1
|
Wu X, Yang T, Jiang X, Su W, Liu F, Wang J, Zhu J. New thermoplastic poly(ester-ether) elastomers with enhanced mechanical properties derived from long-chain dicarboxylic acid for medical device applications. J Mater Chem B 2025; 13:1731-1743. [PMID: 39704123 DOI: 10.1039/d4tb02183e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Recent advances in medical plastics highlight the need for sustainable materials with desirable elastic properties. Traditional polyester elastomers have been used as alternatives to polyvinyl chloride (PVC) due to their biocompatibility and adjustable mechanical properties. However, these materials often lack the necessary stability and toughness for reliable medical applications. To address these issues, this study introduces renewable 1,12-dodecanedioic acid (DA) to create a copolymer with diols, resulting in a structure akin to polyolefins. This innovative approach significantly enhances toughness by regulating chain segment lengths and integrates high performance with sustainability. The resulting bio-based elastomer exhibits remarkable biocompatibility and elastic recovery (69.0%). This work represents a significant advancement in the development of eco-friendly materials suitable for medical device applications, with potential implications for tissue engineering and other healthcare technologies.
Collapse
Affiliation(s)
- Xiangwei Wu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Tao Yang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai, Ningbo, Zhejiang, 315201, China.
| | - Xiaoqin Jiang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai, Ningbo, Zhejiang, 315201, China.
| | - Wei Su
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315020, China
| | - Fei Liu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai, Ningbo, Zhejiang, 315201, China.
| | - Jinggang Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai, Ningbo, Zhejiang, 315201, China.
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Zhenhai, Ningbo, Zhejiang, 315201, China.
| |
Collapse
|
2
|
Miao X, Han R, Tian J, Ma Y, Müller AJ, Li Z. Building Ultrastrong, Tough and Biodegradable Thermoplastic Elastomers from Multiblock Copolyesters Via a "Reserve-Release" Crystallization Strategy. Angew Chem Int Ed Engl 2025; 64:e202417627. [PMID: 39385345 DOI: 10.1002/anie.202417627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
Simultaneously attaining high strength and toughness has been a significant challenge in designing thermoplastic elastomers, especially biodegradable ones. In this context, we present a class of biodegradable elastomers based on multiblock copolyesters that afford extraordinary strength, toughness, and low-strain resilience despite expedient chemical synthesis and sample processing. With the incorporation of the semi-crystalline soft block and the judicious selection of block periodicity, the thermoplastic materials feature low quiescent crystallinity ("reserve") albeit with vast potential for strain-induced crystallization ("release"), resulting in their significantly enhanced ultimate strength and energy-dissipating capabilities. Moreover, a breadth of mechanical responses of the materials - from reinforced elastomers to shape-memory materials to toughened thermoplastics - can be achieved by orthogonal variation of segment lengths and ratios. This work and the "reserve-release" crystallization strategy herein highlight the double crystalline multiblock chain architecture as a potential avenue towards reconciling the strength-toughness trade-off in thermoplastic elastomers and can possibly be extended to other biodegradable building blocks to deliver functional materials with diverse mechanical performances.
Collapse
Affiliation(s)
- Xiangyu Miao
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Rui Han
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Juan Tian
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yuanchi Ma
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/ EHU, Paseo Manuel de Lardizábal, 3, 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
3
|
Fredi G, Zonta E, Dussin A, Bikiaris DN, Papageorgiou GZ, Fambri L, Dorigato A. Toughening Effect of 2,5-Furandicaboxylate Polyesters on Polylactide-Based Renewable Fibers. Molecules 2023; 28:4811. [PMID: 37375367 DOI: 10.3390/molecules28124811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
This work presents the successful preparation and characterization of polylactide/poly(propylene 2,5-furandicarboxylate) (PLA/PPF) and polylactide/poly(butylene 2,5-furandicarboxylate) (PLA/PBF) blends in form of bulk and fiber samples and investigates the influence of poly(alkylene furanoate) (PAF) concentration (0 to 20 wt%) and compatibilization on the physical, thermal, and mechanical properties. Both blend types, although immiscible, are successfully compatibilized by Joncryl (J), which improves the interfacial adhesion and reduces the size of PPF and PBF domains. Mechanical tests on bulk samples show that only PBF is able to effectively toughen PLA, as PLA/PBF blends with 5-10 wt% PBF showed a distinct yield point, remarkable necking propagation, and increased strain at break (up to 55%), while PPF did not show significant plasticizing effects. The toughening ability of PBF is attributed to its lower glass transition temperature and greater toughness than PPF. For fiber samples, increasing the PPF and PBF amount improves the elastic modulus and mechanical strength, particularly for PBF-containing fibers collected at higher take-up speeds. Remarkably, in fiber samples, plasticizing effects are observed for both PPF and PBF, with significantly higher strain at break values compared to neat PLA (up to 455%), likely due to a further microstructural homogenization, enhanced compatibility, and load transfer between PLA and PAF phases following the fiber spinning process. SEM analysis confirms the deformation of PPF domains, which is probably due to a "plastic-rubber" transition during tensile testing. The orientation and possible crystallization of PPF and PBF domains contribute to increased tensile strength and elastic modulus. This work showcases the potential of PPF and PBF in tailoring the thermo-mechanical properties of PLA in both bulk and fiber forms, expanding their applications in the packaging and textile industry.
Collapse
Affiliation(s)
- Giulia Fredi
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Edoardo Zonta
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Alessandro Dussin
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Luca Fambri
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Andrea Dorigato
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
4
|
Kwiatkowska M, Kowalczyk I, Rozwadowski Z, Piesowicz E, Szymczyk A. Hytrel-like Copolymers Based on Furan Polyester: The Effect of Poly(Butylene Furanoate) Segment on Microstructure and Mechanical/Elastic Performance. Molecules 2023; 28:molecules28072962. [PMID: 37049723 PMCID: PMC10095974 DOI: 10.3390/molecules28072962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
This paper aims to compare the performance of two Hytrel-like segmented copolymers: “classic” PBT-b-PTMG and fully bio-based PBF-b-PTMG, containing poly(butylene furanoate) as the rigid segment. The idea behind this research is to assess whether the sustainable copolymers can successfully replace those “classic” once at the thermoplastic elastomers’ market. Two series of copolymers were synthesized under the same process parameters, had the same compositions, but differed in aromatic ring structure in terephthalate/furanoate unit. Furthermore, the materials were processed by injection moulding as typical Hytrel products. Then, the samples were subjected to extensive characterisation including NMR, GPC, FTIR, DSC, WAXS, DMTA, TGA techniques and mechanical tests with particular interest in the microstructure formed during processing and its effect on the copolymers’ mechanical and elastic behaviour. The detailed analysis proved that PBF-b-PTMG and PBT-b-PTMG copolymers represent two kinds of materials with similar chemical structure, some features of thermoplastic elastomers, but evident differences in their physical properties.
Collapse
|
5
|
Synthesis of Bio-based Poly(ester-ether) Elastomers from 2,5-Furandicarboxylic acid (FDCA) with Excellent Thermo-mechanical Properties. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
6
|
Karlinskii BY, Ananikov VP. Recent advances in the development of green furan ring-containing polymeric materials based on renewable plant biomass. Chem Soc Rev 2023; 52:836-862. [PMID: 36562482 DOI: 10.1039/d2cs00773h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fossil resources are rapidly depleting, forcing researchers in various fields of chemistry and materials science to switch to the use of renewable sources and the development of corresponding technologies. In this regard, the field of sustainable materials science is experiencing an extraordinary surge of interest in recent times due to the significant advances made in the development of new polymers with desired and controllable properties. This review summarizes important scientific reports in recent times dedicated to the synthesis, construction and computational studies of novel sustainable polymeric materials containing unchanged (pseudo)aromatic furan cores in their structure. Linear polymers for thermoplastics, branched polymers for thermosets and other crosslinked materials are emerging materials to highlight. Various polymer blends and composites based on sustainable polyfurans are also considered as pathways to achieve high-value-added products.
Collapse
Affiliation(s)
- Bogdan Ya Karlinskii
- Tula State University, Lenin pr. 92, Tula, 300012, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| |
Collapse
|
7
|
Mao HI, Yang ZY, Chen CW, Rwei SP. Bio-based poly(hexamethylene 2,5-furandicarboxylate- co-2,6-naphthalate) copolyesters: a study of thermal, mechanical, and gas-barrier properties. SOFT MATTER 2022; 18:7631-7641. [PMID: 36168773 DOI: 10.1039/d2sm00689h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A series of poly(hexamethylene 2,5-furandicarboxylate-co-2,6-naphthalate) copolyesters were synthesized using various amounts of poly(hexylene 2,5-furandicarboxylate) (PHF) and poly(hexylene 2,6-naphthalate) (PHN) via melt polymerization. The effects of introducing 2,6-naphthalene dicarboxylic acid (NDCA) on the thermal, mechanical, and gas-barrier properties were investigated. When the NDCA content was less than 30 mol%, the temperatures of crystallization (Tc) and melting (Tm) decreased as the amount of NDCA was increased owing to disturbance of the polymer-chain regularity. When the NDCA content was above 50 mol%, the Tc and Tm of the materials increased as the NDCA content was increased, showing that the dominant crystallization behavior varied from 2,5-furandicarboxylic acid to NDCA. Hence, the glass transition temperature (Tg) increased as the NDCA content was increased, which was attributed to the incorporation of NDCA with a more rigid naphthalate structure compared with the furan ring. The gas-barrier properties of the samples were observed to improve with the introduction of NDCA; this tendency could be explained by the β-relaxation behavior and free volume values of the samples in the amorphous state. The activation energy (Ea) of β-relaxation increased with the NDCA content, indicating that higher amounts of energy were needed to trigger the onset of long-range molecular motions. Free-volume calculations of the polymer structure showed that the introduction of NDCA hindered the space for gas penetration. For these reasons, the gas-barrier properties were improved and evaluated.
Collapse
Affiliation(s)
- Hsu-I Mao
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei, 10608, Taiwan.
| | - Zhi-Yu Yang
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei, 10608, Taiwan.
| | - Chin-Wen Chen
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei, 10608, Taiwan.
| | - Syang-Peng Rwei
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei, 10608, Taiwan.
| |
Collapse
|
8
|
Chen YL, Mu YS, He ZJ, Pu XM, Wang DQ, Zhou M, Yang LP. New bio-based polyester with excellent spinning performance: poly(tetrahydrofuran dimethanol- co-ethylene terephthalate). RSC Adv 2022; 12:29516-29524. [PMID: 36320739 PMCID: PMC9562050 DOI: 10.1039/d2ra04484f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023] Open
Abstract
With the excessive consumption of fossil energy, technologies that transform bio-based resources into materials have received more and more attention from researchers in recent decades. In this paper, a series of poly(ethylene 2,5-tetrahydrofuran dimethyl terephthalate; PEFTs) with different components were synthesized from 2,5-tetrahydrofuran dimethanol (THFDM), terephthalic acid (TPA), and ethylene glycol (EG). Their chemical structures and compositions were determined by FTIR, 1H NMR, and 13C NMR. With the increase in THFDM content, the crystallization, T m, and tensile strength of PEFTs gradually decrease because the introduced THFDM breaks the order of molecular chains, while the thermal stability and T g remain stable. PEFTs seem to present a significant shear thinning phenomenon, which was indicated by the rheological test. Electrospinning technology was used to explore the spinnability of PEFT; it was found that PEFTs have better spinning performance than PET. In addition, due to the good hydrophobicity and porosity of PEFT nanofiber films, they have potential application value in the manufacture of hydrophobic nanofiber and filter films.
Collapse
Affiliation(s)
- Yu-Long Chen
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yue-Song Mu
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Ze-Jian He
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Xin-Ming Pu
- Wankai New Material Co., Ltd. Haining 314415 China
| | - Dong-Qi Wang
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Mi Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Li-Ping Yang
- Wankai New Material Co., Ltd. Haining 314415 China
| |
Collapse
|
9
|
Compatibilization of Polylactide/Poly(ethylene 2,5-furanoate) (PLA/PEF) Blends for Sustainable and Bioderived Packaging. Molecules 2022; 27:molecules27196371. [PMID: 36234907 PMCID: PMC9572422 DOI: 10.3390/molecules27196371] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/20/2022] Open
Abstract
Despite the advantages of polylactide (PLA), its inadequate UV-shielding and gas-barrier properties undermine its wide application as a flexible packaging film for perishable items. These issues are addressed in this work by investigating the properties of melt-mixed, fully bioderived blends of polylactide (PLA) and poly(ethylene furanoate) (PEF), as a function of the PEF weight fraction (1–30 wt %) and the amount of the commercial compatibilizer/chain extender Joncryl ADR 4468 (J, 0.25–1 phr). J mitigates the immiscibility of the two polymer phases by decreasing and homogenizing the PEF domain size; for the blend containing 10 wt % of PEF, the PEF domain size drops from 0.67 ± 0.46 µm of the uncompatibilized blend to 0.26 ± 0.14 with 1 phr of J. Moreover, the increase in the complex viscosity of PLA and PLA/PEF blends with the J content evidences the effectiveness of J as a chain extender. This dual positive contribution of J is reflected in the mechanical properties of PLA/PEF blends. Whereas the uncompatibilized blend with 10 wt % of PEF shows lower mechanical performance than neat PLA, all the compatibilized blends show higher tensile strength and strain at break, while retaining their high elastic moduli. The effects of PEF on the UV- and oxygen-barrier properties of PLA are also remarkable. Adding only 1 wt % of PEF makes the blend an excellent barrier for UV rays, with the transmittance at 320 nm dropping from 52.8% of neat PLA to 0.4% of the sample with 1 wt % PEF, while keeping good transparency in the visible region. PEF is also responsible for a sensible decrease in the oxygen transmission rate, which decreases from 189 cc/m2·day for neat PLA to 144 cc/m2·day with only 1 wt % of PEF. This work emphasizes the synergistic effects of PEF and J in enhancing the thermal, mechanical, UV-shielding, and gas-barrier properties of PLA, which results in bioderived blends that are very promising for packaging applications.
Collapse
|
10
|
Zhang W, Wang Q, Wang G, Liu S. Synthesis and characterization of bio‐based poly(ethylene 2,5‐furandicarboxylate)‐b‐poly(butylene adipate‐co‐terephthalate) copolymers. J Appl Polym Sci 2022. [DOI: 10.1002/app.52803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Zhang
- Chinese Academy of Sciences Chengdu Institute of Organic Chemistry Chengdu China
- Department of Materials Engineering Taiyuan Institute of Technology Taiyuan Shanxi China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology University of Chinese Academy of Sciences Beijing China
| | - Qingyin Wang
- Chinese Academy of Sciences Chengdu Institute of Organic Chemistry Chengdu China
| | - Gongying Wang
- Chinese Academy of Sciences Chengdu Institute of Organic Chemistry Chengdu China
| | - Shaoying Liu
- Chinese Academy of Sciences Chengdu Institute of Organic Chemistry Chengdu China
| |
Collapse
|
11
|
Zhang X, Wang J, Dong Y, Wang Q, Zhu J. Self‐healing and biodegradable copolyesters synthesized from 2,
5‐furandicarboxylic
acid applied as human skin. J Appl Polym Sci 2022. [DOI: 10.1002/app.52627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoqin Zhang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Zhejiang People's Republic of China
| | - Jinggang Wang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Zhejiang People's Republic of China
| | - Yunxiao Dong
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Zhejiang People's Republic of China
- University of Chinese Academy of Sciences Beijing People's Republic of China
| | - Qianfeng Wang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Zhejiang People's Republic of China
| | - Jin Zhu
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Zhejiang People's Republic of China
| |
Collapse
|
12
|
Zenati A. Triblock Azo copolymers: RAFT synthesis, properties, thin film self-assembly and applications. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.2015779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Athmen Zenati
- Refining and Petrochemistry, Division of Method and Operation, Sonatrach, Arzew, Algeria
- Central Directorate of Research and Development, Sonatrach, Boumerdes, Algeria
| |
Collapse
|
13
|
Xie H, Meng H, Wu L, Li BG, Dubois P. Aliphatic polycarbonate modified poly(ethylene furandicarboxylate) materials with improved ductility, toughness and high CO2 barrier performance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Perin D, Fredi G, Rigotti D, Soccio M, Lotti N, Dorigato A. Sustainable textile fibers of bioderived polylactide/poly(pentamethylene 2,
5‐furanoate
) blends. J Appl Polym Sci 2022. [DOI: 10.1002/app.51740] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Davide Perin
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| | - Giulia Fredi
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| | - Daniele Rigotti
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental, and Materials Engineering University of Bologna Bologna Italy
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental, and Materials Engineering University of Bologna Bologna Italy
| | - Andrea Dorigato
- Department of Industrial Engineering and INSTM Research Unit University of Trento Trento Italy
| |
Collapse
|
15
|
Mao H, Hsu T, Chen C, Huang K, Rwei S. Synthesis and characteristics of poly(ethylene terephthalate) with
EO‐PO‐EO
triblock copolymers: A thermal and mechanical property study. J Appl Polym Sci 2022. [DOI: 10.1002/app.51605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hsu‐I Mao
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology National Taipei University of Technology Taipei Taiwan
| | - Te‐Sheng Hsu
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology National Taipei University of Technology Taipei Taiwan
| | - Chin‐Wen Chen
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology National Taipei University of Technology Taipei Taiwan
| | - Kuan‐Wei Huang
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology National Taipei University of Technology Taipei Taiwan
| | - Syang‐Peng Rwei
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology National Taipei University of Technology Taipei Taiwan
| |
Collapse
|
16
|
Fredi G, Karimi Jafari M, Dorigato A, Bikiaris DN, Pegoretti A. Improving the Thermomechanical Properties of Poly(lactic acid) via Reduced Graphene Oxide and Bioderived Poly(decamethylene 2,5-furandicarboxylate). MATERIALS (BASEL, SWITZERLAND) 2022; 15:1316. [PMID: 35207860 PMCID: PMC8877404 DOI: 10.3390/ma15041316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022]
Abstract
Polylactide (PLA) is the most widely used biopolymer, but its poor ductility and scarce gas barrier properties limit its applications in the packaging field. In this work, for the first time, the properties of PLA solvent-cast films are improved by the addition of a second biopolymer, i.e., poly(decamethylene 2,5-furandicarboxylate) (PDeF), added in a weight fraction of 10 wt%, and a carbon-based nanofiller, i.e., reduced graphene oxide (rGO), added in concentrations of 0.25-2 phr. PLA and PDeF are immiscible, as evidenced by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, with PDeF spheroidal domains showing poor adhesion to PLA. The addition of 0.25 phr of rGO, which preferentially segregates in the PDeF domains, makes them smaller and considerably rougher and improves the interfacial interaction. Differential scanning calorimetry (DSC) confirms the immiscibility of the two polymer phases and highlights that rGO enhances the crystallinity of both polymer phases (especially of PDeF). Thermogravimetric analysis (TGA) highlights the positive impact of rGO and PDeF on the thermal degradation resistance of PLA. Quasi-static tensile tests evidence that adding 10 wt% of PDeF and a small fraction of rGO (0.25 phr) to PLA considerably enhances the strain at break, which raises from 5.3% of neat PLA to 10.0% by adding 10 wt% of PDeF, up to 75.8% by adding also 0.25 phr of rGO, thereby highlighting the compatibilizing role of rGO on this blend. On the other hand, a further increase in rGO concentration decreases the strain at break due to agglomeration but enhances the mechanical stiffness and strength up to an rGO concentration of 1 phr. Overall, these results highlight the positive and synergistic contribution of PDeF and rGO in enhancing the thermomechanical properties of PLA, and the resulting nanocomposites are promising for packaging applications.
Collapse
Affiliation(s)
- Giulia Fredi
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.K.J.); (A.D.); (A.P.)
| | - Mahdi Karimi Jafari
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.K.J.); (A.D.); (A.P.)
| | - Andrea Dorigato
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.K.J.); (A.D.); (A.P.)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Alessandro Pegoretti
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.K.J.); (A.D.); (A.P.)
| |
Collapse
|
17
|
Wang R, Zhang H, Jiang M, Wang Z, Zhou G. Dynamics-Driven Controlled Polymerization to Synthesize Fully Renewable Poly(ester–ether)s. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rui Wang
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics of the Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Houyu Zhang
- JiLin University, State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, Jilin, China
| | - Min Jiang
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics of the Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Zhipeng Wang
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics of the Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, Liaoning, China
| | - Guangyuan Zhou
- Division of Energy Materials (DNL 22), Dalian Institute of Chemical Physics of the Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, Liaoning, China
- Jiangsu Sino-Tech Polymerization New Materials Industry Technology Research Institute, 6 Qingyang Road, Changzhou 213125, Jiangsu, China
| |
Collapse
|
18
|
Rapid synthesis of sustainable poly(ethylene 2,5-furandicarboxylate)-block-poly(tetramethylene oxide) multiblock copolymers with tailor-made properties via a cascade polymerization route. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Zhang W, Wang Q, Wang G, Liu S. The effect of isothermal crystallization on mechanical properties of poly(ethylene 2,5-furandicarboxylate). E-POLYMERS 2021. [DOI: 10.1515/epoly-2022-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The effects of isothermal crystallization temperature/time on mechanical properties of bio-based polyester poly(ethylene 2,5-furandicarboxylate) (PEF) were investigated. The intrinsic viscosity, crystallization properties, thermal properties, and microstructure of PEF were characterized using ubbelohde viscometer, X-ray diffraction, polarizing optical microscope, differential scanning calorimetry, and scanning electron microscopy. The PEF sample isothermal crystallized at various temperatures for various times was denoted as PEF-T-t. The results showed that the isothermal crystallization temperature affected the mechanical properties of PEF-T-30 by simultaneously affecting its crystallization properties and intrinsic viscosity. The isothermal crystallization time only affected the crystallization properties of PEF-110-t. The crystallinity of PEF-110-40 was 17.1%. With small crystal size, poor regularity, and α′-crystal, PEF-110-40 can absorb the energy generated in the tensile process to the maximum extent. Therefore, the best mechanical properties can be obtained for PEF-110-40 with the tensile strength of 43.55 MPa, the tensile modulus of 1,296 MPa, and the elongation at a break of 13.36%.
Collapse
Affiliation(s)
- Wei Zhang
- Green Chemical Division, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences , Chengdu , Sichuan, 610041 , China
- Department of Materials Engineering, Taiyuan Institute of Technology , Taiyuan , Shanxi, 030008 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Qingyin Wang
- Green Chemical Division, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences , Chengdu , Sichuan, 610041 , China
| | - Gongying Wang
- Green Chemical Division, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences , Chengdu , Sichuan, 610041 , China
| | - Shaoying Liu
- Green Chemical Division, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences , Chengdu , Sichuan, 610041 , China
| |
Collapse
|
20
|
Wang G, Song J. Synthesis and characterization of bio‐based polyesters derived from 1,10‐decanediol. J Appl Polym Sci 2021. [DOI: 10.1002/app.51163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Guoqiang Wang
- College of Material Science and Engineering Jilin Jianzhu University Changchun China
| | - Jiaqi Song
- College of Material Science and Engineering Jilin Jianzhu University Changchun China
| |
Collapse
|
21
|
Zhang Q, Song M, Xu Y, Wang W, Wang Z, Zhang L. Bio-based polyesters: Recent progress and future prospects. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101430] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Qu X, Zhou G, Wang R, Zhang H, Wang Z, Jiang M, Tang J. Insights into high molecular weight poly(ethylene 2,5-furandicarboxylate) with satisfactory appearance: Roles of in-situ catalysis of metal zinc. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Fredi G, Karimi Jafari M, Dorigato A, Bikiaris DN, Checchetto R, Favaro M, Brusa RS, Pegoretti A. Multifunctionality of Reduced Graphene Oxide in Bioderived Polylactide/Poly(Dodecylene Furanoate) Nanocomposite Films. Molecules 2021; 26:2938. [PMID: 34063331 PMCID: PMC8155896 DOI: 10.3390/molecules26102938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 11/18/2022] Open
Abstract
This work reports on the first attempt to prepare bioderived polymer films by blending polylactic acid (PLA) and poly(dodecylene furanoate) (PDoF). This blend, containing 10 wt% PDoF, was filled with reduced graphene oxide (rGO) in variable weight fractions (from 0.25 to 2 phr), and the resulting nanocomposites were characterized to assess their microstructural, thermal, mechanical, optical, electrical, and gas barrier properties. The PLA/PDoF blend resulted as immiscible, and the addition of rGO, which preferentially segregated in the PDoF phase, resulted in smaller (from 2.6 to 1.6 µm) and more irregularly shaped PDoF domains and in a higher PLA/PDoF interfacial interaction, which suggests the role of rGO as a blend compatibilizer. rGO also increased PLA crystallinity, and this phenomenon was more pronounced when PDoF was also present, thus evidencing a synergism between PDoF and rGO in accelerating the crystallization kinetics of PLA. Dynamic mechanical thermal analysis (DMTA) showed that the glass transition of PDoF, observed at approx. 5 °C, shifted to a higher temperature upon rGO addition. The addition of 10 wt% PDoF in PLA increased the strain at break from 5.3% to 13.0% (+145%), and the addition of 0.25 phr of rGO increased the tensile strength from 35.6 MPa to 40.2 MPa (+13%), without significantly modifying the strain at break. Moreover, rGO decreased the electrical resistivity of the films, and the relatively high percolation threshold (between 1 and 2 phr) was probably linked to the low aspect ratio of rGO nanosheets and their preferential distribution inside PDoF domains. PDoF and rGO also modified the optical transparency of PLA, resulting in a continuous decrease in transmittance in the visible/NIR range. Finally, rGO strongly modified the gas barrier properties, with a remarkable decrease in diffusivity and permeability to gases such as O2, N2, and CO2. Overall, the presented results highlighted the positive and sometimes synergistic role of PDoF and rGO in tuning the thermomechanical and functional properties of PLA, with simultaneous enhancement of ductility, crystallization kinetics, and gas barrier performance, and these novel polymer nanocomposites could thus be promising for packaging applications.
Collapse
Affiliation(s)
- Giulia Fredi
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.K.J.); (A.D.); (M.F.); (A.P.)
| | - Mahdi Karimi Jafari
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.K.J.); (A.D.); (M.F.); (A.P.)
| | - Andrea Dorigato
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.K.J.); (A.D.); (M.F.); (A.P.)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Riccardo Checchetto
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy; (R.C.); (R.S.B.)
| | - Matteo Favaro
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.K.J.); (A.D.); (M.F.); (A.P.)
- Trento Institute of Fundamental Physics and Applications, Via Sommarive 14, 38123 Trento, Italy
| | - Roberto Sennen Brusa
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy; (R.C.); (R.S.B.)
| | - Alessandro Pegoretti
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (M.K.J.); (A.D.); (M.F.); (A.P.)
| |
Collapse
|
24
|
Kang H, Miao X, Li J, Li D, Fang Q. Synthesis and characterization of biobased thermoplastic polyester elastomers containing Poly(butylene 2,5-furandicarboxylate). RSC Adv 2021; 11:14932-14940. [PMID: 35424025 PMCID: PMC8697829 DOI: 10.1039/d1ra00066g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023] Open
Abstract
A series of sustainable and reprocessible thermoplastic polyester elastomers P(BF-PBSS)s were synthesized using dimethyl-2,5-furandicarboxylate, 1,4-butanediol, and synthetic low-molecular-weight biobased polyester (PBSS). The P(BF-PBSS)s contain poly(butylene 2,5-furandicarboxylate) (PBF) as their hard segment and PBSS as their soft segment. The microstructures of the P(BF-PBSS)s were confirmed by nuclear magnetic resonance, demonstrating that a higher content of the soft segment was incorporated into P(BF-PBSS)s with higher PBSS content. Interestingly, dynamic mechanical analysis indicated that P(BF-PBSS)s comprised two domains: crystalline PBF and a mixture of amorphous PBF and PBSS. Consequently, the microphase separations of P(BF-PBSS)s were mainly induced by the crystallization of their PBF segments. More importantly, the thermal, crystallization, and mechanical properties could be tailored by tuning the PBSS content. Our results indicate that the as-prepared P(BF-PBSS)s are renewable, thermally stable, and nontoxic, and have good tensile properties, indicating that they could be potentially applied in biomedical materials. A series of sustainable and reprocessible thermoplastic polyester elastomers P(BF-PBSS)s were synthesized using dimethyl-2,5-furandicarboxylate, 1,4-butanediol, and synthetic low-molecular-weight biobased polyester (PBSS).![]()
Collapse
Affiliation(s)
- Hailan Kang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China .,Key Laboratory for Rubber Elastomer of Liaoning Province, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Xiaoli Miao
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China .,Key Laboratory for Rubber Elastomer of Liaoning Province, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Jiahuan Li
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China .,Key Laboratory for Rubber Elastomer of Liaoning Province, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Donghan Li
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China .,Key Laboratory for Rubber Elastomer of Liaoning Province, Shenyang University of Chemical Technology Shenyang 110142 China
| | - Qinghong Fang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology Shenyang 110142 China .,Key Laboratory for Rubber Elastomer of Liaoning Province, Shenyang University of Chemical Technology Shenyang 110142 China
| |
Collapse
|
25
|
Xie H, Lu H, Zhang Z, Li X, Yang X, Tu Y. Effect of Block Number and Weight Fraction on the Structure and Properties of Poly(butylene terephthalate)- block-Poly(tetramethylene oxide) Multiblock Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hui Xie
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Huanjun Lu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhilan Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaohong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoming Yang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yingfeng Tu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
26
|
Fredi G, Rigotti D, Bikiaris DN, Dorigato A. Tuning thermo-mechanical properties of poly(lactic acid) films through blending with bioderived poly(alkylene furanoate)s with different alkyl chain length for sustainable packaging. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123527] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Lalanne L, Nyanhongo GS, Guebitz GM, Pellis A. Biotechnological production and high potential of furan-based renewable monomers and polymers. Biotechnol Adv 2021; 48:107707. [PMID: 33631186 DOI: 10.1016/j.biotechadv.2021.107707] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 01/30/2021] [Indexed: 11/28/2022]
Abstract
Of the 25 million tons of plastic waste produced every year in Europe, 40% of these are not reused or recycled, thus contributing to environmental pollution, one of the major challenges of the 21st century. Most of these plastics are made of petrochemical-derived polymers which are very difficult to degrade and as a result, a lot of research efforts have been made on more environmentally friendly alternatives. Bio-based monomers, derived from renewable raw materials, constitute a possible solution for the replacement of oil-derived monomers, with furan derivatives that emerged as platform molecules having a great potential for the synthesis of biobased polyesters, polyamides and their copolymers. This review article summarizes the latest developments in biotechnological production of furan compounds that can be used in polymer chemistry as well as in their conversion into polymers. Moreover, the biodegradability of the resulting materials is discussed.
Collapse
Affiliation(s)
- Lucie Lalanne
- Polytech Clermont-Ferrand, Department of Biological Engineering, Cézeaux University Campus, 2 Avenue Blaise Pascal, 63178 Aubière cedex, France; University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria
| | - Gibson S Nyanhongo
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria
| | - Georg M Guebitz
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria; Austrian Centre of Industrial Biotechnology, Division Enzymes & Polymers, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria
| | - Alessandro Pellis
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria.
| |
Collapse
|
28
|
Fredi G, Dorigato A, Bortolotti M, Pegoretti A, Bikiaris DN. Mechanical and Functional Properties of Novel Biobased Poly(decylene-2,5-furanoate)/Carbon Nanotubes Nanocomposite Films. Polymers (Basel) 2020; 12:polym12112459. [PMID: 33114218 PMCID: PMC7690911 DOI: 10.3390/polym12112459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022] Open
Abstract
The present work investigates the microstructural, thermo-mechanical, and electrical properties of a promising, but still not thoroughly studied, biobased polymer, i.e., poly(decylene furanoate) (PDeF), and its performance when multi-walled carbon nanotubes (CNTs) are added. After sample preparation by solution mixing and film casting, the microstructural investigation evidences that the fracture surface becomes smoother and more homogeneous with a small fraction of CNTs, and that the production process is suitable to achieve good disentanglement and dispersion of CNTs within the matrix, although some aggregates are still observable. CNTs act as nucleating agents for PDeF crystals, as evidenced by differential scanning calorimetry, as the crystallinity degree increases from 43.2% of neat PDeF to 55.0% with a CNT content of 2 phr, while the crystallization temperature increases from 68.4 °C of PDeF to 91.7 °C of PDeF-CNT-2. A similar trend in crystallinity is confirmed by X-ray diffraction, after detailed Rietveld analysis with a three-phase model. CNTs also remarkably improve the mechanical performance of the bioderived polymer, as the elastic modulus increases up to 123% and the stress at break up to 131%. The strain at break also increases by +71% when a small amount of 0.25 phr of CNTs are added, which is probably the consequence of a more homogeneous microstructure. The long-term mechanical performance is also improved upon CNT addition, as the creep compliance decreases considerably, which was observed for both the elastic and the viscoelastic component. Finally, the films become electrically dissipative for a CNT content of 1 phr and conductive for a CNT amount of 2 phr. This study contributes to highlight the properties of bioderived furan-based polymer PDeF and evidences the potential of CNTs as a promising nanofiller for this matrix.
Collapse
Affiliation(s)
- Giulia Fredi
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (A.D.); (M.B.); (A.P.)
- Correspondence: ; Tel.: +39-0461-283-944
| | - Andrea Dorigato
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (A.D.); (M.B.); (A.P.)
| | - Mauro Bortolotti
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (A.D.); (M.B.); (A.P.)
| | - Alessandro Pegoretti
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy; (A.D.); (M.B.); (A.P.)
| | - Dimitrios N. Bikiaris
- Chemistry Department, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
29
|
Yang Y, Tian AP, Fang YJ, Wang JG, Zhu J. Improvement in Toughness of Poly(ethylene 2,5-furandicarboxylate) by Melt Blending with Bio-based Polyamide11 in the Presence of a Reactive Compatibilizer. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2449-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Wang G, Xu Y, Jiang M, Wang R, Wang H, Liang Y, Zhou G. Fully bio-based polyesters poly(ethylene-co-1,5-pentylene 2,5-thiophenedicarboxylate)s (PEPTs) with high toughness: Synthesis, characterization and thermo-mechanical properties. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Loos K, Zhang R, Pereira I, Agostinho B, Hu H, Maniar D, Sbirrazzuoli N, Silvestre AJD, Guigo N, Sousa AF. A Perspective on PEF Synthesis, Properties, and End-Life. Front Chem 2020; 8:585. [PMID: 32850625 PMCID: PMC7413100 DOI: 10.3389/fchem.2020.00585] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/05/2020] [Indexed: 11/30/2022] Open
Abstract
This critical review considers the extensive research and development dedicated, in the last years, to a single polymer, the poly(ethylene 2,5-furandicarboxylate), usually simply referred to as PEF. PEF importance stems from the fact that it is based on renewable resources, typically prepared from C6 sugars present in biomass feedstocks, for its resemblance to the high-performance poly(ethylene terephthalate) (PET) and in terms of barrier properties even outperforming PET. For the first time synthesis, properties, and end-life targeting—a more sustainable PEF—are critically reviewed. The emphasis is placed on how synthetic roots to PEF evolved toward the development of greener processes based on ring open polymerization, enzymatic synthesis, or the use of ionic liquids; together with a broader perspective on PEF end-life, highlighting recycling and (bio)degradation solutions.
Collapse
Affiliation(s)
- Katja Loos
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Ruoyu Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Inês Pereira
- Departamento de Química, CICECO - Aveiro Institute of Materials, Universidade de Aveiro, Aveiro, Portugal
| | - Beatriz Agostinho
- Departamento de Química, CICECO - Aveiro Institute of Materials, Universidade de Aveiro, Aveiro, Portugal
| | - Han Hu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Dina Maniar
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | | | - Armando J D Silvestre
- Departamento de Química, CICECO - Aveiro Institute of Materials, Universidade de Aveiro, Aveiro, Portugal
| | - Nathanael Guigo
- Institute of Chemistry UMR 7272, Université Côte d'Azur, Nice, France
| | - Andreia F Sousa
- Departamento de Química, CICECO - Aveiro Institute of Materials, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
32
|
Xie H, Wu L, Li BG, Dubois P. Modification of poly(ethylene 2,5-furandicarboxylate) with aliphatic polycarbonate diols: 1. Randomnized copolymers with significantly improved ductility and high CO2 barrier performance. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Wang JG, Zhang XQ, Shen A, Zhu J, Song PA, Wang H, Liu XQ. Synthesis and Properties Investigation of Thiophene-aromatic Polyesters: Potential Alternatives for the 2,5-Furandicarboxylic Acid-based Ones. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2438-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Tuning the Properties of Furandicarboxylic Acid-Based Polyesters with Copolymerization: A Review. Polymers (Basel) 2020; 12:polym12061209. [PMID: 32466455 PMCID: PMC7361963 DOI: 10.3390/polym12061209] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 01/29/2023] Open
Abstract
Polyesters based on 2,5-furandicarboxylic acid (FDCA) are a new class of biobased polymers with enormous interest, both from a scientific and industrial perspective. The commercialization of these polymers is imminent as the pressure for a sustainable economy grows, and extensive worldwide research currently takes place on developing cost-competitive, renewable plastics. The most prevalent method for imparting these polymers with new properties is copolymerization, as many studies have been published over the last few years. This present review aims to summarize the trends in the synthesis of FDCA-based copolymers and to investigate the effectiveness of this approach in transforming them to a more versatile class of materials that could potentially be appropriate for a number of high-end and conventional applications.
Collapse
|
35
|
Zhang Q, Jiang M, Wang G, Zhou G. Novel biobased high toughness PBAT/PEF blends: morphology, thermal properties, crystal structures and mechanical properties. NEW J CHEM 2020. [DOI: 10.1039/c9nj04861h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel series of PBAT/PEF blends with 1–50 wt% PEF content displayed typical sea-island morphology structure and had excellent toughness properties.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Changchun 130022
- China
| | - Min Jiang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Changchun 130022
- China
| | - Guoqiang Wang
- College of Material Science and Engineering
- Jilin Jianzhu University
- Changchun
- China
| | - Guangyuan Zhou
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Changchun 130022
- China
| |
Collapse
|
36
|
In-situ synthesis, thermal and mechanical properties of biobased poly(ethylene 2,5-furandicarboxylate)/montmorillonite (PEF/MMT) nanocomposites. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Wang X, Wang Q, Liu S, Wang G. Synthesis and characterization of poly(isosorbide-co-butylene 2,5-furandicarboxylate) copolyesters. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
38
|
Terzopoulou Z, Tarani E, Kasmi N, Papadopoulos L, Chrissafis K, Papageorgiou DG, Papageorgiou GZ, Bikiaris DN. Thermal Decomposition Kinetics and Mechanism of In-Situ Prepared Bio-based Poly(propylene 2,5-furan dicarboxylate)/Graphene Nanocomposites. Molecules 2019; 24:molecules24091717. [PMID: 31052603 PMCID: PMC6539069 DOI: 10.3390/molecules24091717] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 11/16/2022] Open
Abstract
Bio-based polyesters are a new class of materials that are expected to replace their fossil-based homologues in the near future. In this work, poly(propylene 2,5-furandicarboxylate) (PPF) nanocomposites with graphene nanoplatelets were prepared via the in-situ melt polycondensation method. The chemical structure of the resulting polymers was confirmed by 1H-NMR spectroscopy. Thermal stability, decomposition kinetics and the decomposition mechanism of the PPF nanocomposites were studied in detail. According to thermogravimetric analysis results, graphene nanoplatelets did nοt affect the thermal stability of PPF at levels of 0.5, 1.0 and 2.5 wt.%, but caused a slight increase in the activation energy values. Pyrolysis combined with gas chromatography and mass spectroscopy revealed that the decomposition mechanism of the polymer was not altered by the presence of graphene nanoplatelets but the extent of secondary homolytic degradation reactions was increased.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece.
| | - Evangelia Tarani
- Solid State Physics Department, School of Physics, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece.
| | - Nejib Kasmi
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece.
| | - Lazaros Papadopoulos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece.
| | - Konstantinos Chrissafis
- Solid State Physics Department, School of Physics, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece.
| | - Dimitrios G Papageorgiou
- School of Materials and National Graphene Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - George Z Papageorgiou
- Chemistry Department, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece.
| |
Collapse
|
39
|
Xie H, Wu L, Li BG, Dubois P. Modification of Poly(ethylene 2,5-furandicarboxylate) with Biobased 1,5-Pentanediol: Significantly Toughened Copolyesters Retaining High Tensile Strength and O 2 Barrier Property. Biomacromolecules 2018; 20:353-364. [PMID: 30433770 DOI: 10.1021/acs.biomac.8b01495] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Poly(ethylene 2,5-furandicarboxylate) (PEF) is a biobased polyester characterized by high gas barrier properties as well as high tensile modulus and strength, but poor toughness. Toughening PEF without sacrificing its modulus, strength and gas barrier performance is a great challenge for PEF modification. In this study, high molecular weight random poly(ethylene- co-1,5-pentylene 2,5-furandicarboxylate)s (PEPeFs) were synthesized via melt copolycondensation of 2,5-furandicarboxylic acid (FDCA), ethylene glycol (EG) and 1,5-pentanediol (PeDO), a cheap, biobased and commercially available odd-carbon comonomer. The synthesized PEPeFs were characterized and assessed with intrinsic viscosity, ATR-FTIR, 1H NMR, DSC, TGA and tensile, impact and O2 permeation test. Mayo-Lewis equation with "reactivity ratio" of 3.78 for PeDO and 0.75 for EG could be used as an empirical equation to correlate the copolyester composition (ϕPeF) with monomer composition. PEPeFs proved nearly amorphous copolyesters having excellent thermal stability. Brittle-ductile transition was achieved at ϕPeF as low as 9 mol %. Increasing ϕPeF led to increase in elongation at break and notch impact strength and decrease in Tg, O2 barrier performance and tensile modulus and strength. However, in comparison with PEF, PEF-rich PEPeFs (ϕPeF 9-47%) not only showed greatly improved elongation at break (29-265% vs 4%) and enhanced impact strength (2.2-3.9 kJ/m2) but also retained very high Young's modulus (2.8-3.3 vs 3.3 GPa) and yielding strength (72-83 vs 82 MPa). Particularly, when compared with bottle-grade PET, PE82Pe18F possesses equal Tg (ca. 75 °C) and comparable elongation at break (ca. 115%), but greatly improved yielding strength (83 MPa) and O2 gas barrier property (4.8 times). As modified PEF materials possessing superior thermo-mechanical and O2 gas barrier properties, these integrally biobased copolyesters may find practical applications in eco-packaging and other fields.
Collapse
Affiliation(s)
- Hongzhou Xie
- State Key Laboratory of Chemical Engineering at ZJU, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Linbo Wu
- State Key Laboratory of Chemical Engineering at ZJU, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Bo-Geng Li
- State Key Laboratory of Chemical Engineering at ZJU, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Philippe Dubois
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons , Mons 7000 , Belgium
| |
Collapse
|