIPAM oligomers is investigated. A combination of surface force measurements, small angle neutron scattering (SANS), and ultrasmall angle neutron scattering (USANS) was used to demonstrate that the self-assembled microgels have a homogeneously cross-linked internal structure. This result is surprising given the sequential addition process used to fabricate the microgels, which was expected to result in a densely cross-linked shell-diffuse core structure. The homogeneous internal structure identified is also significantly different than conventional microgels prepared via precipitation polymerization, which typically exhibit a diffuse shell-dense core structure. The homogeneous structure is hypothesized to result from the dynamic nature of the hydrazone cross-linking chemistry used to couple with the assembly conditions chosen that promote polymer interdiffusion. The lack of an internal cross-linking gradient within these degradable and monodisperse microgels is expected to facilitate more consistent drug release over time, improved optical properties, and other potential application benefits.
Collapse
Affiliation(s)
- Eva Mueller
- Department of Chemical Engineering, McMaster University , 1280 Main Street W, Hamilton, Ontario L8S 4L7, Canada
| | - Richard J Alsop
- Department of Physics and Astronomy, McMaster University , 1280 Main Street W, Hamilton, Ontario L8S 4M1, Canada
| | - Andrea Scotti
- Department of Physical Chemistry (IPC), RWTH Aachen , Landoltweg 2, 52074 Aachen, Germany
| | - Markus Bleuel
- Neutron-Condensed Matter Science Group, National Institute of Standards and Technology (NIST) , 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
- Department of Materials Science and Engineering, University of Maryland , College Park, Maryland 20742-2115, United States
| | - Maikel C Rheinstädter
- Department of Physics and Astronomy, McMaster University , 1280 Main Street W, Hamilton, Ontario L8S 4M1, Canada
| | - Walter Richtering
- Department of Physical Chemistry (IPC), RWTH Aachen , Landoltweg 2, 52074 Aachen, Germany
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University , 1280 Main Street W, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
32
|
Ghaffarlou M, Sütekin SD, Güven O. Preparation of nanogels by radiation-induced cross-linking of interpolymer complexes of poly (acrylic acid) with poly (vinyl pyrrolidone) in aqueous medium. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2017.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Raghupathi K, Eron SJ, Anson F, Hardy JA, Thayumanavan S. Utilizing Inverse Emulsion Polymerization To Generate Responsive Nanogels for Cytosolic Protein Delivery. Mol Pharm 2017; 14:4515-4524. [PMID: 29053277 PMCID: PMC5714657 DOI: 10.1021/acs.molpharmaceut.7b00643] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Therapeutic biologics have various advantages over synthetic drugs in terms of selectivity, their catalytic nature, and, thus, therapeutic efficacy. These properties offer the potential for more effective treatments that may also overcome the undesirable side effects observed due to off-target toxicities of small molecule drugs. Unfortunately, systemic administration of biologics is challenging due to cellular penetration, renal clearance, and enzymatic degradation difficulties. A delivery vehicle that can overcome these challenges and deliver biologics to specific cellular populations has the potential for significant therapeutic impact. In this work, we describe a redox-responsive nanoparticle platform, which can encapsulate hydrophilic proteins and release them only in the presence of a reducing stimulus. We have formulated these nanoparticles using an inverse emulsion polymerization (IEP) methodology, yielding inverse nanoemulsions, or nanogels. We have demonstrated our ability to overcome the liabilities that contribute to activity loss by delivering a highly challenging cargo, functionally active caspase-3, a cysteine protease susceptible to oxidative and self-proteolytic insults, to the cytosol of HeLa cells by encapsulation inside a redox-responsive nanogel.
Collapse
Affiliation(s)
| | - Scott J. Eron
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Francesca Anson
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | - Jeanne A. Hardy
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003
- Center for Bioactive Delivery at the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003
- Center for Bioactive Delivery at the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
34
|
Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv 2017; 24:539-557. [PMID: 28181831 PMCID: PMC8240973 DOI: 10.1080/10717544.2016.1276232] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 01/18/2023] Open
Abstract
Nanogels in biomedical field are promising and innovative materials as dispersions of hydrogel nanoparticles based on crosslinked polymeric networks that have been called as next generation drug delivery systems due to their relatively high drug encapsulation capacity, uniformity, tunable size, ease of preparation, minimal toxicity, stability in the presence of serum, and stimuli responsiveness. Nanogels show a great potential in chemotherapy, diagnosis, organ targeting and delivery of bioactive substances. The main subjects reviewed in this article concentrates on: (i) Nanogel assimilation in the nanomedicine domain; (ii) Features and advantages of nanogels, the main characteristics, such as: swelling capacity, stimuli sensitivity, the great surface area, functionalization, bioconjugation and encapsulation of bioactive substances, which are taken into account in designing the structures according to the application; some data on the advantages and limitations of the preparation techniques; (iii) Recent progress in nanogels as a carrier of genetic material, protein and vaccine. The majority of the scientific literature presents the multivalency potential of bioconjugated nanogels in various conditions. Today's research focuses over the overcoming of the restrictions imposed by cost, some medical requirements and technological issues, for nanogels' commercial scale production and their integration as a new platform in biomedicine.
Collapse
Affiliation(s)
- Iordana Neamtu
- “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | | | - Alina Diaconu
- “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | | | | |
Collapse
|
35
|
Huang C, Li Y, Duan L, Wang L, Ren X, Gao G. Enhancing the self-recovery and mechanical property of hydrogels by macromolecular microspheres with thermal and redox initiation systems. RSC Adv 2017. [DOI: 10.1039/c7ra00317j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A redox initiation system was used to efficiently enhance the mechanical behavior of macromolecular microsphere hydrogels.
Collapse
Affiliation(s)
- Chang Huang
- Polymeric and Soft Materials Laboratory
- School of Chemical Engineering
- Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun 130012
| | - Yifan Li
- Department of Anatomy
- School of Basic Medical Science
- Changchun University of Chinese Medicine
- Changchun 130117
- China
| | - Lijie Duan
- Polymeric and Soft Materials Laboratory
- School of Chemical Engineering
- Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun 130012
| | - Linhui Wang
- Polymeric and Soft Materials Laboratory
- School of Chemical Engineering
- Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun 130012
| | - Xiuyan Ren
- Polymeric and Soft Materials Laboratory
- School of Chemical Engineering
- Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun 130012
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory
- School of Chemical Engineering
- Advanced Institute of Materials Science
- Changchun University of Technology
- Changchun 130012
| |
Collapse
|
36
|
Dispenza C, Spadaro G, Jonsson M. Radiation Engineering of Multifunctional Nanogels. Top Curr Chem (Cham) 2016; 374:69. [PMID: 27645331 DOI: 10.1007/s41061-016-0071-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/30/2016] [Indexed: 01/18/2023]
Abstract
Nanogels combine the favourable properties of hydrogels with those of colloids. They can be soft and conformable, stimuli-responsive and highly permeable, and can expose a large surface with functional groups for conjugation to small and large molecules, and even macromolecules. They are among the very few systems that can be generated and used as aqueous dispersions. Nanogels are emerging materials for targeted drug delivery and bio-imaging, but they have also shown potential for water purification and in catalysis. The possibility of manufacturing nanogels with a simple process and at relatively low cost is a key criterion for their continued development and successful application. This paper highlights the most important structural features of nanogels related to their distinctive properties, and briefly presents the most common manufacturing strategies. It then focuses on synthetic approaches that are based on the irradiation of dilute aqueous polymer solutions using high-energy photons or electron beams. The reactions constituting the basis for nanogel formation and the approaches for controlling particle size and functionality are discussed in the context of a qualitative analysis of the kinetics of the various reactions.
Collapse
Affiliation(s)
- C Dispenza
- Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università degli Studi di Palermo, Viale delle Scienze, Edificio 6, 90128, Palermo, Italy. .,School of Chemical Science and Engineering, Royal Institute of Technology (KTH), 100 44, Stockholm, Sweden.
| | - G Spadaro
- Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università degli Studi di Palermo, Viale delle Scienze, Edificio 6, 90128, Palermo, Italy
| | - M Jonsson
- School of Chemical Science and Engineering, Royal Institute of Technology (KTH), 100 44, Stockholm, Sweden
| |
Collapse
|
37
|
|
38
|
Weiss-Maurin M, Cordella D, Jérôme C, Taton D, Detrembleur C. Direct one-pot synthesis of poly(ionic liquid) nanogels by cobalt-mediated radical cross-linking copolymerization in organic or aqueous media. Polym Chem 2016. [DOI: 10.1039/c6py00112b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nanogels of controlled kinetic chain length were synthesized by cobalt-mediated radical cross-linking copolymerization (CMRccP) involving a vinyl monomer and a divinyl cross-linker.
Collapse
Affiliation(s)
- Mathilde Weiss-Maurin
- Centre of Education and Research on Macromolecules (CERM)
- Department of Chemistry
- University of Liège
- 4000 Liège
- Belgium
| | - Daniela Cordella
- Centre of Education and Research on Macromolecules (CERM)
- Department of Chemistry
- University of Liège
- 4000 Liège
- Belgium
| | - Christine Jérôme
- Centre of Education and Research on Macromolecules (CERM)
- Department of Chemistry
- University of Liège
- 4000 Liège
- Belgium
| | - Daniel Taton
- Laboratoire de Chimie des Polymères Organiques (LCPO)
- University of Bordeaux
- 33607 Pessac Cedex
- France
| | - Christophe Detrembleur
- Centre of Education and Research on Macromolecules (CERM)
- Department of Chemistry
- University of Liège
- 4000 Liège
- Belgium
| |
Collapse
|
39
|
|
40
|
Zetterlund PB, Thickett SC, Perrier S, Bourgeat-Lami E, Lansalot M. Controlled/Living Radical Polymerization in Dispersed Systems: An Update. Chem Rev 2015; 115:9745-800. [PMID: 26313922 DOI: 10.1021/cr500625k] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Per B Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales , Sydney, NSW 2052, Australia
| | - Stuart C Thickett
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales , Sydney, NSW 2052, Australia
| | - Sébastien Perrier
- Department of Chemistry, The University of Warwick , Coventry CV4 7AL, U.K.,Faculty of Pharmacy and Pharmaceutical Sciences, Monash University , Melbourne, VIC 3052, Australia
| | - Elodie Bourgeat-Lami
- Laboratory of Chemistry, Catalysis, Polymers and Processes (C2P2), LCPP group, Université de Lyon, Université Lyon 1, CPE Lyon, CNRS, UMR 5265, 43, Boulevard du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Muriel Lansalot
- Laboratory of Chemistry, Catalysis, Polymers and Processes (C2P2), LCPP group, Université de Lyon, Université Lyon 1, CPE Lyon, CNRS, UMR 5265, 43, Boulevard du 11 Novembre 1918, F-69616 Villeurbanne, France
| |
Collapse
|
41
|
Zhu HZ, You LQ, Wei HL, Wang GF, Chu HJ, Zhu J, He J. Preparation and characterization of pH-sensitive hydrogel microspheres based on atom transfer radical polymerization. POLYM ENG SCI 2015. [DOI: 10.1002/pen.24168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hong-Zheng Zhu
- Department of Chemistry; School of Chemistry and Chemical Engineering, Henan University of Technology; Zhengzhou 450001 People's Republic of China
| | - Li-Qin You
- Department of Chemistry; School of Chemistry and Chemical Engineering, Henan University of Technology; Zhengzhou 450001 People's Republic of China
| | - Hong-Liang Wei
- Department of Chemistry; School of Chemistry and Chemical Engineering, Henan University of Technology; Zhengzhou 450001 People's Republic of China
| | - Guo-Feng Wang
- Department of Chemistry; School of Chemistry and Chemical Engineering, Henan University of Technology; Zhengzhou 450001 People's Republic of China
| | - Hui-Juan Chu
- Department of Chemistry; School of Chemistry and Chemical Engineering, Henan University of Technology; Zhengzhou 450001 People's Republic of China
| | - Jing Zhu
- Department of Chemistry; School of Chemistry and Chemical Engineering, Henan University of Technology; Zhengzhou 450001 People's Republic of China
| | - Juan He
- Department of Chemistry; School of Chemistry and Chemical Engineering, Henan University of Technology; Zhengzhou 450001 People's Republic of China
| |
Collapse
|
42
|
Dailing EA, Setterberg WK, Shah PK, Stansbury JW. Photopolymerizable nanogels as macromolecular precursors to covalently crosslinked water-based networks. SOFT MATTER 2015; 11:5647-55. [PMID: 26075300 PMCID: PMC4502958 DOI: 10.1039/c4sm02788d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a strategy for directly and efficiently polymerizing aqueous dispersions of reactive nanogels into covalently crosslinked polymer networks with properties that are determined by the initial chemical and physical nanogel structure. This technique can extend the range of achievable properties and architectures for networks formed in solution, particularly in water where monomer selection for direct polymerization and the final network properties are quite limited. Nanogels were initially obtained from a solution polymerization of a hydrophilic monomethacrylate and either a hydrophilic PEG-based dimethacrylate or a more hydrophobic urethane dimethacrylate, which produced globular particles with diameters of 10-15 nm with remarkably low polydispersity in some cases. Networks derived from a single type of nanogel or a blend of nanogels with different chemistries when dispersed in water gelled within minutes when exposed to low intensity UV light. Modifying the nanogel structure changes both covalent and non-covalent secondary interactions in the crosslinked networks and reveals critical design criteria for the development of networks from highly internally branched, nanoscale prepolymer precursors.
Collapse
Affiliation(s)
- Eric A Dailing
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, USA.
| | | | | | | |
Collapse
|
43
|
Sivakumaran D, Mueller E, Hoare T. Temperature-Induced Assembly of Monodisperse, Covalently Cross-Linked, and Degradable Poly(N-isopropylacrylamide) Microgels Based on Oligomeric Precursors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5767-5778. [PMID: 25977976 DOI: 10.1021/acs.langmuir.5b01421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A simple, rapid, solvent-free, and scalable thermally driven self-assembly approach is described to produce monodisperse, covalently cross-linked, and degradable poly(N-isopropylacrylamide) (PNIPAM) microgels based on mixing hydrazide (PNIPAM-Hzd) and aldehyde (PNIPAM-Ald) functionalized PNIPAM precursors. Preheating of a seed PNIPAM-Hzd solution above its phase transition temperature produces nanoaggregates that are subsequently stabilized and cross-linked by the addition of PNIPAM-Ald. The ratio of PNIPAM-Hzd:PNIPAM-Ald used to prepare the microgels, the time between PNIPAM-Ald addition and cooling, the temperature to which the PNIPAM-Hzd polymer solution is preheated, and the concentration of PNIPAM-Hzd in the initial seed solution can all be used to control the size of the resulting microgels. The microgels exhibit similar thermal phase transition behavior to conventional precipitation-based microgels but are fully degradable into oligomeric precursor polymers. The microgels can also be lyophilized and redispersed without any change in colloidal stability or particle size and exhibit no significant cytotoxicity in vitro. We anticipate that microgels fabricated using this approach may facilitate translation of the attractive properties of such microgels in vivo without the concerns regarding microgel clearance that exist with other PNIPAM-based microgels.
Collapse
Affiliation(s)
- Daryl Sivakumaran
- Department of Chemical Engineering, McMaster University, 1280 Main St. W, Hamilton, Ontario, Canada L8S 4L7
| | - Eva Mueller
- Department of Chemical Engineering, McMaster University, 1280 Main St. W, Hamilton, Ontario, Canada L8S 4L7
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St. W, Hamilton, Ontario, Canada L8S 4L7
| |
Collapse
|
44
|
Utama RH, Dulle M, Förster S, Stenzel MH, Zetterlund PB. SAXS Analysis of Shell Formation During Nanocapsule Synthesis via Inverse Miniemulsion Periphery RAFT Polymerization. Macromol Rapid Commun 2015; 36:1267-71. [DOI: 10.1002/marc.201500096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/18/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Robert H. Utama
- Centre for Advanced Macromolecular Design; School of Chemical Engineering The University of New South Wales; Sydney NSW 2052 Australia
| | - Martin Dulle
- Physikalische Chemie I; Universität Bayreuth; 95447 Bayreuth Germany
| | - Stephan Förster
- Physikalische Chemie I; Universität Bayreuth; 95447 Bayreuth Germany
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design School of Chemistry; The University of New South Wales; Sydney NSW 2052 Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design; School of Chemical Engineering The University of New South Wales; Sydney NSW 2052 Australia
| |
Collapse
|
45
|
Zhang X, Malhotra S, Molina M, Haag R. Micro- and nanogels with labile crosslinks – from synthesis to biomedical applications. Chem Soc Rev 2015; 44:1948-73. [DOI: 10.1039/c4cs00341a] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We emphasize the synthetic strategies to produce micro-/nanogels and the importance of degradable linkers incorporated in the gel network.
Collapse
Affiliation(s)
- Xuejiao Zhang
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Shashwat Malhotra
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Maria Molina
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| |
Collapse
|
46
|
|
47
|
|
48
|
|
49
|
Plamper FA. Changing Polymer Solvation by Electrochemical Means: Basics and Applications. POROUS CARBONS – HYPERBRANCHED POLYMERS – POLYMER SOLVATION 2014. [DOI: 10.1007/12_2014_284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Wutzel H, Richter FH, Li Y, Sheiko SS, Klok HA. Poly[N-(2-hydroxypropyl)methacrylamide] nanogels by RAFT polymerization in inverse emulsion. Polym Chem 2014. [DOI: 10.1039/c3py01280h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|