1
|
Costa P, Basaglia M, Casella S, Kennes C, Favaro L, Carmen Veiga M. Autotrophic production of polyhydroxyalkanoates using acidogenic-derived H 2 and CO 2 from fruit waste. BIORESOURCE TECHNOLOGY 2023; 390:129880. [PMID: 37852509 DOI: 10.1016/j.biortech.2023.129880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
The environmental concerns regarding fossil plastics call for alternative biopolymers such as polyhydroxyalkanoates (PHAs) whose manufacturing costs are however still too elevated. Autotrophic microbes like Cupriavidus necator, able to convert CO2 and H2 into PHAs, offer an additional strategy. Typically, the preferred source for CO2 and H2 are expensive pure gases or syngas, which has toxic compounds for most PHAs-accumulating strains. In this work, for the first time, H2 and CO2 originating from an acidogenic reactor were converted autotrophically into poly(3-hydroxybutyrate) P(3HB). During the first stage, a mixed microbial community continuously catabolized melon waste into H2 (26.7 %) and CO2 (49.2 %) that were then used in a second bioreactor by C. necator DSM 545 to accumulate 1.7 g/L P(3HB). Additionally, the VFAs (13 gCOD/L) produced during acidogenesis were processed into 2.7 g/L of P(3HB-co-3HV). This is the first proof-of-concept of using acidogenic-derived H2 and CO2 from fruit waste to produce PHAs.
Collapse
Affiliation(s)
- Paolo Costa
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Waste to Bioproducts-Lab, Università di Padova, Agripolis, Viale dell'Università 16, Legnaro, Padua 35020, Italy; Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, Coruña 15008 A, Spain
| | - Marina Basaglia
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Waste to Bioproducts-Lab, Università di Padova, Agripolis, Viale dell'Università 16, Legnaro, Padua 35020, Italy
| | - Sergio Casella
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Waste to Bioproducts-Lab, Università di Padova, Agripolis, Viale dell'Università 16, Legnaro, Padua 35020, Italy
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, Coruña 15008 A, Spain
| | - Lorenzo Favaro
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Waste to Bioproducts-Lab, Università di Padova, Agripolis, Viale dell'Università 16, Legnaro, Padua 35020, Italy.
| | - Maria Carmen Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, Coruña 15008 A, Spain
| |
Collapse
|
2
|
Jung JH, Sim YB, Ko J, Park SY, Kim GB, Kim SH. Biohydrogen and biomethane production from food waste using a two-stage dynamic membrane bioreactor (DMBR) system. BIORESOURCE TECHNOLOGY 2022; 352:127094. [PMID: 35367325 DOI: 10.1016/j.biortech.2022.127094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
This study examined a two-stage dynamic membrane bioreactor (DMBR) system for biohydrogen and biomethane production from food waste (FW) in mesophilic condition. The two-stage DMBR system enabled high-rate H2 and CH4 production from particulate feedstock by enhanced microorganism retention. Chemical energy in FW was recovered up to 79% as renewable energy. The highest average hydrogen production rate of 7.09 ± 0.42 L/L-d was observed at a hydraulic retention time (HRT) of 8 h in the H2-DMBR, while the highest CH4 average production rate of 0.99 ± 0.02 L/L-d was observed at an HRT of 6 d in the CH4-DMBR. The high specific methanogenic activity of 71.7 mL CH4/g VSS-d was maintained at the short HRT, which also contributed to the high MPR. The genus Clostridium was dominant in the H2-DMBR, while bacterial and archaeal populations in the CH4-DMBR were dominated by the class Clostridia and genera Methanobacterium and Methanosaeta, respectively.
Collapse
Affiliation(s)
- Ju-Hyeong Jung
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Bo Sim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeun Ko
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - So Young Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gi-Beom Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
3
|
Ouyang Y, Cai Y, Guo H. Visualization and Analysis of Mapping Knowledge Domains for Food Waste Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105143. [PMID: 34066262 PMCID: PMC8152013 DOI: 10.3390/ijerph18105143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 12/03/2022]
Abstract
Food waste and loss is a global issue involving ethics, society, the environment, and the economy. However, there is a lack of systematic and visual scientific knowledge and graph methods to study the precedents of this field’s development over time. The article is based on the scientific knowledge graph research of articles published in the past 22 years to review the latest food waste research developments. The study will be conducted from the following perspectives: country/region, institution, author, journal, keyword co-occurrence, and article co-citation. It turns out that in the past eight years, food waste research has grown rapidly. A total of 8298 research articles have been published in 8064 journals and 176 Web of Science (WOS) subject categories. Research shows in the past 20 years. The main research hotspots were anaerobic digestion, biogas production, composting, biological hydrogen production, and innovation in system management methods. In the future, efficient and multitask biological value-added conversion technology, systematization of food-supply-chain decision-making aid models, and research on differences in management strategies may become the frontiers of research.
Collapse
Affiliation(s)
- Yiran Ouyang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Y.O.); (H.G.)
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Y.O.); (H.G.)
- Institute for Energy, Environment, and Sustainable Communities, University of Regina, Regina, SK S4S 0A2, Canada
- Correspondence:
| | - Hongjiang Guo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; (Y.O.); (H.G.)
| |
Collapse
|
4
|
Bacterial valorization of pulp and paper industry process streams and waste. Appl Microbiol Biotechnol 2021; 105:1345-1363. [PMID: 33481067 DOI: 10.1007/s00253-021-11107-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
The pulp and paper industry is a major source of lignocellulose-containing streams. The components of lignocellulose material are lignin, hemicellulose, and cellulose that may be hydrolyzed into their smaller components and used as feedstocks for valorization efforts. Much of this material is contained in underutilized streams and waste products, such as black liquor, pulp and paper sludge, and wastewater. Bacterial fermentation strategies have suitable potential to upgrade lignocellulosic biomass contained in these streams to value-added chemicals. Bacterial conversion allows for a sustainable and economically feasible approach to valorizing these streams, which can bolster and expand applications of the pulp and paper industry. This review discusses the composition of pulp and paper streams, bacterial isolates from process streams that can be used for lignocellulose biotransformations, and technological approaches for improving valorization efforts. KEY POINTS: • Reviews the conversion of pulp and paper industry waste by bacterial isolates. • Metabolic pathways for the breakdown of lignocellulose components. • Methods for isolating bacteria, determining value-added products, and increasing product yields.
Collapse
|
5
|
Jung JH, Sim YB, Baik JH, Park JH, Kim SH. High-rate mesophilic hydrogen production from food waste using hybrid immobilized microbiome. BIORESOURCE TECHNOLOGY 2021; 320:124279. [PMID: 33152682 DOI: 10.1016/j.biortech.2020.124279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
This study examined the feasibility of dark fermentative biohydrogen production from food waste using hybrid immobilization in mesophilic condition. Among four different organic loading rates (OLRs), the highest average hydrogen production rate (HPR) of 9.82 ± 0.30 L/L-d was found at an OLR of 74.7 g hexose/L-d, which was higher than reported values from particulate feedstock in mesophilic condition. The average hydrogen yield (HY) at the condition was 1.25 ± 0.04 mol H2/mol hexoseconsumed. Whereas the average HPR and HY at an OLR 80 g hexose/L-d were 5.82 ± 0.12 L/L-d and 0.64 ± 0.02 mol H2/mol hexoseconsumed, respectively. Metabolic flux analysis showed the low HY was concurrent with the highest propionic acid and homoacetogenis. Bacterial population was shift from Clostridium sp. to non-hydrogen producers including Bifidobacterium, Bacteriodes, Olsenella, Dysgonomonas, and Dialister sp.
Collapse
Affiliation(s)
- Ju-Hyeong Jung
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Bo Sim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Baik
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hun Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
6
|
Ta DT, Lin CY, Ta TMN, Chu CY. Biohythane production via single-stage fermentation using gel-entrapped anaerobic microorganisms: Effect of hydraulic retention time. BIORESOURCE TECHNOLOGY 2020; 317:123986. [PMID: 32799083 DOI: 10.1016/j.biortech.2020.123986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Research of single-stage anaerobic biohythane production is still in an infant stage. A single-stage dark fermentation system using separately-entrapped H2- and CH4-producing microbes was operated to produce biohythane at hydraulic retention times (HRTs) of 48, 36, 24, 12 and 6 h. Peak biohythane production was obtained at HRT 12 h with H2 and CH4 production rates of 3.16 and 4.25 L/L-d, respectively. At steady-state conditions, H2 content in biohythane and COD removal efficiency were in ranges of 7.3-84.6 % and 70.4-77.9%, respectively. During the fermentation, the microbial community structure of the entrapped H2-producing microbes was HRT-independent whereas entrapped CH4-producing microbes changed at HRTs 12 and 6 h. Caproiciproducens and Methanobacterium were the dominant genera for producing H2 and CH4, respectively. The novelty of this work is to develop a single-stage biohythane production system using entrapped anaerobic microbes which requires fewer controls than two-stage systems.
Collapse
Affiliation(s)
- Doan-Thanh Ta
- Department of Environmental Engineering and Science, Feng Chia University, Taiwan
| | - Chiu-Yue Lin
- Department of Environmental Engineering and Science, Feng Chia University, Taiwan; Green Energy and Biotechnology Industry Development Research Center, Feng Chia University, Taiwan.
| | - Thi-Minh-Ngoc Ta
- Food Technology Department, Ho Chi Minh City University of Technology, Viet Nam
| | - Chen-Yeon Chu
- Green Energy and Biotechnology Industry Development Research Center, Feng Chia University, Taiwan; Institute of Green Products, Feng Chia University, Taiwan
| |
Collapse
|
7
|
Wu Y, Cao J, Zhang Q, Xu R, Fang F, Feng Q, Li C, Xue Z, Luo J. Continuous waste activated sludge and food waste co-fermentation for synchronously recovering vivianite and volatile fatty acids at different sludge retention times: Performance and microbial response. BIORESOURCE TECHNOLOGY 2020; 313:123610. [PMID: 32504871 DOI: 10.1016/j.biortech.2020.123610] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
A practical approach of synchronously recovering vivianite and volatile fatty acids (VFAs) by food waste (FW) and waste activated sludge (WAS) co-fermentation in continuous operation was investigated. Approximately 82.88% P as high-purity vivianite (95.23%) and 7894 mg COD/L VFAs were finally recovered. The simultaneous addition of FW and FeCl3 contributed to the fermentation conditions by adjusting pH biologically and increasing the concentration of organic substrates, which enhanced the Fe3+ reduction efficiency and microbial activities (e.g., hydrolases and acidogenic enzymes). Microbial analysis found the functional bacteria related to Fe3+ reduction and VFAs generation were further enhanced and enriched. Besides, results indicated that the efficiencies of Fe2+ and P release and VFAs recovery were highly linked to SRT, the satisfactory fermentation performance was obtained at SRT of 6 d. This research would provide a practical waste recycling technology to treat FW and WAS simultaneously for recovering vivianite and VFAs synchronously.
Collapse
Affiliation(s)
- Yang Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co Ltd, Nanjing 211599, China
| | - Qin Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Runze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co Ltd, Nanjing 211599, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co Ltd, Nanjing 211599, China
| | - Chao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co Ltd, Nanjing 211599, China
| | - Zhaoxia Xue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co Ltd, Nanjing 211599, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; Guohe Environmental Research Institute (Nanjing) Co Ltd, Nanjing 211599, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200000, China.
| |
Collapse
|
8
|
Santiago SG, Trably E, Latrille E, Buitrón G, Moreno-Andrade I. The hydraulic retention time influences the abundance of Enterobacter, Clostridium and Lactobacillus during the hydrogen production from food waste. Lett Appl Microbiol 2019; 69:138-147. [PMID: 31219171 DOI: 10.1111/lam.13191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 11/26/2022]
Abstract
The influence of hydraulic retention time (HRT) on the microbial communities was evaluated in an anaerobic sequencing batch reactor (AnSBR) using organic waste from a restaurant as the substrate. The relationship among Lactobacillus, Clostridium and Bacillus as key micro-organisms on hydrogen production from organic solid waste was studied. The effect of the HRT (8-48 h) on the hydrogen production and the microbial community was evaluated. Quantitative PCR was applied to determine the abundance of bacteria (in particular, Enterobacter, Clostridium and Lactobacillus genera). An AnSBR fermentative reactor was operated for 111 cycles, with carbohydrate and organic matter removal efficiencies of 80 ± 15·42% and 22·1 ± 4·49% respectively. The highest percentage of hydrogen in the biogas (23·2 ± 11·1 %), and the specific production rate (0·42 ± 0·16 mmol H2 gVSadded -1 d-1 ) were obtained at an HRT of 48 h. The decrease in the HRT generated an increase in the hydrogen production rate but decreasing the content of the hydrogen in the gas. HRT significantly influence the abundance of Enterobacter, Clostridium and Lactobacillus during the hydrogen production from food waste leading the hydrogen production as well as the metabolic pathways. The microbial analysis revealed a direct relationship between the HRT and the presence of fermentative bacteria (Enterobacter, Clostridium and Lactobacillus genera). Clostridium sp. predominated at an HRT of 48 h, while Enterobacter and Lactobacillus predominated at HRTs between 8 and 24 h. SIGNIFICANCE AND IMPACT OF THE STUDY: Significance and Impact of the Study: It was demonstrated that hydrogen production using food waste was influenced by the hydraulic retention time (HRT), and closely related to changes in microbial communities together with differences in metabolic patterns (e.g. volatile fatty acids, lactate, etc.). The decrease in the HRT led to the dominance of lactic acid bacteria within the microbial community whereas the increase in HRT favoured the emergence of Clostridium bacteria and the increase in acetic and butyric acids. Statistical data analysis revealed a direct relationship existing between the HRT and the microbial community composition in fermentative bacteria. This study provides new insight into the relationship between the bioprocess operation and the microbial community to understand better and control the biohydrogen production.
Collapse
Affiliation(s)
- S G Santiago
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, México
| | - E Trably
- LBE, Univ Montpellier, INRA, Narbonne, France
| | - E Latrille
- LBE, Univ Montpellier, INRA, Narbonne, France
| | - G Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, México
| | - I Moreno-Andrade
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
9
|
Yun YM, Lee MK, Im SW, Marone A, Trably E, Shin SR, Kim MG, Cho SK, Kim DH. Biohydrogen production from food waste: Current status, limitations, and future perspectives. BIORESOURCE TECHNOLOGY 2018; 248:79-87. [PMID: 28684176 DOI: 10.1016/j.biortech.2017.06.107] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Among the various biological routes for H2 production, dark fermentation is considered the most practically applicable owing to its capability to degrade organic wastes and high H2 production rate. Food waste (FW) has high carbohydrate content and easily hydrolysable in nature, exhibiting higher H2 production potential than that of other organic wastes. In this review article, first, the current status of H2 production from FW by dark fermentation and the strategies applied for enhanced performance are briefly summarized. Then, the technical and economic limitations of dark fermentation of FW are thoroughly discussed. Economic assessment revealed that the economic feasibility of H2 production from FW by dark fermentation is questionable. Current efforts to further increase H2 yield and waste removal efficiency are also introduced. Finally, future perspectives along with possible routes converting dark fermentation effluent to valuable fuels and chemicals are discussed.
Collapse
Affiliation(s)
- Yeo-Myeong Yun
- Department of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Mo-Kwon Lee
- Department of Civil Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 402-751, Republic of Korea
| | - Seong-Won Im
- Department of Civil Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 402-751, Republic of Korea
| | - Antonella Marone
- INRA, UR0050 Laboratoire de Biotechnologie de l'Environnement, F-11100 Narbonne, France
| | - Eric Trably
- INRA, UR0050 Laboratoire de Biotechnologie de l'Environnement, F-11100 Narbonne, France
| | - Sang-Ryong Shin
- Department of Civil Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 402-751, Republic of Korea
| | - Min-Gyun Kim
- Department of Civil Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 402-751, Republic of Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, Republic of Korea
| | - Dong-Hoon Kim
- Department of Civil Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 402-751, Republic of Korea.
| |
Collapse
|
10
|
|
11
|
Paudel S, Kang Y, Yoo YS, Seo GT. Effect of volumetric organic loading rate (OLR) on H 2 and CH 4 production by two-stage anaerobic co-digestion of food waste and brown water. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 61:484-493. [PMID: 28017551 DOI: 10.1016/j.wasman.2016.12.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/25/2016] [Accepted: 12/05/2016] [Indexed: 06/06/2023]
Abstract
Two-stage anaerobic digestion system consisting of two continuously stirred tank reactors (CSTRs) operating at mesophillic conditions (37°C) were studied. The aim of this study is to determine optimum Hydraulic Retention Time (HRT) of the two-stage anaerobic digester system for hydrogen and methane production. This paper also discusses the effect of OLR with change in HRT on the system. Four different HRTs of 48, 24, 12, 8h were monitored for acidogenic reactor, which provided OLR of 17.7, 34.8, 70.8, 106gVS/L·d respectively. Two HRTs of 15days and 20days were studied with OLR of 1.24 and 1.76gVS/L·d respectively in methanogenic reactor. Hydrogen production at higher OLR and shorter HRT seemed favorable 106gVS/L·d (8h) in acidogenic reactor system. In methanogenic reactor system HRT of 20day with OLR of 1.24gVS/L·d was found optimum in terms of methane production and organic removal. The result of this study illustrated the optimum HRT of 8h and 20days in acidogenic stage and methanogenic stage for maximum hydrogen and methane production.
Collapse
Affiliation(s)
- Sachin Paudel
- Department of Environmental Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon 641-773, Republic of Korea
| | - Youngjun Kang
- Department of Eco-friendly Offshore FEED Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon 641-773, Republic of Korea
| | - Yeong-Seok Yoo
- Advanced Environment Technology Research Department, Korea Institute of Construction Technology, Goyang 10223, Republic of Korea
| | - Gyu Tae Seo
- Department of Environmental Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon 641-773, Republic of Korea.
| |
Collapse
|
12
|
Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions. ENERGIES 2016. [DOI: 10.3390/en9030198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Impact of pH Management Interval on Biohydrogen Production from Organic Fraction of Municipal Solid Wastes by Mesophilic Thermophilic Anaerobic Codigestion. BIOMED RESEARCH INTERNATIONAL 2015; 2015:590753. [PMID: 26819952 PMCID: PMC4706864 DOI: 10.1155/2015/590753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/16/2015] [Accepted: 12/02/2015] [Indexed: 02/04/2023]
Abstract
The biohydrogen productions from the organic fraction of municipal solid wastes (OFMSW) were studied under pH management intervals of 12 h (PM12) and 24 h (PM24) for temperature of 37 ± 0.1°C and 55 ± 0.1°C. The OFMSW or food waste (FW) along with its two components, noodle waste (NW) and rice waste (RW), was codigested with sludge to estimate the potential of biohydrogen production. The biohydrogen production was higher in all reactors under PM12 as compared to PM24. The drop in pH from 7 to 5.3 was observed to be appropriate for biohydrogen production via mesophilic codigestion of noodle waste with the highest biohydrogen yield of 145.93 mL/g CODremoved under PM12. When the temperature was increased from 37°C to 55°C and pH management interval was reduced from 24 h to 12 h, the biohydrogen yields were also changed from 39.21 mL/g CODremoved to 89.67 mL/g CODremoved, 91.77 mL/g CODremoved to 145.93 mL/g CODremoved, and 15.36 mL/g CODremoved to 117.62 mL/g CODremoved for FW, NW, and RW, respectively. The drop in pH and VFA production was better controlled under PM12 as compared to PM24. Overall, PM12 was found to be an effective mean for biohydrogen production through anaerobic digestion of food waste.
Collapse
|
14
|
Pradhan N, Dipasquale L, d'Ippolito G, Panico A, Lens PNL, Esposito G, Fontana A. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana. Int J Mol Sci 2015; 16:12578-600. [PMID: 26053393 PMCID: PMC4490462 DOI: 10.3390/ijms160612578] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 11/18/2022] Open
Abstract
As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production.
Collapse
Affiliation(s)
- Nirakar Pradhan
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043 Cassino, FR, Italy.
| | - Laura Dipasquale
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Giuliana d'Ippolito
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| | - Antonio Panico
- Telematic University Pegaso, piazza Trieste e Trento, 48, 80132 Naples, Italy.
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611-AX Delft, The Netherlands.
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Via Di Biasio, 43, 03043 Cassino, FR, Italy.
| | - Angelo Fontana
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
| |
Collapse
|
15
|
Jang S, Kim DH, Yun YM, Lee MK, Moon C, Kang WS, Kwak SS, Kim MS. Hydrogen fermentation of food waste by alkali-shock pretreatment: microbial community analysis and limitation of continuous operation. BIORESOURCE TECHNOLOGY 2015; 186:215-222. [PMID: 25817032 DOI: 10.1016/j.biortech.2015.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 06/04/2023]
Abstract
In the study, at first, batch tests were performed to investigate the effect of alkali-shock on H2 production from food waste (FW). After alkali-pretreatment of FW at pH 9.0-13.0, the FW was cultivated under mesophilic condition at pH 6.0 for 30 h without external inoculum addition. The amount of H2 production from FW pretreated at pH 11.0 and 12.0 was higher than that achieved in other pretreatment pH. The main metabolite was butyrate, and Clostridium were dominant at pH 11.0 and 12.0. Meanwhile, lactate was the main metabolite with Enterococcus and Streptococcus being the dominant genus at other pretreatment pH. When the batch process was switched to a continuous mode, H2 production was significantly dropped due to the increased activity of H2-consumers. The reliability of alkali-pretreatment at pH 11.0 was proven by repeating the scale-up batch process, recording 1.57±0.11 mol H2/mol hexose(added) (17±2LH2/kg FW) and 4.39±0.32LH2/L/d.
Collapse
Affiliation(s)
- Sujin Jang
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea; Division of Renewable Energy Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 305-350, Republic of Korea
| | - Dong-Hoon Kim
- Department of Civil Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 402-751, Republic of Korea
| | - Yeo-Myeong Yun
- Department of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Mo-Kwon Lee
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea
| | - Chungman Moon
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea
| | - Won-Seok Kang
- Korea District Heating Corp. R&D Institute, 781 Yangjae-daero, Gangnam-gu, Seoul 135-220, Republic of Korea
| | - Seung-Shin Kwak
- Korea District Heating Corp. R&D Institute, 781 Yangjae-daero, Gangnam-gu, Seoul 135-220, Republic of Korea
| | - Mi-Sun Kim
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343, Republic of Korea; Division of Renewable Energy Engineering, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 305-350, Republic of Korea.
| |
Collapse
|
16
|
Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes. ENERGIES 2015. [DOI: 10.3390/en8054253] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Mohammadi P, Ibrahim S, Mohamad Annuar MS. High-rate fermentative hydrogen production from palm oil mill effluent in an up-flow anaerobic sludge blanket-fixed film reactor. Chem Eng Res Des 2014. [DOI: 10.1016/j.cherd.2014.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Tawfik A, El-Qelish M. Key factors affecting on bio-hydrogen production from co-digestion of organic fraction of municipal solid waste and kitchen wastewater. BIORESOURCE TECHNOLOGY 2014; 168:106-111. [PMID: 24656489 DOI: 10.1016/j.biortech.2014.02.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
The effects of sludge residence time (SRT) and dilution ratio (DR) on the continuous H2 production (HP) from co-digestion of organic fraction of municipal solid waste (OFMSW) and kitchen wastewater (KWW) via mesophilic anaerobic baffled reactor (ABR) was investigated. Increasing DR from 1:2 to 1:3 significantly (P<0.1) increased the H2 yield (HY) from 116.5±76 to 142.5±54 ml H2/g CODremoved d, respectively. However, at a DR of 1:4, the HY was dropped to 114.5±65 ml H2/g CODremoved d. Likewise, HY increased from 83±37 to 95±24 ml H2/g CODremoved d, when SRT increased from 3.6 to 4.0 d. Further increase in HY of 148±42 ml H2/g CODremoved d, was occurred at a SRT of 5.6d. Moreover, hydrogen fermentation facilitated carbohydrate, lipids, protein and volatile solids removal efficiencies of 87±5.8%, 74.3±9.12%, 76.4±11.3% and 84.8±4.1%, respectively.
Collapse
Affiliation(s)
- Ahmed Tawfik
- Egypt-Japan University of Science and Technology (E-Just), Environmental Engineering Department, P.O. Box 179, New Borg El Arab City, 21934 Alexandria, Egypt.
| | - Mohamed El-Qelish
- National Research Center, Water Pollution Research Department, El-Tahrir St., P.O. Box 12622, Dokki, Cairo, Egypt
| |
Collapse
|
19
|
Cappai G, De Gioannis G, Friargiu M, Massi E, Muntoni A, Polettini A, Pomi R, Spiga D. An experimental study on fermentative H₂ production from food waste as affected by pH. WASTE MANAGEMENT (NEW YORK, N.Y.) 2014; 34:1510-1519. [PMID: 24833177 DOI: 10.1016/j.wasman.2014.04.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/25/2013] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
Batch dark fermentation experiments were performed on food waste and mixtures of food waste and wastewater activated sludge to evaluate the influence of pH on biological H2 production and compare the process performance with and without inoculum addition. The effect of a preliminary thermal shock treatment of the inoculum was also investigated as a means to harvest the hydrogenogenic biomass. The best performance in terms of both H2 generation potential and process kinetics was observed at pH=6.5 under all experimental conditions (no inoculum, and untreated or thermally treated inoculum added). H2 production from food waste was found to be feasible even without inoculum addition, although thermal pre-treatment of the inoculum notably increased the maximum production and reduced the lag phase duration. The analysis of the fermentation products indicated that the biological hydrogen production could be mainly ascribed to a mixed acetate/butyrate-type fermentation. However, the presence of additional metabolites in the digestate, including propionate and ethanol, also indicated that other metabolic pathways were active during the process, reducing substrate conversion into hydrogen. The plateau in H2 generation was found to mirror the condition at which soluble carbohydrates were depleted. Beyond this condition, homoacetogenesis probably started to play a role in the degradation process.
Collapse
Affiliation(s)
- G Cappai
- University of Cagliari, DICAAR - Department of Civil and Environmental Engineering and Architecture, Cagliari, Italy; IGAG - CNR (Environmental Geology and Geoengineering Institute of the National Research Council), Italy
| | - G De Gioannis
- University of Cagliari, DICAAR - Department of Civil and Environmental Engineering and Architecture, Cagliari, Italy; IGAG - CNR (Environmental Geology and Geoengineering Institute of the National Research Council), Italy
| | - M Friargiu
- University of Cagliari, DICAAR - Department of Civil and Environmental Engineering and Architecture, Cagliari, Italy
| | - E Massi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy
| | - A Muntoni
- University of Cagliari, DICAAR - Department of Civil and Environmental Engineering and Architecture, Cagliari, Italy; IGAG - CNR (Environmental Geology and Geoengineering Institute of the National Research Council), Italy
| | - A Polettini
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy
| | - R Pomi
- Department of Civil and Environmental Engineering, University of Rome "La Sapienza", Italy
| | - D Spiga
- University of Cagliari, DICAAR - Department of Civil and Environmental Engineering and Architecture, Cagliari, Italy
| |
Collapse
|
20
|
Zahedi S, Sales D, Romero LI, Solera R. Dark fermentation from real solid waste. Evolution of microbial community. BIORESOURCE TECHNOLOGY 2014; 151:221-226. [PMID: 24240181 DOI: 10.1016/j.biortech.2013.10.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 06/02/2023]
Abstract
The purpose of this paper was to study the evolution of microbial community and its relation to the hydrogen production (HP) steps in thermophilic-dry dark fermentation from real organic fraction of municipal solid waste (OFMSW). Nine organic loading rates (OLRs) (from 9 to 220 g TVS/l/d) were investigated. Population dynamics study showed that increasing OLR (between 9 and 110 g TVS/l/d) resulted in an increase in the relations between Eubacteria:Archaea and hydrolytic-acidogenic bacteria (HABs):acetogens. This was strongly influenced by the microbial content of the OFMSW. The presence of acetogens and Archaea was due to contribution of these microorganisms in the substrate (the biogas produced was methane-free). The maximum value of hydrolysis (63±7%) was observed at 110 g TVS/l/d OLR according to maximum HP and HAB activity. The highest average values of acidification yields (57-60%) were achieved for OLR between 28 and 43 g TVS/l/d.
Collapse
Affiliation(s)
- S Zahedi
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences (CASEM), University of Cádiz, Pol, Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain.
| | | | | | | |
Collapse
|
21
|
Yasin NHM, Mumtaz T, Hassan MA, Abd Rahman N. Food waste and food processing waste for biohydrogen production: a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 130:375-385. [PMID: 24121591 DOI: 10.1016/j.jenvman.2013.09.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 06/02/2023]
Abstract
Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed.
Collapse
Affiliation(s)
- Nazlina Haiza Mohd Yasin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | | | | | | |
Collapse
|
22
|
Biohydrogen Production Based on the Evaluation of Kinetic Parameters of a Mixed Microbial Culture Using Glucose and Fruit–Vegetable Waste as Feedstocks. Appl Biochem Biotechnol 2013; 171:279-93. [DOI: 10.1007/s12010-013-0341-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/17/2013] [Indexed: 11/27/2022]
|
23
|
De Gioannis G, Muntoni A, Polettini A, Pomi R. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2013; 33:1345-1361. [PMID: 23558084 DOI: 10.1016/j.wasman.2013.02.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 01/28/2013] [Accepted: 02/19/2013] [Indexed: 06/02/2023]
Abstract
Hydrogen is believed to play a potentially key role in the implementation of sustainable energy production, particularly when it is produced from renewable sources and low energy-demanding processes. In the present paper an attempt was made at critically reviewing more than 80 recent publications, in order to harmonize and compare the available results from different studies on hydrogen production from FW and OFMSW through dark fermentation, and derive reliable information about process yield and stability in view of building related predictive models. The review was focused on the effect of factors, recognized as potentially affecting process evolution (including type of substrate and co-substrate and relative ratio, type of inoculum, food/microorganisms [F/M] ratio, applied pre-treatment, reactor configuration, temperature and pH), on the fermentation yield and kinetics. Statistical analysis of literature data from batch experiments was also conducted, showing that the variables affecting the H2 production yield were ranked in the order: type of co-substrate, type of pre-treatment, operating pH, control of initial pH and fermentation temperature. However, due to the dispersion of data observed in some instances, the ambiguity about the presence of additional hidden variables cannot be resolved. The results from the analysis thus suggest that, for reliable predictive models of fermentative hydrogen production to be derived, a high level of consistency between data is strictly required, claiming for more systematic and comprehensive studies on the subject.
Collapse
Affiliation(s)
- G De Gioannis
- DICAAR - Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Cagliari, Italy.
| | | | | | | |
Collapse
|
24
|
Singh L, Wahid ZA, Siddiqui MF, Ahmad A, Rahim MHA, Sakinah M. Biohydrogen production from palm oil mill effluent using immobilized Clostridium butyricum EB6 in polyethylene glycol. Process Biochem 2013. [DOI: 10.1016/j.procbio.2012.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Zahedi S, Sales D, Romero LI, Solera R. Hydrogen production from the organic fraction of municipal solid waste in anaerobic thermophilic acidogenesis: influence of organic loading rate and microbial content of the solid waste. BIORESOURCE TECHNOLOGY 2013; 129:85-91. [PMID: 23238339 DOI: 10.1016/j.biortech.2012.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/23/2012] [Accepted: 11/01/2012] [Indexed: 06/01/2023]
Abstract
Hydrogen production (HP) from the organic fraction of municipal solid waste (OFMSW) under thermophilic acidogenic conditions was studied. The effect of nine different organic loading rates (OLRs) (from 9 to 220 g TVS/l/d) and hydraulic retention times (HRTs) (from 10d to 0.25 d) was investigated. Normally, butyrate was the main acid product. The biogas produced was methane- and sulfide-free at all tested OLR. Increasing the OLR resulted in an increase in both the quantity and quality of hydrogen production, except at the maximum OLR tested (220 g TVS/l/d). The maximum hydrogen content was 57% (v/v) at an OLR of 110 g TVS/l/d (HRT=0.5 d). HP was in the range of 0.1-5.7 l H2/l/d. The results have clearly shown that the increase in OLR was directly correlated with HP and microbial activity. The bacterial concentration inside the reactor is strongly influenced by the content of microorganisms in the OFMSW.
Collapse
Affiliation(s)
- S Zahedi
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences (CASEM), University of Cádiz, Pol. Río San Pedro s/n, 11510 Puerto Real (Cádiz), Spain.
| | | | | | | |
Collapse
|
26
|
Redondas V, Gómez X, García S, Pevida C, Rubiera F, Morán A, Pis JJ. Hydrogen production from food wastes and gas post-treatment by CO2 adsorption. WASTE MANAGEMENT (NEW YORK, N.Y.) 2012; 32:60-66. [PMID: 21963336 DOI: 10.1016/j.wasman.2011.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 07/01/2011] [Accepted: 09/01/2011] [Indexed: 05/31/2023]
Abstract
The production of H(2) by biological means, although still far from being a commercially viable proposition, offers great promise for the future. Purification of the biogas obtained may lead to the production of highly concentrated H(2) streams appropriate for industrial application. This research work evaluates the dark fermentation of food wastes and assesses the possibility of adsorbing CO(2) from the gas stream by means of a low cost biomass-based adsorbent. The reactor used was a completely stirred tank reactor run at different hydraulic retention times (HRTs) while the concentration of solids of the feeding stream was kept constant. The results obtained demonstrate that the H(2) yields from the fermentation of food wastes were affected by modifications in the hydraulic retention time (HRT) due to incomplete hydrolysis. The decrease in the duration of fermentation had a negative effect on the conversion of the substrate into soluble products. This resulted in a lower amount of soluble substrate being available for metabolisation by H(2) producing microflora leading to a reduction in specific H(2) production. Adsorption of CO(2) from a gas stream generated from the dark fermentation process was successfully carried out. The data obtained demonstrate that the column filled with biomass-derived activated carbon resulted in a high degree of hydrogen purification. Co-adsorption of H(2)S onto the activated carbon also took place, there being no evidence of H(2)S present in the bio-H(2) exiting the column. Nevertheless, the concentration of H(2)S was very low, and this co-adsorption did not affect the CO(2) capture capacity of the activated carbon.
Collapse
Affiliation(s)
- V Redondas
- Chemical Engineering Department, University of Leon, IRENA-ESTIA, Avda. de Portugal 41, Leon 24071, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Jung KW, Kim DH, Kim SH, Shin HS. Bioreactor design for continuous dark fermentative hydrogen production. BIORESOURCE TECHNOLOGY 2011; 102:8612-8620. [PMID: 21489782 DOI: 10.1016/j.biortech.2011.03.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 05/30/2023]
Abstract
Dark fermentative H2 production (DFHP) has received increasing attention in recent years due to its high H2 production rate (HPR) as well as the versatility of the substrates used in the process. For most studies in this field, batch reactors have been applied due to their simple operation and efficient control; however, continuous DFHP operation is necessary from economical and practical points of view. Continuous systems can be classified into two categories, suspended and immobilized bioreactors, according to the life forms of H2 producing bacteria (HPB) used in the reactor. This paper reviews operational parameters for bioreactor design including pH, temperature, hydraulic retention time (HRT), and H2 partial pressure. Also, in this review, various bioreactor configurations and performance parameters including H2 yield (HY), HPR, and specific H2 production rate (SHPR) are evaluated and presented.
Collapse
Affiliation(s)
- Kyung-Won Jung
- Department of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | | | |
Collapse
|
28
|
|
29
|
Park JI, Lee J, Sim SJ, Lee JH. Production of hydrogen from marine macro-algae biomass using anaerobic sewage sludge microflora. BIOTECHNOL BIOPROC E 2009. [DOI: 10.1007/s12257-008-0241-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Lee DY, Li YY, Noike T. Continuous H2 production by anaerobic mixed microflora in membrane bioreactor. BIORESOURCE TECHNOLOGY 2009; 100:690-695. [PMID: 18693010 DOI: 10.1016/j.biortech.2008.06.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/25/2008] [Accepted: 06/26/2008] [Indexed: 05/26/2023]
Abstract
The characteristics of H(2) production by anaerobic mixed microflora in a submerged membrane bioreactor (MBR) were investigated. For comparative purposes, a continuous stirred tank reactor (CSTR) was operated in parallel under the same conditions. The experimental results showed that 35-day stable and continuous H(2) fermentation was successfully achieved, the MBR revealing an H(2) content of 51% and the CSTR, 58%. No methane gas was detected during the experiments for the long solids retention time (SRT) of 90 days. The MBR's H(2) production rate was 2.43-2.56 l H(2) l(-1)d(-1), which was about 2.6 times higher than that (0.95-0.97 l H(2) l(-1)d(-1)) of the CSTR, reflecting the MBR's higher H(2) productivity.
Collapse
Affiliation(s)
- Dong-Yeol Lee
- National Institute for Environmental Studies, Research Center for Material Cycles and Waste Management, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | | | | |
Collapse
|
31
|
Kim JK, Nhat L, Chun YN, Kim SW. Hydrogen production conditions from food waste by dark fermentation with Clostridium beijerinckii KCTC 1785. BIOTECHNOL BIOPROC E 2008. [DOI: 10.1007/s12257-008-0142-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|