1
|
Pawde SV, Kaewprachu P, Kingwascharapong P, Sai-Ut S, Karbowiak T, Jung YH, Rawdkuen S. A comprehensive review on plant protein-based food packaging: Beyond petroleum-based polymers. Curr Res Food Sci 2025; 10:101104. [PMID: 40529645 PMCID: PMC12173619 DOI: 10.1016/j.crfs.2025.101104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/23/2025] [Accepted: 06/01/2025] [Indexed: 06/20/2025] Open
Abstract
In the era of biodegradable packaging, protein-based biopolymers have emerged as a sustainable alternative to petroleum-based polymers due to their unique properties. Despite significant advances in this field, a comprehensive analysis of recent technological innovations with commercial viability assessments remains lacking. This review addressed this gap by systematically examining recent lab development in plant protein-based packaging, including sources, fabrication methods, real-time applications, commercial challenges, and their relationship to food packaging applications. Through analysis of recent studies, 2020-2025, we identify recent research trends that have focused on enhancing the properties of biodegradable polymers by incorporating antimicrobial, insecticidal, and antifungal agents, thereby creating active systems to prolong the shelf life of foods. Furthermore, our critical evaluation of advancements in fabrication techniques such as 3D printing, electrospinning, co-polymerization, casting, molding, extrusion, and coating has enabled the production of protein-based packaging with diverse shapes and properties. This review uniquely bridges the gap between laboratory innovations and commercial applications by examining current trends in sources, functions, applications, and future commercial challenges associated with plant protein-based packaging. By understanding the potential of these biopolymers, we can contribute to the development of sustainable and innovative packaging solutions within the food industries, offering a roadmap for both researchers and industry stakeholders.
Collapse
Affiliation(s)
- Subhash V. Pawde
- Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Pimonpan Kaewprachu
- Faculty of Agro-Industry, Chiang Mai University, Samut Sakhon, 74000, Thailand
| | | | - Samart Sai-Ut
- Department of Food Science, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Thomas Karbowiak
- Universit'e de Bourgogne Franche-Comt′e, Institut Agro, UMR PAM A02.102, 1 Esplanade Erasme, Dijon, 21000, France
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Saroat Rawdkuen
- Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| |
Collapse
|
2
|
Aggarwal S, Kathuria D, Singh N. Edible films and coatings, its chemical crosslinking, starch-protein interaction and application in food system: A systematic review. Int J Biol Macromol 2025; 306:141726. [PMID: 40043974 DOI: 10.1016/j.ijbiomac.2025.141726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 05/11/2025]
Abstract
Food waste is a significant issue for food packaging companies, with extending the shelf life of perishable items a primary goal of modern preservation technology. Edible films and coatings (EFC) offer a promising, sustainable solution to this challenge, drawing attention for their effectiveness in reducing waste by prolonging food shelf life. These coatings and films incorporates binding agents (food-grade), solvents, and additives (plasticizers, surfactants, cross-linkers, antimicrobial agents, nanoparticles, and fruit or vegetable residues) to modify EFC properties. Biopolymers in EFCs, when combined with plasticizers and other additives, alter the film and coatings physical and functional characteristics. The film-forming processes involve intermolecular forces like covalent bonding (disulphide bonds and cross-linking) along with electrostatic, hydrophobic, and ionic interactions. EFC are produced through methods like spraying, dipping, extrusion etc. Integrating polysaccharide, protein, and lipid ingredients into the film and coating matrix improves the quality of minimally processed or fresh-cut foods, helping to reduce post-harvest losses of perishable items. Broader adoption of EFCs by consumers and the food industry would enhance food quality and bring social and environmental benefits. This research compiles extensive information on EFC-forming materials-such as gums, nanoparticles, and horticultural residues-demonstrating their effectiveness, regulatory considerations, and protective qualities across various food types.
Collapse
Affiliation(s)
- Sonal Aggarwal
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Deepika Kathuria
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India.
| |
Collapse
|
3
|
Filimon A, Dobos AM, Onofrei MD, Serbezeanu D. Polyvinyl Alcohol-Based Membranes: A Review of Research Progress on Design and Predictive Modeling of Properties for Targeted Application. Polymers (Basel) 2025; 17:1016. [PMID: 40284281 PMCID: PMC12030392 DOI: 10.3390/polym17081016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
This review provides a comprehensive evaluation of the current state of polyvinyl alcohol (PVA)-based membranes, emphasizing their significance in membrane technology for various applications. The analysis encompasses both experimental and theoretical research articles, with a focus on recent decades, aiming to elucidate the potential and limitations of different fabrication approaches, structure-property relationships, and their applicability in the real world. The review begins by examining the advanced polymeric materials and strategies employed in the design and processing of membranes with tailored properties. Fundamental principles of membrane processes are introduced, with a focus on general modeling approaches for describing the fluid transport through membranes. A key aspect of discussion is the distinction between the membrane performance and process performance. Additionally, an in-depth analysis of PVA membranes in various applications is presented, particularly in environmental fields (e.g., fuel cell, water treatment, air purification, and food packaging) and biomedical domains (e.g., drug delivery systems, wound healing, tissue engineering and regenerative medicine, hemodialysis and artificial organs, and ophthalmic and periodontal treatment). Special attention is given to the relationship between membranes' characteristics, such as material composition, structure, and processing parameters, and their overall performance, in terms of permeability, selectivity, and stability. Despite their promising properties, enhanced through innovative fabrication methods that expand their applicability, challenges remain in optimizing long-term stability, improving fouling resistance, and increasing process scalability. Therefore, further research is needed to develop novel modifications and composite structures that overcome these limitations and enhance the practical implementation of PVA-based membranes. By offering a systematic overview, this review aims to advance the understanding of PVA membrane fabrication, properties, and functionality, providing valuable insights for continued development and optimization in membrane technology.
Collapse
Affiliation(s)
- Anca Filimon
- “Petru Poni” Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.M.D.); (M.D.O.); (D.S.)
| | | | | | | |
Collapse
|
4
|
Latos-Brozio M, Rułka K, Masek A. Review of Bio-Fillers Dedicated to Polymer Compositions. Chem Biodivers 2025:e202500406. [PMID: 40167387 DOI: 10.1002/cbdv.202500406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/02/2025]
Abstract
Bio-fillers are functional substances that are increasingly added to polymer compositions due to their unique properties and sustainable nature. There is a lack of a review publication that comprehensively describes bio-fillers from different natural origins in various types of polymer, although there are many publications focusing on a narrow range of bio-filler applications. The aim of this publication is to review the correlation between bio-fillers and their effect on polymer properties, including mechanical and thermal properties and degradation processes. The scope of the work covers the analysis of cellulose bio-fillers (nanocellulose, bacterial cellulose, and plant waste raw materials), starch, protein-based bio-fillers (of plant and animal origin), and mineral fillers, as well as methods of their modification to improve compatibility with polymers. The work systematizes the current knowledge on different types of bio-fillers used in polymers and indicates the challenges faced by the use of bio-fillers.
Collapse
Affiliation(s)
- Malgorzata Latos-Brozio
- Institute of Polymer and Dye Technology, Department of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Kamila Rułka
- Institute of Polymer and Dye Technology, Department of Chemistry, Lodz University of Technology, Lodz, Poland
| | - Anna Masek
- Institute of Polymer and Dye Technology, Department of Chemistry, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
5
|
Sachan RSK, Kumar A, Karnwal A, Paramasivam P, Agrawal A, Ayanie AG. Screening and characterization of PHA producing bacteria from sewage water identifying Bacillus paranthracis RSKS-3 for bioplastic production. BMC Microbiol 2025; 25:136. [PMID: 40087570 PMCID: PMC11908031 DOI: 10.1186/s12866-025-03841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/21/2025] [Indexed: 03/17/2025] Open
Abstract
Polyhydroxyalkanoate (PHA) as bioplastic is considered a replacement for conventional plastic due to its more beneficial properties. The ability of PHA to biodegrade in a shorter period is a major advantage. Different sewage water samples were collected from the Budha Nala near the Maheru regions of Punjab. PHA-producing bacteria were isolated using minimal salt media supplemented with Nile blue. Further screening was carried out using Sudan Black B stain and Nile red stain. The positive isolates were characterized for gram reaction, motility, and biochemical tests. The individual isolates were later screened for maximum PHA accumulation using minimal salt supplemented with glucose. The extracted PHA was characterized using FTIR, XRD, SEM, UV spectroscopy, NMR, and TGA. Twenty-six different PHA-producing bacteria were isolated on minimal salt media supplemented with Nile blue. Upon Sudan Black B stain and Nile red stain, nineteen isolates showed black granules and orange fluorescence bodies under 100X magnification that confirmed polyhydroxyalkanoates. The biochemical tests partially characterized isolates belonging to the Bacillus genus. All the isolates produced PHA in granular form, however, isolate P-3 showed maximum production of 0.068 g/L. The extracted PHA was characterized using FTIR and XRD for its chemical and crystallinity studies and the UV spectroscopy confirmed the extracted PHA by analyzing absorption spectra at 235 nm of standard crotonic acid and sulfuric acid conversion of PHA to crotonic acid. The isolated P-3, Bacillus paranthracis RSKS-3 is the first reported bacterium to produce polyhydroxyalkanoates. Further studies is necessary to optimize the production efficiency of the bacterium for maximum PHA yield.
Collapse
Affiliation(s)
- Rohan Samir Kumar Sachan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Department of Medical Laboratory Sciences, School of Allied and Healthcare Sciences, GNA University, Phagwara-144401, Punjab, India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, 620002, Russia
- Department of Technical Sciences, Western Caspian University, Baku, AZ1033, Azerbaijan
- Refrigeration &Air-condition Department, Technical Engineering College, The Islamic University, Najaf, Iraq
| | - Arun Karnwal
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun-248009, Uttarakhand, India.
| | - Prabhu Paramasivam
- Department of Research and Innovation, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, 602105, India.
| | - Ashish Agrawal
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Abinet Gosaye Ayanie
- Department of Mechanical Engineering, Adama Science and Technology University, Adama, 2552, Ethiopia.
| |
Collapse
|
6
|
Yadav P, Mahapatra U, Sharma R, Rustagi S, Katyal M, Sharma M, Nayak PK, Nath PC, Sridhar K. Recent advances in plant protein-based sustainable edible film and coatings for applications in the food-pharma industry - Opportunities and challenges: A review. Int J Biol Macromol 2025; 296:139698. [PMID: 39798769 DOI: 10.1016/j.ijbiomac.2025.139698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Plant protein-based edible film and coatings have emerged as eco-friendly alternatives to synthetic packaging, offering biodegradable, non-toxic solutions. Their biocompatibility and film-forming properties make them suitable for direct application on food products, reducing reliance on non-degradable plastics and lowering environmental pollution. Despite their promising advantages, challenges remain in optimizing mechanical properties, production scalability, and consumer acceptance. This review explores various plant protein sources, latest developments in film-forming techniques, and approaches to address current challenges in developing protein-based film and coatings, highlighting their potential applications in food-pharma industries. Plant-based protein films and coatings have good gas barriers and mechanical qualities. Using plasticizers and post treatments improved physical and mechanical properties of protein-based film and coatings. Moreover, plant protein-based films (PBFs) with active components can slow microbial growth and lipid oxidation. Overall, plant protein-based edible films and coatings hold promise for improving food quality and safety by incorporating bioactive compounds and enhancing barrier properties. However, gaps remain in optimizing their physio-mechanical characteristics, scaling up production, and exploring novel protein sources for diverse applications in food and pharmaceuticals.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Food Technology, Uttaranchal University, Dehradun 248007, India
| | - Uttara Mahapatra
- Department of Biotechnology, Techno India University, Kolkata 700091, India
| | - Ramesh Sharma
- Department of Food Technology, Sri Shakti Institute of Engineering and Technology, Coimbatore 641062, India
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun 248007, India
| | - Mehak Katyal
- Department of Nutrition and Dietetics, Manav Rachna International Institute of Research and Studies, Faridabad 121004, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
| | - Pinku Chandra Nath
- Research and Development Cell, Biotechnology Department, Manav Rachna International Institute of Research and Studies, Faridabad 121004, Haryana, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
7
|
Rosenow P, Fernández-Ayuso C, López-García P, Minguez-Enkovaara LF. Design, New Materials, and Production Challenges of Bioplastics-Based Food Packaging. MATERIALS (BASEL, SWITZERLAND) 2025; 18:673. [PMID: 39942339 PMCID: PMC11819971 DOI: 10.3390/ma18030673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
This paper outlines the current design trends in food packaging, its main environmentally friendly material alternatives, and industrial processing technologies. In this respect, this important product has undergone several evolutions throughout history. Initially acting as a containment device, it has later evolved into a source of information and even a marketing platform for food companies, always with a view to extending shelf life. However, these functionalities are highly dependent on the materials used and their properties. In this respect, plastics have conquered the food packaging market due to their affordability and flexibility. Nevertheless, environmental concerns have arisen due to their impact on the environment, in addition to the introduction of stricter industry regulations and increased consumer environmental awareness. Therefore, this work found that the current design trends in food packaging are toward sustainability, reducing packaging complexity, with easier recycling, and material selection that combines both sustainability and functionality. In the case of bioplastics as a sustainable alternative, there is still room for improvement in their production, with careful consideration of their raw materials. In addition, their technical performance is generally lower, with challenges in barrier properties and processability, which could be addressed with the adoption of Industry 4.0.
Collapse
Affiliation(s)
- Phil Rosenow
- Fraunhofer Institute for Process Engineering and Packaging IVV, 85354 Freising, Germany;
| | - Carmen Fernández-Ayuso
- Centro Tecnológico Del Calzado y Del Plástico De La Región De Murcia (CETEC), 30840 Alhama de Murcia, Spain; (C.F.-A.); (P.L.-G.)
| | - Pedro López-García
- Centro Tecnológico Del Calzado y Del Plástico De La Región De Murcia (CETEC), 30840 Alhama de Murcia, Spain; (C.F.-A.); (P.L.-G.)
| | - Luis Francisco Minguez-Enkovaara
- Centro Tecnológico Del Calzado y Del Plástico De La Región De Murcia (CETEC), 30840 Alhama de Murcia, Spain; (C.F.-A.); (P.L.-G.)
| |
Collapse
|
8
|
Abedi-Firoozjah R, Bahramian B, Tavassoli M, Ahmadi N, Noori SMA, Hashemi M, Oladzadabbasabadi N, Assadpour E, Zhang F, Jafari SM. A comprehensive review of gum-based electrospun nanofibers for food packaging: Preparation, developments, and potential applications. Int J Biol Macromol 2025; 288:138717. [PMID: 39674448 DOI: 10.1016/j.ijbiomac.2024.138717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/17/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Gums represent an intriguing group of biopolymers utilized in the food industry owing to their exceptional properties. These intricate carbohydrate biomolecules possess the capacity to form gels and mucilage structures by binding with water. Their stabilizing potential, heightened viscosity, emulsifying characteristics, broad compatibility, and cost-effectiveness render them a valuable resource in the realm of food packaging. Electrospun nanofibers (ENFs) derived from gums offer an amplified surface-to-volume ratio in comparison to bulk materials at the macroscopic level, resulting in increased porosity and enhanced mechanical properties. These attributes have the potential to enhance surface functionalities and diversify their range of applications. Despite the limited availability of gum types for the synthesis of ENFs, extensive research has been dedicated to the advancement of gum-based ENFs and the exploration of their applications. This review paper delves into the influence of gum properties on solution spinnability and the prospective applications of gum-based ENFs in active and intelligent food packaging.
Collapse
Affiliation(s)
- Reza Abedi-Firoozjah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behnam Bahramian
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Tavassoli
- Department of Nutrition, Faculty of Health and Nutrition Sciences, Yasuj University of Medical Science, Yasuj, Iran.
| | - Neshat Ahmadi
- Department of Food Science and Technology, Islamic Azad University of Tabriz, Tabriz, Iran
| | - Seyyed Mohammad Ali Noori
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
9
|
Sun R, Li L, Zhou J, Zhang Y, Sun H, Zhang D, Wu Q. Development of Zein-PEG400/PVA-Chitosan Bilayer Films for Intelligent Packaging. Polymers (Basel) 2025; 17:387. [PMID: 39940589 PMCID: PMC11820536 DOI: 10.3390/polym17030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Zein exhibits excellent biodegradability, thermal stability, UV resistance, and water barrier properties, making it a promising candidate for food packaging applications. However, pure zein films suffer from brittleness and poor mechanical strength, which limit their practical use. In this study, a unique bilayer packaging film (ZP/P-C) was developed using a layer-by-layer solution casting technique, where hydrophobic zein was coated onto a polyvinyl alcohol and chitosan composite layer (P-C). Incorporating PEG400 into the zein layer improved the interfacial compatibility of the bilayer film, increasing its uniformity and toughness. The resulting bilayer films demonstrated enhanced mechanical properties, flexibility, and water vapor barrier performance. Specifically, the ZP7.5/P-C bilayer film showed an elongation at break of 68.74% and a modulus of elasticity of 187.19 MPa. It had a water vapor permeability of 6.60 × 10-11 g·m·m-2·s-1·Pa-1 and provided near-complete UV protection within the 200-350 nm range. Furthermore, an intelligent detection bilayer film was created by integrating anthocyanin extract into the zein layer. Adding anthocyanin improved the film's antioxidant properties and allowed it to respond colorimetrically to total volatile basic nitrogen. The bilayer film ZPBA1.0/P-C displayed an excellent antioxidant activity (45.8%) and remarkable color change (ΔE = 20.2) in response to ammonia, effectively indicating shrimp spoilage in 48 h (ΔE > 10). This investigation spotlights the potential of zein-based bilayer films in active and intelligent food packaging, offering innovative strategies to improve food safety and extend the shelf life of perishable goods.
Collapse
Affiliation(s)
- Rong Sun
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (L.L.); (J.Z.); (Y.Z.); (H.S.)
| | - Liangliang Li
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (L.L.); (J.Z.); (Y.Z.); (H.S.)
| | - Jiangjie Zhou
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (L.L.); (J.Z.); (Y.Z.); (H.S.)
| | - Yongfeng Zhang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (L.L.); (J.Z.); (Y.Z.); (H.S.)
| | - Haiya Sun
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; (L.L.); (J.Z.); (Y.Z.); (H.S.)
| | - Datong Zhang
- Hangzhou Hydrotech Co., Ltd., Hangzhou 311500, China
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
10
|
Kumar S, Dubey N, Kumar V, Choi I, Jeon J, Kim M. Combating micro/nano plastic pollution with bioplastic: Sustainable food packaging, challenges, and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125077. [PMID: 39369869 DOI: 10.1016/j.envpol.2024.125077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
The widespread use of plastic in food packaging provides significant challenges due to its non-biodegradability and the risk of hazardous chemicals seeping into food and the environment. This highlights the pressing need to come up with alternatives to traditional plastic that prioritize environmental sustainability, food quality, and safety. The current study presents an up-to-date examination of micro/nano plastic (MP/NP) consumption and their associated toxicity to human health, while also considering bioplastic as safer and eco-friendly alternative materials for packaging. The study contributes to a deeper comprehension of the primary materials utilized for bioplastic manufacturing and their potential for large-scale use. The key findings underscore the distinctive features of bioplastics, such as starch, polyhydroxyalkanoates, polylactic acid, and polybutylene succinate, as well as their blends with active agents, rendering them suitable for innovative food packaging applications. Moreover, the study includes a discussion of insights from various scientific literature, agency reports (governmental and non-governmental), and industry trends in bioplastic production and their potential to combat MP/NP pollution. In essence, the review highlights future research directions for the safe integration of bioplastics in food packaging, addresses outstanding questions, and proposes potential solutions to challenges linked with plastic usage.
Collapse
Affiliation(s)
- Subhash Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Namo Dubey
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Inho Choi
- Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
11
|
Li C, Yang Y, Zhang R, Wang J, Zhong S, Cui X. Chitosan-gelatin composite hydrogel antibacterial film for food packaging. Int J Biol Macromol 2024; 285:138330. [PMID: 39631233 DOI: 10.1016/j.ijbiomac.2024.138330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Antibacterial hydrogel film can serve as food packaging materials to prevent bacteria growth and spread, thereby extending shelf life and improve food safety. In this study, an efficient antibacterial hydrogel film (CLG) was prepared with chitosan, lysine, and gelatin. The light transmission of the CLG hydrogel film was over 80 % in the visible region, facilitating the observation of chicken breast storage conditions. Additionally, the swelling ratios of the hydrogel films decreased with increasing gelatin concentration, from 145.7 g/g (CLG1) to 92.6 g/g (CLG2) and 81.5 g/g (CLG3). This reduction was attributed to the denser network structure formed by the interaction between gelatin and the CL polymer. The Scanning Electron Microscopy (SEM) showed that the water-absorbed CLG hydrogel had a unique sponge shape. Moreover, the CLG hydrogel film exhibits high antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In a practical storage experiment, the CLG hydrogel film extended the shelf life of chicken breast by up to 4 days compared to untreated samples, while effectively reducing total volatile basic nitrogen (TVB-N) levels. This hydrogel film is expected to become a promising food packaging material.
Collapse
Affiliation(s)
- Chaoqun Li
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yongyan Yang
- College of Chemistry, Jilin University, Changchun 130012, PR China; Henan Academy of Sciences, Zhengzhou 450046, PR China
| | - Ruiting Zhang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Jia Wang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuangling Zhong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, PR China.
| | - Xuejun Cui
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
12
|
Chen S, Zhang H, Jiang Z, Ding X, Chen W, Ma N, Xu S, Yang L. Intelligent active packaging of sodium alginate and pectin mixed with Aronia melanocarpa anthocyanins and tea polyphenols for shrimp freshness monitoring and preservation. Int J Biol Macromol 2024; 283:137754. [PMID: 39571866 DOI: 10.1016/j.ijbiomac.2024.137754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/06/2024]
Abstract
In this study, an intelligent active packaging film was developed using sodium alginate (SA) and pectin (PC) as the film matrix, with Aronia melanocarpa anthocyanins (AMA) as a pH-sensitive indicator and tea polyphenol (TP) added to stabilize the anthocyanins. The results demonstrated that AMA and TP formed hydrogen bonds with polysaccharides, which reduced the surface roughness of the film and enhanced the compatibility of the component. The interaction between TP and AMA improved the stability of AMA, leading to an increase in anthocyanin retention rate from (29.56 ± 1.22)% to (40.67 ± 1.83)% after 4 days of UV irradiation. The addition of TP significantly enhanced the tensile strength (from 3.13 MPa to 4.26 MPa), UV-blocking properties, and antioxidant activity (with DPPH and ABTS radical scavenging activities being 4.8 and 9.6 times higher than those of the SA/PC film), as well as the antibacterial properties of the film. Additionally, the film exhibited a distinct color response to pH changes. Finally, the films were successfully applied to preserve shrimp and provide real-time visual monitoring of freshness. The results indicated that the SA/PC/AMA-2/TP film extend the shelf life of shrimp by approximately 12 h compared with the control group, making it a promising new food packaging material with potential applications.
Collapse
Affiliation(s)
- Sheng Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Hongyuan Zhang
- Chemistry College, Baicheng Nomal University, Baicheng 137000, China
| | - Zhipeng Jiang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xue Ding
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Wenwen Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Ning Ma
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Shengyu Xu
- Linyuanchun Ecological Technology Co., Ltd, Baishan 134300, China
| | - Liu Yang
- College of Food Science and Engineering, Changchun University, Changchun 130022, China.
| |
Collapse
|
13
|
Mishra B, Panda J, Mishra AK, Nath PC, Nayak PK, Mahapatra U, Sharma M, Chopra H, Mohanta YK, Sridhar K. Recent advances in sustainable biopolymer-based nanocomposites for smart food packaging: A review. Int J Biol Macromol 2024; 279:135583. [PMID: 39270899 DOI: 10.1016/j.ijbiomac.2024.135583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
The main goal of emerging food-packaging technologies is to address environmental issues and minimize their impact, while also guaranteeing food quality and safety for consumers. Bio-based polymers have drawn significant interest as a means to reduce the usage and environmental impact of petroleum-derived polymeric products. Therefore, this current review highlights on the biopolymer blends, various biodegradable bio-nanocomposites materials, and their synthesis and characterization techniques recently used in the smart food packaging industry. In addition, some insights on potential challenges as well as possibilities in future smart food packaging applications are thoroughly explored. Nanocomposite packaging materials derived from biopolymers have the highest potential for use in improved smart food packaging that possesses bio-functional properties. Nanomaterials are utilized for improving the thermal, mechanical, and gas barrier attributes of bio-based polymers while maintaining their biodegradable and non-toxic qualities. The packaging films that were developed exhibited enhanced barrier qualities against carbon dioxide, oxygen, and water vapour. Additionally, they demonstrated better mechanical strength, thermal stability, and antibacterial activity. More research is needed to develop and use smart food packaging materials based on bio-nanocomposites on a worldwide scale, while removing plastic packaging.
Collapse
Affiliation(s)
- Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, University of Science & Technology Meghalaya, Baridua, 793101, India
| | | | - Pinku Chandra Nath
- Department of Food Technology, Uttaranchal University, School of Applied and Life Sciences, Dehradun, Uttarakhand 248007, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
| | - Uttara Mahapatra
- Department of Chemical Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| | - Hitesh Chopra
- Department of Biosciences, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, University of Science & Technology Meghalaya, Baridua, 793101, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
14
|
Hu F, Song YZ, Thakur K, Zhang JG, Khan MR, Ma YL, Wei ZJ. Blueberry anthocyanin based active intelligent wheat gluten protein films: Preparation, characterization, and applications for shrimp freshness monitoring. Food Chem 2024; 453:139676. [PMID: 38776795 DOI: 10.1016/j.foodchem.2024.139676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/10/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The aim of this study was to prepare active intelligent gluten protein films using wheat gluten protein (WG) and apple pectin (AP) as film-forming matrices, and blueberry anthocyanin extract (BAE) as a natural indicator. SEM and FT-IR analyses demonstrated the successful immobilization of BAE in the film matrix by hydrogen bonding interactions and its compatibility with WG and AP. The resultant WG-AP/BAE indicator films demonstrated notable antioxidant activity, color stability, barrier qualities, pH and ammonia response sensitivity, and mechanical properties. Among them, WG-AP/BAE5 exhibited the best mechanical properties (TS: 0.83 MPa and EB: 242.23%) as well as the lowest WVP (3.92 × 10-8 g.m/m2.Pa.s), and displayed high sensitivity to volatile ammonia. In addition, WG-AP/BAE5 showed a color shift from purplish red to green to yellowish green, demonstrating the monitoring of shrimp freshness in real time. Consequently, this study offers a firm scientific foundation for the development of active intelligent gluten protein films and their use in food freshness assessments.
Collapse
Affiliation(s)
- Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Yu-Zhu Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Yi-Long Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
15
|
Stoica M, Bichescu CI, Crețu CM, Dragomir M, Ivan AS, Podaru GM, Stoica D, Stuparu-Crețu M. Review of Bio-Based Biodegradable Polymers: Smart Solutions for Sustainable Food Packaging. Foods 2024; 13:3027. [PMID: 39410063 PMCID: PMC11475208 DOI: 10.3390/foods13193027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Conventional passive packaging plays a crucial role in food manufacturing by protecting foods from various external influences. Most packaging materials are polymer-based plastics derived from fossil carbon sources, which are favored for their versatility, aesthetic appeal, and cost-effectiveness. However, the extensive use of these materials poses significant environmental challenges due to their fossil-based origins and persistence in the environment. Global plastic consumption for packaging is expected to nearly triple by 2060, exacerbating the ecological crisis. Moreover, globalization has increased access to a diverse range of foods from around the world, heightening the importance of packaging in providing healthier and safer foods with extended shelf life. In response to these challenges, there is a growing shift to eco-friendly active packaging that not only protects but also preserves the authentic qualities of food, surpassing the roles of conventional passive packaging. This article provides a comprehensive review on the viability, benefits, and challenges of implementing bio-based biodegradable polymers in active food packaging, with the dual goals of environmental sustainability and extending food shelf life.
Collapse
Affiliation(s)
- Maricica Stoica
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Cezar Ionuț Bichescu
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Carmen-Mihaela Crețu
- Faculty of Economic Sciences and Business Administration, “Danubius” University, 3 Galați, 800654 Galati, Romania;
| | - Maricela Dragomir
- Faculty of Physical Education and Sports, “Dunarea de Jos” University of Galati, 63-65 Gării Street, 800003 Galati, Romania;
| | - Angela Stela Ivan
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Geanina Marcela Podaru
- Cross-Border Faculty, “Dunarea de Jos” University of Galati, 111 Domneasca Street, 800201 Galati, Romania; (M.S.); (A.S.I.); (G.M.P.)
| | - Dimitrie Stoica
- Faculty of Economics and Business Administration, “Dunarea de Jos” University of Galati, 59-61 Balcescu Street, 800001 Galati, Romania
| | - Mariana Stuparu-Crețu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 35 Alexandru Ioan Cuza Street, 800010 Galati, Romania;
| |
Collapse
|
16
|
Vanaraj R, Suresh Kumar SM, Mayakrishnan G, Rathinam B, Kim SC. A Current Trend in Efficient Biopolymer Coatings for Edible Fruits to Enhance Shelf Life. Polymers (Basel) 2024; 16:2639. [PMID: 39339103 PMCID: PMC11435994 DOI: 10.3390/polym16182639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, biopolymer coatings have emerged as an effective approach for extending the shelf life of edible fruits. The invention of biopolymer coverings has emerged as an innovation for extending fruit shelf life. Natural polymers, like chitosan, alginate, and pectin, are used to create these surfaces, which have several uses, including creating a barrier that prevents water evaporation, the spread of living microbes, and respiratory movement. These biopolymer coatings' primary benefits are their environmental friendliness and lack of damage. This study highlights the advancements made in the creation and usage of biopolymer coatings, highlighting how well they preserve fruit quality, reduce post-harvest losses, and satisfy consumer demand for natural preservation methods. This study discusses the usefulness of the biopolymer coating in terms of preserving fruit quality, reducing waste, and extending the product's shelf life. Biopolymer coatings' potential as a sustainable solution for synthetic preservatives in the fruit sector is highlighted as are formulation process advances that combine natural ingredients and environmental implications. This essay focuses on the essential methods, such as new natural additives, as well as the environmental effect of biopolymer coatings, which are safe and healthy commercial alternatives.
Collapse
Affiliation(s)
- Ramkumar Vanaraj
- Department of Computational Biology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam 602105, India;
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Gopiraman Mayakrishnan
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano, Japan;
| | - Balamurugan Rathinam
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 Univ. Rd., Sec. 3, Douliu 64002, Taiwan
| | - Seong Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
17
|
Geng Y, Hu J, Gao Y, Guo J, Hao H, Hao F, Li T, Chen Y, Huang W, Luo Q. Interfacially Self-Assembled Mutifunctional Protein Thin Films for Accelerated Wound Healing. ACS Macro Lett 2024; 13:1105-1111. [PMID: 39133518 DOI: 10.1021/acsmacrolett.4c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The design of mutifunctional protein films for large-area spatially ordered arrays of functional components holds great promise in the field of biomedical applications. Herein, interfacial electrostatic self-assembly was employed to construct a large-scale protein thin film by inducing electrostatic interactions between three bovine serum albumin (BSA)-coated nanoclusters and cetyltrimethylammonium bromide (CTAB), leading to their spontaneous organization and uniform distribution at the oil-water interface. This protein film demonstrated excellent multienzyme functions, high antibacterial activity, and pH-responsive drug release capability. Therefore, it can accelerate the wound closure process through a synergistic effect that includes reducing local blood glucose levels, regulating cellular oxidative stress, eradicating bacteria, and promoting cell proliferation.
Collapse
Affiliation(s)
- Yajiao Geng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Juntao Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China
| | - Yuze Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jialiang Guo
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hao Hao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Fengjie Hao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Yihao Chen
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Wei Huang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Quan Luo
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
18
|
Pires AF, Díaz O, Cobos A, Pereira CD. A Review of Recent Developments in Edible Films and Coatings-Focus on Whey-Based Materials. Foods 2024; 13:2638. [PMID: 39200565 PMCID: PMC11353588 DOI: 10.3390/foods13162638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/02/2024] Open
Abstract
Packaging for food products is particularly important to preserve product quality and shelf life. The most used materials for food packaging are plastic, glass, metal, and paper. Plastic films produced based on petroleum are widely used for packaging because they have good mechanical properties and help preserve the characteristics of food. However, environmental concerns are leading the trend towards biopolymers. Films and coatings based on biopolymers have been extensively studied in recent years, as they cause less impact on the environment, can be obtained from renewable sources or by-products, are relatively abundant, have a good coating and film-forming capacity, are biodegradable and have nutritional properties that can be beneficial to human health. Whey protein-based films have demonstrated good mechanical resistance and a good barrier to gases when at low relative humidity levels, in addition to demonstrating an excellent barrier to aromatic compounds and especially oils. The use of whey proteins for films or coatings has been extensively studied, as these proteins are edible, have high nutritional value, and are biodegradable. Thus, the main objective of this document was to review new methodologies to improve the physicochemical properties of whey protein films and coatings. Importance will also be given to the combinations of whey proteins with other polymers and the development of new techniques that allow the manipulation of structures at a molecular level. The controlled release and mass transfer of new biomaterials and the improvement of the design of films and packaging materials with the desired functional properties can increase the quality of the films and, consequently, broaden their applications.
Collapse
Affiliation(s)
- Arona Figueroa Pires
- Polytechnic Institute of Coimbra, College of Agriculture, Bencanta, 3045-601 Coimbra, Portugal;
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Sciences, Food Technology Area, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (O.D.); (A.C.)
- Research Centre for Natural Resources, Environment and Society (CERNAS), Bencanta, 3045-601 Coimbra, Portugal
| | - Olga Díaz
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Sciences, Food Technology Area, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (O.D.); (A.C.)
| | - Angel Cobos
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Sciences, Food Technology Area, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (O.D.); (A.C.)
| | - Carlos Dias Pereira
- Polytechnic Institute of Coimbra, College of Agriculture, Bencanta, 3045-601 Coimbra, Portugal;
- Research Centre for Natural Resources, Environment and Society (CERNAS), Bencanta, 3045-601 Coimbra, Portugal
| |
Collapse
|
19
|
Edo GI, Yousif E, Al-Mashhadani MH. Modified chitosan: Insight on biomedical and industrial applications. Int J Biol Macromol 2024; 275:133526. [PMID: 38960250 DOI: 10.1016/j.ijbiomac.2024.133526] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Chitosan (CS), a by -product of chitin deacetylation can be useful in a broad range of purposes, to mention agriculture, pharmaceuticals, material science, food and nutrition, biotechnology and of recent, in gene therapy. Chitosan is a highly desired biomolecule due to the existence of many sensitive functional groups inside the molecule and also because of its net cationicity. The latter provides flexibility for creating a wide range of derivatives for particular end users across various industries. This overview aims to compile some of the most recent research on the bio-related applications that chitosan and its derivatives can be used for. However, chitosan's reactive functional groups are amendable to chemical reaction. Modifying the material to show enhanced solubility, a greater range of application options and pH-sensitive targeting and others have been a major focus of chitosan research. This review describes the modifications of chitosan that have been made to improve its water solubility, pH sensitivity, and capacity to target chitosan derivatives. Applying the by-products of chitosan as antibacterial, in targeting, extended release and as delivery systems is also covered. The by-products of chitosan will be important and potentially useful in developing new biomedical drugs in time to come.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq.
| | - Emad Yousif
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
20
|
Zhang R, Liu R, Han J, Ren L, Jiang L. Protein-Based Packaging Films in Food: Developments, Applications, and Challenges. Gels 2024; 10:418. [PMID: 39057442 PMCID: PMC11275615 DOI: 10.3390/gels10070418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
With the emphasis placed by society on environmental resources, current petroleum-based packaging in the food industry can no longer meet people's needs. However, new active packaging technologies have emerged, such as proteins, polysaccharides, and lipids, in which proteins are widely used for their outstanding gel film-forming properties. Most of the current literature focuses on research applications of single protein-based films. In this paper, we review the novel protein-based packaging technologies that have been used in recent years to categorize different proteins, including plant proteins (soybean protein isolate, zein, gluten protein) and animal proteins (whey protein isolate, casein, collagen, gelatin). The advances that have recently been made in protein-based active packaging technology can be understood by describing protein sources, gel properties, molding principles, and applied research. This paper presents the current problems and prospects of active packaging technology, provides new ideas for the development of new types of packaging and the expansion of gel applications in the future, and promotes the development and innovation of environmentally friendly food packaging.
Collapse
Affiliation(s)
- Rui Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Rongxu Liu
- Heilongjiang Institute of Green Food Science, Harbin 150028, China;
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
- Heilongjiang Institute of Green Food Science, Harbin 150028, China;
| | - Lili Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China;
| | - Longwei Jiang
- College of Tea & Food Science and Technology, Anhui Agricultural University, Key Laboratory of Jianghuai, Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Hefei 230036, China
| |
Collapse
|
21
|
Fry HC, Liu Y, Taylor SK. Design and Function of α-Helix-Rich, Heme-Binding Peptide Materials. Biomacromolecules 2024; 25:3398-3408. [PMID: 38752597 DOI: 10.1021/acs.biomac.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Peptide materials often employ short peptides that self-assemble into unique nanoscale architectures and have been employed across many fields relevant to medicine and energy. A majority of peptide materials are high in β-sheet, secondary structure content, including heme-binding peptide materials. To broaden the structural diversity of heme-binding peptide materials, a small series of peptides were synthesized to explore the design criteria required for (1) folding into an α-helix structure, (2) assembling into a nanoscale material, (3) binding heme, and (4) demonstrating functions similar to that of heme proteins. One peptide was identified to meet all four criteria, including the heme protein function of CO binding and its microsecond-to-millisecond recombination rates, as measured by transient absorption spectroscopy. Implications of new design criteria and peptide material function through heme incorporation are discussed.
Collapse
Affiliation(s)
- H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439, United States
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, Illinois 60439, United States
| | - Sunny K Taylor
- Pritzker School for Molecular Engineering, University of Chicago, 5640 S. Ellis Ave., Chicago, Illinois 60637, United States
| |
Collapse
|
22
|
Zhang H, Li X, Zhou X, Zhang Y, Zhao Y. Optical Fiber Surface Plasmon Resonance Sensor for Glyceryl Tributyrate Detection Based on the PAA/CS Composite Hydrogel Embedding Protease Method. Anal Chem 2024; 96:6906-6913. [PMID: 38656893 DOI: 10.1021/acs.analchem.3c05357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Glycerol tributyrate as a low-density lipoprotein plays a crucial role in drug development and food safety. In this work, a novel high-stability fiber optic sensor for glyceryl tributyrate based on the poly(acrylic acid) (PAA) and chitosan (CS) composite hydrogel embedding method is first proposed. Compared with traditional functionalization, the lipase in a polymer network structure used in this article can not only avoid chemical reactions that cause damage to the enzyme structure but also avoid the instability of ionic bonds and physical adsorption. Therefore, the PAA/CS hydrogel method proposed in this article can effectively retain enzyme structure. First, the impact of different layers (one to five layers) of PAA/CS on pH sensing performance was explored, and it was determined that layers 1-3 could be used for subsequent sensing experiments. Within the linear detection range of 0.5-10 mM, the detection sensitivities of the one to three layers of the biosensor are divided into 0.65, 0.95, and 1.51 nm/mM, respectively, with the three layers having the best effect. When the number of coating layers is three, the detection limit of the sensor is 0.47 mM, meeting the millimole level detection standard for anticancer requirement. Furthermore, the stability and selectivity of the sensor (in the presence of hemoglobin, urea, cholesterol, acetylcholine, and glucose) were analyzed. The three-layer sensor is used for sample detection. At concentrations of 1-10 mM, the absolute value of the recovery percentage (%) is 82-99%, which can accurately detect samples. The sensor proposed in this paper has the advantages of low sample consumption, high sensitivity, simple structure, and label-free measurement. The enzyme-embedding method provides a new route for rapid and reliable glyceryl tributyrate detection, which has potential applications in food safety as well as the development of anticancer drugs.
Collapse
Affiliation(s)
- Hongxin Zhang
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
| | - Xuegang Li
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan, Guangdong 528311, China
| | - Xue Zhou
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
- Foshan Graduate School of Innovation, Northeastern University, Foshan, Guangdong 528311, China
| | - Yanan Zhang
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
| | - Yong Zhao
- College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China
| |
Collapse
|
23
|
Jin J, Luo B, Xuan S, Shen P, Jin P, Wu Z, Zheng Y. Degradable chitosan-based bioplastic packaging: Design, preparation and applications. Int J Biol Macromol 2024; 266:131253. [PMID: 38556240 DOI: 10.1016/j.ijbiomac.2024.131253] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Food packaging is an essential part of food transportation, storage and preservation. Biodegradable biopolymers are a significant direction for the future development of food packaging materials. As a natural biological polysaccharide, chitosan has been widely concerned by researchers in the field of food packaging due to its excellent film-forming property, good antibacterial property and designability. Thus, the application research of chitosan-based food packaging films, coatings and aerogels has been greatly developed. In this review, recent advances on chitosan-based food packaging materials are summarized. Firstly, the development background of chitosan-based packaging materials was described, and then chitosan itself was introduced. In addition, the design, preparation and applications of films, coatings and aerogels in chitosan-based packaging for food preservation were discussed, and the advantages and disadvantages of each research in the development of chitosan-based packaging materials were analyzed. Finally, the application prospects, challenges and suggestions for solving the problems of chitosan-based packaging are summarized and prospected.
Collapse
Affiliation(s)
- Jing Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bodan Luo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Simin Xuan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
24
|
Lu X, Qian S, Wu X, Lan T, Zhang H, Liu J. Research progress of protein complex systems and their application in food: A review. Int J Biol Macromol 2024; 265:130987. [PMID: 38508559 DOI: 10.1016/j.ijbiomac.2024.130987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/16/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Among the common natural biomolecules, the excellent properties of proteins have attracted extensive attention from researchers for functional applications, however, in native form proteins have many limitations in the performance of their functional attribute. However, with the deepening of research, it has been found that the combination of natural active substances such as polyphenols, polysaccharides, etc. with protein molecules will make the composite system have stronger functional properties, while the utilization of pH-driven method, ultrasonic treatment, heat treatment, etc. not only provides a guarantee for the overall protein-based composite system, but also gives more possibilities to the protein-composite system. Protein composite systems are emerging in the fields of novel active packaging, functional factor delivery systems and gel systems with high medical value. The products of these protein composite systems usually have high functional properties, mainly due to the interaction of the remaining natural active substances with protein molecules, which can be broadly categorized into covalent interactions and non-covalent interactions, and which, despite the differences in these interactions, together constitute the cornerstone for the stability of protein composite systems and for in-depth research.
Collapse
Affiliation(s)
- Xiangning Lu
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Sheng Qian
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Xinhui Wu
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Tiantong Lan
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China
| | - Hao Zhang
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
25
|
Viswanathan VP, Kulandhaivelu SV, Manivasakan K, Ramakrishnan R. Development of biodegradable packaging films from carboxymethyl cellulose and oxidised natural rubber latex. Int J Biol Macromol 2024; 262:129980. [PMID: 38340932 DOI: 10.1016/j.ijbiomac.2024.129980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
The present study investigates the biopolymer packaging film developed from carboxymethyl cellulose (CMC) with varying concentrations of natural rubber latex (NR) and oxidised natural rubber latex (ONR) using the solvent casting method. The physicochemical properties of the CMC/NR and CMC/ONR film samples were characterised using FTIR, TG/DTA, DSC, SEM, and XRD analysis. The increased concentration of NR and ONR helped to enhance mechanical characteristics, superior UV resistance, enhanced resistance to oxygen and water vapour penetration, improved dimensional stability, and a reduction in the moisture retention ability of the film samples. The CMC sample film, incorporated with 1.5 g ONR, was found to have more than a 100 % increase in the tensile strength. The tensile value increased from 21.56 MPa to 48.36 MPa, with the highest young modulus of 0.73 GPa and elastic stability of 7.14 %. The incorporation of NR and ONR significantly reduced the super water absorbency nature of the CMC film, and the moisture content values reduced from 21.6 % to ≅ 0.15 % for ONR-incorporated film. Additionally, the CMC/NR and CMC/ONR films exhibited high optical transparency values and were found to be fast biodegradable, substantiating their potential use in various packaging applications. Application of these materials in perishable fruit packaging has shown significant enhancement in shelf life, highlighting their practical efficiency and potential for sustainable packaging solutions.
Collapse
Affiliation(s)
- Vismaya P Viswanathan
- Department of Printing and Packaging Technology, College of Engineering Guindy, Anna University, Chennai 600 005, India.
| | - Senthil Vadivu Kulandhaivelu
- Department of Printing and Packaging Technology, College of Engineering Guindy, Anna University, Chennai 600 005, India
| | - Kanchana Manivasakan
- Department of Printing and Packaging Technology, College of Engineering Guindy, Anna University, Chennai 600 005, India
| | - Rejish Ramakrishnan
- Department of Printing and Packaging Technology, College of Engineering Guindy, Anna University, Chennai 600 005, India
| |
Collapse
|
26
|
Felicia WXL, Kobun R, Nur Aqilah NM, Mantihal S, Huda N. Chitosan/aloe vera gel coatings infused with orange peel essential oils for fruits preservation. Curr Res Food Sci 2024; 8:100680. [PMID: 38328465 PMCID: PMC10847790 DOI: 10.1016/j.crfs.2024.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/30/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Continuous fruit waste poses significant environmental and economic challenges, necessitating innovative fruit coating technologies. This research focuses on harnessing discarded orange peels to extract essential oil (OPEO), which is then integrated into a chitosan/aloe vera (CTS/AVG) matrix. The study comprehensively characterised the coating in terms of its physicochemical properties, antioxidant capacity, and antimicrobial efficacy. The investigation involved an analysis of particle size and distribution in the coating solutions, highlighting changes induced by the incorporation of orange peel essential oil (1 %, 2 % and 3 % v/w) into the chitosan/aloe vera (4:1 v/v) matrix, including particle size reduction and enhanced Brownian motion. The study quantifies a 33.21 % decrease in water vapour transmission rate and a reduction in diffusion coefficient from 9.26 × 10-11 m2/s to 6.20 × 10-11 m2/s following the addition of OPEO to CTS/AVG. Assessment of antioxidant potential employing DPPH radical scavenging assays, revealed that CTS/AVG/3 %OPEO exhibited notably superior radical scavenging activity compared to CTS/AVG, CTS/AVG/1 %OPEO, and CTS/AVG/2 %OPEO, demonstrated by its IC50 value of 17.01 ± 0.45 mg/mL. The study employs the well diffusion method, demonstrating a higher susceptibility of gram-negative bacteria to the coating solutions than gram-positive counterparts. Remarkably, CTS/AVG/3 %OPEO displayed the most pronounced inhibition against Escherichia coli, generating an inhibitory zone diameter of 14 ± 0.8 mm. The results collectively emphasised the potential of CTS/AVG/3 %OPEO as a viable natural alternative to synthetic preservatives within the fruit industry, attributed to its exceptional antioxidant and antimicrobial properties.
Collapse
Affiliation(s)
- Wen Xia Ling Felicia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Rovina Kobun
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Nasir Md Nur Aqilah
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Sylvester Mantihal
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Nurul Huda
- Faculty of Sustainable Agriculture, Jalan Sg. Batang, Mile 10, UMS Sandakan Campus, 90000, Sandakan, Sabah, Malaysia
| |
Collapse
|
27
|
de Souza RC, da Silva LM, Buratti BA, Carra S, Flores M, Puton BM, Rigotti M, Salvador M, Malvessi E, Moreira FKV, Steffens C, Valduga E, Zeni J. Purification, bioactivity and application of maltobionic acid in active films. 3 Biotech 2024; 14:32. [PMID: 38188310 PMCID: PMC10764696 DOI: 10.1007/s13205-023-03879-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
The objective of this study was to purify sodium maltobionate using Zymomonas mobilis cells immobilized in situ on flexible polyurethane (PU) and convert it into maltobionic acid for further evaluation of bioactivity (iron chelating ability, antibacterial potential and cytoprotection) and incorporation into films based on cassava starch, chitosan, and cellulose acetate. Sodium maltobionate exhibited a purity of 98.1% and demonstrated an iron chelating ability of approximately 50% at concentrations ranging from 15 to 20 mg mL-1. Maltobionic acid displayed minimal inhibitory concentrations (MIC) of 8.5, 10.5, 8.0, and 8.0 mg mL-1 for Salmonella enterica serovar Choleraesuis, Escherichia coli, Staphylococcus aureus, and Listeria monocytogenes, respectively. Maltobionic acid did not exhibit cytotoxicity in HEK-293 cells at concentrations up to 500 µg mL-1. Films incorporating 7.5% maltobionic acid into cassava starch and chitosan demonstrated inhibition of microbial growth, with halo sizes ranging from 15.67 to 22.33 mm. These films had a thickness of 0.17 and 0.13 mm, water solubility of 62.68% and 78.85%, and oil solubility of 6.23% and 11.91%, respectively. The cellulose acetate film exhibited a non-uniform visual appearance due to the low solubility of maltobionic acid in acetone. Mechanical and optical properties were enhanced with the addition of maltobionic acid to chitosan and cassava films. The chitosan film with 7.5% maltobionic acid demonstrated higher tensile strength (30.3 MPa) and elongation at break (9.0%). In contrast, the cassava starch film exhibited a high elastic modulus (1.7). Overall, maltobionic acid, with its antibacterial activity, holds promise for applications in active films suitable for food packaging. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03879-3.
Collapse
Affiliation(s)
- Roberta Cristina de Souza
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| | - Leonardo Meirelles da Silva
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| | - Bruna Angela Buratti
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| | - Sabrina Carra
- Biotechnology Institute, Universidade de Caxias Do Sul, CEP: 95070-560 Caxias Do Sul, RS Brasil
| | - Maicon Flores
- Biotechnology Institute, Universidade de Caxias Do Sul, CEP: 95070-560 Caxias Do Sul, RS Brasil
| | - Bruna Maria Puton
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| | - Marina Rigotti
- Biotechnology Institute, Universidade de Caxias Do Sul, CEP: 95070-560 Caxias Do Sul, RS Brasil
| | - Mirian Salvador
- Biotechnology Institute, Universidade de Caxias Do Sul, CEP: 95070-560 Caxias Do Sul, RS Brasil
| | - Eloane Malvessi
- Biotechnology Institute, Universidade de Caxias Do Sul, CEP: 95070-560 Caxias Do Sul, RS Brasil
| | | | - Clarice Steffens
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| | - Eunice Valduga
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| | - Jamile Zeni
- Department of Food Engineering, Universidade Regional Integrada Do Alto Uruguai E das Missões, CEP: 99709-910 Erechim, RS Brasil
| |
Collapse
|
28
|
Bhaskar R, Pandey SP, Kumar U, Kim H, Jayakodi SK, Gupta MK, Han SS. Nanobionics for sustainable crop production: Recent development to regulate plant growth and protection strategies from pests. OPENNANO 2024; 15:100198. [DOI: 10.1016/j.onano.2023.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
29
|
Gigante V, Aliotta L, Ascrizzi R, Pistelli L, Zinnai A, Batoni G, Coltelli MB, Lazzeri A. Innovative Biobased and Sustainable Polymer Packaging Solutions for Extending Bread Shelf Life: A Review. Polymers (Basel) 2023; 15:4700. [PMID: 38139951 PMCID: PMC10747240 DOI: 10.3390/polym15244700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Sustainable packaging has been steadily gaining prominence within the food industry, with biobased materials emerging as a promising substitute for conventional petroleum-derived plastics. This review is dedicated to the examination of innovative biobased materials in the context of bread packaging. It aims to furnish a comprehensive survey of recent discoveries, fundamental properties, and potential applications. Commencing with an examination of the challenges posed by various bread types and the imperative of extending shelf life, the review underscores the beneficial role of biopolymers as internal coatings or external layers in preserving product freshness while upholding structural integrity. Furthermore, the introduction of biocomposites, resulting from the amalgamation of biopolymers with active biomolecules, fortifies barrier properties, thus shielding bread from moisture, oxygen, and external influences. The review also addresses the associated challenges and opportunities in utilizing biobased materials for bread packaging, accentuating the ongoing requirement for research and innovation to create advanced materials that ensure product integrity while diminishing the environmental footprint.
Collapse
Affiliation(s)
- Vito Gigante
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Roberta Ascrizzi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
| | - Laura Pistelli
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
- Department of Agriculture Food Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Angela Zinnai
- Interdepartmental Research Center “Nutraceuticals and Food for Health” (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (L.P.); (A.Z.)
- Department of Agriculture Food Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via S. Zeno 37, 56123 Pisa, Italy;
| | - Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.A.); (M.-B.C.); (A.L.)
| |
Collapse
|