1
|
Edwards KL, Moore BM, Ganser TS, Susaimanickam PJ, Sovell K, Martin Y, Jager LD, Willes AM, Moyer TH, Bowar L, Phillips MJ, Stewart R, Chu LF, Gamm DM. Robust generation of photoreceptor-dominant retinal organoids from porcine induced pluripotent stem cells. Stem Cell Reports 2025; 20:102425. [PMID: 40054472 DOI: 10.1016/j.stemcr.2025.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 04/06/2025] Open
Abstract
Outer retinal degenerative diseases (RDDs) and injuries leading to photoreceptor (PR) loss are prevailing causes of blindness worldwide. While significant progress has been made in the manufacture of human pluripotent stem cell (hPSC)-derived PRs, robust production of pluripotent stem cell (PSC)-PRs from swine, a popular preclinical large animal model, would provide an avenue to collect conspecific functional and safety data to complement human xenograft studies. Toward this goal, we describe the highly efficient generation of PR-dominant porcine induced PSC (piPSC)-derived retinal organoids (ROs) using modifications of our established hPSC-RO differentiation protocol. Porcine iPSC-ROs were characterized using immunocytochemistry (ICC) and single-cell RNA sequencing (scRNA-seq), which revealed the presence and maturation of major neural retina cell types, including PRs and retinal ganglion cells, which possess molecular signatures akin to those found in hPSC-ROs. In late piPSC-ROs, a highly organized outer neuroepithelium was observed with rods and cones possessing outer segments and axon terminals expressing pre-synaptic markers adjacent to dendritic terminals of bipolar cells. The existence of piPSC lines and protocols that support reproducible, scalable production of female and male ROs will facilitate transplant studies in porcine models of retinal injury and RDDs unconfounded by immunological and evolutionary incompatibilities inherent to human xenografts.
Collapse
Affiliation(s)
- Kimberly L Edwards
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Bethany M Moore
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Praveen Joseph Susaimanickam
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Kai Sovell
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Yolana Martin
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Lindsey D Jager
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ashley M Willes
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Tyra H Moyer
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Lydia Bowar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - M Joseph Phillips
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Ron Stewart
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, USA
| | - Li-Fang Chu
- Veterinary Medicine, University of Calgary, Calgary, AB, Canada; Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Biochemistry and Molecular Biology Graduate Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - David M Gamm
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA; Waisman Center, University of Wisconsin-Madison, Madison, WI, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Brunet AA, James RE, Swanson P, Carvalho LS. A review of the 661W cell line as a tool to facilitate treatment development for retinal diseases. Cell Biosci 2025; 15:41. [PMID: 40170180 PMCID: PMC11959731 DOI: 10.1186/s13578-025-01381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/23/2025] [Indexed: 04/03/2025] Open
Abstract
Retinal diseases encompass a diverse group of disorders that affect the structure and function of the retina, leading to visual impairment and, in some cases, irreversible vision loss. The investigation of retinal diseases is crucial for understanding their underlying mechanisms, identifying potential therapeutic targets, and developing effective treatments. The use of in vitro cell models has become instrumental in advancing our knowledge of these disorders, but given that these conditions usually affect retinal neuronal cell types, access to appropriate cell models can be potentially challenging. Among the available in vitro cell models, the 661W cone-like cell line has emerged as a valuable tool for studying various retinal diseases, ranging from monogenic conditions, such as inherited retinal diseases, to complex conditions such as age-related macular degeneration (AMD), diabetic retinopathy, amongst others. Developed from immortalized murine photoreceptor cells, and freely available for academics from its creator, the 661W cell line has offered visual scientists and clinicians around the world a reliable and well-characterised platform for investigating disease pathogenesis, exploring disease-specific molecular signatures, and evaluating potential therapeutic interventions. This review aims to provide an overview of the 661W cell line and its applications in the study of both inherited and acquired retinal diseases. By examining the applications and limitations of this unique cell line, we may gain valuable insights into its contributions in unravelling the complexities of retinal diseases and its potential impact on the development of novel treatments for these diseases.
Collapse
Affiliation(s)
- Alicia A Brunet
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, 6009, Australia
- Lions Eye Institute, 2 Verdun St, Nedlands, WA, 6009, Australia
| | - Rebekah E James
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, 6009, Australia
- Lions Eye Institute, 2 Verdun St, Nedlands, WA, 6009, Australia
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Petria Swanson
- Lions Eye Institute, 2 Verdun St, Nedlands, WA, 6009, Australia
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA, 6009, Australia.
- Lions Eye Institute, 2 Verdun St, Nedlands, WA, 6009, Australia.
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
3
|
Lee YJ, Jo DH. Retinal Organoids from Induced Pluripotent Stem Cells of Patients with Inherited Retinal Diseases: A Systematic Review. Stem Cell Rev Rep 2025; 21:167-197. [PMID: 39422807 PMCID: PMC11762450 DOI: 10.1007/s12015-024-10802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Currently, most inherited retinal diseases lack curative interventions, and available treatment modalities are constrained to symptomatic approaches. Retinal organoid technology has emerged as a method for treating inherited retinal diseases, with growing academic interest in recent years. The purpose of this review was to systematically organize the current protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal disease and to investigate the application of retinal organoids in inherited retinal disease research. METHODS Data were collected from the PubMed, Scopus, and Web of Science databases using a keyword search. The main search term used was "retinal organoid," accompanied by secondary keywords such as "optic cup," "three-dimensional," and "self-organizing." The final search was conducted on October 2, 2024. RESULTS Of the 2,129 studies retrieved, 130 were included in the qualitative synthesis. The protocols for the generation of retinal organoids in inherited retinal disease research use five major approaches, categorized into 3D and a combination of 2D/3D approaches, implemented with modifications. Disease phenotypes have been successfully reproduced via the generation of retinal organoids from the induced pluripotent stem cells of individuals with inherited retinal diseases, facilitating the progression of research into novel therapeutic developments. Cells have been obtained from retinal organoids for cell therapy, and progress toward their potential integration into clinical practice is underway. Considering their potential applications, retinal organoid technology has shown promise across various domains. CONCLUSION In this systematic review, we organized protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal diseases. Retinal organoid technology has various applications including disease modeling, screening for novel therapies, and cell replacement therapy. Further advancements would make this technology a clinically significant tool for patients with inherited retinal diseases.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Department of Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
4
|
Wang J, Nnoromele PO, Liu YV, Johnston RJ, Singh MS. Cellular component transfer between photoreceptor cells of the retina. Prog Retin Eye Res 2025; 104:101317. [PMID: 39551387 DOI: 10.1016/j.preteyeres.2024.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Photoreceptor transplantation is a potential therapeutic strategy for degenerative retinal diseases. Studies on mechanisms contributing to retinal regeneration and vision repair identified cellular components transfer (CCT) as playing a role, in addition to somatic augmentation (referred to as "cell replacement" in this paper). In CCT, donor photoreceptors shuttle proteins, RNA, and mitochondria to host photoreceptors through intercellular connections. The discovery of CCT in the transplantation context triggered a re-interpretation of prior transplantation studies that generally did not include specific CCT assays and thereby broadly emphasized the cell replacement model, reflecting the prevailing understanding of retinal transplantation biology at that time. In addition to clarifying our understanding of photoreceptor biology, CCT has raised the possibility of developing treatments to replenish molecular deficiencies in diseased photoreceptor cells. As the CCT field evolves, investigators have used diverse terminology, and implemented different CCT assays following transplantation in animal models. The non-standardized terminology of CCT and absent minimal assay standards for detection can hinder communication between investigators and comparison between studies. In this review, we discuss the current understanding of CCT, provide an overview of transplantation and regeneration studies in small and large animals, and propose terminology and a minimal assay standard for CCT. Further research on CCT may eventually provide new avenues to treat a range of hereditary and acquired retinopathies while illuminating mechanisms of cell-cell interaction in the retina.
Collapse
Affiliation(s)
- Joyce Wang
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Patrick O Nnoromele
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ying V Liu
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Robert J Johnston
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins Hospital, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Zhao N, Zhang CJ, Zhang X, Wang W, Jin K, Jin ZB. Transplantation of derivative retinal organoids from chemically induced pluripotent stem cells restored visual function. NPJ Regen Med 2024; 9:42. [PMID: 39730340 DOI: 10.1038/s41536-024-00387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024] Open
Abstract
As an emerging type of pluripotent stem cells, chemically induced pluripotent stem cells (CiPSCs) avoid the risks of genomic disintegration by exogenous DNAs from viruses or plasmids, providing a safer stem cell source. To verify CiPSCs' capacity to differentiate into retinal organoids (ROs), we induced CiPSCs from mouse embryonic fibroblasts by defined small-molecule compounds and successfully differentiated the CiPSCs into three-dimensional ROs, in which all major retinal cell types and retinal genes were in concordance with those in vivo. We transplanted retinal photoreceptors from ROs into the subretinal space of retinal degeneration mouse models and the cells could integrate into the host retina, establish synaptic connections, and significantly improve the visual functions of the murine models. This proof-of-concept study for the first time demonstrated that CiPSCs could differentiate into ROs with a full spectrum of retinal cell types, and provided new insights into chemical approach-based retinal regeneration for degenerative diseases.
Collapse
Affiliation(s)
- Ning Zhao
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Chang-Jun Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Xiao Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Wen Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, China.
| |
Collapse
|
6
|
Sorrentino FS, Di Terlizzi P, De Rosa F, Salati C, Spadea L, Gagliano C, Musa M, Zeppieri M. New frontiers in retinal transplantation. World J Transplant 2024; 14:97690. [PMID: 39697450 PMCID: PMC11438945 DOI: 10.5500/wjt.v14.i4.97690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 09/20/2024] Open
Abstract
New frontiers about retinal cell transplantation for retinal degenerative diseases start from the idea that acting on stem cells can help regenerate retinal layers and establish new synapses among retinal cells. Deficiency or alterations of synaptic input and neurotrophic factors result in trans-neuronal degeneration of the inner retinal cells. Thus, the disruption of photoreceptors takes place. However, even in advanced forms of retinal degeneration, a good percentage of the ganglion cells and the inner nuclear layer neurons remain intact. This phenomenon provides evidence for obtaining retinal circuitry through the transplantation of photoreceptors into the subretinal region. The eye is regarded as an optimal organ for cell transplantation because of its immunological privilege and the relatively small number of cells collaborating to carry out visual activities. The eyeball's immunological privilege, characterized by the suppression of delayed-type hypersensitivity responses in ocular tissues, is responsible for the low rate of graft rejection in transplant patients. The main discoveries highlight the capacity of embryonic stem cells (ESCs) and induced pluripotent stem cells to regenerate damaged retinal regions. Recent progress has shown significant enhancements in transplant procedures and results. The research also explores the ethical ramifications linked to the utilization of stem cells, emphasizing the ongoing issue surrounding ESCs. The analysis centers on recent breakthroughs, including the fabrication of three-dimensional retinal organoids and the innovation of scaffolding for cell transportation. Moreover, researchers are currently assessing the possibility of CRISPR and other advanced gene editing technologies to enhance the outcomes of retinal transplantation. The widespread use of universally recognized safe surgical and imaging methods enables retinal transplantation and monitoring of transplanted cell growth toward the correct location. Currently, most therapy approaches are in the first phases of development and necessitate further research, including both pre-clinical and clinical trials, to attain favorable visual results for individuals suffering from retinal degenerative illnesses.
Collapse
Affiliation(s)
| | - Patrick Di Terlizzi
- Department of Surgical Sciences, Unit of Ophthalmology, Ospedale Maggiore, Bologna 40100, Italy
| | - Francesco De Rosa
- Department of Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”, Meldola 47014, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna "Kore", Enna 94100, Italy
- Eye Clinic, Catania University San Marco Hospital, Catania 95121, Italy
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor, Onitsha 434112, Nigeria
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
7
|
Iwama Y, Sugase-Miyamoto Y, Onoue K, Uyama H, Matsuda K, Hayashi K, Akiba R, Masuda T, Yokota S, Yonemura S, Nishida K, Takahashi M, Kurimoto Y, Mandai M. Transplantation of human pluripotent stem cell-derived retinal sheet in a primate model of macular hole. Stem Cell Reports 2024; 19:1524-1533. [PMID: 39366379 PMCID: PMC11589285 DOI: 10.1016/j.stemcr.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
Macular hole (MH) is a retinal break involving the fovea that causes impaired vision. Although advances in vitreoretinal surgical techniques achieve >90% MH closure rate, refractory cases still exist. For such cases, autologous retinal transplantation is an optional therapy showing good anatomic success, but visual improvement is limited and peripheral visual field defects are inevitable after graft harvesting. Here, using a non-human primate model, we evaluated whether human embryonic stem cell-derived retinal organoid (RO) sheet transplantation can be an effective option for treating MH. After transplantation, MH was successfully closed by continuous filling of the MH space with the RO sheet, resulting in improved visual function, although no host-graft synaptic connections were confirmed. Mild xeno-transplantation rejection was controlled by additional focal steroid injections and rod/cone photoreceptors developed in the graft. Overall, our findings suggest pluripotent stem cell-derived RO sheet transplantation as a practical option for refractory MH treatment.
Collapse
Affiliation(s)
- Yasuaki Iwama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yasuko Sugase-Miyamoto
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Kenta Onoue
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hirofumi Uyama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan
| | - Keiji Matsuda
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Kazuko Hayashi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Ryutaro Akiba
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Tomohiro Masuda
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan
| | - Satoshi Yokota
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Cell Biology, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan
| | - Yasuo Kurimoto
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
8
|
Singh M, Negi R, Alka, Vinayagam R, Kang SG, Shukla P. Age-Related Macular Degeneration (AMD): Pathophysiology, Drug Targeting Approaches, and Recent Developments in Nanotherapeutics. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1647. [PMID: 39459435 PMCID: PMC11509623 DOI: 10.3390/medicina60101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
The most prevalent reason for vision impairment in aging inhabitants is age-related macular degeneration (AMD), a posterior ocular disease with a poor understanding of the anatomic, genetic, and pathophysiological progression of the disease. Recently, new insights exploring the role of atrophic changes in the retinal pigment epithelium, extracellular drusen deposits, lysosomal lipofuscin, and various genes have been investigated in the progression of AMD. Hence, this review explores the incidence and risk factors for AMD, such as oxidative stress, inflammation, the complement system, and the involvement of bioactive lipids and their role in angiogenesis. In addition to intravitreal anti-vascular endothelial growth factor (VEGF) therapy and other therapeutic interventions such as oral kinase inhibitors, photodynamic, gene, and antioxidant therapy, as well as their benefits and drawbacks as AMD treatment options, strategic drug delivery methods, including drug delivery routes with a focus on intravitreal pharmacokinetics, are investigated. Further, the recent advancements in nanoformulations such as polymeric and lipid nanocarriers, liposomes, etc., intended for ocular drug delivery with pros and cons are too summarized. Therefore, the purpose of this review is to give new researchers an understanding of AMD pathophysiology, with an emphasis on angiogenesis, inflammation, the function of bioactive lipids, and therapy options. Additionally, drug delivery options that focus on the development of drug delivery system(s) via several routes of delivery can aid in the advancement of therapeutic choices.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Riyakshi Negi
- Department of Pharmaceutical Sciences, School of Heath Sciences and Technology, UPES, Dehradun 246008, India; (R.N.); (A.)
| | - Alka
- Department of Pharmaceutical Sciences, School of Heath Sciences and Technology, UPES, Dehradun 246008, India; (R.N.); (A.)
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Prashant Shukla
- Department of Pharmaceutical Sciences, School of Heath Sciences and Technology, UPES, Dehradun 246008, India; (R.N.); (A.)
| |
Collapse
|
9
|
Bellingrath JS, Li KV, Aziz K, Izzi JM, Liu YV, Singh MS. Large animal model species in pluripotent stem cell therapy research and development for retinal diseases: a systematic review. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1377098. [PMID: 39253560 PMCID: PMC11381226 DOI: 10.3389/fopht.2024.1377098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/18/2024] [Indexed: 09/11/2024]
Abstract
Aim Retinal cell therapy modalities, in the category of advanced therapy medicinal products (ATMPs), are being developed to target several retinal diseases. Testing in large animal models (LAMs) is a crucial step in translating retinal ATMPs into clinical practice. However, challenges including budgetary and infrastructure constraints can hinder LAM research design and execution. Here, to facilitate the comparison of the various LAMs in pluripotent retinal cell therapy research, we aimed to systematically evaluate the species distribution, reported scientific utility, and methodology of a range of LAMs. Methods A systematic search using the words retina, stem cell, transplantation, large animal, pig, rabbit, dog, and nonhuman primate was conducted in the PubMed, Embase, Science Direct and GoogleScholar databases in February 2023. Results We included 22 studies involving pluripotent stem cells (induced pluripotent stem cells or human embryonic stem cells) in LAMs, including non-human primates (NHP), pigs, dogs, and rabbits. Nearly half of the studies utilized wild-type animal models. In other studies, retinal degeneration features were simulated via laser, chemical, or genetic insult. Transplants were delivered subretinally, either as cell suspensions or pre-formed monolayers (with or without biodegradable scaffolding). The transplanted cells dose per eye varied widely (40,000 - 4,000,000 per dose). Cells were delivered via vitrectomy surgery in 15 studies and by an "ab externo" approach in one study. Structural outcomes were assessed using confocal scanning laser ophthalmoscopy imaging. Functional outcomes included multifocal electroretinogram and, in one case, a measure of visual acuity. Generally, cell suspension transplants exhibited low intraretinal incorporation, while monolayer transplants incorporated more efficiently. Immune responses posed challenges for allogeneic transplants, suggesting that autologous iPSC-derived transplants may be required to decrease the likelihood of rejection. Conclusion The use of appropriate LAMs helps to advance the development of retinal ATMPs. The anatomical similarity of LAM and human eyes allows the implementation of clinically-relevant surgical techniques. While the FDA Modernization Act 2.0 has provided a framework to consider alternative methods including tissue-on-a-chip and human cell culture models for pharmacologic studies, LAM testing remains useful for cell and tissue replacement studies to inform the development of clinical trial protocols.
Collapse
Affiliation(s)
- Julia-Sophia Bellingrath
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Kang V Li
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kanza Aziz
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Jessica M Izzi
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ying V Liu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mandeep S Singh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
10
|
Seah I, Goh D, Banerjee A, Su X. Modeling inherited retinal diseases using human induced pluripotent stem cell derived photoreceptor cells and retinal pigment epithelial cells. Front Med (Lausanne) 2024; 11:1328474. [PMID: 39011458 PMCID: PMC11246861 DOI: 10.3389/fmed.2024.1328474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Since the discovery of induced pluripotent stem cell (iPSC) technology, there have been many attempts to create cellular models of inherited retinal diseases (IRDs) for investigation of pathogenic processes to facilitate target discovery and validation activities. Consistency remains key in determining the utility of these findings. Despite the importance of consistency, quality control metrics are still not widely used. In this review, a toolkit for harnessing iPSC technology to generate photoreceptor, retinal pigment epithelial cell, and organoid disease models is provided. Considerations while developing iPSC-derived IRD models such as iPSC origin, reprogramming methods, quality control metrics, control strategies, and differentiation protocols are discussed. Various iPSC IRD models are dissected and the scientific hurdles of iPSC-based disease modeling are discussed to provide an overview of current methods and future directions in this field.
Collapse
Affiliation(s)
- Ivan Seah
- Translational Retinal Research Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Debbie Goh
- Department of Ophthalmology, National University Hospital (NUH), Singapore, Singapore
| | - Animesh Banerjee
- Translational Retinal Research Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xinyi Su
- Translational Retinal Research Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Ophthalmology, National University Hospital (NUH), Singapore, Singapore
- Singapore Eye Research Institute (SERI), Singapore, Singapore
| |
Collapse
|
11
|
Kong K, Ding X, Wang Y, Xu S, Li G, Wang X, Zhang M, Ni Y, Xu G. Circular RNA expression profile and functional analysis of circUvrag in light-induced photoreceptor degeneration. Clin Exp Ophthalmol 2024; 52:558-575. [PMID: 38282307 DOI: 10.1111/ceo.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 11/18/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Circular RNAs (circRNAs) are implicated in retinal pathophysiology; however, their expression profiles and functions in photoreceptor apoptosis are largely unknown. We explored circRNA-expression profiles and circUvrag (host gene: Uvrag, ultraviolet radiation resistance associated gene) function in light-induced photoreceptor apoptosis. METHODS Sprague-Dawley rats and 661 W photoreceptor cells were exposed to blue light to establish light-induced photoreceptor degeneration. Differentially expressed circRNAs were identified using microarrays. Potential functions of dysregulated circRNAs were analysed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. CircUvrag expression and localization were evaluated using quantitative RT-PCR and fluorescence in situ hybridization, respectively. CircUvrag overexpression and knockdown were induced using a plasmid and a small interfering RNA, respectively, and retinal function and structure were assessed using scotopic electroretinography, haematoxylin-eosin staining, and TUNEL staining. Microglial migration was assessed using IBA1 immunostaining. The apoptosis ratio of photoreceptor cells in vitro was detected using flow cytometry. RESULTS We identified 764 differentially expressed circRNAs, which were potentially related with the development of retinal structures, including neurons, dendrites, and synapses, and might participate in nervous-system pathophysiology. Light exposure enriched circUvrag in the cytoplasm of photoreceptors in the outer nuclear layer (ONL). CircUvrag knockdown decreased photoreceptor apoptosis and microglial migration to the ONL after light exposure, preserving ONL thickness and a-wave amplitude. In vitro, circUvrag knockdown inhibited photoreceptor apoptosis, although circUvrag overexpression slightly promoted photoreceptor apoptosis. CONCLUSIONS CircUvrag knockdown attenuated light-induced photoreceptor apoptosis, and might be a potential target in retinal degeneration.
Collapse
Affiliation(s)
- Kangjie Kong
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Xinyi Ding
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Yingchao Wang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Sisi Xu
- Department of Ophthalmology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gang Li
- Research Center, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Xin Wang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Meng Zhang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Yingqin Ni
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye and ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
12
|
Perez VL, Mousa HM, Miyagishima KJ, Reed AA, Su AJA, Greenwell TN, Washington KM. Retinal transplant immunology and advancements. Stem Cell Reports 2024; 19:817-829. [PMID: 38729155 PMCID: PMC11297553 DOI: 10.1016/j.stemcr.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Several gaps and barriers remain for transplanting stem cells into the eye to treat ocular disease, especially diseases of the retina. While the eye has historically been considered immune privileged, recent thinking has identified the immune system as both a barrier and an opportunity for eye stem cell transplantation. Recent approaches leveraging scaffolds or cloaking have been considered in other tissues beyond immune suppression. This perspective paper outlines approaches for transplantation and proposes opportunities to overcome barriers of the immune system in stem cell transplantation in the eye.
Collapse
Affiliation(s)
- Victor L Perez
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA; Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Hazem M Mousa
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | | | - Amberlynn A Reed
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - An-Jey A Su
- Department of Surgery, University of Colorado School of Medicine, CU Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Thomas N Greenwell
- National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kia M Washington
- Department of Surgery, University of Colorado School of Medicine, CU Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
13
|
Liu W, Zhang C, Jiang F, Tan Y, Qin B. From theory to therapy: a bibliometric and visual study of stem cell advancements in age-related macular degeneration. Cytotherapy 2024; 26:616-631. [PMID: 38483361 DOI: 10.1016/j.jcyt.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND AIMS Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, offer groundbreaking therapeutic potential for degenerative diseases and cellular repair. Despite their significance, a comprehensive bibliometric analysis in this field, particularly in relation to age-related macular degeneration (AMD), is yet to be conducted. This study aims to map the foundational and emerging areas in stem cell and AMD research through bibliometric analysis. METHODS This study analyzed articles and reviews on stem cells and AMD from 2000 to 2022, sourced from the Web of Science Core Collection. We used VOSviewer and CiteSpace for analysis and visualization of data pertaining to countries, institutions, authors, journals, references and key words. Statistical analyses were conducted using R language and Microsoft Excel 365. RESULTS In total, 539 publications were included, indicating an increase in global literature on stem cells and AMD from 2000 to 2022. The USA was the leading contributor, with 239 papers and the highest H-index, also the USA had the highest average citation rate per article (59.82). Notably, 50% of the top 10 institutions were from the USA, with the University of California system being the most productive. Key authors included Masayo Takahashi, Michiko Mandai, Dennis Clegg, Pete J. Coffey, Boris Stanzel, and Budd A. Tucker. Investigative Ophthalmology & Visual Science published the majority of relevant papers (n = 27). Key words like "clinical trial," "stem cell therapy," "retinal organoid," and "retinal progenitor cells" were predominant. CONCLUSIONS Research on stem cells and AMD has grown significantly, highlighting the need for increased global cooperation. Current research prioritizes the relationship between "ipsc," "induced pluripotent stem cell," "cell culture," and "human embryonic stem cell." As stem cell culture and safety have advanced, focus has shifted to prognosis and complications post-transplantation, signifying the movement of stem cell research from labs to clinical settings.
Collapse
Affiliation(s)
| | | | | | - Yao Tan
- Department of Ophthalmology, The Third Xiangya Hospital, Central South University, Changsha, China; Postdoctoral Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha City, China.
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China.
| |
Collapse
|
14
|
Seidemann S, Salomon F, Hoffmann KB, Kurth T, Sbalzarini IF, Haase R, Ader M. Automated quantification of photoreceptor outer segments in developing and degenerating retinas on microscopy images across scales. Front Mol Neurosci 2024; 17:1398447. [PMID: 38854587 PMCID: PMC11157083 DOI: 10.3389/fnmol.2024.1398447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/17/2024] [Indexed: 06/11/2024] Open
Abstract
The functionality of photoreceptors, rods, and cones is highly dependent on their outer segments (POS), a cellular compartment containing highly organized membranous structures that generate biochemical signals from incident light. While POS formation and degeneration are qualitatively assessed on microscopy images, reliable methodology for quantitative analyses is still limited. Here, we developed methods to quantify POS (QuaPOS) maturation and quality on retinal sections using automated image analyses. POS formation was examined during the development and in adulthood of wild-type mice via light microscopy (LM) and transmission electron microscopy (TEM). To quantify the number, size, shape, and fluorescence intensity of POS, retinal cryosections were immunostained for the cone POS marker S-opsin. Fluorescence images were used to train the robust classifier QuaPOS-LM based on supervised machine learning for automated image segmentation. Characteristic features of segmentation results were extracted to quantify the maturation of cone POS. Subsequently, this quantification method was applied to characterize POS degeneration in "cone photoreceptor function loss 1" mice. TEM images were used to establish the ultrastructural quantification method QuaPOS-TEM for the alignment of POS membranes. Images were analyzed using a custom-written MATLAB code to extract the orientation of membranes from the image gradient and their alignment (coherency). This analysis was used to quantify the POS morphology of wild-type and two inherited retinal degeneration ("retinal degeneration 19" and "rhodopsin knock-out") mouse lines. Both automated analysis technologies provided robust characterization and quantification of POS based on LM or TEM images. Automated image segmentation by the classifier QuaPOS-LM and analysis of the orientation of membrane stacks by QuaPOS-TEM using fluorescent or TEM images allowed quantitative evaluation of POS formation and quality. The assessments showed an increase in POS number, volume, and membrane coherency during wild-type postnatal development, while a decrease in all three observables was detected in different retinal degeneration mouse models. All the code used for the presented analysis is open source, including example datasets to reproduce the findings. Hence, the QuaPOS quantification methods are useful for in-depth characterization of POS on retinal sections in developmental studies, for disease modeling, or after therapeutic interventions affecting photoreceptors.
Collapse
Affiliation(s)
- Suse Seidemann
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Florian Salomon
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Karl B. Hoffmann
- Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Thomas Kurth
- Core Facility Electron Microscopy and Histology, Technology Platform, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Ivo F. Sbalzarini
- Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- DFG Cluster of Excellence “Physics of Life”, Technische Universität Dresden, Dresden, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig University, Leipzig, Germany
| | - Robert Haase
- DFG Cluster of Excellence “Physics of Life”, Technische Universität Dresden, Dresden, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig University, Leipzig, Germany
| | - Marius Ader
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
15
|
Kurzawa-Akanbi M, Tzoumas N, Corral-Serrano JC, Guarascio R, Steel DH, Cheetham ME, Armstrong L, Lako M. Pluripotent stem cell-derived models of retinal disease: Elucidating pathogenesis, evaluating novel treatments, and estimating toxicity. Prog Retin Eye Res 2024; 100:101248. [PMID: 38369182 DOI: 10.1016/j.preteyeres.2024.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Blindness poses a growing global challenge, with approximately 26% of cases attributed to degenerative retinal diseases. While gene therapy, optogenetic tools, photosensitive switches, and retinal prostheses offer hope for vision restoration, these high-cost therapies will benefit few patients. Understanding retinal diseases is therefore key to advance effective treatments, requiring in vitro models replicating pathology and allowing quantitative assessments for drug discovery. Pluripotent stem cells (PSCs) provide a unique solution given their limitless supply and ability to differentiate into light-responsive retinal tissues encompassing all cell types. This review focuses on the history and current state of photoreceptor and retinal pigment epithelium (RPE) cell generation from PSCs. We explore the applications of this technology in disease modelling, experimental therapy testing, biomarker identification, and toxicity studies. We consider challenges in scalability, standardisation, and reproducibility, and stress the importance of incorporating vasculature and immune cells into retinal organoids. We advocate for high-throughput automation in data acquisition and analyses and underscore the value of advanced micro-physiological systems that fully capture the interactions between the neural retina, RPE, and choriocapillaris.
Collapse
|
16
|
Hou Y, Nanduri D, Granley J, Weiland JD, Beyeler M. Axonal stimulation affects the linear summation of single-point perception in three Argus II users. J Neural Eng 2024; 21:026031. [PMID: 38457841 PMCID: PMC11003296 DOI: 10.1088/1741-2552/ad31c4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
Objective.Retinal implants use electrical stimulation to elicit perceived flashes of light ('phosphenes'). Single-electrode phosphene shape has been shown to vary systematically with stimulus parameters and the retinal location of the stimulating electrode, due to incidental activation of passing nerve fiber bundles. However, this knowledge has yet to be extended to paired-electrode stimulation.Approach.We retrospectively analyzed 3548 phosphene drawings made by three blind participants implanted with an Argus II Retinal Prosthesis. Phosphene shape (characterized by area, perimeter, major and minor axis length) and number of perceived phosphenes were averaged across trials and correlated with the corresponding single-electrode parameters. In addition, the number of phosphenes was correlated with stimulus amplitude and neuroanatomical parameters: electrode-retina and electrode-fovea distance as well as the electrode-electrode distance to ('between-axon') and along axon bundles ('along-axon'). Statistical analyses were conducted using linear regression and partial correlation analysis.Main results.Simple regression revealed that each paired-electrode shape descriptor could be predicted by the sum of the two corresponding single-electrode shape descriptors (p < .001). Multiple regression revealed that paired-electrode phosphene shape was primarily predicted by stimulus amplitude and electrode-fovea distance (p < .05). Interestingly, the number of elicited phosphenes tended to increase with between-axon distance (p < .05), but not with along-axon distance, in two out of three participants.Significance.The shape of phosphenes elicited by paired-electrode stimulation was well predicted by the shape of their corresponding single-electrode phosphenes, suggesting that two-point perception can be expressed as the linear summation of single-point perception. The impact of the between-axon distance on the perceived number of phosphenes provides further evidence in support of the axon map model for epiretinal stimulation. These findings contribute to the growing literature on phosphene perception and have important implications for the design of future retinal prostheses.
Collapse
Affiliation(s)
- Yuchen Hou
- Department of Computer Science, University of California, Santa Barbara, CA, United States of America
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, United States of America
| | - Devyani Nanduri
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
| | - Jacob Granley
- Department of Computer Science, University of California, Santa Barbara, CA, United States of America
| | - James D Weiland
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Michael Beyeler
- Department of Computer Science, University of California, Santa Barbara, CA, United States of America
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, United States of America
| |
Collapse
|
17
|
Xu F, Zheng C, Xu W, Zhang S, Liu S, Chen X, Yao K. Breaking genetic shackles: The advance of base editing in genetic disorder treatment. Front Pharmacol 2024; 15:1364135. [PMID: 38510648 PMCID: PMC10953296 DOI: 10.3389/fphar.2024.1364135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The rapid evolution of gene editing technology has markedly improved the outlook for treating genetic diseases. Base editing, recognized as an exceptionally precise genetic modification tool, is emerging as a focus in the realm of genetic disease therapy. We provide a comprehensive overview of the fundamental principles and delivery methods of cytosine base editors (CBE), adenine base editors (ABE), and RNA base editors, with a particular focus on their applications and recent research advances in the treatment of genetic diseases. We have also explored the potential challenges faced by base editing technology in treatment, including aspects such as targeting specificity, safety, and efficacy, and have enumerated a series of possible solutions to propel the clinical translation of base editing technology. In conclusion, this article not only underscores the present state of base editing technology but also envisions its tremendous potential in the future, providing a novel perspective on the treatment of genetic diseases. It underscores the vast potential of base editing technology in the realm of genetic medicine, providing support for the progression of gene medicine and the development of innovative approaches to genetic disease therapy.
Collapse
Affiliation(s)
- Fang Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Caiyan Zheng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shiyao Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shanshan Liu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaopeng Chen
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Iwama Y, Nomaru H, Masuda T, Kawamura Y, Matsumura M, Murata Y, Teranishi K, Nishida K, Ota S, Mandai M, Takahashi M. Label-free enrichment of human pluripotent stem cell-derived early retinal progenitor cells for cell-based regenerative therapies. Stem Cell Reports 2024; 19:254-269. [PMID: 38181785 PMCID: PMC10874851 DOI: 10.1016/j.stemcr.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Pluripotent stem cell-based therapy for retinal degenerative diseases is a promising approach to restoring visual function. A clinical study using retinal organoid (RO) sheets was recently conducted in patients with retinitis pigmentosa. However, the graft preparation currently requires advanced skills to identify and excise suitable segments from the transplantable area of the limited number of suitable ROs. This remains a challenge for consistent clinical implementations. Herein, we enabled the enrichment of wild-type (non-reporter) retinal progenitor cells (RPCs) from dissociated ROs using a label-free ghost cytometry (LF-GC)-based sorting system, where a machine-based classifier was trained in advance with another RPC reporter line. The sorted cells reproducibly formed retinal spheroids large enough for transplantation and developed mature photoreceptors in the retinal degeneration rats. This method of enriching early RPCs with no specific surface antigens and without any reporters or chemical labeling is promising for robust preparation of graft tissues during cell-based therapy.
Collapse
Affiliation(s)
- Yasuaki Iwama
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; Cell and Gene Therapy in Ophthalmology Laboratory, BZP, RIKEN, Wako, Saitama 351-0198, Japan; Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | - Tomohiro Masuda
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan; Cell and Gene Therapy in Ophthalmology Laboratory, BZP, RIKEN, Wako, Saitama 351-0198, Japan.
| | | | - Michiru Matsumura
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan
| | | | | | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Sadao Ota
- ThinkCyte K.K., Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan.
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology, Kobe City Eye Hospital, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
19
|
Gao H, Zeng Y, Huang X, A L, Liang Q, Xie J, Lin X, Gong J, Fan X, Zou T, Xu H. Extracellular vesicles from organoid-derived human retinal progenitor cells prevent lipid overload-induced retinal pigment epithelium injury by regulating fatty acid metabolism. J Extracell Vesicles 2024; 13:e12401. [PMID: 38151470 PMCID: PMC10752800 DOI: 10.1002/jev2.12401] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/31/2023] [Accepted: 12/02/2023] [Indexed: 12/29/2023] Open
Abstract
Retinal degeneration (RD), a group of diseases leading to irreversible vision loss, is characterised by retinal pigment epithelium (RPE) or retinal neuron damage and loss. With fewer risks of immune rejection and tumorigenesis, stem cell-secreted extracellular vesicles (EVs) offer a new cell-free therapeutic paradigm for RD, which remains to be investigated. Human retinal organoid-derived retinal progenitor cells (hERO-RPCs) are an easily accessible and advanced cell source for RD treatment. However, hERO-RPCs-derived EVs require further characterisation. Here, we compared the characteristics of EVs from hERO-RPCs (hRPC-EVs) with those of human embryonic stem cell (hESC)-derived EVs (hESC-EVs) as controls. Based on in-depth proteomic analysis, we revealed remarkable differences between hRPC-EVs and hESC-EVs. A comparison between EVs and their respective cells of origin demonstrated that the protein loading of hRPC-EVs was more selective than that of hESC-EVs. In particular, hESC-EVs were enriched with proteins related to angiogenesis and cell cycle, whereas hRPC-EVs were enriched with proteins associated with immune modulation and retinal development. More importantly, compared with that of hESC-EVs, hRPC-EVs exhibited a lower correlation with cell proliferation and a unique capacity to regulate lipid metabolism. It was further confirmed that hRPC-EVs potentially eliminated lipid deposits, inhibited lipotoxicity and oxidative stress, and enhanced phagocytosis and survival of oleic acid-treated ARPE-19 cells. Mechanistically, hRPC-EVs are integrated into the mitochondrial network of oleic acid-treated ARPE-19 cells, and increased the level of mitochondrial fatty acid β-oxidation-related proteins. Thus, organoid-derived hRPC-EVs represent a promising source of cell-free therapy for RD, especially for blinding diseases related to abnormal lipid metabolism in RPE cells.
Collapse
Affiliation(s)
- Hui Gao
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Yuxiao Zeng
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Xiaona Huang
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Luodan A
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Qingle Liang
- Department of Clinical Laboratory Medicine, First Affiliated HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Jing Xie
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Xi Lin
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| | - Jing Gong
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingChina
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of PsychologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Ting Zou
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
- Department of OphthalmologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
- Key Lab of Visual Damage and Regeneration & Restoration of ChongqingChongqingChina
| |
Collapse
|
20
|
Hou Y, Nanduri D, Granley J, Weiland JD, Beyeler M. Axonal stimulation affects the linear summation of single-point perception in three Argus II users. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.21.23292908. [PMID: 37546858 PMCID: PMC10402233 DOI: 10.1101/2023.07.21.23292908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Purpose Retinal implants use electrical stimulation to elicit perceived flashes of light ("phosphenes"). Single-electrode phosphene shape has been shown to vary systematically with stimulus parameters and the retinal location of the stimulating electrode, due to incidental activation of passing nerve fiber bundles. However, this knowledge has yet to be extended to paired-electrode stimulation. Methods We retrospectively analyzed 3548 phosphene drawings made by three blind participants implanted with an Argus II Retinal Prosthesis. Phosphene shape (characterized by area, perimeter, major and minor axis length) and number of perceived phosphenes were averaged across trials and correlated with the corresponding single-electrode parameters. In addition, the number of phosphenes was correlated with stimulus amplitude and neuroanatomical parameters: electrode-retina and electrode-fovea distance as well as the electrode-electrode distance to ("between-axon") and along axon bundles ("along-axon"). Statistical analyses were conducted using linear regression and partial correlation analysis. Results Simple regression revealed that each paired-electrode shape descriptor could be predicted by the sum of the two corresponding single-electrode shape descriptors (p < .001). Multiple regression revealed that paired-electrode phosphene shape was primarily predicted by stimulus amplitude and electrode-fovea distance (p < .05). Interestingly, the number of elicited phosphenes tended to increase with between-axon distance (p < .05), but not with along-axon distance, in two out of three participants. Conclusions The shape of phosphenes elicited by paired-electrode stimulation was well predicted by the shape of their corresponding single-electrode phosphenes, suggesting that two-point perception can be expressed as the linear summation of single-point perception. The notable impact of the between-axon distance on the perceived number of phosphenes provides further evidence in support of the axon map model for epiretinal stimulation. These findings contribute to the growing literature on phosphene perception and have important implications for the design of future retinal prostheses.
Collapse
Affiliation(s)
- Yuchen Hou
- Department of Computer Science, University of California, Santa Barbara, CA
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA
| | - Devyani Nanduri
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Jacob Granley
- Department of Computer Science, University of California, Santa Barbara, CA
| | - James D Weiland
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Michael Beyeler
- Department of Computer Science, University of California, Santa Barbara, CA
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA
| |
Collapse
|
21
|
Lee IK, Xie R, Luz-Madrigal A, Min S, Zhu J, Jin J, Edwards KL, Phillips MJ, Ludwig AL, Gamm DM, Gong S, Ma Z. Micromolded honeycomb scaffold design to support the generation of a bilayered RPE and photoreceptor cell construct. Bioact Mater 2023; 30:142-153. [PMID: 37575875 PMCID: PMC10415596 DOI: 10.1016/j.bioactmat.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/27/2023] [Accepted: 07/22/2023] [Indexed: 08/15/2023] Open
Abstract
Age-related macular degeneration (AMD) causes blindness due to loss of retinal pigment epithelium (RPE) and photoreceptors (PRs), which comprise the two outermost layers of the retina. Given the small size of the macula and the importance of direct contact between RPE and PRs, the use of scaffolds for targeted reconstruction of the outer retina in later stage AMD and other macular dystrophies is particularly attractive. We developed microfabricated, honeycomb-patterned, biodegradable poly(glycerol sebacate) (PGS) scaffolds to deliver organized, adjacent layers of RPE and PRs to the subretinal space. Furthermore, an optimized process was developed to photocure PGS, shortening scaffold production time from days to minutes. The resulting scaffolds robustly supported the seeding of human pluripotent stem cell-derived RPE and PRs, either separately or as a dual cell-layered construct. These advanced, economical, and versatile scaffolds can accelerate retinal cell transplantation efforts and benefit patients with AMD and other retinal degenerative diseases.
Collapse
Affiliation(s)
- In-Kyu Lee
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ruosen Xie
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Agustin Luz-Madrigal
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Comparative Biomedical Sciences, University of Wisconsin–Madison, Madison, WI, 53706, USA
| | - Seunghwan Min
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jingcheng Zhu
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jiahe Jin
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - M. Joseph Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Allison L. Ludwig
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - David M. Gamm
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Comparative Biomedical Sciences, University of Wisconsin–Madison, Madison, WI, 53706, USA
| | - Shaoqin Gong
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhenqiang Ma
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Grainger Institute for Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
22
|
Kruczek K, Swaroop A. Patient stem cell-derived in vitro disease models for developing novel therapies of retinal ciliopathies. Curr Top Dev Biol 2023; 155:127-163. [PMID: 38043950 DOI: 10.1016/bs.ctdb.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Primary cilia are specialized organelles on the surface of almost all cells in vertebrate tissues and are primarily involved in the detection of extracellular stimuli. In retinal photoreceptors, cilia are uniquely modified to form outer segments containing components required for the detection of light in stacks of membrane discs. Not surprisingly, vision impairment is a frequent phenotype associated with ciliopathies, a heterogeneous class of conditions caused by mutations in proteins required for formation, maintenance and/or function of primary cilia. Traditionally, immortalized cell lines and model organisms have been used to provide insights into the biology of ciliopathies. The advent of methods for reprogramming human somatic cells into pluripotent stem cells has enabled the generation of in vitro disease models directly from patients suffering from ciliopathies. Such models help us in investigating pathological mechanisms specific to human physiology and in developing novel therapeutic approaches. In this article, we review current protocols to differentiate human pluripotent stem cells into retinal cell types, and discuss how these cellular and/or organoid models can be utilized to interrogate pathobiology of ciliopathies affecting the retina and for testing prospective treatments.
Collapse
Affiliation(s)
- Kamil Kruczek
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
23
|
Liang J, Yao F, Fang D, Chen L, Zou Z, Feng L, Zhuang Y, Xie T, Wei P, Li P, Zhang S. Hyperoside alleviates photoreceptor degeneration by preventing cell senescence through AMPK-ULK1 signaling. FASEB J 2023; 37:e23250. [PMID: 37819682 DOI: 10.1096/fj.202301273rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Vision loss and blindness are frequently caused by photoreceptor degeneration, for example in age-related macular degeneration and retinitis pigmentosa. However, there is no effective medicine to treat these photoreceptor degeneration-related diseases. Cell senescence is a common phenotype in many diseases; however, few studies have reported whether it occurs in photoreceptor degeneration diseases. Herein, we identified that cell senescence is associated with photoreceptor degeneration induced by N-methyl-N-nitrosourea (MNU, a commonly used photoreceptor degeneration model), presented as increased senescence-associated β-galactosidase activity, DNA damage, oxidative stress and inflammation-related cytokine Interleukin 6 (IL6), and upregulation of cyclin p21 or p16. These results suggested that visual function might be protected using anti-aging treatment. Furthermore, Hyperoside is reported to help prevent aging in various organs. In this study, we showed that Hyperoside, delivered intravitreally, alleviated photoreceptor cell senescence and ameliorated the functional and morphological degeneration of the retina in vivo and in vitro. Importantly, Hyperoside attenuated the MNU-induced injury and aging of photoreceptors via AMPK-ULK1 signaling inhibition. Taken together, our results demonstrated that Hyperoside can prevent MNU-induced photoreceptor degeneration by inhibiting cell senescence via the AMPK-ULK1 pathway.
Collapse
Affiliation(s)
- Jia Liang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| | - Fei Yao
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| | - Dong Fang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| | - Lu Chen
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| | - Zhenhua Zou
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| | - Lujia Feng
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| | - Yijing Zhuang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| | - Ting Xie
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| | - Pengxue Wei
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| | - Pengfeng Li
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| |
Collapse
|
24
|
Lozano B LL, Cervantes A LA. Development of experimental treatments for patients with retinitis pigmentosa. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2023; 98:646-655. [PMID: 37640142 DOI: 10.1016/j.oftale.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
Retinitis pigmentosa (RP) is a group of inherited diseases that lead to degeneration of the retina and decreased vision. The World Health Organization reports around 1,300 million people affected by some type of visual impairment worldwide. The prevalence is 1 in every 4000 inhabitants and it is the first cause of blindness of genetic origin, frequent in men with a percentage of 60% and 40% in women. There is a lack of information on this pathology in the world, mainly on the existing treatments for this disease, so this bibliographic review aims to update the existing or under-study treatments and inform the limitations of each of these therapies. This review of scientific literature was carried out by consulting databases such as PubMed and Web of science, the search will be limited to articles from the years 2018-2022. There are several types of therapy in studies: gene therapy, transcorneal electrical stimulation, use of neuroprotectors, optogenic therapy, stem cell transplants and oligonucleotide therapy, which will be discussed in this article, both their benefits and the existing barriers in each treatment experimental. In conclusion, each of these therapies promises a viable treatment in the future for selective groups of people with retinitis pigmentosa, however, some therapies have shown benefit at the beginning of the disease, losing their efficacy in the long term.
Collapse
Affiliation(s)
- L L Lozano B
- Universidad Católica de Cuenca, Cuenca, Ecuador.
| | | |
Collapse
|
25
|
Bai J, Koos DS, Stepanian K, Fouladian Z, Shayler DWH, Aparicio JG, Fraser SE, Moats RA, Cobrinik D. Episodic live imaging of cone photoreceptor maturation in GNAT2-EGFP retinal organoids. Dis Model Mech 2023; 16:dmm050193. [PMID: 37902188 PMCID: PMC10690052 DOI: 10.1242/dmm.050193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023] Open
Abstract
Fluorescent reporter pluripotent stem cell-derived retinal organoids are powerful tools to investigate cell type-specific development and disease phenotypes. When combined with live imaging, they enable direct and repeated observation of cell behaviors within a developing retinal tissue. Here, we generated a human cone photoreceptor reporter line by CRISPR/Cas9 genome editing of WTC11-mTagRFPT-LMNB1 human induced pluripotent stem cells (iPSCs) by inserting enhanced green fluorescent protein (EGFP) coding sequences and a 2A self-cleaving peptide at the N-terminus of guanine nucleotide-binding protein subunit alpha transducin 2 (GNAT2). In retinal organoids generated from these iPSCs, the GNAT2-EGFP alleles robustly and exclusively labeled immature and mature cones. Episodic confocal live imaging of hydrogel immobilized retinal organoids allowed tracking of the morphological maturation of individual cones for >18 weeks and revealed inner segment accumulation of mitochondria and growth at 12.2 μm3 per day from day 126 to day 153. Immobilized GNAT2-EGFP cone reporter organoids provide a valuable tool for investigating human cone development and disease.
Collapse
Affiliation(s)
- Jinlun Bai
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - David S. Koos
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Translational Biomedical Imaging Laboratory, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Kayla Stepanian
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Zachary Fouladian
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dominic W. H. Shayler
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jennifer G. Aparicio
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Scott E. Fraser
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Translational Biomedical Imaging Laboratory, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Translational Imaging Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Rex A. Moats
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Translational Biomedical Imaging Laboratory, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Radiology, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - David Cobrinik
- The Vision Center, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
26
|
Kerschensteiner D. Losing, preserving, and restoring vision from neurodegeneration in the eye. Curr Biol 2023; 33:R1019-R1036. [PMID: 37816323 PMCID: PMC10575673 DOI: 10.1016/j.cub.2023.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The retina is a part of the brain that sits at the back of the eye, looking out onto the world. The first neurons of the retina are the rod and cone photoreceptors, which convert changes in photon flux into electrical signals that are the basis of vision. Rods and cones are frequent targets of heritable neurodegenerative diseases that cause visual impairment, including blindness, in millions of people worldwide. This review summarizes the diverse genetic causes of inherited retinal degenerations (IRDs) and their convergence onto common pathogenic mechanisms of vision loss. Currently, there are few effective treatments for IRDs, but recent advances in disparate areas of biology and technology (e.g., genome editing, viral engineering, 3D organoids, optogenetics, semiconductor arrays) discussed here enable promising efforts to preserve and restore vision in IRD patients with implications for neurodegeneration in less approachable brain areas.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
27
|
Liang J, Fang D, Yao F, Chen L, Zou Z, Tang X, Feng L, Zhuang Y, Xie T, Wei P, Li P, Zheng H, Zhang S. Analysis of shared ceRNA networks and related-hub genes in rats with primary and secondary photoreceptor degeneration. Front Neurosci 2023; 17:1259622. [PMID: 37811327 PMCID: PMC10552924 DOI: 10.3389/fnins.2023.1259622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Photoreceptor degenerative diseases are characterized by the progressive death of photoreceptor cells, resulting in irreversible visual impairment. However, the role of competing endogenous RNA (ceRNA) in photoreceptor degeneration is unclear. We aimed to explore the shared ceRNA regulation network and potential molecular mechanisms between primary and secondary photoreceptor degenerations. Methods We established animal models for both types of photoreceptor degenerations and conducted retina RNA sequencing to identify shared differentially expressed long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs). Using ceRNA regulatory principles, we constructed a shared ceRNA network and performed function enrichment and protein-protein interaction (PPI) analyses to identify hub genes and key pathways. Immune cell infiltration and drug-gene interaction analyses were conducted, and hub gene expression was validated by quantitative real-time polymerase chain reaction (qRT-PCR). Results We identified 37 shared differentially expressed lncRNAs, 34 miRNAs, and 247 mRNAs and constructed a ceRNA network consisting of 3 lncRNAs, 5 miRNAs, and 109 mRNAs. Furthermore, we examined 109 common differentially expressed genes (DEGs) through functional annotation, PPI analysis, and regulatory network analysis. We discovered that these diseases shared the complement and coagulation cascades pathway. Eight hub genes were identified and enriched in the immune system process. Immune infiltration analysis revealed increased T cells and decreased B cells in both photoreceptor degenerations. The expression of hub genes was closely associated with the quantities of immune cell types. Additionally, we identified 7 immune therapeutical drugs that target the hub genes. Discussion Our findings provide new insights and directions for understanding the common mechanisms underlying the development of photoreceptor degeneration. The hub genes and related ceRNA networks we identified may offer new perspectives for elucidating the mechanisms and hold promise for the development of innovative treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Shaochong Zhang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| |
Collapse
|
28
|
Patel SH, Lamba DA. Factors Affecting Stem Cell-Based Regenerative Approaches in Retinal Degeneration. Annu Rev Vis Sci 2023; 9:155-175. [PMID: 37713278 DOI: 10.1146/annurev-vision-120222-012817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Inherited and age-associated vision loss is often associated with degeneration of the cells of the retina, the light-sensitive layer at the back of the eye. The mammalian retina, being a postmitotic neural tissue, does not have the capacity to repair itself through endogenous regeneration. There has been considerable excitement for the development of cell replacement approaches since the isolation and development of culture methods for human pluripotent stem cells, as well as the generation of induced pluripotent stem cells. This has now been combined with novel three-dimensional organoid culture systems that closely mimic human retinal development in vitro. In this review, we cover the current state of the field, with emphasis on the cell delivery challenges, role of the recipient immunological microenvironment, and challenges related to connectivity between transplanted cells and host circuitry both locally and centrally to the different areas of the brain.
Collapse
Affiliation(s)
- Sachin H Patel
- Department of Ophthalmology, University of California, San Francisco, California, USA;
| | - Deepak A Lamba
- Department of Ophthalmology, University of California, San Francisco, California, USA;
- Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California, San Francisco, California, USA
| |
Collapse
|
29
|
Zeng Q, Zhou J, Hua X. TRIM9 promotes Müller cell-derived retinal stem cells to differentiate into retinal ganglion cells by regulating Atoh7. In Vitro Cell Dev Biol Anim 2023; 59:586-595. [PMID: 37792226 DOI: 10.1007/s11626-023-00807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023]
Abstract
Glaucoma is a multifactorial, irreversible blinding eye disease characterized by a large number of retinal ganglion cell (RGC) deaths. Müller cell-derived retinal stem cells (RSCs) can be induced to differentiate into RGCs under certain conditions. This study aimed to explore the regulatory effect and mechanism of TRIM9 on the differentiation of Müller cell-derived stem cells into RGCs. First, episcleral vein cauterization was used to induce high intraocular pressure (IOP) rat model. Next, Müller cells were isolated from rat retina, identified and induced to dedifferentiate into RSCs. Finally, RSCs were intervened with lentivirus PGC-FU-TRIM9-GFP transfection or siRNA Atoh7 and induced to redifferentiate into RGCs. In vivo, TRIM9 was highly expressed and Müller cells proliferated abnormally in the high IOP rat model. In vitro, S-100, GFAP, vimentin, and GS were positively expressed in Müller cells isolated from rat retina, and the purity of cells was 97.17%. Under the stimulation of cytokines, the proliferative capacity of the cells and the expression of Nestin and Ki67 gradually increased with the prolongation of culture time. Furthermore, RSCs transfected with the lentiviral vector PGC-FU-TRIM9-GFP displayed a striking morphological feature of long neurites. Additionally, there was a remarkable increase in the fluorescence intensity of Brn-3b and Thy1.1, accompanied by elevated mRNA and protein expression levels of Brn-3b, Thy1.1, and Atoh7. After knocking down Atoh7, the effect of TRIM9 on the above indicators was reversed. TRIM9 might promote the differentiation of Müller cells into RGCs by regulating the expression of Atoh7.
Collapse
Affiliation(s)
- Qi Zeng
- Department of Ophthalmology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410008, China.
| | - Jinglin Zhou
- Department of Ophthalmology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410008, China
| | - Xingyu Hua
- Department of Ophthalmology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410008, China
| |
Collapse
|
30
|
Jong ED, Hacibekiroglu S, Guo L, Sawula E, Li B, Li C, Ho MT, Shoichet MS, Wallace VA, Nagy A. Soluble CX3CL1-expressing retinal pigment epithelium cells protect rod photoreceptors in a mouse model of retinitis pigmentosa. Stem Cell Res Ther 2023; 14:212. [PMID: 37605279 PMCID: PMC10441732 DOI: 10.1186/s13287-023-03434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP) is an inherited retinal disease that results in photoreceptor degeneration, leading to severe vision loss or blindness. Due to its genetic heterogeneity, developing a new gene therapy to correct every genetic mutation contributing to its progression is infeasible. Photoreceptor transplantation can be harnessed to restore vision; however, this approach is limited by poor cell survival and synaptic integration into the neural retina. Thus, we developed a combined cell and gene therapy that is expected to protect photoreceptors in most, if not all, cases of RP. METHODS Human embryonic stem cells (hESCs) modified with our FailSafe™ system were genetically engineered to overexpress sCX3CL1, an inhibitor of microglia activation that has been shown to preserve photoreceptor survival and function in mouse models of RP, independent of the genetic cause. These cells were differentiated into human retinal pigment epithelium (hRPE) cells and used as therapeutic cells due to their longevity and safety, both of which have been demonstrated in preclinical and clinical studies. Transgenic hRPE were delivered into the subretinal space of immunodeficient mice and the rd10 mouse model of RP to evaluate donor cell survival and retention of transgene expression. The outer nuclear layer was quantified to assess photoreceptor protection. RESULTS Transgenic FailSafe™ hRPE (FS-hRPE) cells can survive for at least four months in the retina of immunodeficient mice and retain transgene expression. However, these cells do not persist beyond two weeks post-injection in the retina of immunocompetent rd10 recipients, despite Cyclosporine A treatment. Nevertheless, sCX3CL1-expressing FailSafe™ hRPE cells prevented photoreceptor degeneration in a local acting manner during the duration of their presence in the subretinal space. CONCLUSIONS Transgenic hESCs differentiate into hRPE cells and retain sCX3CL1 transgene expression both in vitro and in vivo. Moreover, hRPE cells delivered to the subretinal space of rd10 mice prevented photoreceptor degeneration in a local-acting manner, suggesting that this approach could have applications for preserving photoreceptors in specific subregions of the retina, such as the macula. Overall, our study not only reveals the potential of a combined cell and gene therapy for the treatment of RP, but also the possibility of using hRPE cells to deliver therapeutic biologics in situ to treat diseases over long-term.
Collapse
Affiliation(s)
- Eric D Jong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sabiha Hacibekiroglu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada
| | - Lily Guo
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada
| | - Evan Sawula
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Biao Li
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada
| | - Chengjin Li
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada
| | - Margaret T Ho
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | - Molly S Shoichet
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - Valerie A Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada.
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
- Department of Obstetrics & Gynecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
31
|
Móvio MI, de Lima-Vasconcellos TH, Dos Santos GB, Echeverry MB, Colombo E, Mattos LS, Resende RR, Kihara AH. Retinal organoids from human-induced pluripotent stem cells: From studying retinal dystrophies to early diagnosis of Alzheimer's and Parkinson's disease. Semin Cell Dev Biol 2023; 144:77-86. [PMID: 36210260 DOI: 10.1016/j.semcdb.2022.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022]
Abstract
Human-induced pluripotent stem cells (hiPSCs) have provided new methods to study neurodegenerative diseases. In addition to their wide application in neuronal disorders, hiPSCs technology can also encompass specific conditions, such as inherited retinal dystrophies. The possibility of evaluating alterations related to retinal disorders in 3D organoids increases the truthfulness of in vitro models. Moreover, both Alzheimer's (AD) and Parkinson's disease (PD) have been described as causing early retinal alterations, generating beta-amyloid protein accumulation, or affecting dopaminergic amacrine cells. This review addresses recent advances and future perspectives obtained from in vitro modeling of retinal diseases, focusing on retinitis pigmentosa (RP). Additionally, we depicted the possibility of evaluating changes related to AD and PD in retinal organoids obtained from potential patients long before the onset of the disease, constituting a valuable tool in early diagnosis. With this, we pointed out prospects in the study of retinal dystrophies and early diagnosis of AD and PD.
Collapse
Affiliation(s)
- Marília Inês Móvio
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | | | | | - Marcela Bermudez Echeverry
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Elisabetta Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Leonardo S Mattos
- Biomedical Robotics Laboratory, Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Rodrigo Ribeiro Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Hiroaki Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil; Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil.
| |
Collapse
|
32
|
Zhao H, Wang H, Zhang M, Weng C, Liu Y, Yin Z. Chromatic pupillometry isolation and evaluation of intrinsically photosensitive retinal ganglion cell-driven pupillary light response in patients with retinitis pigmentosa. Front Hum Neurosci 2023; 17:1212398. [PMID: 37533585 PMCID: PMC10390747 DOI: 10.3389/fnhum.2023.1212398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
Purpose The pupil light response (PLR) is driven by rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs). We aimed to isolate ipRGC-driven pupil responses using chromatic pupillometry and to determine the effect of advanced retinitis pigmentosa (RP) on ipRGC function. Methods A total of 100 eyes from 67 patients with advanced RP and 18 healthy controls (HCs) were included. Patients were divided into groups according to severity of visual impairment: no light perception (NLP, 9 eyes), light perception (LP, 19 eyes), faint form perception (FFP, 34 eyes), or form perception (FP, 38 eyes). Pupil responses to rod-weighted (487 nm, -1 log cd/m2, 1 s), cone-weighted (630 nm, 2 log cd/m2, 1 s), and ipRGC-weighted (487 nm, 2 log cd/m2, 1 s) stimuli were recorded. ipRGC function was evaluated by the postillumination pupil response (PIPR) and three metrics of pupil kinetics: maximal contraction velocity (MCV), contraction duration, and maximum dilation velocity (MDV). Results We found a slow, sustained PLR response to the ipRGC-weighted stimulus in most patients with NLP (8/9), but these patients had no detectable rod- or cone-driven PLR. The ipRGC-driven PLR had an MCV of 0.269 ± 0.150%/s and contraction duration of 2.562 ± 0.902 s, both of which were significantly lower than those of the rod and cone responses. The PIPRs of the RP groups did not decrease compared with those of the HCs group and were even enhanced in the LP group. At advanced stages, ipRGC responses gradually became the main component of the PLR. Conclusion Chromatic pupillometry successfully isolated an ipRGC-driven PLR in patients with advanced RP. This PLR remained stable and gradually became the main driver of pupil contraction in more advanced cases of RP. Here, we present baseline data on ipRGC function; we expect these findings to contribute to evaluating and screening candidates for novel therapies.
Collapse
Affiliation(s)
- He Zhao
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Hao Wang
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Minfang Zhang
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Chuanhuang Weng
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Zhengqin Yin
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| |
Collapse
|
33
|
Toms M, Ward N, Moosajee M. Nuclear Receptor Subfamily 2 Group E Member 3 (NR2E3): Role in Retinal Development and Disease. Genes (Basel) 2023; 14:1325. [PMID: 37510230 PMCID: PMC10379133 DOI: 10.3390/genes14071325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
NR2E3 is a nuclear hormone receptor gene required for the correct development of the retinal rod photoreceptors. Expression of NR2E3 protein in rod cell precursors suppresses cone-specific gene expression and, in concert with other transcription factors including NRL, activates the expression of rod-specific genes. Pathogenic variants involving NR2E3 cause a spectrum of retinopathies, including enhanced S-cone syndrome, Goldmann-Favre syndrome, retinitis pigmentosa, and clumped pigmentary retinal degeneration, with limited evidence of genotype-phenotype correlations. A common feature of NR2E3-related disease is an abnormally high number of cone photoreceptors that are sensitive to short wavelength light, the S-cones. This characteristic has been supported by mouse studies, which have also revealed that loss of Nr2e3 function causes photoreceptors to develop as cells that are intermediate between rods and cones. While there is currently no available cure for NR2E3-related retinopathies, there are a number of emerging therapeutic strategies under investigation, including the use of viral gene therapy and gene editing, that have shown promise for the future treatment of patients with NR2E3 variants and other inherited retinal diseases. This review provides a detailed overview of the current understanding of the role of NR2E3 in normal development and disease, and the associated clinical phenotypes, animal models, and therapeutic studies.
Collapse
Affiliation(s)
- Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Natasha Ward
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
34
|
Chew LA, Iannaccone A. Gene-agnostic approaches to treating inherited retinal degenerations. Front Cell Dev Biol 2023; 11:1177838. [PMID: 37123404 PMCID: PMC10133473 DOI: 10.3389/fcell.2023.1177838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Most patients with inherited retinal degenerations (IRDs) have been waiting for treatments that are "just around the corner" for decades, with only a handful of seminal breakthroughs happening in recent years. Highlighting the difficulties in the quest for curative therapeutics, Luxturna required 16 years of development before finally obtaining United States Food and Drug Administration (FDA) approval and its international equivalents. IRDs are both genetically and phenotypically heterogeneous. While this diversity offers many opportunities for gene-by-gene precision medicine-based approaches, it also poses a significant challenge. For this reason, alternative (or parallel) strategies to identify more comprehensive, across-the-board therapeutics for the genetically and phenotypically diverse IRD patient population are very appealing. Even when gene-specific approaches may be available and become approved for use, many patients may have reached a disease stage whereby these approaches may no longer be viable. Thus, alternate visual preservation or restoration therapeutic approaches are needed at these stages. In this review, we underscore several gene-agnostic approaches that are being developed as therapeutics for IRDs. From retinal supplementation to stem cell transplantation, optogenetic therapy and retinal prosthetics, these strategies would bypass at least in part the need for treating every individual gene or mutation or provide an invaluable complement to them. By considering the diverse patient population and treatment strategies suited for different stages and patterns of retinal degeneration, gene agnostic approaches are very well poised to impact favorably outcomes and prognosis for IRD patients.
Collapse
Affiliation(s)
- Lindsey A. Chew
- Duke Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Alessandro Iannaccone
- Duke Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
35
|
Maidana DE, Gonzalez-Buendia L, Miller JW, Vavvas DG. RIPK necrotic cell death pathway in both donor photoreceptor and host immune cells synergize to affect photoreceptor graft survival. FASEB J 2023; 37:e22847. [PMID: 36862516 PMCID: PMC10590064 DOI: 10.1096/fj.202201137r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/29/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023]
Abstract
Photoreceptor transplant has been put forward as a repair strategy to tackle degenerated retinas. Nonetheless, cell death and immune rejection seriously limit the success of this strategy, with only a small fraction of transplanted cells surviving. Improving the survival of transplanted cells is of critical importance. Recent evidence has identified receptor-interacting protein kinase 3 (RIPK3) as a molecular trigger controlling necroptotic cell death and inflammation. However, its role in photoreceptor transplantation and regenerative medicine has not been studied. We hypothesized that modulation of RIPK3 to address both cell death and immunity could have advantageous effects on photoreceptor survival. In a model of inherited retinal degeneration, deletion of RIPK3 in donor photoreceptor precursors significantly increases the survival of transplanted cells. Simultaneous RIPK3 deletion in donor photoreceptors and recipients maximizes graft survival. Lastly, to discern the role of RIPK3 in the host immune response, bone marrow transplant experiments demonstrated that peripheral immune cell RIPK3 deficiency is protective for both donor and host photoreceptor survival. Interestingly, this finding is independent of photoreceptor transplantation, as the peripheral protective effect is also observed in an additional retinal detachment photoreceptor degeneration model. Altogether, these results indicate that immunomodulatory and neuroprotective strategies targeting the RIPK3 pathway can aid regenerative therapies of photoreceptor transplantation.
Collapse
Affiliation(s)
- Daniel E. Maidana
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lucia Gonzalez-Buendia
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Joan W. Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
36
|
Bai J, Koos DS, Stepanian K, Fouladian Z, Shayler DWH, Aparicio JG, Fraser SE, Moats RA, Cobrinik D. Episodic live imaging of cone photoreceptor maturation in GNAT2-EGFP retinal organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530518. [PMID: 36909527 PMCID: PMC10002746 DOI: 10.1101/2023.02.28.530518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Fluorescent reporter pluripotent stem cell (PSC) derived retinal organoids are powerful tools to investigate cell type-specific development and disease phenotypes. When combined with live imaging, they enable direct and repeated observation of cell behaviors within a developing retinal tissue. Here, we generated a human cone photoreceptor reporter line by CRISPR/Cas9 genome editing of WTC11-mTagRFPT-LMNB1 human induced pluripotent stem cells (iPSCs) by inserting enhanced green fluorescent protein (EGFP) coding sequences and a 2A self-cleaving peptide at the N-terminus of Guanine Nucleotide-Binding Protein Subunit Alpha Transducin 2 (GNAT2). In retinal organoids generated from these iPSCs, the GNAT2-EGFP allele robustly and exclusively labeled both immature and mature cones starting at culture day 34. Episodic confocal live imaging of hydrogel immobilized retinal organoids allowed tracking of morphological maturation of individual cones for >18 weeks and revealed inner segment accumulation of mitochondria and growth at 12.2 cubic microns per day from day 126 to day 153. Immobilized GNAT2-EGFP cone reporter organoids provide a valuable tool for investigating human cone development and disease.
Collapse
Affiliation(s)
- Jinlun Bai
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David S. Koos
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Translational Biomedical Imaging Laboratory, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Kayla Stepanian
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Zachary Fouladian
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dominic W. H. Shayler
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Development, Stem Cell, and Regenerative Medicine Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jennifer G. Aparicio
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Scott E. Fraser
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Translational Biomedical Imaging Laboratory, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Translational Imaging Center, University of Southern California, Los Angeles, CA, USA
| | - Rex A. Moats
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Translational Biomedical Imaging Laboratory, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - David Cobrinik
- The Vision Center, Department of Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Ophthalmology and Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
37
|
Kalargyrou AA, Guilfoyle SE, Smith AJ, Ali RR, Pearson RA. Extracellular vesicles in the retina - putative roles in physiology and disease. Front Mol Neurosci 2023; 15:1042469. [PMID: 36710933 PMCID: PMC9877344 DOI: 10.3389/fnmol.2022.1042469] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
The retina encompasses a network of neurons, glia and epithelial and vascular endothelia cells, all coordinating visual function. Traditionally, molecular information exchange in this tissue was thought to be orchestrated by synapses and gap junctions. Recent findings have revealed that many cell types are able to package and share molecular information via extracellular vesicles (EVs) and the technological advancements in visualisation and tracking of these delicate nanostructures has shown that the role of EVs in cell communication is pleiotropic. EVs are released under physiological conditions by many cells but they are also released during various disease stages, potentially reflecting the health status of the cells in their cargo. Little is known about the physiological role of EV release in the retina. However, administration of exogenous EVs in vivo after injury suggest a neurotrophic role, whilst photoreceptor transplantation in early stages of retina degeneration, EVs may facilitate interactions between photoreceptors and Müller glia cells. In this review, we consider some of the proposed roles for EVs in retinal physiology and discuss current evidence regarding their potential impact on ocular therapies via gene or cell replacement strategies and direct intraocular administration in the diseased eye.
Collapse
Affiliation(s)
- Aikaterini A. Kalargyrou
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Siobhan E. Guilfoyle
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Alexander J. Smith
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Robin R. Ali
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States
| | - Rachael A. Pearson
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| |
Collapse
|
38
|
John MC, Quinn J, Hu ML, Cehajic-Kapetanovic J, Xue K. Gene-agnostic therapeutic approaches for inherited retinal degenerations. Front Mol Neurosci 2023; 15:1068185. [PMID: 36710928 PMCID: PMC9881597 DOI: 10.3389/fnmol.2022.1068185] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Inherited retinal diseases (IRDs) are associated with mutations in over 250 genes and represent a major cause of irreversible blindness worldwide. While gene augmentation or gene editing therapies could address the underlying genetic mutations in a small subset of patients, their utility remains limited by the great genetic heterogeneity of IRDs and the costs of developing individualised therapies. Gene-agnostic therapeutic approaches target common pathogenic pathways that drive retinal degeneration or provide functional rescue of vision independent of the genetic cause, thus offering potential clinical benefits to all IRD patients. Here, we review the key gene-agnostic approaches, including retinal cell reprogramming and replacement, neurotrophic support, immune modulation and optogenetics. The relative benefits and limitations of these strategies and the timing of clinical interventions are discussed.
Collapse
Affiliation(s)
- Molly C. John
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Joel Quinn
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Monica L. Hu
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
39
|
Shen W, Shao A, Zhou W, Lou L, Grzybowski A, Jin K, Ye J. Retinogenesis in a Dish: Bibliometric Analysis and Visualization of Retinal Organoids From 2011 to 2022. Cell Transplant 2023; 32:9636897231214321. [PMID: 38044501 PMCID: PMC10695087 DOI: 10.1177/09636897231214321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/12/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Retinal organoid (RO) is the three-dimensional (3D) retinal culture derived from pluripotent or embryonic stem cells which recapitulates organ functions, which was a revolutionary milestone in stem cell technology. The purpose of this study is to explore the hotspots and future directions on ROs, as well as to better understand the fields of greatest research opportunities. Eligible publications related to RO from 2011 to 2022 were acquired from the Web of Science (WoS) Core Collection database. Bibliometric analysis was performed by using software including VOSviewer, CiteSpace, and ArcGIS. A total of 520 articles were included, and the number of annual publications showed a rapid increase with an average rate of 40.86%. The United States published the most articles (241/520, 46.35%) with highest total citation frequencies (5,344). University College London (UK) contributed the largest publication output (40/520, 7.69%) and received highest total citation frequencies. Investigative Ophthalmology & Visual Science was the most productive journal with 129 articles. Majlinda Lako contributed the most research with 32 articles, while Olivier Goureau has the strongest collaboration work. Research could be subdivided into four keyword clusters: "culture and differentiation," "morphogenesis and modeling," "gene therapy," and "transplantation and visual restoration," and evolution of keywords was identified. Last decade has witnessed the huge progress in the field of RO, which is a young and promising research area with extensive and in-depth studies. More attention should be paid to RO-related models and therapies based on specific retinal diseases, especially inherited retinopathies.
Collapse
Affiliation(s)
- Wenyue Shen
- Eye Center, The Second Affiliated Hospital School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - An Shao
- Eye Center, The Second Affiliated Hospital School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Wuyuan Zhou
- Zhejiang Academy of Science and Technology Information, Hangzhou, China
| | - Lixia Lou
- Eye Center, The Second Affiliated Hospital School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland
| | - Kai Jin
- Eye Center, The Second Affiliated Hospital School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| |
Collapse
|
40
|
Busskamp V. Stem cells for treating retinal degeneration. J Perinat Med 2022:jpm-2022-0510. [PMID: 36474335 DOI: 10.1515/jpm-2022-0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
The mammalian retina lacks regenerative potency to replace damaged or degenerated cells. Therefore, traumatic or genetic insults that lead to the degeneration of retinal neurons or retinal pigment epithelium (RPE) cells alter visual perception and ultimately can lead to blindness. The advent of human stem cells and their exploitation for vision restoration approaches has boosted the field. Traditionally, animal models-mostly rodents-have been generated and used to mimic certain monogenetic hereditary diseases. Of note, some models were extremely useful to develop specific gene therapies, for example for Retinitis Pigmentosa, Leber congenital amaurosis and achromatopsia. However, complex multifactorial diseases are not well recapitulated in rodent models such as age-related macular degeneration (AMD) as rodents lack a macula. Here, human stem cells are extremely valuable to advance the development of therapies. Particularly, cell replacement therapy is of enormous importance to treat retinal degenerative diseases. Moreover, different retinal degenerative disorders require the transplantation of unique cell types. The most advanced one is to substitute the RPE cells, which stabilize the light-sensitive photoreceptors. Some diseases require also the transplantation of photoreceptors. Depending on the disease pattern, both approaches can also be combined. Within this article, I briefly feature the underlying principle of cell replacement therapies, demonstrate some successes and discuss certain shortcomings of these approaches for clinical application.
Collapse
Affiliation(s)
- Volker Busskamp
- Degenerative Retinal Diseases, University Hospital Bonn, Venusberg-Campus 1 Gebäude 5, 53127 Bonn, Germany
| |
Collapse
|
41
|
Beyeler M, Sanchez-Garcia M. Towards a Smart Bionic Eye: AI-powered artificial vision for the treatment of incurable blindness. J Neural Eng 2022; 19:10.1088/1741-2552/aca69d. [PMID: 36541463 PMCID: PMC10507809 DOI: 10.1088/1741-2552/aca69d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
Objective.How can we return a functional form of sight to people who are living with incurable blindness? Despite recent advances in the development of visual neuroprostheses, the quality of current prosthetic vision is still rudimentary and does not differ much across different device technologies.Approach.Rather than aiming to represent the visual scene as naturally as possible, aSmart Bionic Eyecould provide visual augmentations through the means of artificial intelligence-based scene understanding, tailored to specific real-world tasks that are known to affect the quality of life of people who are blind, such as face recognition, outdoor navigation, and self-care.Main results.Complementary to existing research aiming to restore natural vision, we propose a patient-centered approach to incorporate deep learning-based visual augmentations into the next generation of devices.Significance.The ability of a visual prosthesis to support everyday tasks might make the difference between abandoned technology and a widely adopted next-generation neuroprosthetic device.
Collapse
Affiliation(s)
- Michael Beyeler
- Department of Computer Science,University of California,Santa Barbara, CA, United States of America
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, United States of America
| | - Melani Sanchez-Garcia
- Department of Computer Science,University of California,Santa Barbara, CA, United States of America
| |
Collapse
|
42
|
Karamali F, Behtaj S, Babaei-Abraki S, Hadady H, Atefi A, Savoj S, Soroushzadeh S, Najafian S, Nasr Esfahani MH, Klassen H. Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. J Transl Med 2022; 20:572. [PMID: 36476500 PMCID: PMC9727916 DOI: 10.1186/s12967-022-03738-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
Collapse
Affiliation(s)
- Fereshteh Karamali
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sanaz Behtaj
- grid.1022.10000 0004 0437 5432Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia ,grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia
| | - Shahnaz Babaei-Abraki
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hanieh Hadady
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Soraya Savoj
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Najafian
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Henry Klassen
- grid.266093.80000 0001 0668 7243Gavin Herbert Eye Institute, Irvine, CA USA
| |
Collapse
|
43
|
Nikonov S, Dolgova N, Sudharsan R, Tochitsky I, Iwabe S, Guzman JM, Van Gelder RN, Kramer RH, Aguirre GD, Beltran WA. Photochemical Restoration of Light Sensitivity in the Degenerated Canine Retina. Pharmaceutics 2022; 14:pharmaceutics14122711. [PMID: 36559205 PMCID: PMC9783220 DOI: 10.3390/pharmaceutics14122711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
Photopharmacological compounds such as azobenzene-based photoswitches have been shown to control the conductivity of ionic channels in a light-dependent manner and are considered a potential strategy to restore vision in patients with end-stage photoreceptor degeneration. Here, we report the effects of DENAQ, a second-generation azobenzene-based photoswitch on retinal ganglion cells (RGC) in canine retinas using multi-electrode array (MEA) recordings (from nine degenerated and six WT retinas). DENAQ treatment conferred increased light sensitivity to RGCs in degenerated canine retinas. RGC light responses were observed in degenerated retinas following ex vivo application of 1 mM DENAQ (n = 6) or after in vivo DENAQ injection (n = 3, 150 μL, 3-10 mM) using 455 nm light at intensities as low as 0.2 mW/cm2. The number of light-sensitive cells and the per cell response amplitude increased with light intensity up to the maximum tested intensity of 85 mW/cm2. Application of DENAQ to degenerated retinas with partially preserved cone function caused appearance of DENAQ-driven responses both in cone-driven and previously non-responsive RGCs, and disappearance of cone-driven responses. Repeated stimulation slowed activation and accelerated recovery of the DENAQ-driven responses. The latter is likely responsible for the delayed appearance of a response to 4 Hz flicker stimulation. Limited aqueous solubility of DENAQ results in focal drug aggregates associated with ocular toxicity. While this limits the therapeutic potential of DENAQ, more potent third-generation photoswitches may be more promising, especially when delivered in a slow-release formulation that prevents drug aggregation.
Collapse
Affiliation(s)
- Sergei Nikonov
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natalia Dolgova
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raghavi Sudharsan
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ivan Tochitsky
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 90095, USA
| | - Simone Iwabe
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jose-Manuel Guzman
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell N. Van Gelder
- Department of Ophthalmology, Pathology, and Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Richard H. Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 90095, USA
| | - Gustavo D. Aguirre
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William A. Beltran
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
44
|
Liu Z, Zeng F, Zhang Y, Liu Y, Li Z, Liu X. Future perspective of stem cell-derived exosomes: Cell-free therapeutic strategies for retinal degeneration. Front Bioeng Biotechnol 2022; 10:905516. [PMID: 36452207 PMCID: PMC9702331 DOI: 10.3389/fbioe.2022.905516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 10/25/2022] [Indexed: 04/26/2024] Open
Abstract
With continued expansion of the aged population, the number of patients with retinal degeneration, which is a leading cause of vision loss worldwide, is growing. Stem cell therapies offer hope for regeneration and repair of damaged retinal tissue. Recent reports have highlighted stem cell-derived paracrine mediators, such as exosomes, which appear to exert a therapeutic benefit similar to their cell of origin and do not carry the risk of cell transplantation. One speculated role is that exosomes likely mediate intercellular communication and material exchange. This review depicts the molecular mechanisms underlying exosome-based therapy, especially in retina degeneration diseases. In the future, the use of stem cell-derived exosomes could be considered a novel and cell-free therapeutic strategy in regenerative medicine.
Collapse
Affiliation(s)
- Zibin Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Fang Zeng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Yao Zhang
- Department of Neurology, Hunan Provincial People’s Hospital, Hunan Normal University, Changsha, China
| | - Yongqing Liu
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Zhuo Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Xiao Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| |
Collapse
|
45
|
Lewis TR, Phan S, Kim KY, Jha I, Castillo CM, Ding JD, Sajdak BS, Merriman DK, Ellisman MH, Arshavsky VY. Microvesicle release from inner segments of healthy photoreceptors is a conserved phenomenon in mammalian species. Dis Model Mech 2022; 15:dmm049871. [PMID: 36420970 PMCID: PMC9796728 DOI: 10.1242/dmm.049871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
Many inherited visual diseases arise from mutations that affect the structure and function of photoreceptor cells. In some cases, the pathology is accompanied by a massive release of extracellular vesicles from affected photoreceptors. In this study, we addressed whether vesicular release is an exclusive response to ongoing pathology or a normal homeostatic phenomenon amplified in disease. We analyzed the ultrastructure of normal photoreceptors from both rod- and cone-dominant mammalian species and found that these cells release microvesicles budding from their inner segment compartment. Inner segment-derived microvesicles vary in their content, with some of them containing the visual pigment rhodopsin and others appearing to be interconnected with mitochondria. These data suggest the existence of a fundamental process whereby healthy mammalian photoreceptors release mistrafficked or damaged inner segment material as microvesicles into the interphotoreceptor space. This release may be greatly enhanced under pathological conditions associated with defects in protein targeting and trafficking. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Tylor R. Lewis
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Isha Jha
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Carson M. Castillo
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jin-Dong Ding
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Benjamin S. Sajdak
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA
- Fauna Bio Inc., Emeryville, CA 94608, USA
| | - Dana K. Merriman
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI 54901, USA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Vadim Y. Arshavsky
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
46
|
Yang JM, Kim B, Kwak J, Lee MK, Kim JH, Baek IJ, Sung YH, Lee JY. Development of a novel knockout model of retinitis pigmentosa using Pde6b-knockout Long–Evans rats. Front Med (Lausanne) 2022; 9:909182. [PMID: 36213678 PMCID: PMC9532504 DOI: 10.3389/fmed.2022.909182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Although rats with melanin-pigmentated retinal pigment epithelial (RPE) cells are physiologically more appropriate models for human eye research than their albino counterparts, reliable models from the former strain are not available to study retinal degeneration. Here, we describe the development of a novel Pde6b-knockout Long–Evans (LE Pde6b KO) rat model that recapitulates key features of human retinitis pigmentosa (RP). After the generation of the Pde6b-knockout Sprague–Dawley rats with the CRISPR-Cpf1 system, the LE rat was back-crossed over 5 generations to develop the pigmented LE Pde6b KO strain. Interestingly, LE Pde6b KO displayed well-developed bone-spicule pigmentation; a hallmark of fundus in patients with RP which cannot be observed in non-pigmented albino rats. Moreover, the rat model showed progressive thinning of the retina, which was evident by intravital imaging with optical coherence tomography. Histologically, significant atrophy was observed in the outer nuclear layer. Functionally, LE Pde6b KO presented a marked decrease of amplitude level during electroretinogram testing, demonstrating significant loss of visual function. Therefore, these findings suggest that the LE Pde6b KO model robustly recapitulates the hallmark phenotype of RP. We believe that the LE Pde6b KO model may be used effectively for preclinical translational research to further study retinal degeneration.
Collapse
Affiliation(s)
- Jee Myung Yang
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang, South Korea
| | - Bora Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jiehoon Kwak
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Min Kyung Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jeong Hoon Kim
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - In-Jeoung Baek
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, South Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, South Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
- *Correspondence: Joo Yong Lee,
| |
Collapse
|
47
|
Le N, Appel H, Pannullo N, Hoang T, Blackshaw S. Ectopic insert-dependent neuronal expression of GFAP promoter-driven AAV constructs in adult mouse retina. Front Cell Dev Biol 2022; 10:914386. [PMID: 36200040 PMCID: PMC9527291 DOI: 10.3389/fcell.2022.914386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Direct reprogramming of retinal Müller glia is a promising avenue for replacing photoreceptors and retinal ganglion cells lost to retinal dystrophies. However, questions have recently been raised about the accuracy of studies claiming efficient glia-to-neuron reprogramming in retina that were conducted using GFAP mini promoter-driven adeno-associated virus (AAV) vectors. In this study, we have addressed these questions using GFAP mini promoter-driven AAV constructs to simultaneously overexpress the mCherry reporter and candidate transcription factors predicted to induce glia-to-neuron conversion, in combination with prospective genetic labeling of retinal Müller glia using inducible Cre-dependent GFP reporters. We find that, while control GFAP-mCherry constructs express faithfully in Müller glia, 5 out of 7 transcription factor overexpression constructs tested are predominantly expressed in amacrine and retinal ganglion cells. These findings demonstrate strong insert-dependent effects on AAV-based GFAP mini promoter specificity that preclude its use in inferring cell lineage relationships when studying glia-to-neuron conversion in retina.
Collapse
Affiliation(s)
- Nguyet Le
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Haley Appel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole Pannullo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
48
|
DePamphilis LM, Shinbrot T, Vazquez M. Opportunities for agent based modeling of retinal stem cell transplantation. Neural Regen Res 2022; 17:1978-1980. [PMID: 35142683 PMCID: PMC8848610 DOI: 10.4103/1673-5374.331868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/03/2021] [Accepted: 10/02/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Larissa M. DePamphilis
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Troy Shinbrot
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
49
|
Johnson TV, Polo AD, Sahel JA, Schuman JS. Neuroprotection, Neuroenhancement, and Neuroregeneration of the Retina and Optic Nerve. OPHTHALMOLOGY SCIENCE 2022; 2:100216. [PMID: 36245765 PMCID: PMC9559091 DOI: 10.1016/j.xops.2022.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Seah I, Ong C, Liu Z, Su X. Polymeric biomaterials in the treatment of posterior segment diseases. Front Med (Lausanne) 2022; 9:949543. [PMID: 36059842 PMCID: PMC9433984 DOI: 10.3389/fmed.2022.949543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Polymeric biomaterials are biological or synthetic substances which can be engineered to interact with biological systems for the diagnosis or treatment of diseases. These biomaterials have immense potential for treating eyes diseases, particularly the retina—a site of many inherited and acquired diseases. Polymeric biomaterials can be engineered to function both as an endotamponade agent and to prevent intraocular scarring in retinal detachment repair surgeries. They can also be designed as a drug delivery platform for treatment of retinal diseases. Finally, they can be used as scaffolds for cellular products and provide non-viral gene delivery solutions to the retina. This perspective article explains the role of polymeric biomaterials in the treatment of retinal conditions by highlighting recent advances being translated to clinical practice. The article will also identify potential hurdles to clinical translation as future research directions in the field.
Collapse
Affiliation(s)
- Ivan Seah
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Charles Ong
- Singapore National Eye Centre (SNEC), Singapore, Singapore
| | - Zengping Liu
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Singapore Eye Research Institute (SERI), Singapore, Singapore
| | - Xinyi Su
- Department of Ophthalmology, National University Hospital, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
- Singapore Eye Research Institute (SERI), Singapore, Singapore
- *Correspondence: Xinyi Su
| |
Collapse
|