1
|
Qian Y, Dong F, Wang S, Jiang Y, Xu X, Liu H. Ultrarobust, Stretchable, and Highly Elastic Supramolecular Elastomer with Hydrogen-Bond Interactions via sp 2 Hybridized Boron-Urethane Bonds. Angew Chem Int Ed Engl 2025; 64:e202421099. [PMID: 40063009 DOI: 10.1002/anie.202421099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/12/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
Elastomers are omnipresent in everyday life and industry, yet the development of an elastomer with both superb stress and toughness presents a prodigious challenge. In this report, a high-strength, tough, and high-elastic elastomer derived from sp2 hybrid orbitals of phenylboronic acid was designed. The spatial conformation of network becomes significantly more compact due to the sp2 hybridization of boron. This enhances supramolecular hydrogen bonding interactions, resulting in a marked improvement in the material's mechanical properties. Notably, the hydrogen bonding energy in the polyurethane chain segments enhanced by 37%. The robust hydrogen bonding imparts the elastomer with super high true stress (1.30 GPa), superior toughness (442.2 MJ·m-3), and super puncture resistance strength of 167.8·N·mm-1. The material exhibited excellent fatigue resistance during continuous tensile cycles, while the irreversible deformation disappeared after standing at room temperature. Moreover, the elastomer bespeaks extraordinary elastic restorability, swiftly reverting to its primitive length after being extended to 16 times. This work provides a strategy that the mechanical properties of materials can be enhanced and toughened by utilizing spatial conformational changes in intermolecular interactions.
Collapse
Affiliation(s)
- Yuehan Qian
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Fuhao Dong
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Chinese Academy of Forestry, Nanjing, 210042, China
| | - Shanshan Wang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Yunmeng Jiang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Xu Xu
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - He Liu
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, State Forestry Administration, Chinese Academy of Forestry, Nanjing, 210042, China
| |
Collapse
|
2
|
Ding N, Yang Y, Lu B, Zhang R, Xu P, Niu D, Yang W, Ma P. From a bio-based polyphenol diol intermedia to high-performance polyurethane elastomer: Thermal stability, reprocessability and flame retardancy. J Colloid Interface Sci 2024; 680:608-617. [PMID: 39531879 DOI: 10.1016/j.jcis.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/15/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
In this work, a novel bio-based polyphenol diol intermediate (VDP) was synthesized through a combination of aldimine condensation and addition reactions, utilizing vanillin, 4,4'diamino diphenylmethane (DDM), and 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide (DOPO) as reactants, then various contents of VDP was introduced covalently into the polyurethane backbone. The integration of VDP has notably improved the flame retardancy of polyurethane elastomer, the limiting oxygen index (LOI) of the elastomer was elevated from 23% to 30%, and reaches V-0 rating in the UL-94 vertical burning test. The enhancement of flame retardancy is attributed to the introduction of VDP units, which not only generate PO· and PO2∙ that can capture active free radicals during combustion, but also releases non-flammable gases to improve the flame-retardant effect. Moreover, the VDP enhances the decomposition activation energy values (Eα) from 109.3 to 227.6 KJ/mol at mass loss rate (α) = 10%, which is attributed to the rigid benzene ring structure of VDP that significantly enhances the intermolecular interactions within the polyurethane chains. Furthermore, the elastomer shows excellent rebound resilience and reprocessability, retaining 98.6% of its original mechanical properties after multiple cycles of hot-press remolding and solvent casting.
Collapse
Affiliation(s)
- Ning Ding
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yi Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Binbao Lu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Rui Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Pengwu Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Deyu Niu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Weijun Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Yong Y, Liu Y, Zhang Z, Dai S, Yang X, Li F, Li Z. Shape Memory Polyurethane Composite With Fast Response to Near-Infrared Light Based on Tannic Acid-Iron and Dynamic Phenol-Carbamate Network. Macromol Rapid Commun 2024; 45:e2400105. [PMID: 38623606 DOI: 10.1002/marc.202400105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/25/2024] [Indexed: 04/17/2024]
Abstract
Intelligent materials derived from green and renewable bio-based materials garner widespread attention recently. Herein, shape memory polyurethane composite (PUTA/Fe) with fast response to near-infrared (NIR) light is successfully prepared by introducing Fe3+ into the tannic acid-based polyurethane (PUTA) matrix through coordination between Fe3+ and tannic acid. The results show that the excellent NIR light response ability is due to the even distribution of Fe3+ filler with good photo-thermal conversion ability. With the increase of Fe3+ content, the NIR light response shape recovery rate of PUTA/Fe composite films is significantly improved, and the shape recovery time is reduced from over 60 s to 40 s. In addition, the mechanical properties of PUTA/Fe composite film are also improved. Importantly, owing to the dynamic phenol-carbamate network within the polymer matrix, the PUTA/Fe composite film can reshape its permanent shape through topological rearrangement and show its good NIR light response shape memory performance. Therefore, PUTA/Fe composites with high content of bio-based material (TA content of 15.1-19.4%) demonstrate the shape memory characteristics of fast response to NIR light; so, it will have great potential in the application of new intelligent materials including efficient and environmentally friendly smart photothermal responder.
Collapse
Affiliation(s)
- Yong Yong
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Yang Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Zetian Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Songbo Dai
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Xiaohan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Fufen Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| | - Zhengjun Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
4
|
Rong H, Zhang Z, Zhang Y, Lu X. Self-Healing Elastomers with Unprecedented Ultrahigh Strength, Superhigh Fracture Energy, Excellent Puncture Resistance, and Durability Based on Supramolecule Interlocking Networks Formed by Interlaced Hydrogen Bonds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2802-2813. [PMID: 38181409 DOI: 10.1021/acsami.3c17284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Due to the multiple different properties in self-healing elastomers that are mutually exclusive based on the different and contradictory molecule chain structures, simultaneously achieving the ultrahigh mechanical performance and high durability of self-healing elastomers is a great challenge and the goal that has always been pursued. Herein, we report a novel strategy to fabricate a self-healing elastomer by introducing interlaced hydrogen bonds with superhigh binding energy. Distinguishing from the quadruple hydrogen bonds reported already, the interlaced hydrogen bond with a lower repulsive secondary interaction and higher binding energy is composed of two molecule units with different lengths and steric hindrance. Connected by the interlaced hydrogen bonds, a supramolecule interlocking network is formed to lock the polymer chains at room temperature, endowing the poly(urethane-urea) elastomer with an unprecedented ultrahigh strength (117.5 MPa, even higher than some plastics), the superhigh fracture energy (522.46 kJ m-2), and an excellent puncture resistance (puncture force reached 181.9 N). Moreover, the elastomers also exhibited excellent self-healing properties (healing efficiency up to 95.8%), high transparency (the average transmittance up to 91.0%), and good durability (including thermal decomposition resistance, thermal oxidation aging resistance, water resistance, and solvent resistance), providing a theoretical basis and technical reference in the development and broadening the application prospects of self-healing elastomers.
Collapse
Affiliation(s)
- Haoxiang Rong
- School of Materials of Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhenpeng Zhang
- School of Materials of Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanan Zhang
- School of Materials of Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xun Lu
- School of Materials of Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
5
|
Ma X, Wang X, Zhao H, Xu X, Cui M, Stott NE, Chen P, Zhu J, Yan N, Chen J. High-Performance, Light-Stimulation Healable, and Closed-Loop Recyclable Lignin-Based Covalent Adaptable Networks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303215. [PMID: 37269200 DOI: 10.1002/smll.202303215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/20/2023] [Indexed: 06/04/2023]
Abstract
In this work, high-performance, light-stimulation healable, and closed-loop recyclable covalent adaptable networks are successfully synthesized from natural lignin-based polyurethane (LPU) Zn2+ coordination structures (LPUxZy). Using an optimized LPU (LPU-20 with a tensile strength of 28.4 ± 3.5 MPa) as the matrix for Zn2+ coordination, LPUs with covalent adaptable coordination networks are obtained that have different amounts of Zn. When the feed amount of ZnCl2 is 9 wt%, the strength of LPU-20Z9 reaches 37.3 ± 3.1 MPa with a toughness of 175.4 ± 4.6 MJ m-3 , which is 1.7 times of that of LPU-20. In addition, Zn2+ has a crucial catalytic effect on "dissociation mechanism" in the exchange reaction of LPU. Moreover, the Zn2+ -based coordination bonds significantly enhance the photothermal conversion capability of lignin. The maximum surface temperature of LPU-20Z9 reaches 118 °C under the near-infrared illumination of 0.8 W m-2 . This allows the LPU-20Z9 to self-heal within 10 min. Due to the catalytic effect of Zn2+ , LPU-20Z9 can be degraded and recovered in ethanol completely. Through the investigation of the mechanisms for exchange reaction and the design of the closed-loop recycling method, this work is expected to provide insight into the development of novel LPUs with high-performance, light-stimulated heal ability, and closed-loop recyclability; which can be applied toward the expanded development of intelligent elastomers.
Collapse
Affiliation(s)
- Xiaozhen Ma
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiaolin Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Honglong Zhao
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiaobo Xu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Minghui Cui
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, China
| | - Nathan E Stott
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Peng Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ning Yan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | - Jing Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
6
|
Wang X, Xu J, Zhang Y, Wang T, Wang Q, Li S, Yang Z, Zhang X. A stretchable, mechanically robust polymer exhibiting shape-memory-assisted self-healing and clustering-triggered emission. Nat Commun 2023; 14:4712. [PMID: 37543695 PMCID: PMC10404225 DOI: 10.1038/s41467-023-40340-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023] Open
Abstract
Self-healing and recyclable polymer materials are being developed through extensive investigations on noncovalent bond interactions. However, they typically exhibit inferior mechanical properties. Therefore, the present study is aimed at synthesizing a polyurethane-urea elastomer with excellent mechanical properties and shape-memory-assisted self-healing behavior. In particular, the introduction of coordination and hydrogen bonds into elastomer leads to the optimal elastomer exhibiting good mechanical properties (strength, 76.37 MPa; elongation at break, 839.10%; toughness, 308.63 MJ m-3) owing to the phased energy dissipation mechanism involving various supramolecular interactions. The elastomer also demonstrates shape-memory properties, whereby the shape recovery force that brings damaged surfaces closer and facilitates self-healing. Surprisingly, all specimens exhibite clustering-triggered emission, with cyan fluorescence is observed under ultraviolet light. The strategy reported herein for developing multifunctional materials with good mechanical properties can be leveraged to yield stimulus-responsive polymers and smart seals.
Collapse
Affiliation(s)
- Xiaoyue Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Xu
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaoming Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Tingmei Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qihua Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Song Li
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Zenghui Yang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Xinrui Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
7
|
Chen W, Qiao H, Zhang D, Tian X, Jin L. Silane coupling agent γ-aminopropyltriethoxysilane-modified nanoparticles/polyurethane elastomer nanocomposites. IRANIAN POLYMER JOURNAL 2023. [DOI: 10.1007/s13726-023-01152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
8
|
Jiao Y, Rong Z, Gao C, Wu Y, Liu Y. Tannic Acid Crosslinked Self-Healing and Reprocessable Silicone Elastomers with Improved Antibacterial and Flame Retardant Properties. Macromol Rapid Commun 2023; 44:e2200681. [PMID: 36125336 DOI: 10.1002/marc.202200681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Indexed: 11/11/2022]
Abstract
Silicone elastomers are widely used in aviation, electronics, automotive, and medical device fields, and their overuse inevitably causes recycled problems. In addition, the elastomers are subject to attack by bacteria and fire during use in some application scenarios, which is a safety hazard. Therefore, there is a great need to prepare silicone elastomers with improved antibacterial, flame retardant, self-healing, and recyclable functions. A new strategy is proposed to prepare silicone elastomers with bio-based tannic acid as cross-linkers to solve this problem by using polydimethylsiloxane as a soft chain segment and 2,2-bis(hydroxymethyl)propionic acid as an intermediate chain extender. Based on the phenol carbamate bonding and hydrogen bonding interactions, the elastomer has efficient self-healing ability and can achieve dynamic dissociation at 120 °C for complete recovery. In addition, due to the unique spatial structure and polyphenolic hydroxyl groups of tannic acid, the mechanical properties of the elastomer are greatly improved with an antimicrobial efficiency of over 90% and a final oxygen index of 25.5%. The multifunctional silicone elastomer has great potential applications in recyclable refractory materials and antimicrobial materials.
Collapse
Affiliation(s)
- Yizhi Jiao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhihao Rong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Chuanhui Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yumin Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yuetao Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
9
|
Huang J, Wang H, Liu W, Huang J, Yang D, Qiu X, Zhao L, Hu F, Feng Y. Solvent-free synthesis of high-performance polyurethane elastomer based on low-molecular-weight alkali lignin. Int J Biol Macromol 2023; 225:1505-1516. [PMID: 36435459 DOI: 10.1016/j.ijbiomac.2022.11.207] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/09/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
Using cheap and green lignin as a partial substitute for petroleum-based polyols is highly attractive for sustainable development of polyurethane elastomers (LPUes). However, the traditional synthesis process of LPUes inevitably uses toxic solvents that are difficult to remove or carcinogenic. Here, we reported a solvent-free synthesis method to prepare lignin-containing polyurethane elastomers (SF-LPUes) with high strength, high toughness and high elasticity. Most of the hydroxyl groups of lignin reacted with isocyanates to form a strong chemical cross-linking network, while the unreacted ones formed a dynamic hydrogen bond network with polyurethane matrix, contributing to the in-situ formation of lignin nanoparticles to build a nano-micro phase separation structure. Consequently, a dual-crosslinking network structure was formed and endowed SF-LPUes with excellent mechanical properties. Especially, the SF-LPUes prepared from low molecular alkali lignin possessed a tensile strength as high as 38.2 MPa, a maximum elongation at break of 1108 %, and an elastic recovery ratio of up to 98.7 %. Moreover, SF-LPUes showed impressing reprocessing performance and aging resistance. This work provides an industrial application prospect for the synthesis of lignin-containing polyurethane elastomers via a solvent-free synthesis process.
Collapse
Affiliation(s)
- Jianhua Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, PR China
| | - Haixu Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, PR China
| | - Weifeng Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, PR China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, PR China.
| | - Jinhao Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, PR China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, PR China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Waihuan Xi Road 100, Guangzhou, Guangdong 510006, PR China
| | - Liang Zhao
- BASF Advanced Chemicals Co. Ltd., 333 Jiangxinsha Road, Pudong District, Shanghai, China
| | - Fengchao Hu
- BASF Advanced Chemicals Co. Ltd., 333 Jiangxinsha Road, Pudong District, Shanghai, China
| | - Yuexia Feng
- BASF Advanced Chemicals Co. Ltd., 333 Jiangxinsha Road, Pudong District, Shanghai, China
| |
Collapse
|
10
|
Shi Q, Wu W, Yu B, Ren M, Wu L, Zhang C. Preparation of ecofriendly water-borne polyurethane elastomer with mechanical robustness and self-healable ability based on multi-dynamic interactions. RSC Adv 2022; 12:35396-35408. [PMID: 36540214 PMCID: PMC9733714 DOI: 10.1039/d2ra07000f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 04/27/2025] Open
Abstract
Self-healing materials have attracted widespread attention owing to their capacity to extend the lifetime of materials and improve resource utilization. However, achieving superior mechanical performance and high self-healable capability simultaneously under moderate conditions remains a long-standing challenge. Integrating multiple dynamic interactions in waterborne polyurethane (WPU) systems can overcome the above-mentioned issue. Herein, environmentally friendly WPU systems containing multiple hydrogen bonds and boronic ester bonds in their polymer backbones were synthesized, where 2,6-diaminopyridine (DAP) and boric acid (BA) served as a dynamic chain extender and reversible cross-linking agent, respectively. The chain structure of the polymer was adjusted by controlling the ratio (DAP/BA) of hard segments, which could effectively meet the requirement of mechanical robustness and desirable self-healable efficiency. Benefiting from multiple dynamic interactions, the prepared WPU elastomer exhibited good mechanical properties, such as tensile strength (from 18.89 MPa to 30.78 MPa), elongation (about 900%) and toughness (from 54.82 MJ m-3 to 92.74 MJ m-3). Driven by water and heat, the IP-DAP40-BA10-WPU film cut in the middle exhibited good self-healing ability, with healing efficiencies of tensile stress of 90.74% and elongation of 91.29% after self-healing at 80 °C for 36 h. Meanwhile, the synthesized WPU elastomer exhibited good water resistance and thermal stability. This work presents a novel way to design robust self-healable materials, which will have wide promising applications in flexible electronics, smart coatings and adhesives.
Collapse
Affiliation(s)
- Qingsong Shi
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Weilin Wu
- School of Pharmaceutical Sciences, Hunan University of Medicine No. 492 South Jinxi Road Huaihua Hunan 418000 P. R. China
| | - Bing Yu
- MEGA P&C Advanced Materials (Shanghai) Co., Ltd. P. R. China
| | - Mengqing Ren
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Lili Wu
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Chaocan Zhang
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 P. R. China
| |
Collapse
|
11
|
Qin J, Liu X, Chen B, Liu J, Wu M, Tan L, Yang C, Liang L. Thermo-healing and recyclable epoxy thermosets based on dynamic phenol-carbamate bonds. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Ochirkhuyag N, Nishitai Y, Mizuguchi S, Isano Y, Ni S, Murakami K, Shimamura M, Iida H, Ueno K, Ota H. Stretchable Gas Barrier Films Using Liquid Metal toward a Highly Deformable Battery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48123-48132. [PMID: 36168303 DOI: 10.1021/acsami.2c13023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Highly deformable batteries that are flexible and stretchable are important for the next-generation wearable devices. Several studies have focused on the stable operation and life span of batteries. On the other hand, there has been less focus on the packaging of highly deformable batteries. In wearable devices, solid-state or pouch lithium-ion batteries (LIBs) packaged in aluminum (Al)-laminated films, which protect against moisture and gas permeation, are used. Stretchable elastomer materials are used as the packaging films of highly deformable batteries; however, they are extremely permeable to gas and moisture. Therefore, a packaging film that provides high deformability along with gas and moisture barrier functionalities is required for the stable operation of highly deformable batteries used in ambient conditions. In this study, a stretchable packaging film with high gas barrier functionality is developed successfully by coating a thin layer of liquid metal onto a gold (Au)-deposited thermoplastic polyurethane film using the layer-by-layer method. The film exhibits excellent oxygen gas impermeability under mechanical strain and extremely low moisture permeability. It shows high impermeability along with high mechanical robustness. Using the proposed stretchable gas barrier film, a highly deformable LIB is assembled, which offers reliable operation in air. The operation of the highly deformable battery is analyzed by powering LEDs under mechanical deformations in ambient conditions. The proposed stretchable packaging film can potentially be used for the development of packaging films in advanced wearable electronic devices.
Collapse
Affiliation(s)
- Nyamjargal Ochirkhuyag
- Department of Mechanical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yuuki Nishitai
- Department of Mechanical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Satoru Mizuguchi
- Department of Mechanical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Yuji Isano
- Department of Mechanical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Sijie Ni
- Department of Mechanical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Koki Murakami
- Department of Mechanical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Masaki Shimamura
- Department of Mechanical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Hiroki Iida
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Kazuhide Ueno
- Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Hiroki Ota
- Department of Mechanical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
13
|
Mechanically robust self-repairing polyurea elastomers: the roles of hard segment content and ordered/disordered hydrogen-bonding arrays. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Wang H, Huang J, Liu W, Huang J, Yang D, Qiu X, Zhang J. Tough and Fast Light-Controlled Healable Lignin-Containing Polyurethane Elastomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haixu Wang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, P. R. China
| | - Jianhua Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, P. R. China
| | - Weifeng Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, P. R. China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, P. R. China
| | - Jinhao Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, P. R. China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Wushan Road 381, Guangzhou, Guangdong 510640, P. R. China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Waihuan Xi Road 100, Guangzhou, Guangdong 510006, P. R. China
| | - Jiaren Zhang
- Petrochina Petrochemical Research Institute, Science Base Petro China, Block A42, West of Xisha Village Bridge, Changping District, Beijing 102200, P. R. China
| |
Collapse
|
15
|
Chen SW, Yang JH, Huang YC, Chiu FC, Wu CH, Jeng RJ. A facile strategy to achieve polyurethane vitrimers from chemical recycling of poly(carbonate). CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
16
|
Liu Y, Zhang Z, Yang K, Chen D, Li Z. Novel near-infrared light-induced shape memory nonionic waterborne polyurethane composites based on iron gallate and dynamic phenol-carbamate network. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Liu W, Yang S, Huang L, Xu J, Zhao N. Dynamic covalent polymers enabled by reversible isocyanate chemistry. Chem Commun (Camb) 2022; 58:12399-12417. [DOI: 10.1039/d2cc04747k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible isocyanate chemistry containing urethane, thiourethane, and urea bonds is valuable for designing dynamic covalent polymers to achieve promising applications in recycling, self-healing, shape morphing, 3D printing, and composites.
Collapse
Affiliation(s)
- Wenxing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shijia Yang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
18
|
Xiong H, Ling S, Li Y, Duan F, Zhu H, Lu S, Du M. Flexible and recyclable bio-based transient resistive memory enabled by self-healing polyimine membrane. J Colloid Interface Sci 2021; 608:1126-1134. [PMID: 34735849 DOI: 10.1016/j.jcis.2021.10.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 01/12/2023]
Abstract
The recyclable, self-healing and easily-degradable transient electronic technology has aroused tremendous attention in flexible electronic products. However, integrating the above advantages into one single flexible electronic device is still a huge challenge. Herein, we demonstrate a flexible and recyclable bio-based memory device using fish colloid as the resistive switching layer on a polyimine substrate, which affords reliable mechanical and electrical properties under repetitive conformal deformation operation. This flexible bio-based memory device presents potential analog behaviors including memory characteristics and excitatory current response, which undergoes incremental potentiation in conductance under successive electrical pulses. Moreover, this device is expected to greatly alleviate the environmental problems caused by electronic waste. It can be decomposed rapidly in water and well recycled, which is a promising candidate for transient memories and information security. We believe that this study can provide new possibilities to the field of high-performance transient electronics and flexible resistive memory devices.
Collapse
Affiliation(s)
- Hanli Xiong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Songtao Ling
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
19
|
Wang S, Wang L, Wang B, Su H, Fan W, Jing X. Facile preparation of recyclable cyclic polyolefin/polystyrene vitrimers with low dielectric loss based on semi-interpenetrating polymer networks for high-frequency copper-clad laminates. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Cai Y, Li C, Yang Y, Li H, Wang Y, Zhang Q. Self-Healable and Reprocessable Cross-Linked Poly(urea-urethane) Elastomers with High Mechanical Performance Based on Dynamic Oxime–Carbamate Bonds. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yingchao Cai
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Beilin District, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Chunmei Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Beilin District, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Yumin Yang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Beilin District, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Haonan Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Beilin District, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Yuhang Wang
- School of Chemistry and Chemical Engineering, Shaanxi Xueqian Normal University, Xi’an 710100, People’s Republic of China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Beilin District, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| |
Collapse
|