1
|
Zhao X, Fang Y, Xue L, Lu Y, Hu R, Yu J, Jiang X, Sun J. Phosphorylated chitosan-lignin composites for efficient removal of Pb(II) and Cu(II) from aqueous environments and sustainable upcycling of spent adsorbents. Int J Biol Macromol 2025; 304:140840. [PMID: 39929471 DOI: 10.1016/j.ijbiomac.2025.140840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/25/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Efficient removal of Pb(II) and Cu(II) from wastewater is crucial for safeguarding environmental safety and public health. Biomass-based adsorbents with surface-specific functionality hold great promise for selective adsorption of metal cations. In this study, a novel phosphorylated chitosan-lignin (PCSL) composite is successfully synthesized via Mannich reaction. The PCSL exhibits remarkable selectivity in the adsorption of Pb(II) and Cu(II), as evidenced by Density Functional Theory (DFT) calculations. Furthermore, DFT analysis reveals that the incorporation of phosphate groups significantly enhances the chelation capacity of the adsorbent towards heavy metals. The PCSL demonstrates ultrafast adsorption capabilities for Pb(II) and Cu(II). Specifically, the adsorption processes reach equilibrium within 7 min and 5 min, respectively, with maximum adsorption capacities of 207.9 mg·g-1 for Pb(II) and 100.0 mg·g-1 for Cu(II). X-ray photoelectron spectroscopy analysis indicates that the adsorption mechanisms involve both chemical complexation and electrostatic attraction. Notably, the adsorbent can be recycled many times, and the spent Cu-PCSL, upon pyrolysis treatment, demonstrate remarkable catalytic activity in nitrate reduction reactions, with Faradaic efficiencies as high as 98.3 % and NH3 yield of 4.3 mg·h-1·mgcat.-1. This work not only advances the progression of biomass adsorbents but also demonstrates considerable industrial potential in mitigating water pollution and promoting sustainable development.
Collapse
Affiliation(s)
- Xiuxian Zhao
- School of Materials Science and Engineering, Institute for Smart Materials & Engineering, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, PR China
| | - Yuhan Fang
- School of Materials Science and Engineering, Institute for Smart Materials & Engineering, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, PR China
| | - Liang Xue
- School of Materials Science and Engineering, Institute for Smart Materials & Engineering, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, PR China
| | - Yizhong Lu
- School of Materials Science and Engineering, Institute for Smart Materials & Engineering, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, PR China
| | - Riming Hu
- School of Materials Science and Engineering, Institute for Smart Materials & Engineering, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, PR China.
| | - Jiayuan Yu
- School of Materials Science and Engineering, Institute for Smart Materials & Engineering, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, PR China.
| | - Xuchuan Jiang
- School of Materials Science and Engineering, Institute for Smart Materials & Engineering, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, PR China
| | - Junhua Sun
- School of Materials Science and Engineering, Institute for Smart Materials & Engineering, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, PR China; School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, PR China.
| |
Collapse
|
2
|
Okwaraku SI, Norddin MNAM, Oseh JO, ALBajalan AR, Agi A, Oladapo O, Wosu N. Lignosulfonate-based deflocculant and its derivatives for water-based drilling mud: A review. Int J Biol Macromol 2025; 295:139467. [PMID: 39788244 DOI: 10.1016/j.ijbiomac.2025.139467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
Chromium-based lignosulfonate (CrLS) deflocculants that are commonly used in water-based drilling muds (WBDMs) to deflocculate bentonites under high temperature (HT), high-pressure (HP), and high-salinity (HS) oil well drilling conditions have been found to contain heavy metals such as chromium, which is toxic and degrades rapidly. However, different ways of addressing this issue have been proffered, including the use of natural polymers such as starch, cellulose, or anionic inorganic agents such as sodium polyphosphates with little or no impact. Other lignosulfonate (LS)-based deflocculants, like sodium-based LS and bio-based LS, have shown a number of benefits, such as being better for the environment, more soluble and evenly distributed in WBDMs, more resistant to salt contamination, easily biodegradable, safe, and able to go through different chemical changes. This is due to its abundant functional groups, which make it a suitable alternative to chrome-based deflocculants. This review discusses LS-based deflocculants as possible additives to WBDMs in comparison with some non-LS-based deflocculants under HTHP and HS conditions. This could address the need for safer alternatives to natural polymers or inorganic agents. Based on recently reviewed studies, the advantages, uses, research obstacles, green synthesis, and potential of incorporating nanotechnology-based modification for LS-based deflocculants improvement in WBDMs under HTHP and HS drilling conditions are discussed.
Collapse
Affiliation(s)
- Samuelson I Okwaraku
- Department of Petroleum Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia; Department of Petroleum and Gas Engineering Technology, Federal Polytechnic of Oil and Gas, Bonny-island, PMB 5027, Rivers State, Nigeria
| | - M N A M Norddin
- Department of Petroleum Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia; Advanced Membrane Technology Research Centre (AMTEC), Nanostructured Materials Research Group (NMRG) - MD - Frontier Materials, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia.
| | - Jeffrey O Oseh
- Department of Petroleum Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia; Department of Petroleum Engineering, School of Engineering and Engineering Technology, Federal University of Technology, P.M.B. 1526, Owerri, Imo State, Nigeria
| | - Ahmed R ALBajalan
- Department of Petroleum Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia; Department of Petroleum Technology, Erbil Technology College, Erbil Polytechnic University, 44001 Erbil, Iraq
| | - Augustine Agi
- Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia; Centre for Research in Advanced Fluid and Processes (Fluid Centre), Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia
| | - Olumide Oladapo
- Department of Petroleum and Gas Engineering Technology, Federal Polytechnic of Oil and Gas, Bonny-island, PMB 5027, Rivers State, Nigeria
| | - Nwonodi Wosu
- Department of Petroleum and Gas Engineering Technology, Federal Polytechnic of Oil and Gas, Bonny-island, PMB 5027, Rivers State, Nigeria
| |
Collapse
|
3
|
Meng W, Hou X, Cai C, Cao S, Liu L, Wang X, Guo S, Jiang X, Li Y, Yuan Y. Analysis of differentially expressed proteins and related metabolic pathways in response to lead stress in the leaves of Pogonatherum crinitum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117438. [PMID: 39615302 DOI: 10.1016/j.ecoenv.2024.117438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Proteomics provides an essential means of explaining the mechanisms underlying gene expression regulation. The proteomic mechanisms by which heavy metal hyperaccumulators respond to lead (Pb) stress remain largely unclear. To this end, we examined Pogonatherum crinitum (Thunb.) Kunth and employed proteomic sequencing technology to screen for differential proteins that respond to Pb stress. The connection between Pb-tolerant proteins in metabolic pathways and their functions were analyzed. Differences in the downstream molecules of Pb-resistant proteins in P. crinitum were also assessed. Furthermore, we utilized Parallel Reaction Monitoring (PRM) technology to validate the selected Pb-tolerant differential proteins across various stress concentration gradients. A total of 5275 protein families were identified, and 118 DEPs were observed between the stressed and control groups, including 76 upregulated and 42 downregulated proteins. Functional annotation analysis using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes revealed that Pb stress led to the upregulation of 16 proteins within P. crinitum leaves. These proteins were primarily involved in the metabolic processes of energy and carbohydrate metabolism (PcCht1, PcSPS5, PcGME-1, and PcPEP4) as well as protein translation and oxidative stress (PcHSP26.7, PcHSP18, PcCAT3, and PcCAT1). Bioinformatic analysis indicated that DEPs responding to Pb stress were primarily related to the MAPK signaling pathway, amino sugar and nucleotide sugar metabolism, and starch and sucrose metabolism. Pathway analysis revealed maltose, acetylcholine, N-acetylglucosamine, and oxalic acid as the downstream products. Moreover, the levels of these indicators all increased with increasing Pb concentrations. PRM of the 16 DEPs revealed that nine proteins were upregulated under different Pb concentrations. PRM and data-independent acquisition results for the upregulation of these nine DEPs were identical, suggesting the reliability of our analytical outcomes. In conclusion, the upregulation of specific proteins in P. crinitum enables the regulation of glucose metabolism and antioxidant balance within the plant and represents a mechanism underlying its Pb stress response.
Collapse
Affiliation(s)
- Weicai Meng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolong Hou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Soil and Water Conservation of Southern Red Soil Region, State Forestry and Grassland Administration, Fuzhou 350002, China; National Positioning Observation and Research Station of Red Soil Hilly Ecosystem, Longyan, Changting 364000, China; Co-Innovation Center for Soil and Water Conservation in Red Soil Region of the Cross-Strait, Fuzhou 350002, China.
| | - Cuiting Cai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyi Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linghua Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyu Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihong Guo
- Fujian Provincial Academy of Environmental Sciences, Fuzhou 350003, China
| | - Xinyi Jiang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yijie Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqi Yuan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Pan J, Liu W, Wu W, Zhao R, Li X, Zhou J. Synthesis and characterization of chitosan Schiff base grafted with formaldehyde and aminoethanol: As an effective adsorbent for removal of Pb(II), Hg(II), and Cu(II) ions from aqueous media. Int J Biol Macromol 2024; 281:135601. [PMID: 39276889 DOI: 10.1016/j.ijbiomac.2024.135601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Grafted chitosan materials show the characteristics of high stability, easy separation and recovery, and good heavy metal adsorption capacity, and have received much attention in the adsorption process. Therefore, in this work, novel grafted chitosan-based adsorbent CS-EHBSB@F-AE was prepared by a one-pot reaction of chitosan (CS), 3-ethoxy-4-hydroxybenzaldehyde (EHB), formaldehyde (F) and aminoethanol (F). The microstructure and morphology of the as-prepared composite CS-EHBSB@F-AE were characterized by FT-IR, TGA, DSC, FE-SEM, and BET analyses. The adsorption performance of the as-prepared CS-EHBSB@F-AE composite on Pb(II), Hg(II), and Cu(II) ions from aqueous was investigated using batch experiment and the effects of the initial pH of the solution, contact time, and initial metal ions concentration and temperature on the adsorption efficiency were investigated and discussed. At the best conditions, CS-EHBSB@F-AE exhibited remarkable adsorption capacity of 246.7 mg/g, 203.9 mg/g, and 234.4 mg/g in absorbing Pb(II), Hg(II), and Cu(II), respectively. The adsorption equilibrium and the kinetic studies confirmed that the ions adsorption process fits well with the Langmuir isotherm and pseudo-second-order (PSO) models. Additionally, the adsorption efficiency of Pb(II), Hg(II), and Cu(II) metal ions by the composite CS-EHBSB@F-AE was reduced by increasing the temperature from 298 K to 318 K. In addition, after the sixth ads/des cycles, the as-prepared adsorbent still exhibited high removal efficiency with a decrease in adsorption efficiency of Pb(II) (5.53 %), Hg(II) (15.43 %) and Cu(II) (8.27 %). Finally, we proposed that the ions adsorption by CS-EHBSB@F-AE has happened using the coordination of active groups containing nitrogen and oxygen atoms on the surface of the adsorbent with the Pb(II), Hg(II), and Cu(II) metal ions.
Collapse
Affiliation(s)
- Jiadi Pan
- College of Food Science & Technology, Agricultural University of Hebei, Baoding, Hebei 071001, China
| | - Weihua Liu
- College of Food Science & Technology, Agricultural University of Hebei, Baoding, Hebei 071001, China
| | - Wenhong Wu
- College of Food Science & Technology, Agricultural University of Hebei, Baoding, Hebei 071001, China
| | - Renbang Zhao
- College of Food Science & Technology, Agricultural University of Hebei, Baoding, Hebei 071001, China.
| | - Xiaoyi Li
- College of Food Science & Technology, Agricultural University of Hebei, Baoding, Hebei 071001, China
| | - Jingjing Zhou
- College of Food Science & Technology, Agricultural University of Hebei, Baoding, Hebei 071001, China
| |
Collapse
|
5
|
Fang Y, Hu J, Fu Y, Geng T. Fabrication of a novel polyvinylpyrrolidone/chitosan-Schiff base/Fe 2O 3 nanocomposite for efficient adsorption of Pb(II) and Hg(II) ions from aqueous solution. Int J Biol Macromol 2024; 270:132161. [PMID: 38723810 DOI: 10.1016/j.ijbiomac.2024.132161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
A novel magnetic polyvinylpyrrolidone/chitosan-Schiff base/Fe2O3 (PVP/CS-SB/Fe2O3) adsorbent was prepared by one-pot facile co-precipitation route for adsorption of Pb(II) and Hg(II) ions from aqueous solution. Fourier transform infrared-spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and Brunauer-Emmett-Teller (BET) were used to characterize the synthesized PVP/CS-SB/Fe2O3. The results predicted that the successfully synthesis of magnetic CSSB-PVP@Fe2O3. The effects of important factors such as pH solution, contact time, concentration of metal ions, adsorbent dose and co-existing ions on Pb(II) and Hg(II) adsorption were investigated. The maximum adsorption capacities of Pb(II) and Hg(II) ions at optimal conditions were 120 mg/g and 102.5 mg/g, respectively. The kinetic studies predicted that the adsorption followed the pseudo-second-order (PSO) model as chemisorption using the coordination of active sites of PVP/CS-SB/Fe2O3 with the metal ions and also n-π interactions. Reproducibility results predicted that the excellent regeneration ability after 6 adsorption cycles. According to the results of this work, the PVP/CS-SB/Fe2O3 nanocomposite is promising for Pb(II) and Hg(II) ions adsorption and can be potential as a simple, low-cost, high-efficient adsorbent for decontamination of other heavy metal ions from aqueous solution.
Collapse
Affiliation(s)
- Yu Fang
- Key Laboratory of New Opto-Electronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China; Anyange Center for Chemical and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China.
| | - Junqiang Hu
- Key Laboratory of New Opto-Electronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China; Anyange Center for Chemical and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China.
| | - Yifan Fu
- Key Laboratory of New Opto-Electronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China; Anyange Center for Chemical and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| | - Tingting Geng
- Key Laboratory of New Opto-Electronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China; Anyange Center for Chemical and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, People's Republic of China
| |
Collapse
|
6
|
Wang S, Chen H. Enhanced dewaterability of sewage sludge by grafted cationic lignin-based flocculants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166958. [PMID: 37696410 DOI: 10.1016/j.scitotenv.2023.166958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Lignin-based flocculants are widely used for wastewater purification, but their application in sludge dewatering has not yet been documented. In this study, a novel cationic lignin-based flocculant named LS-g-CPA was prepared by grafting cationic polyacrylamide (CPA) synthesized from methacryloyloxy ethyltrimethyl ammonium chloride (DMC) and acrylamide (AM) onto sodium lignosulfonate (LS), and its roles and underlying mechanisms in sludge conditioning were investigated. The results showed that LS-g-CPA effectively improved the dewaterability of sludge, reducing the filtration resistance and filter cake moisture content of sludge from 0.61 ± 0.05 × 1012 m/kg to 0.14 ± 0.02 × 1012 m/kg and 85.64 ± 0.25 % to 76.84 ± 0.41 %, respectively. The dewatering performance of LS-g-CPA was positively correlated with the DMC/AM ratio. The quaternary ammonium groups brought by DMC disrupted the reticular structure of extracellular polymeric substances, exposing hydrophobic residues and releasing bound water. Nevertheless, the key to LS-g-CPA for improving sludge dewatering lies more in the amphoteric flocculant properties that enhance sludge flocculation and the octopus-type structure that provides good drainage channels. This study reveals that lignin-based flocculants are effective in improving the dewaterability of sludge, which provides direct evidence for their application in sludge dewatering.
Collapse
Affiliation(s)
- Shiqin Wang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Chen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
7
|
Nordin AH, Ngadi N, Ilyas RA, Abd Latif NAF, Nordin ML, Mohd Syukri MS, Nabgan W, Paiman SH. Green surface functionalization of chitosan with spent tea waste extract for the development of an efficient adsorbent for aspirin removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125048-125065. [PMID: 36795217 DOI: 10.1007/s11356-023-25816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/05/2023] [Indexed: 02/17/2023]
Abstract
This study investigates the feasibility of spent tea waste extract (STWE) as a green modifying agent for the modification of chitosan adsorbent towards aspirin removal. Response surface methodology based on Box-Behnken design was employed to find the optimal synthesis parameters (chitosan dosage, spent tea waste concentration, and impregnation time) for aspirin removal. The results revealed that the optimum conditions for preparing chitotea with 84.65% aspirin removal were 2.89 g of chitosan, 18.95 mg/mL of STWE, and 20.72 h of impregnation time. The surface chemistry and characteristics of chitosan were successfully altered and improved by STWE, as evidenced by FESEM, EDX, BET, and FTIR analysis. The adsorption data were best fitted to pseudo 2nd order, followed by chemisorption mechanisms. The maximum adsorption capacity of chitotea was 157.24 mg/g, as fitted by Langmuir, which is impressive for a green adsorbent with a simple synthesis method. Thermodynamic studies demonstrated the endothermic nature of aspirin adsorption onto chitotea.
Collapse
Affiliation(s)
- Abu Hassan Nordin
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Norzita Ngadi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Rushdan Ahmad Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia
| | - Nur Aien Fatini Abd Latif
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Muhammad Luqman Nordin
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100, Kota Bharu, Kelantan, Malaysia
| | - Mohd Syahlan Mohd Syukri
- Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, 88400, Sabah, Malaysia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira I Virgili, Av Països Catalans 26, 43007, Tarragona, Spain
| | - Syafikah Huda Paiman
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
8
|
Wang X, Wang J, Jiang L, Jiang Y. Adsorption of Pb 2+ and Cu 2+ in wastewater by lignosulfonate adsorbent prepared from corn straw. Int J Biol Macromol 2023; 247:125820. [PMID: 37451377 DOI: 10.1016/j.ijbiomac.2023.125820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/18/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The heavy metal ions contained in industrial wastewater are a great threat to human health. Exploring a adsorbent which have low-cost, green environmental friendly, high adsorption capacity, good recycle is key to solve heavy metal ions pollution. Lignin sulfonate was obtained by treating corn stover, and then modified lignin sulfonate was obtained by hydrothermal method. The porous structure makes heavy metal ions occupy more internal adsorption sites. Modified lignosulfonate adsorbent efficiency removes heavy metals in wastewater especially Cu2+ and Pb2+. The adsorption capacity of Cu2+ on modified lignosulfonate is 450.3 mg g-1, Pb2+ is 475.4 mg g-1. In addition, for 40 mg L-1 Cu2+ and Pb2+ using 0.4 g L-1, the adsorption equilibrium is only reached within 60 min. Meanwhile, the removal ratio of Pb is 83 %, Cd is 72 %, Cu is 87 %, Zn is 36 %, Mn is 25 %, Cr is 95 %, and Fe is 99 % in wastewater using 0.4 g L-1 adsorbent in 2 h. This research develops a practical adsorbent to remove heavy metals from actual wastewater.
Collapse
Affiliation(s)
- Xiang Wang
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404100 Chongqing, China.
| | - Jiwei Wang
- Chongqing Wanzhou Sanfeng Environmental Protection Power Generation Co., LTD, Wanzhou, 404100 Chongqing, China
| | - Landong Jiang
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404100 Chongqing, China
| | - Yibo Jiang
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404100 Chongqing, China
| |
Collapse
|
9
|
Liu C, Dong S, Wang X, Xu H, Liu C, Yang X, Wu S, Jiang X, Kan M, Xu C. Research progress of polyphenols in nanoformulations for antibacterial application. Mater Today Bio 2023; 21:100729. [PMID: 37529216 PMCID: PMC10387615 DOI: 10.1016/j.mtbio.2023.100729] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 08/03/2023] Open
Abstract
Infectious disease is one of the top 10 causes of death worldwide, especially in low-income countries. The extensive use of antibiotics has led to an increase in antibiotic resistance, which poses a critical threat to human health globally. Natural products such as polyphenolic compounds and their derivatives have been shown the positive therapeutic effects in antibacterial therapy. However, the inherent physicochemical properties of polyphenolic compounds and their derivatives limit their pharmaceutical effects, such as short half-lives, chemical instability, low bioavailability, and poor water solubility. Nanoformulations have shown promising advantages in improving antibacterial activity by controlling the release of drugs and enhancing the bioavailability of polyphenols. In this review, we listed the classification and antibacterial mechanisms of the polyphenolic compounds. More importantly, the nanoformulations for the delivery of polyphenols as the antibacterial agent were summarized, including different types of nanoparticles (NPs) such as polymer-based NPs, metal-based NPs, lipid-based NPs, and nanoscaffolds such as nanogels, nanofibers, and nanoemulsions. At the same time, we also presented the potential biological applications of the nano-system to enhance the antibacterial ability of polyphenols, aiming to provide a new therapeutic perspective for the antibiotic-free treatment of infectious diseases.
Collapse
Affiliation(s)
- Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Shuhan Dong
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- Department of Preventive Medicine, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xue Wang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Huiqing Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Chang Liu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xi Yang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Shanli Wu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xin Jiang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Mujie Kan
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Caina Xu
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| |
Collapse
|
10
|
Yang F, Yang X, Su K, He Y, Lin Q. Synthesis and characterization of pendant N,N-dimethylaminobenzaldehyde-functionalized chitosan Schiff base composite (CS@MABA) as a new sorbent for removal of Pb(II) ions from aqueous media. Int J Biol Macromol 2023:124642. [PMID: 37119917 DOI: 10.1016/j.ijbiomac.2023.124642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
In this work, new pendant N,N-dimethylaminobenzaldehyde-functionalized chitosan Schiff base composite (CS@MABA) was prepared from the simple and convenient condensation reaction between chitosan (CS) and N,N-dimethylaminobenzaldehyde (MABA) in ethanol-glacial acetic acid (1:1 v/v) and characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscope (SEM). The as-prepared composite CS@MABA was applied for the removal of Pb(II) ions, due to the presence of imine, hydroxyl and phenyl groups, and the effects of important parameters such as solution pH, contact time and sorbent dosage on the removal percentage and adsorption capacity were investigated and discussed. The optimum conditions were found to be at pH 5, adsorbent dosage of 0.1 g, Pb(II) concentration of 50 mg/L and contact time of 60 min. The maximum Pb(II) removal percentage was found to be 94.28 % with the high adsorption capacity of 165 mg/g. The adsorption capacity of CS@MABA is remain 87 % after 5 adsorption-desorption cycles. The adsorption kinetic and isotherm studies indicated that the Pb(II) removal by CS@MABA follows a pseudo-first order and Langmuir models, respectively. Compared to similar compounds, the synthesized CS@MABA composite has shown a relatively high yield for removing Pb(II) ions. According to these results, the CS@MABA suggested for the sorption of other heavy metals.
Collapse
Affiliation(s)
- Fang Yang
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou 571199, China; College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
| | - Xingxing Yang
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou 571199, China; Department of Civil Engineering, Jiangxi Water Resources Institute, Nanchang 330013, China
| | - Kaimin Su
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
| | - Yun He
- College of Physics and Technology, Guangxi Normal University, Guilin 541004, China.
| | - Qing Lin
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou 571199, China; College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
11
|
Ovari TR, Szőke ÁF, Katona G, Szabó GS, Muresan LM. Temporary Anti-Corrosive Double Layer on Zinc Substrate Based on Chitosan Hydrogel and Epoxy Resin. Gels 2023; 9:gels9050361. [PMID: 37232953 DOI: 10.3390/gels9050361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
In practice, metal structures are frequently transported or stored before being used. Even in such circumstances, the corrosion process caused by environmental factors (moisture, salty air, etc.) can occur quite easily. To avoid this, metal surfaces can be protected with temporary coatings. The objective of this research was to develop coatings that exhibit effective protective characteristics while also allowing for easy removal, if required. Novel, chitosan/epoxy double layers were prepared on zinc by dip-coating to obtain temporary tailor-made and peelable-on-demand, anti-corrosive coatings. Chitosan hydrogel fulfills the role of a primer that acts as an intermediary between the zinc substrate and the epoxy film to obtain better adhesion and specialization. The resulting coatings were characterized using electrochemical impedance spectroscopy, contact angle measurements, Raman spectroscopy, and scanning electron microscopy. The impedance of the bare zinc was increased by three orders of magnitude when the protective coatings were applied, proving efficient anti-corrosive protection. The chitosan sublayer improved the adhesion of the protective epoxy coating. The structural integrity and absolute impedance of the protective layers were conserved in both basic and neutral environments. However, after fulfilling its lifespan, the chitosan/epoxy double-layered coating could be removed after treatment with a mild acid without damaging the substrate. This was because of the hydrophilic properties of the epoxy layer, as well as the tendency of chitosan to swell in acidic conditions.
Collapse
Affiliation(s)
- Tamara-Rita Ovari
- Department of Chemical Engineering, Research Center in Electrochemistry and Non-Conventional Materials, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, RO-400028 Cluj-Napoca, Romania
| | - Árpád Ferenc Szőke
- Department of Chemistry and Chemical Engineering of the Hungarian Line, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, RO-400028 Cluj-Napoca, Romania
| | - Gabriel Katona
- Department of Chemistry and Chemical Engineering of the Hungarian Line, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, RO-400028 Cluj-Napoca, Romania
| | - Gabriella Stefánia Szabó
- Department of Chemistry and Chemical Engineering of the Hungarian Line, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, RO-400028 Cluj-Napoca, Romania
| | - Liana Maria Muresan
- Department of Chemical Engineering, Research Center in Electrochemistry and Non-Conventional Materials, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, RO-400028 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Abdel-Raouf MES, Farag RK, Farag AA, Keshawy M, Abdel-Aziz A, Hasan A. Chitosan-Based Architectures as an Effective Approach for the Removal of Some Toxic Species from Aqueous Media. ACS OMEGA 2023; 8:10086-10099. [PMID: 36969416 PMCID: PMC10035021 DOI: 10.1021/acsomega.2c07264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/24/2023] [Indexed: 05/31/2023]
Abstract
Modified uncrosslinked and crosslinked chitosan derivatives were investigated as green sorbents for the removal of copper (Cu2+) and lead (Pb2+) cations from simulated solutions. In this regard, N, O carboxymethyl chitosan (N, O CMC), chitosan beads (Cs-g-GA), chitosan crosslinked with glutaraldehyde/methylene bisacrylamide (Cs/GA/MBA), and chitosan crosslinked with GA/epichlorohydrin (Cs/GA/ECH) were prepared and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy analyses. Atomic force microscopy investigation was carried out to compare the surface topography of the prepared samples before and after the metal uptake. The kinetics of the removal process were investigated by pseudo-first-order and -second-order models. Moreover, the adsorption isotherms were carefully studied by applying Langmuir and Freundlich models. The data reveal that upon adsorption of copper(II) metal ions, all chitosan-modified products followed the Langmuir isotherm except for Cs/GA/ECH which followed the Freundlich isotherms, and the highest adsorption capacity (q e) was obtained for Cs/GA/MBA due to the formation of stable chelate structures between the metal cation and the functional groups present on the modified chitosan product. The order of metal uptake at the optimum pH value is as follows: Cs/GA/MBA (Cu: 95.7 mg/g, Pb: 99.15 mg/g), Cs/GA/ECH (Cu: 80.4 mg/g, Pb: 93.14 mg/g), Cs-g-GA (Cu: 77 mg/g, Pb: 88.4 mg/g), and N, O CMCh (Cu: 30.2 mg/g, Pb: 44.8 mg/g). The AFM data confirmed the metal uptake process by comparing the roughness and height measurements of the free sorbents and the metal-loaded sorbents.
Collapse
|
13
|
Ola ATT, Heryanto H, Armynah B, Tahir D. Bibliometric analysis of chitosan research for wastewater treatment: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:474. [PMID: 36928989 DOI: 10.1007/s10661-023-11094-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Wastewater has negative impacts on the environment, such as destroying aquatic ecosystems and creating a shortage of clean water sources for consumption. In this paper, we provide a comprehensive bibliometric analysis of chitosan to better understand the evolution in degrading various pollutants as a wastewater treatment research limited only by photocatalyst system published in 2001-2021. The number of publications analyzed a total of 456 documents, which was conducted from the Scopus database. All data in this paper was visualized by using open-source software, VOSviewer and Tableau, to perform bibliometric analysis and scientific mapping. The reason for choosing chitosan is its ability to degrade various pollutants with high adsorption performance (from various sources: degradation Congo red 98.4%, methylene blue 99.36%, rhodamine B 95%, and Cd(II) 94%), non-toxicity, biodegradability, and abundantly available sources in nature. The analysis results show that the highest number of publications in 2016 was 66, and the highest number of citations was 2258. The network of keywords and innovations for wastewater treatment is USA and China as the most productive countries with many cooperative relations. This paper helps scholars understand the evolution of composite chitosan-based photocatalyst systems as research on wastewater treatment from a bibliometric point of view and inspires them to develop new efficient methods in synthesizing chitosan from fish by-products (waste) with high adsorption efficiency for various type of waste.
Collapse
Affiliation(s)
| | - Heryanto Heryanto
- Department of Physics, Hasanuddin University, Makassar, 90245, Indonesia
| | - Bidayatul Armynah
- Department of Physics, Hasanuddin University, Makassar, 90245, Indonesia
| | - Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar, 90245, Indonesia.
| |
Collapse
|
14
|
Wei W, Wu H, Chen Y, Zhong K, Feng L. Application of new chitosan 2,4-dihydroxyacetophenone Schiff base @SrFe 12O 19 nanocomposite for remove of Pb(II) ion from aqueous solution. Int J Biol Macromol 2023; 226:336-344. [PMID: 36502945 DOI: 10.1016/j.ijbiomac.2022.12.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
A new chitosan 2,4-dihydroxyacetophenone Schiff base @SrFe12O19 (Cs-SB@SrFe12O19) nanocomposite was successfully prepared by one-pot reaction and fully characterized for its functional groups, morphology, elemental analysis and thermal behavior by FT-IR, XRD, VSM, DSC, TGA, zeta potential, FE-SEM and EDS techniques. The VSM result showed that Cs-SB@SrFe12O19 has Ms of 11.81 emu/g and Hc of 5488 Oe, known as hard magnetic material. Finally, the as-prepared sample utilized as a new sorbent for the removal of Pb(II) ions from aqueous solution by using batch adsorption experiments. The adsorption of Pb(II) was carried out at different pH, contact time and initial dose of Cs-SB@SrFe12O19. The maximum adsorption capacity was found to be 132 mg/g (99 %) at pH 5 and the contact time of 120 min. Finally, the kinetic studies reveals that the adsorption process of Cs-SB@SrFe12O19 followed by the pseudo second order kinetics model. Also, the sample showed excellent recyclable efficiency up to 5 cycles.
Collapse
Affiliation(s)
- Wei Wei
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230061, China; Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Hefei 230061, China
| | - Houfan Wu
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230061, China; Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, Hefei 230061, China
| | - Yuning Chen
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Kunyu Zhong
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Li Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
15
|
Xu W, Liu X, Tang K. Adsorption of hydroquinone and Pb(II) from water by β-cyclodextrin/polyethyleneimine bi-functional polymer. Carbohydr Polym 2022; 294:119806. [PMID: 35868766 DOI: 10.1016/j.carbpol.2022.119806] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022]
Abstract
A novel bi-functional β-cyclodextrin polymer (CD@TCT@PEI) was synthesized for the removal of hydroquinone and Pb(II) from wastewater. The structure and adsorption performance of CD@TCT@PEI towards hydroquinone and Pb(II) were studied comprehensively. Both of the adsorption processes fit the pseudo-second-order kinetic model well. The adsorption isotherms of hydroquinone and Pb(II) could be described well by Langmuir isotherm model, and the maximum adsorption capacities of hydroquinone and Pb(II) are 364.86 and 113.52 mg g-1, respectively. The adsorption of hydroquinone and Pb(II) on CD@TCT@PEI is an exothermic and spontaneous process. The adsorbed CD@TCT@PEI could be regenerated easily, and can still maintain high adsorption performance after 5 cycles. The electrostatic interaction and coordination interaction account for the adsorption of Pb(II), and inclusion of cyclodextrin and hydrogen-bond interaction are responsible for hydroquinone adsorption. This study provides some insights to design an adsorbent that can simultaneously remove heavy metal ions and organic micropollutants from wastewater.
Collapse
Affiliation(s)
- Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Xiang Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China.
| |
Collapse
|
16
|
Jasim SA, Abdelbasset WK, Hachem K, Kadhim MM, Yasin G, Obaid MA, Hussein BA, Lafta HA, Mustafa YF, Mahmoud ZH. Novel
Gd
2
O
3
/
SrFe
12
O
19
@Schiff base chitosan (Gd/
SrFe
@
SBCs
) nanocomposite as a novel magnetic sorbent for the removal of Pb(
II
) and Cd(
II
) ions from aqueous solution. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University Al Kharj Saudi Arabia
- Department of Physical Therapy Kasr Al‐Aini Hospital, Cairo University Giza Egypt
| | - Kadda Hachem
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Faculty of Sciences University of Saida ‐ Dr Moulay Tahar Saïda Algeria
| | - Mustafa M. Kadhim
- Department of Dentistry Kut University College Kut Iraq
- College of Technical Engineering, The Islamic University Najaf Iraq
- Department of Pharmacy Osol Aldeen University College Baghdad Iraq
| | - Ghulam Yasin
- Department of Botany Bahauddin Zakariya University Multan Pakistan
| | - Maithm A. Obaid
- National University of Science and Technology, College of Pharmacy Thi Qar Iraq
| | | | - Holya A. Lafta
- Department of Physics Al‐Nisour University College Baghdad Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry College of Pharmacy, University of Mosul Mosul Iraq
| | | |
Collapse
|
17
|
Dual-Modified Lignin-Assembled Multilayer Microsphere with Excellent Pb 2+ Capture. Polymers (Basel) 2022; 14:polym14142824. [PMID: 35890601 PMCID: PMC9319401 DOI: 10.3390/polym14142824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 01/27/2023] Open
Abstract
With the continuous research on lignin-based sorbents, there are still limitations in the research of spherical sorbents with a high adsorption capacity for Pb2+. In order to solve the problem of low adsorption effect, alkali lignin (AL) was modified and assembled to increase the adsorption active sites. In this work, we used dual-modified lignin (DML) as a raw material to assemble a singular lignin-based multilayer microsphere (LMM) with sodium alginate (SA) and dopamine. The prepared adsorbent had various active functional groups and spherical structures; the specific surface area was 2.14 m2/g and the average pore size was 8.32 nm. The adsorption process followed the Freundlich isotherm and the second-order kinetic model. Therefore, the LMM adsorbed Pb2+ ascribed by the electrostatic attraction and surface complexation; the adsorption capacity was 250 mg/g. The LMM showed a selective adsorption performance for Pb2+ and the adsorption capacity followed the order Pb2+ (187.4 mg/g) > Cu2+(168.0 mg/g) > Mn2+(166.5 mg/g). After three cycles, the removal efficiency of Pb2+ by the LMM was 69.34%, indicating the reproducibility of LMM.
Collapse
|
18
|
Jasim SA, Hachem K, Abed Hussein S, Turki Jalil A, Hameed NM, Dehno Khalaji A. New chitosan modified with epichlohydrin and bidentate Schiff base applied to removal of Pb
2+
and Cd
2+
ions. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Kadda Hachem
- Laboratory of Biotoxicology, Pharmacognosy and Biological Valorization of Plants (LBPVBP), Faculty of Sciences University of Saida Saïda Algeria
| | | | | | - Noora M. Hameed
- Anesthesia Techniques, Al–Nisour University College Baghdad Iraq
| | | |
Collapse
|
19
|
Li QG, Liu GH, Qi L, Wang HC, Ye ZF, Zhao QL. Heavy metal-contained wastewater in China: Discharge, management and treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152091. [PMID: 34863767 DOI: 10.1016/j.scitotenv.2021.152091] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 05/22/2023]
Abstract
A large amount of heavy metal-contained wastewater (HMW) was discharged during Chinese industry development, which has caused many environmental problems. This study reviewed discharge, management and treatment of HMW in China through collecting and analyzing data from China's official statistical yearbook, standards, technical specifications, government reports, case reports, and research paper. Results showed that industry wastewater discharged by an amount of about 221.6 × 108 t (in 2012), where emission of heavy metals including Pb, Hg, Cd, Cr(VI), T-Cr was around 388.4 t (in 2012). Heavy metal emission with wastewater in east China and central south China was observed to be graver than that in other areas. However, control of heavy metals in Pb and Cd in northwest China was more difficult compared with other areas. In terms of management, China's government has issued many wastewater discharge standards, strict management policies for controlling HMW discharge in recent years, resulting in reduced HMW discharge. In addition, main HMW treatment technology in China was chemical precipitation, and other technologies such as membrane separation, adsorption, ion exchange, electrochemical and biological methods were also occasionally applied. In the future, chemical industries will be concentrated in northwest China, therefore control of HMW discharge should be paid much more attention in those areas. In addition, more effective and environment-friendly heavy metal removal and regeneration technologies should be developed, such as biomaterials adsorbent.
Collapse
Affiliation(s)
- Qian-Gang Li
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Guo-Hua Liu
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China.
| | - Lu Qi
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Hong-Chen Wang
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Zheng-Fang Ye
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Quan-Lin Zhao
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Ali SA, Mubarak SA, Yaagoob IY, Arshad Z, Mazumder MAJ. A sorbent containing pH-responsive chelating residues of aspartic and maleic acids for mitigation of toxic metal ions, cationic, and anionic dyes. RSC Adv 2022; 12:5938-5952. [PMID: 35424571 PMCID: PMC8981974 DOI: 10.1039/d1ra09234k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/13/2022] [Indexed: 11/21/2022] Open
Abstract
t-Butyl hydroperoxide-initiated cycloterpolymerization of diallylaminoaspartic acid hydrochloride [(CH2[double bond, length as m-dash]CHCH2)2NH+CH(CO2H)CH2CO2H Cl-] (I), maleic acid (HO2CH[double bond, length as m-dash]CHCO2H) (II) and cross-linker tetraallylhexane-1,6-diamine dihydrochloride [(CH2[double bond, length as m-dash]CHCH2)2NH+(CH2)6NH+ (CH2CH[double bond, length as m-dash]CH2)2 2Cl-] (III) afforded a new pH-responsive resin (IV), loaded with four CO2H and a chelating motif of NH+⋯CO2 - in each repeating unit. The removal of cationic methylene blue (MB) (3000 ppm) at pH 7.25 and Pb(ii) (200 ppm) at pH 6 by IV at 298, 313, and 328 K followed second-order kinetics with E a of 33.4 and 40.7 kJ mol-1, respectively. Both MB and Pb(ii) were removed fast, accounting for 97.7% removal of MB within 15 min at 313 K and 94% of Pb(ii) removal within 1 min. The super-adsorbent resin gave respective q max values of 2609 mg g-1 and 873 mg g-1 for MB and Pb(ii). IV was also found to trap anionic dyes; it removed 91% Eriochrome Black T (EBT) from its 50 ppm solutions at pH 2. The resin was found to be effective in reducing priority metal contaminants (like Cr, Hg, Pb) in industrial wastewater to sub-ppb levels. The synthesis of the recyclable resin can be easily scaled up from inexpensive starting materials. The resin has been found to be better than many recently reported sorbents.
Collapse
Affiliation(s)
- Shaikh A Ali
- Chemistry Department, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia +966 13 860 4277 +966 13 860 7836
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Shuaib A Mubarak
- Chemistry Department, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia +966 13 860 4277 +966 13 860 7836
| | - Ibrahim Y Yaagoob
- Chemistry Department, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia +966 13 860 4277 +966 13 860 7836
| | - Zeeshan Arshad
- Chemistry Department, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia +966 13 860 4277 +966 13 860 7836
| | - Mohammad A J Mazumder
- Chemistry Department, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia +966 13 860 4277 +966 13 860 7836
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| |
Collapse
|
21
|
Cu(II) and Au(III) recovery with electrospun lignosulfonate CO 2-activated carbon fiber. Int J Biol Macromol 2022; 203:505-514. [PMID: 35093439 DOI: 10.1016/j.ijbiomac.2022.01.124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/20/2022]
Abstract
The objectives of this study were twofold: developing lignosulfonate activated carbon fibers (LACFs) and determining the corresponding metal recovery mechanisms with batch experiments and non-linear modeling. LACFs were developed through electrospinning, followed by CO2-based physical activation. Physical and chemical characterizations revealed that the LACF sample that was activated for 60 min exhibited a higher specific surface area (376.54 m2/g), larger total pore volume (0.30 cm3/g), higher micropore ratio (32%), and more acidic and sulfur functional groups than did the other samples. Cu(II) and Au(III) adsorption behaviors on the LACF could be described with the Freundlich and Langmuir model, respectively. Both systems consist of physisorption and chemisorption, and the mechanisms include electrostatic forces, Van der Walls forces, cation exchange, surface complexation. In particular, Au(III) adsorption was faster, and LACF-Au bonds were stronger due to the additional microprecipitation. Furthermore, the LACF sample could regenerate after three adsorption-desorption cycles. Overall, this study provides the foundation for developing physically activated lignosulfonate carbon and its application in recovering valuable metal ions.
Collapse
|
22
|
Adsorption Characteristics of Chitosan-Modified Bamboo Biochar in Cd(II) Contaminated Water. J CHEM-NY 2022. [DOI: 10.1155/2022/6303252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to fabricate a low-cost and eco-friendly adsorbent using bamboo biochar (BB), a kind of charcoal composed of high Brunauer–Emmett–Teller surface area and variety of functional groups, and chitosan as substrates for remediation of Cd(II) in Cd(II) contaminated water and characterized the functional group characteristics, surface morphology, and Cd(II) adsorption effect using the Fourier transform infrared (FT-IR), scanning electron microscope (SEM), and energy-dispersive X-ray spectrometer (EDS). Results showed that chitosan-modified bamboo biochar (CBB) provided more active adsorption sites (such as –NH2, –COOH, –OH, and C=O) on the surface to enhance the Cd(II) removal efficiency in Cd(II) contaminated wastewater. Meanwhile, the optimal pH, contact time, and dose of CBB on the Cd(II) removal efficiency are 7, 120 min, and 600 mg, respectively. In addition, the adsorption isotherm results revealed that the possible adsorption mechanisms might include surface adsorption, electrostatic adsorption, and ion exchanges. Furthermore, the maximum adsorption capacity (Qm) values predicted from the Langmuir model were 37.74 and 93.46 mg/g for BB and CBB, respectively, also indicating a potential application of CBB in practical wastewater. Desorption and regeneration of CBB were attained simultaneously and the results showed that even after five cycles of adsorption-elution, the adsorption and desorption of CBB exhibited a slight decline and still reached at 71.70% and 65.92%. Results from this study would provide a reference to functionalized CBB for Cd(II) adsorption in contaminated water.
Collapse
|
23
|
Jiang Q, Han Z, Li W, Ji T, Yuan Y, Zhang J, Zhao C, Cheng Z, Wang S. Adsorption properties of heavy metals and antibiotics by chitosan from larvae and adult Trypoxylus dichotomus. Carbohydr Polym 2022; 276:118735. [PMID: 34823771 DOI: 10.1016/j.carbpol.2021.118735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/26/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022]
Abstract
Chitosan was prepared by hydrothermal deacetylation from multi-step protein purification chitin based on Trypoxylus dichotomus, for treating heavy metals and antibiotics. Chitosan with higher deacetylation degree and lower molecular weight were synthesized. The adult chitosan was composed of nanofibers arranged more evenly, showing higher yield, thermal stabilities and antimicrobial properties. The adsorption capacities of Cu2+ and Fe3+ were 462 and 270 mg/g, lower than 934 mg/g of Pb2+. Levofloxacin and tetracycline hydrochloride adsorption capacity were 26 and 22 mg/g, lower than 67 mg/g of sulfamethoxazole. In addition, compared with single pollutants, the adsorption of sulfamethoxazole and Pb2+ can increase by 6% and 5% when they act as composite contaminants. The adsorption procedure can be well described by pseudo-second-order kinetics and Langmuir isothermal model, indicating it a homogeneous monolayer chemisorption. Therefore, the Trypoxylus dichotomus source chitosan prepared by hydrothermal deacetylation has potential applications in the adsorption of complex pollutants.
Collapse
Affiliation(s)
- Qiushi Jiang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China
| | - Zhaolian Han
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China
| | - Weiping Li
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China
| | - Tingxu Ji
- College of Plant protection, Jilin Agricultural University, Changchun 130118, People's Republic of China
| | - Yafeng Yuan
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China
| | - Junjie Zhang
- Jilin Province Technology Research Center of Biological Control Engineering, Jilin Agricultural University, Changchun 130118, People's Republic of China
| | - Chunli Zhao
- College of Horticulture, Jilin Agricultural University, Changchun 130118, People's Republic of China
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, People's Republic of China.
| | - Song Wang
- Urology department of the first hospital of Jilin University, 71# Xinmin street, Changchun 130000, People's Republic of China.
| |
Collapse
|
24
|
Yang Y, Zeng L, Lin Z, Jiang H, Zhang A. Adsorption of Pb 2+, Cu 2+ and Cd 2+ by sulfhydryl modified chitosan beads. Carbohydr Polym 2021; 274:118622. [PMID: 34702451 DOI: 10.1016/j.carbpol.2021.118622] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
A chitosan-based bead was synthesized by crosslinking as well as sulfhydryl modification reaction and its removal ability of Pb2+, Cu2+ and Cd2+ was investigated. The test results showed that the crystal structure of chitosan was destroyed completely and the specific surface area was greatly increased after modification. The adsorption of Pb2+, Cu2+ and Cd2+ by the beads was carried out at different pH, ionic strength, contact time and initial concentration and the maximum adsorption capacities were 273.7 mg/g, 163.3 mg/g and 183.1 mg/g, respectively. Furthermore, due to the large ion radius of Pb2+, its adsorption was seriously disturbed by other ions in the competitive adsorption process. Finally, the adsorption processes of Pb2+, Cu2+ and Cd2+ were well fitted by the Langmuir isotherm model and the pseudo second-order kinetics model, respectively. Combined with the results of X-ray photoelectron spectroscopy, chemical coordination is the main adsorption mechanism.
Collapse
Affiliation(s)
- Yuru Yang
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Lei Zeng
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Zongkun Lin
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Huabin Jiang
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, P.R. China
| | - Aiping Zhang
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou 510642, P.R. China.
| |
Collapse
|
25
|
Preparation and Antimicrobial Activity of Chitosan and Its Derivatives: A Concise Review. Molecules 2021; 26:molecules26123694. [PMID: 34204251 PMCID: PMC8233993 DOI: 10.3390/molecules26123694] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the advantages presented by synthetic polymers such as strength and durability, the lack of biodegradability associated with the persistence in the environment for a long time turned the attention of researchers to natural polymers. Being biodegradable, biopolymers proved to be extremely beneficial to the environment. At present, they represent an important class of materials with applications in all economic sectors, but also in medicine. They find applications as absorbers, cosmetics, controlled drug delivery, tissue engineering, etc. Chitosan is one of the natural polymers which raised a strong interest for researchers due to some exceptional properties such as biodegradability, biocompatibility, nontoxicity, non-antigenicity, low-cost and numerous pharmacological properties as antimicrobial, antitumor, antioxidant, antidiabetic, immunoenhancing. In addition to this, the free amino and hydroxyl groups make it susceptible to a series of structural modulations, obtaining some derivatives with different biomedical applications. This review approaches the physico-chemical and pharmacological properties of chitosan and its derivatives, focusing on the antimicrobial potential including mechanism of action, factors that influence the antimicrobial activity and the activity against resistant strains, topics of great interest in the context of the concern raised by the available therapeutic options for infections, especially with resistant strains.
Collapse
|