1
|
Tekade M, Sharma MC. Quality-by-Design (QbD) Assisted Synthesis of Nanoparticle for Efficient Loading, Stabilization, and Intracellular Delivery of Bioactive for the Treatment of Arthritis. Indian J Microbiol 2025; 65:477-504. [PMID: 40371029 PMCID: PMC12069780 DOI: 10.1007/s12088-024-01338-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 05/16/2025] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder that induces joint inflammation, cartilage injury, and bone damage. Thus far, methotrexate (MTX) is a primary DMARD drug to treat RA. Despite high efficiency, its clinical application is compromised due to delivery-associated systemic side effects. This investigation reports a Quality-by-design (QbD; Box Behnken Strategy) assisted production of a novel, innovative, and multipurpose polycation-templated approach for producing stable albumin MTX nanoparticles (pT-AMTX-NP). This approach formed a highly biocompatible MTX formulation with reduced toxicity (1.81 ± 0.54% hemolysis) compared to plain MTX (13.19 ± 2.77%; SEM:1.965). pT-AMTX-NP was found to be nanometric (Particle size: 135.86 ± 5.17 nm; PDI: 0.27) with a net surface charge of ζ -10.15 ± 2.19 mV. With 4.01-fold cationization (TNBS assay), pT-AMTX-NP showed high drug loading (64.98 ± 1.25%) and sustained MTX release under physiological conditions (up to 48 h; p < 0.001). The nanoformulation followed the Higuchi release kinetics model (R2, 0.9957). Significantly reduced burst release by 70.61% (p = 0.0002) and 12.89% (p = 0.0115) compared to plain MTX and conventional MTX-formulation (AMTX-NP), respectively. Interestingly, pT-AMTX-NP showed pH-responsive drug release bio-environment-responsive architectural change. Cell line studies in lipopolysaccharide (LPS) stimulated RAW264.7 macrophage showed a significant reduction in intracellular nitrite level following pT-AMTX-NP treatment (p < 0.01). Cellular uptake and cell viability confirmed selective cellular uptake potential in inflamed cells. Furthermore, compared to the control, the high intracellular ROS-generation was noted with pT-AMTX-NP (2.1485-fold; p < 0.01). Furthermore, hemolysis assay and stability assessments were also conducted to determine the hemocompatibility and suitable conditions for the storage of nanoformulation. The outcome of this study suggests that the developed multipurpose nanoformulation is a superior therapeutics approach for improved RA treatment. Suggestively, the developed strategy can also be adopted to benefit other clinical situations that demand to counter inflammation, cytostatic as well as psoriatic conditions.
Collapse
Affiliation(s)
- Muktika Tekade
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshila Campus, Khandwa Road, Indore, Madhya Pradesh India
| | - Mukesh Chandra Sharma
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshila Campus, Khandwa Road, Indore, Madhya Pradesh India
| |
Collapse
|
2
|
Elsayed N. Selective imaging, gene, and therapeutic delivery using PEGylated and pH-Sensitive nanoparticles for enhanced lung disorder treatment. Int J Pharm 2024; 666:124819. [PMID: 39424084 DOI: 10.1016/j.ijpharm.2024.124819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Lung inflammation involves the activation of immune cells and inflammatory mediators in response to injury and infection. When inflammation persists, fibroblasts, which are resident lung cells, become activated, leading to pulmonary fibrosis (PF), abnormal wound healing, and long-term damage to the alveolar epithelium. This persistent inflammation and fibrosis can also elevate the risk of lung cancer, emphasizing the need for innovative treatments. Current therapies, such as inhaled corticosteroids (ICS) and chemotherapy, have significant limitations. Although conventional nanoparticles (NPs) provide a promising avenue for treating lung disorders, they have limited selectivity and stability. Polyethylene glycol (PEG) grafting can prevent NP aggregation and phagocytosis, thus prolonging their circulation time. When combined with targeting ligands, PEGylated NPs can deliver drugs precisely to specific cells or tissues. Moreover, pH-sensitive NPs offer the advantage of selective drug delivery to inflammatory or tumor-acidic environments, reducing side effects. These NPs can change their size, shape, or surface charge in response to pH variations, improving drug delivery efficiency. This review examines the techniques of PEGylation, the polymers used in pH-sensitive NPs, and their therapeutic applications for lung inflammation, fibrosis, and cancer. By harnessing innovative NP technologies, researchers can develop effective therapies for respiratory conditions, addressing unmet medical needs and enhancing patient outcomes.
Collapse
Affiliation(s)
- Nourhan Elsayed
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya, Malaysia.
| |
Collapse
|
3
|
Islam GJ, Arrigan DWM. Electrochemical behaviour of poly(amidoamine) dendrimers at micropipette-based liquid/liquid micro-interfaces. Talanta 2024; 280:126598. [PMID: 39146869 DOI: 10.1016/j.talanta.2024.126598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Dendrimers are macromolecules with well-defined three-dimensional structures, sizes and surface charges. In this work, four generations of poly(amidoamine) (PAMAM) dendrimers were investigated at the micro-interface between two immiscible electrolyte solutions (μITIES) to understand their electrochemical responses as simple models of ionised macromolecules. Cyclic voltammetry (CV) across a range of aqueous phase pH revealed that all four generations (G0-G3) presented diffusion-controlled ion-transfer from aqueous to organic phase, while the reverse transfers from organic to aqueous phase varied with both pH and the dendrimer generation. The larger dendrimers (G2 and G3) show an adsorption behaviour at pH ≤ 3.5, but show a diffusional response at pH ≥ 6. On the other hand, the smaller dendrimers (G0 and G1) always show a diffusional response and are not impacted by the pH. This indicates that more highly charged dendrimers condense at the interface. The reverse scan of CVs showed that an increased applied potential was required to remove (desorb) these polycations from the interfaces in comparison to smaller, less charged species. Diffusion coefficients (D) were estimated, showing a decrease with increasing generation. Limits of detection for these dendrimers by CV at the μITIES were 0.4, 0.2, 0.7 and 0.5 μM for G0 to G3, respectively, while differential pulse voltammetry lowered the LODs (0.07, 0.05, 0.09 and 0.08 μM, respectively). These study shows that the μITIES provides a simple way to detect and evaluate the electrochemical behaviour of ionised macromolecules, providing a simple illustration of detection mechanism with diffusion or adsorption processes.
Collapse
Affiliation(s)
- Gazi Jahirul Islam
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; Department of Chemistry, University of Barishal, Barishal, 8254, Bangladesh
| | - Damien W M Arrigan
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.
| |
Collapse
|
4
|
Grodzicka M, Michlewska S, Buczkowski A, Ortega P, de la Mata FJ, Bryszewska M, Ionov M. Effect of polyphenolic dendrimers on biological and artificial lipid membranes. Chem Phys Lipids 2024; 265:105444. [PMID: 39265880 DOI: 10.1016/j.chemphyslip.2024.105444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The use of dendrimers as nanovectors for nucleic acids or drugs requires the understanding of their interaction with biological membranes. This study investigates the impact of 1st generation polyphenolic carbosilane dendrimers on biological and model lipid membranes using several biophysical methods. While the increase in the z-average size of DMPC/DPPG liposomes correlated with the number of caffeic acid residues included in the dendrimer structure, dendrimers that contained polyethylene glycol chains generated lower zeta potential when interacting with a liposomal membrane. The increase in the fluorescence anisotropy of DPH and TMA-DPH probes incorporated into erythrocyte membranes predicted the ability of dendrimers to affect membrane fluidity in the hydrophobic interior and hydrophilic/polar region of a lipid bilayer. The presence of caffeic acid and polyethylene glycol chains in the dendrimer structure affected the thermodynamical properties of the membrane lipid matrix.
Collapse
Affiliation(s)
- Marika Grodzicka
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, Lodz 90-236, Poland; The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Department of General Biophysics, Pomorska 141/143, Lodz 90-236, Poland; University of Lodz, Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, Banacha 12/16, Lodz 90-237, Poland.
| | - Sylwia Michlewska
- University of Lodz, Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, Banacha 12/16, Lodz 90-237, Poland.
| | - Adam Buczkowski
- University of Lodz, Faculty of Chemistry, Department of Physical Chemistry, Division of Biophysical Chemistry, Pomorska 165, Lodz 90-236, Poland
| | - Paula Ortega
- Universidad de Alcalá. Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, Madrid 28034, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Francisco Javier de la Mata
- Universidad de Alcalá. Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, Madrid 28034, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Maria Bryszewska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, Lodz 90-236, Poland
| | - Maksim Ionov
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, Lodz 90-236, Poland; Mazovian Academy in Plock, Collegium Medicum, Faculty of Medicine, Pl. Dabrowskiego 2, Plock 09-402, Poland
| |
Collapse
|
5
|
Grodzicka M, Michlewska S, Buczkowski A, Sekowski S, Pena-Gonzalez CE, Ortega P, de la Mata FJ, Blasiak J, Bryszewska M, Ionov M. A new class of polyphenolic carbosilane dendrimers binds human serum albumin in a structure-dependent fashion. Sci Rep 2024; 14:5946. [PMID: 38467715 PMCID: PMC10928121 DOI: 10.1038/s41598-024-56509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024] Open
Abstract
The use of dendrimers as drug and nucleic acid delivery systems requires knowledge of their interactions with objects on their way to the target. In the present work, we investigated the interaction of a new class of carbosilane dendrimers functionalized with polyphenolic and caffeic acid residues with human serum albumin, which is the most abundant blood protein. The addition of dendrimers to albumin solution decreased the zeta potential of albumin/dendrimer complexes as compared to free albumin, increased density of the fibrillary form of albumin, shifted fluorescence spectrum towards longer wavelengths, induced quenching of tryptophan fluorescence, and decreased ellipticity of circular dichroism resulting from a reduction in the albumin α-helix for random coil structural form. Isothermal titration calorimetry showed that, on average, one molecule of albumin was bound by 6-10 molecules of dendrimers. The zeta size confirmed the binding of the dendrimers to albumin. The interaction of dendrimers and albumin depended on the number of caffeic acid residues and polyethylene glycol modifications in the dendrimer structure. In conclusion, carbosilane polyphenolic dendrimers interact with human albumin changing its structure and electrical properties. However, the consequences of such interaction for the efficacy and side effects of these dendrimers as drug/nucleic acid delivery system requires further research.
Collapse
Affiliation(s)
- Marika Grodzicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
- Department of General Biophysics, The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 21/23 Matejki, 90-237, Lodz, Poland
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Adam Buczkowski
- Division of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, 90-236, Lodz, Poland
| | - Szymon Sekowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Cornelia E Pena-Gonzalez
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Universidad de Alcalá, Colmenar Viejo Road, Km 9, 100, 28034, Madrid, Spain
| | - Paula Ortega
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Universidad de Alcalá, Colmenar Viejo Road, Km 9, 100, 28034, Madrid, Spain
- Networking Research Center On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Universidad de Alcalá, Colmenar Viejo Road, Km 9, 100, 28034, Madrid, Spain
- Networking Research Center On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Pl. Dabrowskiego 2, 09-402, Plock, Poland
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Pl. Dabrowskiego 2, 09-402, Plock, Poland.
| |
Collapse
|
6
|
Jeong EJ, Kim C, Lee YC, Rhim T, Lee SK, Lee KY. Tumor-specific cytolysis by peptide-conjugated echogenic polymer micelles. Biomed Pharmacother 2024; 172:116272. [PMID: 38354570 DOI: 10.1016/j.biopha.2024.116272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
Interest in multifunctional polymer nanoparticles for targeted delivery of anti-cancer drugs has grown significantly in recent years. In this study, tumor-targeting echogenic polymer micelles were prepared from poly(ethylene glycol) methyl ether-alkyl carbonate (mPEG-AC) derivatives, and their potential in cancer therapy was assessed. Various mPEG derivatives with carbonate linkages were synthesized via an alkyl halide reaction between mPEG and alkyl chloroformate. Micelle formation using polymer amphiphiles in aqueous media and the subsequent carbon dioxide (CO2) gas generation from the micelles was confirmed. Their ability to target neuroblastoma was substantially enhanced by incorporating the rabies virus glycoprotein (RVG) peptide. RVG-modified gas-generating micelles significantly inhibited tumor growth in a tumor-bearing mouse model owing to CO2 gas generation within tumor cells and resultant cytolytic effects, showing minimal side effects. The development of multifunctional polymer micelles may offer a promising therapeutic approach for various diseases, including cancer.
Collapse
Affiliation(s)
- Eun Ju Jeong
- Department of Bioengineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Choonggu Kim
- Department of Bioengineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Yun-Chan Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, the Republic of Korea
| | - Taiyoun Rhim
- Department of Bioengineering, Hanyang University, Seoul 04763, the Republic of Korea; Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul 04763, the Republic of Korea.
| | - Sang-Kyung Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, the Republic of Korea; Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul 04763, the Republic of Korea.
| | - Kuen Yong Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, the Republic of Korea; Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul 04763, the Republic of Korea.
| |
Collapse
|
7
|
Dourado D, Miranda JA, de Oliveira MC, Freire DT, Xavier-Júnior FH, Paredes-Gamero EJ, Alencar ÉDN. Recent Trends in Curcumin-Containing Inorganic-Based Nanoparticles Intended for In Vivo Cancer Therapy. Pharmaceutics 2024; 16:177. [PMID: 38399238 PMCID: PMC10891663 DOI: 10.3390/pharmaceutics16020177] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Curcumin is a natural compound that has been widely investigated thanks to its various biological properties, including antiproliferative. This molecule acts on different cancers such as lung, breast, pancreatic, colorectal, etc. However, the bioactive actions of curcumin have limitations when its physicochemical properties compromise its pharmacological potential. As a therapeutic strategy against cancer, curcumin has been associated with inorganic nanoparticles. These nanocarriers are capable of delivering curcumin and offering physicochemical properties that synergistically enhance anticancer properties. This review highlights the different types of curcumin-based inorganic nanoparticles and discusses their physicochemical properties and in vivo anticancer activity in different models of cancer.
Collapse
Affiliation(s)
- Douglas Dourado
- Department of Immunology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife 50670-420, PE, Brazil;
| | - Júlio Abreu Miranda
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal 59010-180, RN, Brazil; (J.A.M.); (M.C.d.O.)
| | - Matheus Cardoso de Oliveira
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal 59010-180, RN, Brazil; (J.A.M.); (M.C.d.O.)
| | - Danielle Teixeira Freire
- College of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (D.T.F.); (E.J.P.-G.)
| | - Francisco Humberto Xavier-Júnior
- Laboratory of Pharmaceutical Biotechnology (BioTecFarm), Department of Pharmacy, Federal University of Paraíba (UFPB), João Pessoa 58051-900, PB, Brazil;
| | - Edgar Julian Paredes-Gamero
- College of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (D.T.F.); (E.J.P.-G.)
| | - Éverton do Nascimento Alencar
- College of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil; (D.T.F.); (E.J.P.-G.)
| |
Collapse
|
8
|
Fathi-Karkan S, Arshad R, Rahdar A, Ramezani A, Behzadmehr R, Ghotekar S, Pandey S. Recent advancements in the targeted delivery of etoposide nanomedicine for cancer therapy: A comprehensive review. Eur J Med Chem 2023; 259:115676. [PMID: 37499287 DOI: 10.1016/j.ejmech.2023.115676] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Etoposide (ETO), a popular anticancer drug that inhibits topoisomerase II enzymes, may be administered more effectively and efficiently due to nanomedicine. The therapeutic application of ETO is constrained by its limited solubility, weak absorption, and severe side effects. This article summarizes substantial progress made in the development of ETO nanomedicine for the treatment of cancer. It discusses various organic and inorganic nanostructures used to load or affix ETOs, such as lipids, liposomes, polymeric nanoparticles (NPs), dendrimers, micelles, gold NPs, iron oxide NPs, and silica NPs. In addition, it evaluates the structural properties of these nanostructures, such as their size, zeta potential, encapsulation efficiency, and drug release mechanism, as well as their in vitro or in vivo performance. The article also emphasizes the co-delivery of ETO with other medications or agents to produce synergistic effects or combat drug resistance in the treatment of cancer. It concludes with a discussion of the challenges and potential avenues for clinical translation of ETO nanomedicine.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
| | - Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, 98613-35856, Iran.
| | - Aghdas Ramezani
- Faculty of Medical Science, Tarbiat Modares, University, Tehran, Iran
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran
| | - Suresh Ghotekar
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, South Korea.
| |
Collapse
|
9
|
Kaurav M, Ruhi S, Al-Goshae HA, Jeppu AK, Ramachandran D, Sahu RK, Sarkar AK, Khan J, Ashif Ikbal AM. Dendrimer: An update on recent developments and future opportunities for the brain tumors diagnosis and treatment. Front Pharmacol 2023; 14:1159131. [PMID: 37006997 PMCID: PMC10060650 DOI: 10.3389/fphar.2023.1159131] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
A brain tumor is an uncontrolled cell proliferation, a mass of tissue composed of cells that grow and divide abnormally and appear to be uncontrollable by the processes that normally control normal cells. Approximately 25,690 primary malignant brain tumors are discovered each year, 70% of which originate in glial cells. It has been observed that the blood-brain barrier (BBB) limits the distribution of drugs into the tumour environment, which complicates the oncological therapy of malignant brain tumours. Numerous studies have found that nanocarriers have demonstrated significant therapeutic efficacy in brain diseases. This review, based on a non-systematic search of the existing literature, provides an update on the existing knowledge of the types of dendrimers, synthesis methods, and mechanisms of action in relation to brain tumours. It also discusses the use of dendrimers in the diagnosis and treatment of brain tumours and the future possibilities of dendrimers. Dendrimers are of particular interest in the diagnosis and treatment of brain tumours because they can transport biochemical agents across the BBB to the tumour and into the brain after systemic administration. Dendrimers are being used to develop novel therapeutics such as prolonged release of drugs, immunotherapy, and antineoplastic effects. The use of PAMAM, PPI, PLL and surface engineered dendrimers has proven revolutionary in the effective diagnosis and treatment of brain tumours.
Collapse
Affiliation(s)
- Monika Kaurav
- Department of Pharmaceutics, KIET Group of Institutions (KIET School of Pharmacy), Delhi NCR, Ghaziabad, India
- Dr. A.P.J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Sakina Ruhi
- Department of Biochemistry, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Husni Ahmed Al-Goshae
- Department of Anantomy, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Ashok Kumar Jeppu
- Department of Biochemistry, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Dhani Ramachandran
- Department of Pathology, IMS, Management and Science University, University Drive, Shah Alam, Selangor, Malaysia
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, India
- *Correspondence: Ram Kumar Sahu,
| | | | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Selangor, Malaysia
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, Assam, India
| |
Collapse
|
10
|
Shabani L, Abbasi M, Azarnew Z, Amani AM, Vaez A. Neuro-nanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience. Biomed Eng Online 2023; 22:1. [PMID: 36593487 PMCID: PMC9809121 DOI: 10.1186/s12938-022-01062-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Artificial, de-novo manufactured materials (with controlled nano-sized characteristics) have been progressively used by neuroscientists during the last several decades. The introduction of novel implantable bioelectronics interfaces that are better suited to their biological targets is one example of an innovation that has emerged as a result of advanced nanostructures and implantable bioelectronics interfaces, which has increased the potential of prostheses and neural interfaces. The unique physical-chemical properties of nanoparticles have also facilitated the development of novel imaging instruments for advanced laboratory systems, as well as intelligently manufactured scaffolds and microelectrodes and other technologies designed to increase our understanding of neural tissue processes. The incorporation of nanotechnology into physiology and cell biology enables the tailoring of molecular interactions. This involves unique interactions with neurons and glial cells in neuroscience. Technology solutions intended to effectively interact with neuronal cells, improved molecular-based diagnostic techniques, biomaterials and hybridized compounds utilized for neural regeneration, neuroprotection, and targeted delivery of medicines as well as small chemicals across the blood-brain barrier are all purposes of the present article.
Collapse
Affiliation(s)
- Leili Shabani
- grid.412571.40000 0000 8819 4698Department of Emergency Medicine, School of Medicine, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeynab Azarnew
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- grid.412571.40000 0000 8819 4698Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- grid.412571.40000 0000 8819 4698Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Tomás H, Rodrigues J. Dendrimers and dendrimer-based nano-objects for oncology applications. NEW TRENDS IN SMART NANOSTRUCTURED BIOMATERIALS IN HEALTH SCIENCES 2023:41-78. [DOI: 10.1016/b978-0-323-85671-3.00002-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Kesharwani P, Chadar R, Shukla R, Jain GK, Aggarwal G, Abourehab MAS, Sahebkar A. Recent advances in multifunctional dendrimer-based nanoprobes for breast cancer theranostics. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2433-2471. [PMID: 35848467 DOI: 10.1080/09205063.2022.2103627] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Breast cancer (BC) undoubtedly is one of the most common type of cancers amongst women, which causes about 5 million deaths annually. The treatments and diagnostic therapy choices currently available for Breast Cancer is very much limited . Advancements in novel nanocarrier could be a promising strategy for diagnosis and treatments of this deadly disease. Dendrimer nanoformulation could be functionalized and explored for efficient targeting of overexpressed receptors on Breast Cancer cells to achieve targeted drug delivery, for diagnostics and to overcome the resistance of the cells towards particular chemotherapeutic. Additionally, the dendrimer have shown promising potential in the improvement of therapeutic value for Breast Cancer therapy by achieving synergistic co-delivery of chemotherapeutics and genetic materials for multidirectional treatment. In this review, we have highlighted the application of dendrimer as novel multifunctional nanoplatforms for the treatment and diagnosis of Breast Cancer.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Rahul Chadar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P, India
| | - Gaurav K Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Geeta Aggarwal
- Department of Pharmaceutics, Delhi Pharmaceutical Science and Research University, New Delhi, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Shrestha A, Lahooti B, Mikelis CM, Mattheolabakis G. Chlorotoxin and Lung Cancer: A Targeting Perspective for Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122613. [PMID: 36559106 PMCID: PMC9786857 DOI: 10.3390/pharmaceutics14122613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
In the generational evolution of nano-based drug delivery carriers, active targeting has been a major milestone for improved and selective drug accumulation in tissues and cell types beyond the existing passive targeting capabilities. Among the various active targeting moieties, chlorotoxin, a peptide extracted from scorpions, demonstrated promising tumor cell accumulation and selection. With lung cancer being among the leading diagnoses of cancer-related deaths in both men and women, novel therapeutic methodologies utilizing nanotechnology for drug delivery emerged. Given chlorotoxin's promising biological activity, we explore its potential against lung cancer and its utilization for active targeting against this cancer's tumor cells. Our analysis indicates that despite the extensive chlorotoxin's research against glioblastoma, lung cancer research with the molecule has been limited, despite some promising early results.
Collapse
Affiliation(s)
- Archana Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
- Correspondence:
| |
Collapse
|
14
|
Lu H, Cai J, Fang Y, Ren M, Tan X, Jia F, Wang D, Zhang K. Exploring the Structural Diversity of DNA Bottlebrush Polymers Using an Oligonucleotide Macromonomer Approach. Macromolecules 2022; 55:2235-2242. [PMID: 36187461 PMCID: PMC9521811 DOI: 10.1021/acs.macromol.1c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we demonstrate that macromonomers consisting of organics-soluble, chemically protected oligonucleotides (protDNA) and poly(ethylene glycol) (PEG) chains can be converted into bottlebrush polymers of distinct architectures via ring-opening metathesis polymerization (ROMP). Using a custom norbornene-containing phosphoramidite, two types of macromonomers were obtained: a linear norbornene-protDNA-PEG structure and a Y-shaped structure where the polymerizable norbornene group is situated at the junction where protDNA and PEG meet. With this strategy, the PEG chains can be placed either near the backbone of the bottlebrush or on its periphery, and in principle anywhere between these two extremes by adjusting the norbornene location, which makes this strategy attractive for constructing architecturally sophisticated oligonucleotide-containing copolymers.
Collapse
Affiliation(s)
- Hao Lu
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jiansong Cai
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yang Fang
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mengqi Ren
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xuyu Tan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Fei Jia
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dali Wang
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ke Zhang
- Departments of Chemistry and Chemical Biology, Bioengineering, and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Corresponding Author:
| |
Collapse
|
15
|
Royo-Rubio E, Martín-Cañadilla V, Rusnati M, Milanesi M, Lozano-Cruz T, Gómez R, Jiménez JL, Muñoz-Fernández MÁ. Prevention of Herpesviridae Infections by Cationic PEGylated Carbosilane Dendrimers. Pharmaceutics 2022; 14:pharmaceutics14030536. [PMID: 35335912 PMCID: PMC8950866 DOI: 10.3390/pharmaceutics14030536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
Infections caused by viruses from the Herpesviridae family produce some of the most prevalent transmitted diseases in the world, constituting a serious global public health issue. Some of the virus properties such as latency and the appearance of resistance to antiviral treatments complicate the development of effective therapies capable of facing the infection. In this context, dendrimers present themselves as promising alternatives to current treatments. In this study, we propose the use of PEGylated cationic carbosilane dendrimers as inhibitors of herpes simplex virus 2 (HSV-2) and human cytomegalovirus (HCMV)infections. Studies of mitochondrial toxicity, membrane integrity, internalization and viral infection inhibition indicated that G2-SN15-PEG, G3-SN31-PEG, G2-SN15-PEG fluorescein isothiocyanate (FITC) labeled and G3-SN31-PEG-FITC dendrimers are valid candidates to target HSV-2 and HCMV infections since they are biocompatible, can be effectively internalized and are able to significantly inhibit both infections. Later studies (including viral inactivation, binding inhibition, heparan sulphate proteoglycans (HSPG)binding and surface plasmon resonance assays) confirmed that inhibition takes place at first infection stages. More precisely, these studies established that their attachment to cell membrane heparan sulphate proteoglycans impede the interaction between viral glycoproteins and these cell receptors, thus preventing infection. Altogether, our research confirmed the high capacity of these PEGylated carbosilane dendrimers to prevent HSV-2 and HCMV infections, making them valid candidates as antiviral agents against Herpesviridae infections.
Collapse
Affiliation(s)
- Elena Royo-Rubio
- Laboratorio InmunoBiologia Molecular, Instituto Investigacion Sanitaria Gregorio Maranon (IiSGM), Hospital General Universitario Gregorio Maranon (HGUGM), 28009 Madrid, Spain; (E.R.-R.); (V.M.-C.)
- Plataforma de Laboratorio (Inmunologia), HGUGM, IiSGM, Spanish HIV HGM BioBank, 28009 Madrid, Spain;
| | - Vanessa Martín-Cañadilla
- Laboratorio InmunoBiologia Molecular, Instituto Investigacion Sanitaria Gregorio Maranon (IiSGM), Hospital General Universitario Gregorio Maranon (HGUGM), 28009 Madrid, Spain; (E.R.-R.); (V.M.-C.)
- Plataforma de Laboratorio (Inmunologia), HGUGM, IiSGM, Spanish HIV HGM BioBank, 28009 Madrid, Spain;
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.R.); (M.M.)
| | - Maria Milanesi
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.R.); (M.M.)
| | - Tania Lozano-Cruz
- Departmento Quimica Organica y Quimica Inorganica, Instituto de Investigacion Quimica “Andres M. del Rio″ (IQAR), Universidad de Alcalá (IRYCIS), Campus Universitario, 28871 Madrid, Spain; (T.L.-C.); (R.G.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Rafael Gómez
- Departmento Quimica Organica y Quimica Inorganica, Instituto de Investigacion Quimica “Andres M. del Rio″ (IQAR), Universidad de Alcalá (IRYCIS), Campus Universitario, 28871 Madrid, Spain; (T.L.-C.); (R.G.)
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - José Luís Jiménez
- Plataforma de Laboratorio (Inmunologia), HGUGM, IiSGM, Spanish HIV HGM BioBank, 28009 Madrid, Spain;
| | - Maria Ángeles Muñoz-Fernández
- Laboratorio InmunoBiologia Molecular, Instituto Investigacion Sanitaria Gregorio Maranon (IiSGM), Hospital General Universitario Gregorio Maranon (HGUGM), 28009 Madrid, Spain; (E.R.-R.); (V.M.-C.)
- Correspondence: or
| |
Collapse
|
16
|
The Antibacterial Effect of PEGylated Carbosilane Dendrimers on P. aeruginosa Alone and in Combination with Phage-Derived Endolysin. Int J Mol Sci 2022; 23:ijms23031873. [PMID: 35163794 PMCID: PMC8836974 DOI: 10.3390/ijms23031873] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
The search for new microbicide compounds is of an urgent need, especially against difficult-to-eradicate biofilm-forming bacteria. One attractive option is the application of cationic multivalent dendrimers as antibacterials and also as carriers of active molecules. These compounds require an adequate hydrophilic/hydrophobic structural balance to maximize the effect. Herein, we evaluated the antimicrobial activity of cationic carbosilane (CBS) dendrimers unmodified or modified with polyethylene glycol (PEG) units, against planktonic and biofilm-forming P. aeruginosa culture. Our study revealed that the presence of PEG destabilized the hydrophilic/hydrophobic balance but reduced the antibacterial activity measured by microbiological cultivation methods, laser interferometry and fluorescence microscopy. On the other hand, the activity can be improved by the combination of the CBS dendrimers with endolysin, a bacteriophage-encoded peptidoglycan hydrolase. This enzyme applied in the absence of the cationic CBS dendrimers is ineffective against Gram-negative bacteria because of the protective outer membrane shield. However, the endolysin-CBS dendrimer mixture enables the penetration through the membrane and then deterioration of the peptidoglycan layer, providing a synergic antimicrobial effect.
Collapse
|
17
|
Leiro V, Spencer AP, Magalhães N, Pêgo AP. Versatile fully biodegradable dendritic nanotherapeutics. Biomaterials 2022; 281:121356. [DOI: 10.1016/j.biomaterials.2021.121356] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022]
|
18
|
Singh V, Md S, Alhakamy NA, Kesharwani P. Taxanes loaded polymersomes as an emerging polymeric nanocarrier for cancer therapy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110883] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Ahmed R, Aucamp M, Ebrahim N, Samsodien H. Supramolecular assembly of rifampicin and PEGylated PAMAM dendrimer as a novel conjugate for tuberculosis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Kharwade R, Badole P, Mahajan N, More S. Toxicity And Surface Modification Of Dendrimers: A Critical Review. Curr Drug Deliv 2021; 19:451-465. [PMID: 34674620 DOI: 10.2174/1567201818666211021160441] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/21/2021] [Accepted: 10/01/2021] [Indexed: 11/22/2022]
Abstract
As compared to other nano polymers, dendrimers have novel three dimensional, synthetic hyperbranched, nano-polymeric structures. The characteristic of these supramolecular dendritic structures has a high degree of significant surface as well as core functionality in the transportation of drugs for targeted therapy, specifically in host-guest response, gene transfer therapy and imaging of biological systems. However, there are conflicting shreds of evidence regarding biological safety and dendrimers toxicity due to their positive charge at the surface. It includes cytotoxicity, hemolytic toxicity, haematological toxicity, immunogenicity and in vivo toxicity. Therefore to resolve these problems surface modification of the dendrimer group is one of the methods. From that point, this review involves different strategies which reduce the toxicity and improve the biocompatibility of different types of dendrimers. From that viewpoint, we broaden the structural and safe characteristics of the dendrimers in the biomedical and pharmaceutical fields.
Collapse
Affiliation(s)
- Rohini Kharwade
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS). India
| | - Payal Badole
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS). India
| | - Nilesh Mahajan
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS). India
| | - Sachin More
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, (MS). India
| |
Collapse
|
21
|
Filipczak N, Yalamarty SSK, Li X, Parveen F, Torchilin V. Developments in Treatment Methodologies Using Dendrimers for Infectious Diseases. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26113304. [PMID: 34072765 PMCID: PMC8198206 DOI: 10.3390/molecules26113304] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 02/02/2023]
Abstract
Dendrimers comprise a specific group of macromolecules, which combine structural properties of both single molecules and long expanded polymers. The three-dimensional form of dendrimers and the extensive possibilities for use of additional substrates for their construction creates a multivalent potential and a wide possibility for medical, diagnostic and environmental purposes. Depending on their composition and structure, dendrimers have been of interest in many fields of science, ranging from chemistry, biotechnology to biochemical applications. These compounds have found wide application from the production of catalysts for their use as antibacterial, antifungal and antiviral agents. Of particular interest are peptide dendrimers as a medium for transport of therapeutic substances: synthetic vaccines against parasites, bacteria and viruses, contrast agents used in MRI, antibodies and genetic material. This review focuses on the description of the current classes of dendrimers, the methodology for their synthesis and briefly drawbacks of their properties and their use as potential therapies against infectious diseases.
Collapse
Affiliation(s)
- Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Farzana Parveen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- The Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; (N.F.); (S.S.K.Y.); (X.L.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
22
|
Idlas P, Lepeltier E, Jaouen G, Passirani C. Ferrocifen Loaded Lipid Nanocapsules: A Promising Anticancer Medication against Multidrug Resistant Tumors. Cancers (Basel) 2021; 13:2291. [PMID: 34064748 PMCID: PMC8151583 DOI: 10.3390/cancers13102291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Resistance of cancer cells to current chemotherapeutic drugs has obliged the scientific community to seek innovative compounds. Ferrocifens, lipophilic organometallic compounds composed of a tamoxifen scaffold covalently bound to a ferrocene moiety, have shown very interesting antiproliferative, cytotoxic and immunologic effects. The formation of ferrocenyl quinone methide plays a crucial role in the multifaceted activity of ferrocifens. Lipid nanocapsules (LNCs), meanwhile, are nanoparticles obtained by a free organic solvent process. LNCs consist of an oily core surrounded by amphiphilic surfactants and are perfectly adapted to encapsulate these hydrophobic compounds. The different in vitro and in vivo experiments performed with this ferrocifen-loaded nanocarrier have revealed promising results in several multidrug-resistant cancer cell lines such as glioblastoma, breast cancer and metastatic melanoma, alone or in combination with other therapies. This review provides an exhaustive summary of the use of ferrocifen-loaded LNCs as a promising nanomedicine, outlining the ferrocifen mechanisms of action on cancer cells, the nanocarrier formulation process and the in vivo results obtained over the last two decades.
Collapse
Affiliation(s)
- Pierre Idlas
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, 49000 Angers, France; (P.I.); (E.L.)
| | - Elise Lepeltier
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, 49000 Angers, France; (P.I.); (E.L.)
| | - Gérard Jaouen
- Sorbonne Universités, Université IPCM, Paris 6, UMR 8232, IPCM, 4 place Jussieu, 75005 Paris, France;
- PSL University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
| | - Catherine Passirani
- Micro & Nanomedecines Translationnelles (MINT), University of Angers, Inserm, The National Center for Scientific Research (CNRS), SFR ICAT, 49000 Angers, France; (P.I.); (E.L.)
| |
Collapse
|
23
|
Zeeshan F, Madheswaran T, Panneerselvam J, Taliyan R, Kesharwani P. Human Serum Albumin as Multifunctional Nanocarrier for Cancer Therapy. J Pharm Sci 2021; 110:3111-3117. [PMID: 33989679 DOI: 10.1016/j.xphs.2021.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/05/2023]
Abstract
Human serum albumin or simply called albumin is a flexible protein employed as a carrier in the fabrication of albumin-based nanocarriers (ANCs) for the administration of cancer therapeutics. Albumin can contribute enhanced tumour specificity, reduced drug induced cytotoxicity and retain concentration of the therapeutically active agent such as drug, peptide, protein, and gene for a prolonged time duration. Nevertheless, apart from cancer management, ANCs are also employed in the diagnosis, imaging, and multimodal cancer therapy. This article figures out salient characteristics, design as well as categories of ANCs in the context of their application in cancer management. In addition, this review article discusses the fabrication methods of ANCs, use of ANCs in gene, cancer, and multimodal therapy along with cancer diagnosis and imaging. Lastly, this review also briefly discusses about (ANCs) formulations, commercial products, and those under clinical testing.
Collapse
Affiliation(s)
- Farrukh Zeeshan
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India.
| |
Collapse
|
24
|
Zhang W, Mehta A, Tong Z, Esser L, Voelcker NH. Development of Polymeric Nanoparticles for Blood-Brain Barrier Transfer-Strategies and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003937. [PMID: 34026447 PMCID: PMC8132167 DOI: 10.1002/advs.202003937] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/20/2020] [Indexed: 05/04/2023]
Abstract
Neurological disorders such as Alzheimer's disease, stroke, and brain cancers are difficult to treat with current drugs as their delivery efficacy to the brain is severely hampered by the presence of the blood-brain barrier (BBB). Drug delivery systems have been extensively explored in recent decades aiming to circumvent this barrier. In particular, polymeric nanoparticles have shown enormous potentials owing to their unique properties, such as high tunability, ease of synthesis, and control over drug release profile. However, careful analysis of their performance in effective drug transport across the BBB should be performed using clinically relevant testing models. In this review, polymeric nanoparticle systems for drug delivery to the central nervous system are discussed with an emphasis on the effects of particle size, shape, and surface modifications on BBB penetration. Moreover, the authors critically analyze the current in vitro and in vivo models used to evaluate BBB penetration efficacy, including the latest developments in the BBB-on-a-chip models. Finally, the challenges and future perspectives for the development of polymeric nanoparticles to combat neurological disorders are discussed.
Collapse
Affiliation(s)
- Weisen Zhang
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Ami Mehta
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- IITB Monash Research AcademyBombayMumbai400076India
| | - Ziqiu Tong
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Lars Esser
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVIC3168Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVIC3168Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVIC3168Australia
- Department of Materials Science and EngineeringMonash UniversityClaytonVIC3800Australia
| |
Collapse
|
25
|
Kholodkov DN, Eremchuk KI, Soldatkin YV, Volodin AD, Korlyukov AA, Anisimov AA, Novikov RA, Arzumanyan AV. Stereoregular cyclic p-tolyl-siloxanes with alkyl, O- and N-containing groups as promising reagents for the synthesis of functionalized organosiloxanes. NEW J CHEM 2021. [DOI: 10.1039/d1nj01222c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Preparation methodology for a series of hydrophobic and amphiphilic well-defined stereoregular cyclic p-tolyl-substituted siloxanes has been proposed.
Collapse
Affiliation(s)
- Dmitry N. Kholodkov
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 28 Vavilov Street
- Moscow 119991
- Russian Federation
| | - Kseniia I. Eremchuk
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 28 Vavilov Street
- Moscow 119991
- Russian Federation
| | - Yuri V. Soldatkin
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 28 Vavilov Street
- Moscow 119991
- Russian Federation
| | - Alexander D. Volodin
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 28 Vavilov Street
- Moscow 119991
- Russian Federation
| | - Alexander A. Korlyukov
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 28 Vavilov Street
- Moscow 119991
- Russian Federation
| | - Anton A. Anisimov
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 28 Vavilov Street
- Moscow 119991
- Russian Federation
| | - Roman A. Novikov
- Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- 47 Leninsky Pr
- Moscow 119991
- Russian Federation
| | - Ashot V. Arzumanyan
- Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 28 Vavilov Street
- Moscow 119991
- Russian Federation
| |
Collapse
|
26
|
Lam AK, Moen EL, Pusavat J, Wouters CL, Panlilio H, Ferrell MJ, Houck MB, Glatzhofer DT, Rice CV. PEGylation of Polyethylenimine Lowers Acute Toxicity while Retaining Anti-Biofilm and β-Lactam Potentiation Properties against Antibiotic-Resistant Pathogens. ACS OMEGA 2020; 5:26262-26270. [PMID: 33073153 PMCID: PMC7557992 DOI: 10.1021/acsomega.0c04111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 05/29/2023]
Abstract
Bacterial biofilms, often impenetrable to antibiotic medications, are a leading cause of poor wound healing. The prognosis is worse for wounds with biofilms of antimicrobial-resistant (AMR) bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant S. epidermidis (MRSE), and multi-drug resistant Pseudomonas aeruginosa (MDR-PA). Resistance hinders initial treatment of standard-of-care antibiotics. The persistence of MRSA, MRSE, and/or MDR-PA often allows acute infections to become chronic wound infections. The water-soluble hydrophilic properties of low-molecular-weight (600 Da) branched polyethylenimine (600 Da BPEI) enable easy drug delivery to directly attack AMR and biofilms in the wound environment as a topical agent for wound treatment. To mitigate toxicity issues, we have modified 600 Da BPEI with polyethylene glycol (PEG) in a straightforward one-step reaction. The PEG-BPEI molecules disable β-lactam resistance in MRSA, MRSE, and MDR-PA while also having the ability to dissolve established biofilms. PEG-BPEI accomplishes these tasks independently, resulting in a multifunction potentiation agent. We envision wound treatment with antibiotics given topically, orally, or intravenously in which external application of PEG-BPEIs disables biofilms and resistance mechanisms. In the absence of a robust pipeline of new drugs, existing drugs and regimens must be re-evaluated as combination(s) with potentiators. The PEGylation of 600 Da BPEI provides new opportunities to meet this goal with a single compound whose multifunction properties are retained while lowering acute toxicity.
Collapse
|
27
|
Mejlsøe S, Kakkar A. Telodendrimers: Promising Architectural Polymers for Drug Delivery. Molecules 2020; 25:E3995. [PMID: 32887285 PMCID: PMC7504730 DOI: 10.3390/molecules25173995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Architectural complexity has played a key role in enhancing the efficacy of nanocarriers for a variety of applications, including those in the biomedical field. With the continued evolution in designing macromolecules-based nanoparticles for drug delivery, the combination approach of using important features of linear polymers with dendrimers has offered an advantageous and viable platform. Such nanostructures, which are commonly referred to as telodendrimers, are hybrids of linear polymers covalently linked with different dendrimer generations and backbones. There is considerable variety in selection from widely studied linear polymers and dendrimers, which can help tune the overall composition of the resulting hybrid structures. This review highlights the advances in articulating syntheses of these macromolecules, and the contributions these are making in facilitating therapeutic administration. Limited progress has been made in the design and synthesis of these hybrid macromolecules, and it is through an understanding of their physicochemical properties and aqueous self-assembly that one can expect to fully exploit their potential in drug delivery.
Collapse
Affiliation(s)
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada;
| |
Collapse
|
28
|
Nanocarriers in effective pulmonary delivery of siRNA: current approaches and challenges. Ther Deliv 2020; 10:311-332. [PMID: 31116099 DOI: 10.4155/tde-2019-0012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Research on siRNA is increasing due to its wide applicability as a therapeutic agent in irreversible medical conditions. siRNA inhibits expression of the specific gene after its delivery from formulation to cytosol region of a cell. RNAi (RNA interference) is a mechanism by which siRNA is silencing gene expression for a particular disease. Numerous studies revealed that naked siRNA delivery is not preferred due to instability and poor pharmacokinetic performance. Nanocarriers based delivery of siRNA has the advantage to overcome physiological barriers and protect the integrity of siRNA from degradation by RNAase. Various diseases like lung cancer, cystic fibrosis, asthma, etc can be treated effectively by local lung delivery. The selective targeted therapeutic action in diseased organ and least off targeted cytotoxicity are the key benefits of pulmonary delivery. The current review highlights recent developments in pulmonary delivery of siRNA with novel nanosized formulation approach with the proven in vitro/in vivo applications.
Collapse
|
29
|
Souza MPCD, Sábio RM, Ribeiro TDC, Santos AMD, Meneguin AB, Chorilli M. Highlighting the impact of chitosan on the development of gastroretentive drug delivery systems. Int J Biol Macromol 2020; 159:804-822. [PMID: 32425271 PMCID: PMC7232078 DOI: 10.1016/j.ijbiomac.2020.05.104] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023]
Abstract
The development of gastroretentive systems have been growing lately due to the high demand for carriers that increase drug bioavailability and therapeutic effectiveness after oral administration. Most of systems reported up to now are based on chitosan (CS) due to its peculiar properties, such as cationic nature, biodegradability, biocompatibility and important mucoadhesiveness, which make CS a promising biopolymer to design effective gastroretentive systems. In light of this, we reported in this review the CS versatility to fabricate different types of nano- and microstructured gastroretentive systems. For a better understanding of the gastric retention mechanisms, we highlighted expandable, density-based, magnetic, mucoadhesive and superporous systems. The biological and chemical properties of CS, anatomophysiological aspects related to gastrointestinal tract (GIT) and some applications of these systems are also described here. Overall, this review may assist researchers to explore new strategies to design safe and efficient gastroretentive systems in order to popularize them in the treatment of diseases and clinical practices.
Collapse
Affiliation(s)
- Maurício Palmeira Chaves de Souza
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Rafael Miguel Sábio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Tais de Cassia Ribeiro
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Aline Martins Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Andréia Bagliotti Meneguin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Department of Drugs and Medicines, Rodovia Araraquara-Jaú, km 1, - Campos Ville, Araraquara, São Paulo 14800-903, Brazil.
| |
Collapse
|
30
|
Yousefi M, Narmani A, Jafari SM. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv Colloid Interface Sci 2020; 278:102125. [PMID: 32109595 DOI: 10.1016/j.cis.2020.102125] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 02/09/2023]
Abstract
The genesis of dendrimers can be considered as a revolution in nano-scaled bioactive delivery systems. These structures possess a unique potential in encapsulating/entrapping bioactive ingredients due to their tree-like nature. Therefore, they could swiftly obtain a valuable statue in nutraceutical, pharmaceutical and medical sciences. Phytochemicals, as a large proportion of bioactives, have been studied and used by scholars in several fields of pharmacology, medical, food, and cosmetic for many years. But, the solubility, stability, and bioavailability issues have always been recognized as limiting factors in their application. Therefore, the main aim of this study is representing the use of dendrimers as novel nanocarriers for phytochemical bioactive compounds to deal with these problems. Hence, after a brief review of phytochemical ingredients, the text is commenced with a detailed explanation of dendrimers, including definitions, types, generations, synthesizing methods, and safety issues; then is continued with demonstration of their applications in encapsulation of phytochemical bioactive compounds and their active/passive delivery by dendrimers. Dendrimers provide a vast and appropriate surface to entrap the targeted phytochemical bioactive ingredients. Several parameters can affect the yield of nanoencapsulation by dendrimers, including their generation, type of end groups, surface charge, core structure, pH, and ambient factors. Another important issue of dendrimers is related to their toxicity. Cationic dendrimers, particularly PAMAM can be toxic to body cells through attaching to the cell membranes and disturbing their functions. However, a number of solutions have been suggested to decrease their toxicity.
Collapse
|
31
|
Mandal AK. Dendrimers in targeted drug delivery applications: a review of diseases and cancer. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1713780] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ardhendu Kumar Mandal
- Central Instrumentation Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, India
| |
Collapse
|
32
|
Barrios-Gumiel A, Sánchez-Nieves J, Pedziwiatr-Werbicka E, Abashkin V, Shcharbina N, Shcharbin D, Glińska S, Ciepluch K, Kuc-Ciepluch D, Lach D, Bryszewska M, Gómez R, de la Mata FJ. Effect of PEGylation on the biological properties of cationic carbosilane dendronized gold nanoparticles. Int J Pharm 2019; 573:118867. [PMID: 31765788 DOI: 10.1016/j.ijpharm.2019.118867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022]
Abstract
Heterofunctionalized gold nanoparticles (AuNPs) were obtained in a one pot reaction of gold precursor with cationic carbosilane dendrons (first to third generations, 1-3G) and (polyethylene)glycol (PEG) ligands in the presence of a reducing agent. The final dendron/PEG proportion on AuNPs depends on the initial dendron/PEG ratio (3/1, 1/1, 1/3) and dendron generation. AuNPs were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), ultraviolet spectroscopy (UV-VIS), thermogravimetric analysis (TGA), nuclear magnetic resonance (1H NMR) and zeta potential (ZP). Several assays have been carried out to determine the relevance of PEG/dendron ratio and dendron generation in the biomedical properties of PEGylated AuNPs and the results have been compared with those obtained for non-PEGylated AuNPs. Finally, analyses of PEG recognition by anti-PEG antibodies were carried out. In general, haemolysis, platelet aggregation and toxicity were reduced after PEGylation of AuNPs, the effect being dependent on dendron generation and dendron/PEG ratio. Dendron generation determines the exposure of PEG ligand and the interaction of this ligand with AuNPs environment. On the other hand, increasing PEG proportion diminishes toxicity but also favors interaction with antibodies.
Collapse
Affiliation(s)
- Andrea Barrios-Gumiel
- Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá (UAH), Campus Universitario, E-28871 Alcalá de Henares, Madrid, Spain; Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (UAH), Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Spain
| | - Javier Sánchez-Nieves
- Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá (UAH), Campus Universitario, E-28871 Alcalá de Henares, Madrid, Spain; Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (UAH), Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Spain.
| | - Elzbieta Pedziwiatr-Werbicka
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, 141/143 Pomorska Street, 90-236 Lodz, Poland.
| | - Viktar Abashkin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Natallia Shcharbina
- Clinical Unit "Eleous" at Religious Community «All Saints Parish in Minsk Eparchy of Belarusian Orthodox Church», Minsk, Belarus.
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Sława Glińska
- University of Lodz, Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, Banacha 12/16, 90-237 Lodz, Poland.
| | - Karol Ciepluch
- Department of Biochemistry and Genetics, Jan Kochanowski Universit, Świętokrzyska Street 15, 25-406 Kielce, Poland
| | - Dorota Kuc-Ciepluch
- Department of Biochemistry and Genetics, Jan Kochanowski Universit, Świętokrzyska Street 15, 25-406 Kielce, Poland
| | - Dominika Lach
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Maria Bryszewska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Rafael Gómez
- Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá (UAH), Campus Universitario, E-28871 Alcalá de Henares, Madrid, Spain; Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (UAH), Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Spain.
| | - F Javier de la Mata
- Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá (UAH), Campus Universitario, E-28871 Alcalá de Henares, Madrid, Spain; Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (UAH), Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain; Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Spain.
| |
Collapse
|
33
|
The potential of dendrimer in delivery of therapeutics for dentistry. Heliyon 2019; 5:e02544. [PMID: 31687479 PMCID: PMC6820096 DOI: 10.1016/j.heliyon.2019.e02544] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/25/2019] [Accepted: 09/26/2019] [Indexed: 12/29/2022] Open
Abstract
Dendrimers are hyperbranched nanoparticle structures along with its surface modifications can to be used in dental biomaterials for biomimetic remineralisation of enamel and dentin. The review highlights the therapeutic applications of dendrimers in the field of dentistry. It addresses the possible mechanisms of enhancement of mechanical properties of adhesives and resins structure. Dendrimers due to its unique construction of possessing inner hydrophobic and outer hydrophilic structure can act as drug carrier for delivery of antimicrobial drugs for treatment of periodontal diseases and at peripheral dental implant areas. Dendrimers due to its hyperbranched structures can provides a unique drug delivery vehicle for delivery of a drug at specific site for sustained release for therapeutic effects. Thus, dendrimers can be one of the most important constituents which can be incorporated in dental biomaterials for better outcomes in dentistry.
Collapse
|
34
|
Inomata K, Naganawa Y, Guo H, Sato K, Nakajima Y. Ruthenium-catalyzed selective hydrosilylation reaction of allyl-functionalized PEG derivatives. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Dwivedi N, Shah J, Mishra V, Tambuwala M, Kesharwani P. Nanoneuromedicine for management of neurodegenerative disorder. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Moreno Raja M, Lim PQ, Wong YS, Xiong GM, Zhang Y, Venkatraman S, Huang Y. Polymeric Nanomaterials. NANOCARRIERS FOR DRUG DELIVERY 2019:557-653. [DOI: 10.1016/b978-0-12-814033-8.00018-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
37
|
England RM, Moss JI, Hill KJ, Elvevold K, Smedsrød B, Ashford MB. Evaluating liver uptake and distribution of different poly(2-methyl-2-oxazoline) modified lysine dendrimers following intravenous administration. Biomater Sci 2019; 7:3418-3424. [DOI: 10.1039/c9bm00385a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Residual charge and drug modification determine the cellular distribution in the liver for poly(2-methyl-2-oxazoline) modified lysine dendrimers.
Collapse
Affiliation(s)
- Richard M. England
- Early Chemical Development
- Pharmaceutical Sciences, R&D
- AstraZeneca
- Macclesfield
- UK
| | | | - Kathryn J. Hill
- Global Pharmaceutical Development
- Pharmaceutical Technology and Development
- Operations
- AstraZeneca
- Macclesfield
| | | | - Bård Smedsrød
- D'Liver AS
- NO-9294 Tromsø
- Norway
- Vascular Biology Research Group
- Department of Medical Biology
| | | |
Collapse
|
38
|
Muniswamy VJ, Raval N, Gondaliya P, Tambe V, Kalia K, Tekade RK. 'Dendrimer-Cationized-Albumin' encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin. Int J Pharm 2018; 555:77-99. [PMID: 30448308 DOI: 10.1016/j.ijpharm.2018.11.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 11/24/2022]
Abstract
Glioblastoma is one of the most rapaciously growing cancer within the brain with an average lifespan of 12-15 months (5-year survival <3-4%). Doxorubicin (DOX) is clinically utilized as a first line drug in the treatment of Glioblastoma, however, its restricted entry into the brain via the blood-brain barrier (BBB), limited blood-tumor barrier (BTB) permeability, hemotoxicity, short mean half-life of 1-3 hr as well as rapid body clearance results in tremendously diminished bioactivity in glioblastoma. Dendrimer-Cationized-Albumin (dCatAlb) was synthesized following the carboxyl activation technique and the synthesized biopolymer was characterized by FTIR, MALDI-TOF and zeta potential. The prepared dCatAlb was encrusted on DOX-loaded PLGA nanoparticle core to develop a novel hybrid DOX nanoformulation (dCatAlb-pDNP; particle size: 156 ± 10.85 nm; ƺ: -10.0 ± 2.1 mV surface charge). The formulated dCatAlb-pDNP showed a unique pH-dependent DOX release profile, diminished hemolytic toxicity, higher drug uptake (<0.001) and cytotoxicity in U87MG glioblastoma cells, increase levels of caspase-3 gene in U87MG cells (approximately 5.35-fold higher) inferred that anticancer activity is primarily taking place through caspase-mediated apoptosis mechanism. The developed novel DOX nanoformulation also showed superior trans-epithelial permeation transport across monolayer bEnd.3 cells as well as notable biocompatibility and stability. The dCatAlb-pDNP showed enhanced BBB permeation efficacy as confirmed permeation assay in bEnd.3 cell-based model. The long-term formulation stability of developed nanoformulations was studied by storing them at 5 ± 2 °C and 30 ± 2 °C/60 ± 5% Relative Humidity (% RH) in the stability chamber for a period of 60 days (ICHQ1A (R2)). The outcomes of this investigation evidently indicate that dCatAlb-pDNP offers superior anticancer activity of DOX in glioblastoma cells while significantly improving its BBB permeation. The developed formulation is a biocompatible, safer and commercially viable approach to delivering DOX selectively in sustained manner glioblastoma while countering its hemolytic toxic effect, which is a major ongoing issue with conventional DOX injectable available in the market today.
Collapse
Affiliation(s)
- Vimalkumar Johnson Muniswamy
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India
| | - Nidhi Raval
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India
| | - Piyush Gondaliya
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India
| | - Vishakha Tambe
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
39
|
Pishavar E, Attaranzadeh A, Alibolandi M, Ramezani M, Hashemi M. Modified PAMAM vehicles for effective TRAIL gene delivery to colon adenocarcinoma: in vitro and in vivo evaluation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S503-S513. [PMID: 30095012 DOI: 10.1080/21691401.2018.1500372] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
TRAIL (tumour necrosis factor-related apoptosis-inducing ligand) gene therapy is considered as one of the promising approaches for cancer treatment. Polyamidoamine (PAMAM) is one of the most extensively applied polymeric vector in gene delivery. In the current study, PAMAM (G4 and G5) dendrimers were modified with alkyl-carboxylate chain, PEG and cholesteryl chloroformate in order to enhance transfection efficiency through overcoming extracellular and intracellular barriers while reducing PAMAM cytotoxicity. Gene delivery efficiency of synthetized vectors was evaluated by both GFP (green fluorescent protein) reporter gene and TRAIL plasmid in colon cancer cells, in vitro and in vivo. The obtained results demonstrated that PAMAM G4-alkyl-PEG (3%)-Chol (5%)-TRAIL complexes at C/P ratio 4 could significantly increase cell death (29.45%) in comparison with unmodified PAMAM vector (15.5%). Moreover, in vivo study in C26 tumor-bearing BALB/c mice suggested that the prepared non-toxic safe vector could inhibit the tumor growth. This study represented the potent vehicle based on cholesterol-grafted PAMAM dendrimers with alkyl-PEG modification for efficient gene delivery in vitro and in vivo.
Collapse
Affiliation(s)
- Elham Pishavar
- a Pharmacutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Armin Attaranzadeh
- b Department of Molecular Pathology and Cytogenetics , Mashhad University of Medical Sciences, Imam Reza Hospital , Mashhad , Iran
| | - Mona Alibolandi
- a Pharmacutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Ramezani
- a Pharmacutical Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran.,c Department of Biotechnology, School of Pharmacy , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Maryam Hashemi
- d Nanotechnology Research Center, Pharmaceutical Technology Institute , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
40
|
Somani S, Laskar P, Altwaijry N, Kewcharoenvong P, Irving C, Robb G, Pickard BS, Dufès C. PEGylation of polypropylenimine dendrimers: effects on cytotoxicity, DNA condensation, gene delivery and expression in cancer cells. Sci Rep 2018; 8:9410. [PMID: 29925967 PMCID: PMC6010408 DOI: 10.1038/s41598-018-27400-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/30/2018] [Indexed: 01/07/2023] Open
Abstract
Diaminobutyric polypropylenimine (DAB) dendrimers have been shown to be highly efficient non-viral gene delivery systems for cancer therapy. However, their cytotoxicity currently limits their applications. To overcome this issue, PEGylation of DAB dendrimer, using various PEG molecular weights and dendrimer generations, has been attempted to decrease the cytotoxicity and enhance the DNA condensation, size and zeta potential, cellular uptake and transfection efficacy of these dendriplexes. Among all the PEGylated dendrimers synthesized, generation 3- and generation 4-DAB conjugated to low molecular weight PEG (2 kDa) at a dendrimer: DNA ratio of 20:1 and 10:1 resulted in an increase in gene expression on almost all tested cancer cells lines (by up to 3.2-fold compared to unmodified dendrimer in A431 cells). The highest level of β-galactosidase gene expression (10.07 × 10-3 ± 0.09 × 10-3 U/mL) was obtained following treatment of B16F10-Luc cells with G4-dendrimer PEGylated with PEG2K at a dendrimer: DNA ratio of 20:1. These delivery systems significantly decreased cytotoxicity on B16F10-Luc cells, by more than 3.4-fold compared to unmodified dendrimer. PEGylated generations 3- and 4-DAB dendrimers are therefore promising gene delivery systems for cancer therapy, combining low cytotoxicity and high transfection efficacy.
Collapse
Affiliation(s)
- Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Partha Laskar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Najla Altwaijry
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Paphitchaya Kewcharoenvong
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Craig Irving
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, United Kingdom
| | - Gillian Robb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Benjamin S Pickard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom.
| |
Collapse
|
41
|
Narmani A, Kamali M, Amini B, Salimi A, Panahi Y. Targeting delivery of oxaliplatin with smart PEG-modified PAMAM G4 to colorectal cell line: In vitro studies. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Cao J, Ge R, Zhang M, Xia J, Han S, Lu W, Liang Y, Zhang T, Sun Y. A triple modality BSA-coated dendritic nanoplatform for NIR imaging, enhanced tumor penetration and anticancer therapy. NANOSCALE 2018; 10:9021-9037. [PMID: 29717725 DOI: 10.1039/c7nr09552j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Functional theranostic systems for drug delivery capable of concurrent near-infrared (NIR) fluorescence imaging, active tumor targeting and anticancer therapies are desired for concise cancer diagnosis and treatment. Dendrimers with controllable size and surface functionalities are good candidates for such platforms. However, integration of active targeting ligands and imaging agents separately on the surface or encapsulation of the imaging agents in the inner core of the dendrimers will result in a more complex composition or reduced drug loading efficiency. Herein, we reported a PAMAM-based theranostic system, with a simple integrin-specific imaging ligand prepared from two motifs. One motif is a NIR carbocyanine fluorescent dye (Cyp) for precise in vivo monitoring of the system and identification of tumor or cancer cells, and the other is a novel tumor-penetrating cyclic peptide (CRGDKGPDC, abbreviated iRGD). BSA was non-covalently bonded with Cyp to reduce NIR agent fluorescence-quenching aggregates and enhance imaging signals. The chemotherapy effect of these dendritic systems was achieved by encapsulating paclitaxel into the hydrophobic interior of the dendrimers. In vitro and in vivo targeting and penetrating studies revealed that a significantly high amount of the dendritic systems was endocytosed by HepG2 cells and enhanced accumulation and penetration at tumor sites. Our safety evaluation showed that masking of cationic-end groups of PAMAM to neutral or anionic groups has resulted in decreased or even zero-toxicity. The preliminary antitumor efficacy of the dendritic system was evaluated. In vitro and in vivo studies confirmed that paclitaxel-encapsulated functionalized PAMAM can efficiently kill HepG2 cancer cells. In conclusion, our functionalized theranostic dendritic system could be a promising nanocarrier to effectively deliver drugs to deep tumor regions for anticancer therapy.
Collapse
Affiliation(s)
- Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Synthesis of high generation thermo-sensitive dendrimers for extraction of rivaroxaban from human fluid and pharmaceutic samples. J Chromatogr A 2018. [DOI: 10.1016/j.chroma.2018.02.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
Leiro V, Garcia JP, Moreno PMD, Spencer AP, Fernandez-Villamarin M, Riguera R, Fernandez-Megia E, Paula Pêgo A. Biodegradable PEG-dendritic block copolymers: synthesis and biofunctionality assessment as vectors of siRNA. J Mater Chem B 2017; 5:4901-4917. [PMID: 32264006 DOI: 10.1039/c7tb00279c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
One important drawback of most of the currently used dendrimers for biomedical applications is their high stability under physiological conditions that can result in cytotoxicity or complications induced by the accumulation of non-degradable synthetic materials in the organism. Particularly in the gene therapy field, vector stability can further hinder the intracellular release of the nucleic acid from the dendriplex, consequently leading to low transfection efficiencies. Therefore, biodegradable cationic dendritic structures have been eagerly awaited. However, the development of these dendritic nanocarriers is challenging because of the undesired and/or premature degradation observed during their synthesis and/or application. Here, we report new hybrid-biodegradable, biocompatible, non-toxic, and water-soluble azide-terminated PEG-GATGE dendritic block copolymers, based on a gallic acid (GA) core and triethylene glycol (TG) butanoate arms, incorporating ester bonds (E) at the dendritic arms/shell. Their successful functionalization by "click" chemistry with unprotected alkynated amines allowed complexation and delivery of siRNA. The hydrophobic character of the GATGE building unit confers to these hydrolyzable dendritic bionanomaterials a great ability to complex, protect and mediate the cellular internalization of siRNA. Moreover, the localization of the degradation points at the dendritic periphery, close to the complexed siRNA, was found to be important for nucleic acid release from the nanoparticles, rendering a significant improvement of the transfection efficiency compared to their hydrolytically stable PEG-GATG copolymer counterparts. The present study puts forward these biodegradable PEG-dendritic block copolymers not only as suitable vectors for nucleic acids, but also as new avenues for further developments exploring their use in theranostics.
Collapse
Affiliation(s)
- Victoria Leiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Godin É, Bédard AC, Raymond M, Collins SK. Phase Separation Macrocyclization in a Complex Pharmaceutical Setting: Application toward the Synthesis of Vaniprevir. J Org Chem 2017; 82:7576-7582. [DOI: 10.1021/acs.joc.7b01308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Éric Godin
- Département de Chimie,
Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, H3C 3J7 Canada
| | - Anne-Catherine Bédard
- Département de Chimie,
Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, H3C 3J7 Canada
| | - Michaël Raymond
- Département de Chimie,
Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, H3C 3J7 Canada
| | - Shawn K. Collins
- Département de Chimie,
Centre for Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, H3C 3J7 Canada
| |
Collapse
|
46
|
Diaz C, Guzmán J, Jiménez VA, Alderete JB. Partially PEGylated PAMAM dendrimers as solubility enhancers of Silybin. Pharm Dev Technol 2017; 23:689-696. [DOI: 10.1080/10837450.2017.1315134] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Carola Diaz
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - José Guzmán
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Verónica A. Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Sede Concepción, Talcahuano, Chile
| | - Joel B. Alderete
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
47
|
Heyder RS, Zhong Q, Bazito RC, da Rocha SRP. Cellular internalization and transport of biodegradable polyester dendrimers on a model of the pulmonary epithelium and their formulation in pressurized metered-dose inhalers. Int J Pharm 2017; 520:181-194. [PMID: 28161666 DOI: 10.1016/j.ijpharm.2017.01.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/23/2016] [Accepted: 01/28/2017] [Indexed: 02/08/2023]
Abstract
The purpose of this study was to evaluate the effect of generation and surface PEGylation of degradable polyester-based dendrimers nanocarriers on their interactions with an in vitro model of the pulmonary epithelium as well as to assess the ability to formulate such carriers in propellant-based, portable oral-inhalation devices to determine their potential for local and systemic delivery of drugs to and through the lungs. Hydroxyl (-OH) terminated polyester dendrimers of generation 3 and 4 (G3, and G4) were synthesized using a divergent approach. G4 was surface-modified with PEG (1,000Da). All dendrimers and their building blocks were determined to be highly compatible with the model pulmonary epithelium, with toxicity profiles much more favorable than non-degradable polyamidoamine dendrimers (PAMAM). The transport of the species from the apical to basolateral side across polarized Calu-3 monolayers showed to be generation and surface-chemistry (PEGylation) dependent. The extent of the transport is modulated by their interaction with the polarized epithelium and their transient opening of the tight junctions. G3 was the one most efficiently internalized by the epithelium, and had a small impact on the integrity of the monolayer. On the other hand, the PEGylated G4 was the one least internalized by the polarized epithelium, and at the same time had a more pronounced transient impact on the cellular junctions, resulting in more efficient transport across the cell monolayer. PEGylation of the dendrimer surface played other roles as well. PEGylation modulated the degradation profile of the dendrimer, slowing the process in a step-wise fashion - first the PEG layer is shed and then the dendrimer starts degrading. PEGylation also helped increase the solvation of the nanocarriers by the hydrofluoroalkane propellant used in pressurized metered-dose inhalers, resulting in formulations with excellent dispersibility and aerosol quality (deep lung deposition of 88.5%), despite their very small geometric diameter. The combined in vitro and formulation performance results shown here demonstrated that degradable, modified polyester dendrimers may serve as a valuable platform that can be tailored to target the lung tissue for treating local diseases, or the circulation, using the lungs as pathway to the bloodstream.
Collapse
Affiliation(s)
- Rodrigo S Heyder
- Department of Chemical Engineering and Materials Science, Wayne State University, 48202, Detroit, MI, USA; Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Qian Zhong
- Department of Chemical Engineering and Materials Science, Wayne State University, 48202, Detroit, MI, USA
| | - Reinaldo C Bazito
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Sandro R P da Rocha
- Department of Chemical Engineering and Materials Science, Wayne State University, 48202, Detroit, MI, USA.
| |
Collapse
|
48
|
Leiro V, Moreno P, Sarmento B, Durão J, Gales L, Pêgo A, Barrias C. Design and preparation of biomimetic and bioinspired materials. BIOINSPIRED MATERIALS FOR MEDICAL APPLICATIONS 2017:1-44. [DOI: 10.1016/b978-0-08-100741-9.00001-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
49
|
Barraza LF, Jiménez VA, Alderete JB. Association of Methotrexate with Native and PEGylated PAMAM-G4 Dendrimers: Effect of the PEGylation Degree on the Drug-Loading Capacity and Preferential Binding Sites. J Phys Chem B 2016; 121:4-12. [DOI: 10.1021/acs.jpcb.6b08882] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Luis F. Barraza
- Departamento de
Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Talcahuano, 4260000, Chile
| | - Verónica A. Jiménez
- Departamento de
Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Talcahuano, 4260000, Chile
| | - Joel B. Alderete
- Departamento de Química Orgánica, Facultad de Ciencias
Químicas, Universidad de Concepción, Casilla 160-C, Concepción, 4070371, Chile
| |
Collapse
|
50
|
Patel HK, Gajbhiye V, Kesharwani P, Jain NK. Ligand anchored poly(propyleneimine) dendrimers for brain targeting: Comparative in vitro and in vivo assessment. J Colloid Interface Sci 2016; 482:142-150. [DOI: 10.1016/j.jcis.2016.07.047] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/19/2016] [Accepted: 07/19/2016] [Indexed: 11/16/2022]
|