1
|
Aslam S, Rukhma, Liaqat I, Ali S, Ikram-Ul-Haq, Jahangeer M, Aftab MN. Covalent immobilization of thermotolerant recombinant nano-coupled xylanase for improved stability and reusability in the saccharification process. Int J Biol Macromol 2025; 308:142169. [PMID: 40118410 DOI: 10.1016/j.ijbiomac.2025.142169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Xylanase, a key enzyme in the saccharification of lignocellulosic biomass (LCB) for bioethanol production, often faces limitations due to its limited reusability and poor stability. For this purpose, β-1,4-xylanase gene (Clocl_0045) of 1239 bp from Clostridium clariflavum (also known as Acetivibrio clariflavus) was cloned and expressed into expression system i.e., E.coli BL21. A rational approach was developed to covalently immobilize cloned xylanase on iron oxide (Fe3O4) magnetic nanoparticles (MNPs) coated with silica (SiO2), enhancing stability, reusability, and recovery from the reaction system. Multiple alignment analysis and structural modeling studies revealed that recombinant xylanase contained a conserved GH (glycosyl hydrolase) domain. The enzyme's catalytic site included Glu-166 and Glu-271 residues for substrate binding. The successful immobilization of nano-coupled xylanase was analyzed using Fourier-transform infrared spectroscopy (FTIR) to observe changes in the shift, from CO to CN. Additionally, crystalline nature of iron oxide nanoparticles was confirmed by X-ray diffraction (XRD) analysis. The results indicated that the the immobilized xylanase exhibited activity of 6.45 ± 0.21 U/mL,metal ion stability with calcium ions, thermal stability at 90 °C after 4 h with residual activity of 38.5 % and pH stability with residual activity of 93.7 % at pH 7.0. Furthermore, the immobilized enzyme demonstrated enhanced residual activity in the reusability assay for upto 15 cycles on xylan (substrate) and 5 cycles on pretreated sugarcane bagasse. Saccharification time for pretreated biomasses was found to be 72 h. In conclusion, all these findings highlight the effectiveness and competitiveness of the immobilized xylanase with high reusability and stability for better industrial implementation.
Collapse
Affiliation(s)
- Sibgha Aslam
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Rukhma
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Iram Liaqat
- Dr. Nazir Ahmed Institute of Biological Sciences, Government College University, Lahore, Pakistan
| | - Sikander Ali
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Ikram-Ul-Haq
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Muhammad Jahangeer
- Food & Biotechnology Research Center, PCSIR Laboratories Complex, Ferozpur Road, Lahore, Pakistan
| | - Muhammad Nauman Aftab
- Dr. Ikram-ul-Haq Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan.
| |
Collapse
|
2
|
Nagar S, Sindhu M, Kumari K, Kumar V, Singh G, Kharor N, Chugh V, Kumar V. Synergistic hydrolysis of lignocellulosic biomass using co-immobilization of tri-enzymes on chitosan-magnetite nanoparticle beads. Prep Biochem Biotechnol 2025:1-13. [PMID: 40306322 DOI: 10.1080/10826068.2025.2496255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
This paper presents the co-immobilization of three enzymes-laccase, cellulase, and xylanase-on chitosan-magnetite nanoparticle beads, with process parameters optimized using response surface methodology on glutaraldehyde-activated chitosan-magnetite beads. The optimization achieved an impressive immobilization yield of 95.25%. Following immobilization on chitosan-magnetite beads (CMBs), the kinetic properties (Km and Vmax), as well as the optimal pH and temperature, were significantly enhanced. The immobilized LCX demonstrated excellent reusability, maintaining 51% of its initial activity after five consecutive cycles, and could be easily recovered using an external magnet. Maximum digestibility of cellulose (% Dc), hemicellulose (% DH), and lignin (% DL) was observed when 10 g of pretreated wheat bran was treated with 20 LCX-loaded CMBs at 40 °C for 60 minutes. The digestibility values for cellulose, hemicellulose, and lignin were 42.10 ± 1.85%, 52.30 ± 2.05%, and 18.12 ± 0.96%, respectively, using immobilized LCX-CMBs-1.0 to 1.5 times higher than those obtained with free enzymes. Additionally, the yield of reducing sugars was 62.17% for immobilized LCX compared to 46.06% for free LCX. The immobilization on CMBs offers an easily removable and cost-effective solution for various industrial applications.
Collapse
Affiliation(s)
- Sushil Nagar
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Meena Sindhu
- Department of Microbiology, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Kajal Kumari
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Vinay Kumar
- Department of Physics, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Gulab Singh
- Department of Bio-Nanotechnology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Neeraj Kharor
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, India
- Forage Section, Department of Genetics and Plant Breeding, College of Agriculture, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Vishal Chugh
- Department of Basic and Social Sciences, College of Horticulture, Banda University of Agriculture and Technology, Banda, Uttar Pradesh, India
| | - Vinod Kumar
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, India
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu, India
| |
Collapse
|
3
|
Jothyswarupha KA, Venkataraman S, Rajendran DS, Shri SSS, Sivaprakasam S, Yamini T, Karthik P, Kumar VV. Immobilized enzymes: exploring its potential in food industry applications. Food Sci Biotechnol 2025; 34:1533-1555. [PMID: 40129709 PMCID: PMC11929668 DOI: 10.1007/s10068-024-01742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 03/26/2025] Open
Abstract
The global demand for nutritious, longer-lasting food has spurred the food industry to seek eco-friendly solutions. Enzymes play a vital role in enhancing food quality by improving flavor, texture, and nutritional content. However, challenges like rapid deactivation and non-recoverability of free enzymes are addressed by immobilized enzymes, which enhance efficiency, quality, and sustainability in food processing. Immobilization methods include adsorption, covalent binding, entrapment, encapsulation and cross-liked enzyme aggregates, which enhancing their stability, reusability, and catalytic efficiency. Immobilization of enzyme such as pectinase, amylase, naringinase, cellulase, lactase, glucoamylase, xylanase, invertase, lipase, phytase, and protease have been utilized in fruit, vegetable, baking, dairy, brewing, and feed process due to their high thermostability, improved shelf life, food quality and safety. The catalytic efficiency of immobilized enzymes in detecting and quantifying various food components, contaminants, and quality indicators, also developed functional foods with nutraceuticals benefits, include prebiotic juices, lactose-free dairy products, poly unsaturated fatty acids rich foods, low-calorie sweeteners, fortified food and bioactive peptides. Graphical abstract
Collapse
Affiliation(s)
- K. A. Jothyswarupha
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - S. S. Sakthi Shri
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Shivani Sivaprakasam
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Tholeti Yamini
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - P. Karthik
- Centre for Food Nanotechnology (CFN), Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021 India
- Department of Food Technology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641 021 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
4
|
El-Shora HM, Abo-Elmaaty SA, El-Sayyad GS, Al-Bishri WM, El-Batal AI, Hassan MG. Immobilization of purified pectinase from Aspergillus nidulans on chitosan and alginate beads for biotechnological applications. Microb Cell Fact 2025; 24:5. [PMID: 39754158 PMCID: PMC11699674 DOI: 10.1186/s12934-024-02603-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/25/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Because the process is cost-effective, microbial pectinase is used in juice clearing. The isolation, immobilization, and characterization of pectinase from Aspergillus nidulans (Eidam) G. Winter (AUMC No. 7147) were therefore the focus of the current investigation. RESULTS Ammonium sulphate (85%), DEAE-cellulose, and Sephadex G-200 were used to purify the enzyme. With a yield of 30.4%, the final specific activity was 400 units mg-1 protein and 125-fold purification. Using SDS-PAGE to validate the purification of the pectinase, a single band showing the homogeneity of the purified pectinase with a molecular weight of 50 kD was found. Chitosan and calcium alginate both effectively immobilized pectinase, with immobilization efficiencies of 85.7 and 69.4%, respectively. At 50, 55, 60, and 65 °C, the thermostability of both free and chitosan-immobilized pectinase was examined. The free and chitosan-immobilized enzymes had half-lives (t1/2) of 23.83 and 28.64 min at 65 °C, and their Kd values were 0.0291 and 0.0242 min-1, respectively. In addition, the Z values were 44.6 and 31.54 °C, while the D values were 79.2 and 95.1 min. Compared to the untreated one, the orange, mango, and pineapple juices treated with immobilized pure pectinase showed greater clarity. Following treatment with pure pectinase, the fruit juice's 1, 1-diphenyl-2-picrylhydrazyl and 2, 2'-azino-bis 3-ethylbenzothiazoline-6-sulfonate scavenging activities increased. Following treatment with pure pectinase, the amounts of total phenolics and total flavonoids increased. CONCLUSION The procedure is deemed cost-effective in the food industry because the strong affinity of fungal pectinase for pectin. The investigated pectinase supported its usage in the food industry by being able to clear orange, mango, and pineapple juices.
Collapse
Affiliation(s)
- Hamed M El-Shora
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Sabah A Abo-Elmaaty
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Cairo, Egypt.
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Widad M Al-Bishri
- Department of Biological Sciences, College of Science, University of Jeddah, 80327, Jeddah, Saudi Arabia
| | - Ahmed I El-Batal
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Mervat G Hassan
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
5
|
Kumari K, Nagar S, Goyal S, Maan S, Chugh V, Kumar V, Kharor N. Xylooligosaccharide Production From Lignocellulosic Biomass and Their Health Benefits as Prebiotics. Biochem Res Int 2024; 2024:6179375. [PMID: 39534514 PMCID: PMC11557181 DOI: 10.1155/2024/6179375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/31/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Lignocellulosic biomass (LCB) comprising of wheat bran, coconut husk, rice husk, cereals straw, and other hardwood and softwoods is a good source for the production of xylooligosaccharides (XOS) (prebiotic). XOS produced are nondigestible carbohydrates being stable under stomach pH and digestive enzymes so they can be easily delivered to the intestine in native form, thus stimulating the growth of probiotics. Here we review about the raw material, production, purification, and application of XOS with health benefits. Importance of XOS being valuable food ingredient is increasing as they perform a variety of functions, including reduction in cholesterol levels, gastrointestinal health maintenance, anticancer and antioxidant properties, and modulation of immune system. We also discuss the different characterization methods which are necessary to determine the degree of polymerization (DP) of XOS. Low DP (xylobiose and xylotriose) is usually preferred for the application of XOS in various sectors. This review emphasizes the growing significance of XOS as a prebiotic, serving as nourishment for probiotics.
Collapse
Affiliation(s)
- Kajal Kumari
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Sushil Nagar
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Sakshi Goyal
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Sonu Maan
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| | - Vishal Chugh
- Department of Basic and Social Sciences, College of Horticulture, Banda University of Agriculture and Technology, Banda 210001, Uttar Pradesh, India
| | - Vinod Kumar
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Main Campus, Chatha, Jammu 180009, India
| | - Neeraj Kharor
- Forage Section, Department of Genetics and Plant Breeding, College of Agriculture, CCS Haryana Agricultural University, Hisar 125004, Haryana, India
| |
Collapse
|
6
|
Yin Y, Li X, Wang M, Ling G, Zhang P. Glucose detection: In-situ colorimetric analysis with double-layer hydrogel microneedle patch based on polyvinyl alcohol and carboxymethyl chitosan. Int J Biol Macromol 2024; 277:134408. [PMID: 39097056 DOI: 10.1016/j.ijbiomac.2024.134408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Skin interstitial fluid (ISF) has emerged as a significant reservoir of biomarkers for disease diagnosis and prevention. Microneedle (MN) patches are regarded as an optimal platform for ISF extraction from the skin due to their non-invasive nature. However, challenges such as prolonged sampling durations and complex detection procedures impede timely metabolic analysis. In this investigation, we amalgamated MN technology with immobilized enzyme technology to fabricate a dual-layer MN patch integrating sampling and detection functionalities, thereby enabling in-situ colorimetric detection of hyperglycemia. The tip layer of the patch, comprising polyvinyl alcohol/carboxymethyl chitosan (PVA/CMCS) MN, was synthesized utilizing a chemical crosslinking approach for the first time, with glucose oxidase (GOx) being incorporated. The hydrophilicity of CMCS expedited the extraction process, facilitating the retrieval of approximately 10 mg of ISF within 10 min. The backing layer consisted of an immobilized polyvinyl alcohol-chitosan-horseradish peroxidase (PVA-CS-HRP) hydrogel film loaded with 3,3', 5,5'-tetramethylbenzidine (TMB). Incorporating macromolecular polymer PVA and CS for HRP immobilization addressed the issue of poor stability associated with traditional natural enzymes, thereby enhancing the sensitivity of the reaction system. The in-situ colorimetric sensor facilitated minimally invasive ISF extraction and swift conversion of glucose levels into detectable color changes.
Collapse
Affiliation(s)
- Yannan Yin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaodan Li
- College of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Meng Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
7
|
Oz Tuncay F, Cakmak U, Kolcuoglu Y. Aqueous two-phase extraction and characterization of thermotolerant alkaliphilic Cladophora hutchinsiae xylanase: biochemical properties and potential applications in fruit juice clarification and fish feed supplementation. Prep Biochem Biotechnol 2024; 54:553-563. [PMID: 37668166 DOI: 10.1080/10826068.2023.2253469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Xylanase finds extensive applications in diverse biotechnological fields such as biofuel production, pulp and paper industry, baking and brewing industry, food and feed industry, and deinking of waste paper. Here, polyethylene glycol (PEG)-phosphate aqueous two-phase system (ATPS) was applied for the purification of an alkaline active and thermotolerant xylanase from a marine source, Cladophora hutchinsiae (C. hutchinsiae). In the purification process, the effects of some experimental factors such as PEG concentration and PEG molar mass, potassium phosphate(K2HP04) concentration, and pH on xylanase distribution were systematically investigated. Relative enzymatic activity and purification factor obtained were 93.21% and 7.18, respectively. A single protein band of 28 kDa was observed on SDS-PAGE. The optimum temperature and pH of xylanase with beechwood xylan were 30 °C and 9.0, respectively. The Lineweaver-Burk graph was utilized to determine the Km (4.5 ± 0.8 mg/mL), Vmax (0.04 ± 0.01 U) and kcat (0.001 s-1) values of the enzyme. It was observed that the purified xylanase maintained 70% of its activity at 4 °C and was found stable at pH 4.0 by retaining almost all of its activity. Enzymatic activity was slightly enhanced with Na+, K+, Ca2+ and acetone. The highest increase in the reducing sugar amount was 53.6 ± 3.8, for orange juice at 50 U/mL enzyme concentration.
Collapse
Affiliation(s)
- Fulya Oz Tuncay
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Ummuhan Cakmak
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Yakup Kolcuoglu
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
8
|
Gampa M, Nagar S, Kumari K, Tanwar E, Goyal S, Kumar V, Singh B. Cyclic extraction of phosphate from soybean meal using immobilized Aspergillus oryzae SBS50 phytase. Bioprocess Biosyst Eng 2024; 47:39-55. [PMID: 37962643 DOI: 10.1007/s00449-023-02943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Phytase enzyme found in plants, animals, and microorganisms is mainly involved in catalyzing the systematic removal of a phosphate group from phytic acid. Enzyme immobilization is one of the cost-effective methods for the wide usage of enzymes in the industrial sector. This paper reports the covalent immobilization of phytase on glutaraldehyde-activated aluminum oxide beads. The immobilization yield, efficiency, and activation energy were found to be 47.8%, 71.5%, and 15.78 J/mol, respectively. The bound enzyme displayed a shift in pH optima from 5.5 to 4.5, which is more beneficial to increase digestibility in comparison with the free enzyme. Immobilized phytase retained 42.60% of its activity after 1.0 h incubation at 80 °C, whereas free enzyme retained only 4.20% of its activity. Thermodynami increase in half-lives, D-values, enthalpy and free energy change after covalent immobilization could be credited to the enhanced stability. Immobilized phytase could be reused for five consecutive cycles retaining 51% of its initial activity with sodium phytate. The immobilized phytase was also found effective to hydrolyze the soybean meal, thus increasing the digestibility of poultry feed. The hydrolyzing reaction of soybean meal was carried out for six consecutive cycles and immobilized phytase retained nearly 50% of activity till the fifth cycle. The amount of phosphorus released after treatment with immobilized phytase was far higher than that from free phytase. Immobilization on this support is significant, as this support can sustain high mechanical resistance at high pH and temperature. This considerable stability and reusability of the bound enzyme may be advantageous for its industrial application.
Collapse
Affiliation(s)
- Mallesh Gampa
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Sushil Nagar
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India.
| | - Kajal Kumari
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Ekta Tanwar
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Sakshi Goyal
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Vinod Kumar
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Bijender Singh
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| |
Collapse
|
9
|
Zhang G, Li Z, Chen G, Zhang L, Cai W, Deng S, Zhang H, Wu L, Li H, Liu H. Purification and characterization of the low molecular weight xylanase from Bacillus cereus L-1. Braz J Microbiol 2023; 54:2951-2959. [PMID: 37843795 PMCID: PMC10689628 DOI: 10.1007/s42770-023-01129-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/10/2023] [Indexed: 10/17/2023] Open
Abstract
Xylanase is widely used in various industries such as food processing, paper, textiles, and leather tanning. In this study, Bacillus cereus L-1 strain was isolated and identified as capable of producing low molecular weight xylanase through 16 s rRNA sequencing. Maximum xylanase yield of 15.51 ± 2.08 U/mL was achieved under optimal fermentation conditions (5% inoculum, 20 g/L xylan, pH 6.0, for 24 h). After purification via ammonium sulfate precipitation and High-S ion exchange chromatography, electrophoretic purity xylanase was obtained with a 28-fold purification and specific activity of 244.97 U/mg. Xylanase had an optimal pH of 6.5 and temperature of 60 °C and displayed thermostability at 30 °C and 40 °C with 48.56% and 45.97% remaining activity after 180 min, respectively. The xylanase retained more than 82.97% of its activity after incubation for 24 h at pH 5.0 and was sensitive to metal ions, especially Mg2+ and Li+. Purified xylanase showed a molecular weight of 23 kDa on SDS-PAGE, and partial peptide sequencing revealed homology to the endo-1,4-beta-xylanase with a molecular weight of 23.3 kDa through LC/MS-MS (liquid chromatography-tandem mass spectrometry). This study suggests that the purified xylanase is easier to purify and enriches low molecular weight xylanases from bacteria source.
Collapse
Affiliation(s)
- Ge Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Zhihao Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Yichang Tobacco Company of Hubei Province, Yichang, 443000, China
| | - Guoqiang Chen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Liang Zhang
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610000, China
| | - Wen Cai
- China Tobacco Sichuan Industrial Co., Ltd, Chengdu, 610000, China
| | - Shuaijun Deng
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Haibo Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Lijun Wu
- Technology Center of China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650032, China.
| | - Hongtao Li
- Technology Center of China Tobacco Shandong Industrial Co., Ltd, Qingdao, 266101, China.
| | - Haobao Liu
- Key Laboratory of Tobacco Biology and Processing, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
10
|
Kumari K, Nagar S, Goyal S, Maan S, Sindhu M, Singh R, Kumar V. Production, Characterization and Prebiotic Potential of Xylooligosaccharides Produced from Wheat Bran using Enterobacter hormaechei KS1 Xylanase. Indian J Microbiol 2023; 63:352-360. [PMID: 37781003 PMCID: PMC10533776 DOI: 10.1007/s12088-023-01097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
In the present investigation, xylooligosaccharides were produced from wheat bran and wheat bran extracted xylan through enzymatic hydrolysis using xylanase from novel Enterobacter hormaechei KS1. Xylooligosaccharides/reducing sugars production from wheat bran was found maximum (374 mg/g) when 4.0% of wheat bran was treated with 375 units (IU/mL) of Enterobacter hormaechei KS1 xylanase at pH 6.0 and incubated at 50 °C for 24 h of incubation. In case of wheat bran extracted xylan 419 mg/g of xylooligosaccharides were produced when 3% of extracted xylan was incubate for 8 h. Analysis of the enzymatic hydrolysate through high performance liquid chromatography equipped with refractive index detector showed the presence of xylose, xylopentose and xylohexose. The decrease in pH with 1.0% dose of xylooligosacchaides produced from extracted xylan hydrolysis using E. hormaechei KS1 xylanase showed more decrease with L. rhamnosus (6.72 to 5.94) followed by L. brevis (6.71 to 6.15) and L. plantarum (6.71 to 6.41). In case of increase in optical density both wheat bran and wheat bran extracted xylan generated xylooligosaccharides exhibited similar pattern i.e., L. rhamnosus > L. plantarum > L. brevis.
Collapse
Affiliation(s)
- Kajal Kumari
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Sushil Nagar
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Sakshi Goyal
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Sonu Maan
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Meena Sindhu
- Department of Microbiology, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Renu Singh
- Department of Biosciences, SJJT University, Jhunjhunu, Rajasthan 333001 India
| | - Vinod Kumar
- Department of Biochemistry, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana 125004 India
| |
Collapse
|
11
|
Zhao Y, Li X, Guo S, Xu J, Cui Y, Zheng M, Liu J. Thermodynamics and Physicochemical Properties of Immobilized Maleic Anhydride-Modified Xylanase and Its Application in the Extraction of Oligosaccharides from Wheat Bran. Foods 2023; 12:2424. [PMID: 37372634 DOI: 10.3390/foods12122424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Xylanases are the preferred enzymes for the extracting of oligosaccharides from wheat bran. However, free xylanases have poor stability and are difficult to reuse, which limit their industrial application. In the present study, we covalently immobilized free maleic anhydride-modified xylanase (FMA-XY) to improve its reusability and stability. The immobilized maleic anhydride-modified xylanase (IMA-XY) exhibited better stability compared with the free enzyme. After six repeated uses, 52.24% of the activity of the immobilized enzyme remained. The wheat bran oligosaccharides extracted using IMA-XY were mainly xylopentoses, xylohexoses, and xyloheptoses, which were the β-configurational units and α-configurational units of xylose. The oligosaccharides also exhibited good antioxidant properties. The results indicated that FMA-XY can easily be recycled and can remain stable after immobilization; therefore, it has good prospects for future industrial applications.
Collapse
Affiliation(s)
- Yang Zhao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Xinrui Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Shuo Guo
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Jingwen Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Yan Cui
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun 130118, China
| |
Collapse
|
12
|
Xu Y, Wang H, Lin Q, Miao Q, Liu M, Ni H, Zhang L, Lyu M, Wang S. Immobilization of Dextranase Obtained from the Marine Cellulosimicrobium sp. Y1 on Nanoparticles: Nano-TiO 2 Improving Hydrolysate Properties and Enhancing Reuse. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1065. [PMID: 36985959 PMCID: PMC10056431 DOI: 10.3390/nano13061065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Dextranase is widely used in sugar production, drug synthesis, material preparation, and biotechnology, among other fields. The immobilization of dextranase using nanomaterials in order to make it reusable, is a hot research topic. In this study, the immobilization of purified dextranase was performed using different nanomaterials. The best results were obtained when dextranase was immobilized on titanium dioxide (TiO2), and a particle size of 30 nm was achieved. The optimum immobilization conditions were pH 7.0, temperature 25 °C, time 1 h, and immobilization agent TiO2. The immobilized materials were characterized using Fourier-transform infrared spectroscopy, X-ray diffractometry, and field emission gun scanning electron microscopy. The optimum temperature and pH of the immobilized dextranase were 30 °C and 7.5, respectively. The activity of the immobilized dextranase was >50% even after 7 times of reuse, and 58% of the enzyme was active even after 7 days of storage at 25 °C, indicating the reproducibility of the immobilized enzyme. The adsorption of dextranase by TiO2 nanoparticles exhibited secondary reaction kinetics. Compared with free dextranase, the hydrolysates of the immobilized dextranase were significantly different, and consisted mainly of isomaltotriose and isomaltotetraose. The highly polymerized isomaltotetraose levels could reach >78.69% of the product after 30 min of enzymatic digestion.
Collapse
Affiliation(s)
- Yingying Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huanyu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qianru Lin
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qingzhen Miao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingwang Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hao Ni
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine, Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
13
|
Wahba MI. Gum tragacanth for immobilization of Bacillus licheniformis protease: Optimization, thermodynamics and application. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Characteristics of immobilized dye-decolorizing peroxidase from Bacillus amyloliquefaciens and application to the bioremediation of dyeing effluent. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Bibi Z, Sattar H, Asif Nawaz M, Karim A, Pervez S, Ali Ul Qader S, Aman A. Polyacrylamide hydrogel carrier (matrix-type macrogel beads): Improvement in the catalytic behavior, stability, and reusability of industrially valuable xylanase from a thermophile Geobacillus stearothermophilus. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
16
|
Dashtestani F, Ma'mani L, Jokar F, Maleki M, Eskandari Fard M, Hosseini Salekdeh G. Zeolite-based nanocomposite as a smart pH-sensitive nanovehicle for release of xylanase as poultry feed supplement. Sci Rep 2021; 11:21386. [PMID: 34725388 PMCID: PMC8560943 DOI: 10.1038/s41598-021-00688-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
Xylanase improves poultry nutrition by degrading xylan in the cell walls of feed grains and release the entrapped nutrients. However, the application of xylanase as a feed supplement is restricted to its low stability in the environment and gastrointestinal (GI) tract of poultry. To overcome these obstacles, Zeozyme NPs as a smart pH-responsive nanosystem was designed based on xylanase immobilization on zeolitic nanoporous as the major cornerstone that was modified with L-lysine. The immobilized xylanase was followed by encapsulating with a cross-linked CMC-based polymer. Zeozyme NPs was structurally characterized using TEM, SEM, AFM, DLS, TGA and nitrogen adsorption/desorption isotherms at liquid nitrogen temperature. The stability of Zeozyme NPs was evaluated at different temperatures, pH, and in the presence of proteases. Additionally, the release pattern of xylanase was investigated at a digestion model mimicking the GI tract. Xylanase was released selectively at the duodenum and ileum (pH 6-7.1) and remarkably preserved at pH ≤ 6 including proventriculus, gizzard, and crop (pH 1.6-5). The results confirmed that the zeolite equipped with the CMC matrix could enhance the xylanase thermal and pH stability and preserve its activity in the presence of proteases. Moreover, Zeozyme NPs exhibited a smart pH-dependent release of xylanase in an in vitro simulated GI tract.
Collapse
Affiliation(s)
- Fariba Dashtestani
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.,Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Leila Ma'mani
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Farzaneh Jokar
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Morteza Maleki
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Eskandari Fard
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | | |
Collapse
|
17
|
Hu Y, Shi CY, Xun XM, Huang BR, You S, Wu FA, Wang J. Xylanase-polymer conjugates as new catalysts for xylooligosaccharides production from lignocellulose. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Immobilization of α-amylase on modified magnetic zeolite (MAZE) coated with carboxymethyl cellulose (CMC) composite and its properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Desai RP, Dave D, Suthar SA, Shah S, Ruparelia N, Kikani BA. Immobilization of α-amylase on GO-magnetite nanoparticles for the production of high maltose containing syrup. Int J Biol Macromol 2020; 169:228-238. [PMID: 33338531 DOI: 10.1016/j.ijbiomac.2020.12.101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 11/28/2022]
Abstract
Robust amylases with stability and catalysis at multitude of extremities are the need of an hour. Enzyme immobilization may prove beneficial at commercial scale to achieve such attributes. In the present study, a commercially available amylase was immobilized on graphene oxide (GO) - magnetite (Fe3O4) nanoparticles through covalent bonding. The structural and morphological characterizations were conducted by XRD, SEM and TEM. Further, FTIR and TGA confirmed the interaction between amylase, GO and nanoparticles. The variables, such as concentrations of GO (1.3 mg), Fe3O4 (58 μg), and amylase (4.5 mg) were optimized by the response surface methodology using central composite design. High loading capacity of 77.58 μg amylase over 1 μg GO-magnetite nanoparticles was achieved under optimum conditions. Biochemically, the pH optimum remained unaltered, i.e., pH 7, whereas, the alkalitolerance was increased by ~20% in relative activities upon immobilization. The half-life of soluble amylase was 13 h, which enhanced to 20 h upon immobilization in 20 mM phosphate buffer, pH 7 at 50 °C. Besides, the thermodynamic parameters supported the stability trends. The immobilized amylase could be used for 11 subsequent cycles. The mentioned attributes and the dextrose equivalent values during the production of high maltose containing syrup highlighted its commercialization.
Collapse
Affiliation(s)
- Rucha P Desai
- Department of Physical Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa 388 421, Gujarat, India
| | - Dolly Dave
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa 388 421, Gujarat, India
| | - Sadikhusain A Suthar
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa 388 421, Gujarat, India
| | - Shivani Shah
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa 388 421, Gujarat, India
| | - Nidhi Ruparelia
- Department of Physical Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa 388 421, Gujarat, India
| | - Bhavtosh A Kikani
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa 388 421, Gujarat, India.
| |
Collapse
|
20
|
Kharazmi S, Taheri-Kafrani A, Soozanipour A, Nasrollahzadeh M, Varma RS. Xylanase immobilization onto trichlorotriazine-functionalized polyethylene glycol grafted magnetic nanoparticles: A thermostable and robust nanobiocatalyst for fruit juice clarification. Int J Biol Macromol 2020; 163:402-413. [DOI: 10.1016/j.ijbiomac.2020.06.273] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 12/28/2022]
|
21
|
Alnadari F, Xue Y, Zhou L, Hamed YS, Taha M, Foda MF. Immobilization of β-Glucosidase from Thermatoga maritima on Chitin-functionalized Magnetic Nanoparticle via a Novel Thermostable Chitin-binding Domain. Sci Rep 2020; 10:1663. [PMID: 32015452 PMCID: PMC6997207 DOI: 10.1038/s41598-019-57165-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/25/2019] [Indexed: 11/17/2022] Open
Abstract
Enzyme immobilization is a powerful tool not only as a protective agent against harsh reaction conditions but also for the enhancement of enzyme activity, stability, reusability, and for the improvement of enzyme properties as well. Herein, immobilization of β-glucosidase from Thermotoga maritima (Tm-β-Glu) on magnetic nanoparticles (MNPs) functionalized with chitin (Ch) was investigated. This technology showed a novel thermostable chitin-binding domain (Tt-ChBD), which is more desirable in a wide range of large-scale applications. This exclusive approach was fabricated to improve the Galacto-oligosaccharide (GOS) production from a cheap and abundant by-product such as lactose through a novel green synthesis route. Additionally, SDS-PAGE, enzyme activity kinetics, transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR) revealed that among the immobilization strategies for Thermotoga maritime-β-Glucosidase thermostable chitin-binding domain (Tm-β-Glu-Tt-ChBD) on the attractive substrate; Ch-MNPs had the highest enzyme binding capacity and GOS production ratio when compared to the native enzyme. More interestingly, a magnetic separation technique was successfully employed in recycling the immobilized Tm-β-Glu for repetitive batch-wise GOS without significant loss or reduction of enzyme activity. This immobilization system displayed an operative stability status under various parameters, for instance, temperature, pH, thermal conditions, storage stabilities, and enzyme kinetics when compared with the native enzyme. Conclusively, the GOS yield and residual activity of the immobilized enzyme after the 10th cycles were 31.23% and 66%, respectively. Whereas the GOS yield from native enzyme synthesis was just 25% after 12 h in the first batch. This study recommends applying Tt-ChBD in the immobilization process of Tm-β-Glu on Ch-MNPs to produce a low-cost GOS as a new eco-friendly process besides increasing the biostability and efficiency of the immobilized enzyme.
Collapse
Affiliation(s)
- Fawze Alnadari
- Department of Food Science and Engineering, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, P.R. China.,Department of Food Science and Technology, Faculty of Agriculture, Sana'a University, Sana'a, Yemen
| | - Yemin Xue
- Department of Food Science and Engineering, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, P.R. China
| | - Liang Zhou
- Department of Food Science and Engineering, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, Jiangsu, P.R. China
| | - Yahya S Hamed
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed Taha
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh, 13736, Egypt.,Centre for Environmental Sustainability and Remediation, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - Mohamed F Foda
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China. .,State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, P. R. China. .,Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh, 13736, Egypt.
| |
Collapse
|
22
|
Immobilization of fenugreek β-amylase onto functionalized graphene quantum dots (GQDs) using Box-Behnken design: Its biochemical, thermodynamic and kinetic studies. Int J Biol Macromol 2020; 144:170-182. [DOI: 10.1016/j.ijbiomac.2019.12.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/14/2019] [Accepted: 12/04/2019] [Indexed: 11/18/2022]
|
23
|
Immobilization of Aspergillus quadrilineatus RSNK-1 multi-enzymatic system for fruit juice treatment and mannooligosaccharide generation. Food Chem 2019; 289:95-102. [DOI: 10.1016/j.foodchem.2019.03.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 01/15/2023]
|
24
|
Chadha BS, Kaur B, Basotra N, Tsang A, Pandey A. Thermostable xylanases from thermophilic fungi and bacteria: Current perspective. BIORESOURCE TECHNOLOGY 2019; 277:195-203. [PMID: 30679061 DOI: 10.1016/j.biortech.2019.01.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Thermostable xylanases from thermophilic fungi and bacteria have a wide commercial acceptability in feed, food, paper and pulp and bioconversion of lignocellulosics with an estimated annual market of USD 500 Million. The genome wide analysis of thermophilic fungi clearly shows the presence of elaborate genetic information coding for multiple xylanases primarily coding for GH10, GH11 in addition to GH7 and GH30 xylanases. The transcriptomics and proteome profiling has given insight into the differential expression of these xylanases in some of the thermophilic fungi. Bioprospecting has resulted in identification of novel thermophilic xylanases that have been endorsed by the industrial houses for heterologous over- expression and formulations. The future use of xylanases is expected to increase exponentially for their role in biorefineries. The discovery of new and improvement of existing xylanases using molecular tools such as directed evolution is expected to be the mainstay to meet increasing demand of thermostable xylanases.
Collapse
Affiliation(s)
- B S Chadha
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India.
| | - Baljit Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India
| | - Neha Basotra
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143 005, India
| | - Adrian Tsang
- Center for Structural and Functional Genomics, Concordia University, Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada.
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India.
| |
Collapse
|
25
|
Mostafa FA, Abdel Wahab WA, Salah HA, Nawwar GA, Esawy MA. Kinetic and thermodynamic characteristic of Aspergillus awamori EM66 levansucrase. Int J Biol Macromol 2018; 119:232-239. [DOI: 10.1016/j.ijbiomac.2018.07.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 11/24/2022]
|
26
|
dos Santos JP, Zavareze EDR, Dias ARG, Vanier NL. Immobilization of xylanase and xylanase–β-cyclodextrin complex in polyvinyl alcohol via electrospinning improves enzyme activity at a wide pH and temperature range. Int J Biol Macromol 2018; 118:1676-1684. [DOI: 10.1016/j.ijbiomac.2018.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 01/31/2023]
|
27
|
Sahnoun M, Jemli S, Trabelsi S, Bejar S. Modifing Aspergillus Oryzae S2 amylase substrate specificity and thermostability through its tetramerisation using biochemical and in silico studies and stabilization. Int J Biol Macromol 2018; 117:483-492. [DOI: 10.1016/j.ijbiomac.2018.05.136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 01/01/2023]
|
28
|
Agrawal S, Sharma I, Prajapati BP, Suryawanshi RK, Kango N. Catalytic characteristics and application of l-asparaginase immobilized on aluminum oxide pellets. Int J Biol Macromol 2018; 114:504-511. [DOI: 10.1016/j.ijbiomac.2018.03.081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/13/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
|
29
|
Optimization of pectinase immobilization on grafted alginate-agar gel beads by 2 4 full factorial CCD and thermodynamic profiling for evaluating of operational covalent immobilization. Int J Biol Macromol 2018; 113:159-170. [PMID: 29458101 DOI: 10.1016/j.ijbiomac.2018.02.086] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 01/14/2023]
Abstract
Pectinase produced by a honey derived from the fungus Aspergillus awamori KX943614 was covalently immobilized onto gel beads made of alginate and agar. Polyethyleneimine, glutaraldehyde, loading time and enzyme's units were optimized by 24 full factorial central composite design (CCD). The immobilization process increased the optimal working pH for the free pectinase from 5 to a broader range of pH4.5-5.5 and the optimum operational temperature from 55°C to a higher temperature, of 60°C, which is favored to reduce the enzyme's microbial contamination. The thermodynamics studies showed a thermal stability enhancement against high temperature for the immobilized formula. Moreover, an increase in half-lives and D-values was achieved. The thermodynamic studies proved that immobilization of pectinase made a remarkable increase in enthalpy and free energy because of enzyme stability enhancement. The reusability test revealed that 60% of pectinase's original activity was retained after 8 successive cycles. This gel formula may be convenient for immobilization of other industrial enzymes.
Collapse
|
30
|
Mehnati-Najafabadi V, Taheri-Kafrani A, Bordbar AK. Xylanase immobilization on modified superparamagnetic graphene oxide nanocomposite: Effect of PEGylation on activity and stability. Int J Biol Macromol 2018; 107:418-425. [DOI: 10.1016/j.ijbiomac.2017.09.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/02/2017] [Accepted: 09/05/2017] [Indexed: 11/26/2022]
|
31
|
Production, immobilization and thermodynamic studies of free and immobilized Aspergillus awamori amylase. Int J Biol Macromol 2017; 102:694-703. [DOI: 10.1016/j.ijbiomac.2017.04.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 11/17/2022]
|
32
|
Sukri SSM, Mimi Sakinah AM. Production of High Commercial Value Xylooligosaccharides from Meranti Wood Sawdust Using Immobilised Xylanase. Appl Biochem Biotechnol 2017; 184:278-290. [PMID: 28676961 DOI: 10.1007/s12010-017-2542-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/18/2017] [Indexed: 01/23/2023]
Abstract
The present study explores the utilisation of a new raw material from lignocellulose biomass, Meranti wood sawdust (MWS) for high commercial value xylooligosaccharides (XOS) production using immobilised xylanase. The xylanase was immobilised by a combination of entrapment and covalent binding techniques. The hemicellulosic xylan from MWS was extracted using a standard chlorite delignification method. The production of total and derivatives of XOS from the degradation of the hemicellulosic xylan of MWS were compared to the production from the commercial xylan from Beechwood. The utilisation of the extracted xylan from MWS yielded 0.36 mg/mL of total XOS after 60 h of hydrolysis. During the hydrolysis reaction, the immobilised xylanase released a lower degree of polymerisation (DP) of XOS, mainly X2 and X3, which were the major products of xylan degradation by xylanase enzymes. The production of XOS with a lower DP from MWS demonstrated the biotechnological potential of the MWS in the future. The XOS production retained about 70% of its initial XOS production during the second cycle. This is also the first report on the utilisation of MWS wastes in enzymatic hydrolysis using immobilised xylanase for XOS production.
Collapse
Affiliation(s)
- Siti Sabrina Mohd Sukri
- Faculty of Engineering Technology, Universiti Malaysia Pahang, 26300, Kuantan, Pahang, Malaysia
| | - A M Mimi Sakinah
- Faculty of Engineering Technology, Universiti Malaysia Pahang, 26300, Kuantan, Pahang, Malaysia.
| |
Collapse
|
33
|
Kumar S, Haq I, Prakash J, Raj A. Improved enzyme properties upon glutaraldehyde cross-linking of alginate entrapped xylanase from Bacillus licheniformis. Int J Biol Macromol 2017; 98:24-33. [DOI: 10.1016/j.ijbiomac.2017.01.104] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/10/2017] [Accepted: 01/23/2017] [Indexed: 12/24/2022]
|
34
|
Investigation of deactivation thermodynamics of lipase immobilized on polymeric carrier. Bioprocess Biosyst Eng 2017; 40:741-757. [DOI: 10.1007/s00449-017-1740-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
|
35
|
Bagewadi ZK, Mulla SI, Shouche Y, Ninnekar HZ. Xylanase production from Penicillium citrinum isolate HZN13 using response surface methodology and characterization of immobilized xylanase on glutaraldehyde-activated calcium-alginate beads. 3 Biotech 2016; 6:164. [PMID: 28330236 PMCID: PMC4980835 DOI: 10.1007/s13205-016-0484-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 08/01/2016] [Indexed: 01/28/2023] Open
Abstract
The present study reports the production of high-level cellulase-free xylanase from Penicillium citrinum isolate HZN13. The variability in xylanase titers was assessed under both solid-state (SSF) and submerged (SmF) fermentation. SSF was initially optimized with different agro-waste residues, among them sweet sorghum bagasse was found to be the best substrate that favored maximum xylanase production (9643 U/g). Plackett–Burman and response surface methodology employing central composite design were used to optimize the process parameters for the production of xylanase under SSF. A second-order quadratic model and response surface method revealed the optimum conditions for xylanase production (sweet sorghum bagasse 25 g/50 ml; ammonium sulphate 0.36 %; yeast extract 0.6 %; pH 4; temperature 40 °C) yielding 30,144 U/g. Analysis of variance (ANOVA) showed a high correlation coefficient (R2 = 97.63 %). Glutaraldehyde-activated calcium-alginate-immobilized purified xylanase showed recycling stability (87 %) up to seven cycles. Immobilized purified xylanase showed enhanced thermo-stability in comparison to immobilized crude xylanase. Immobilization kinetics of crude and purified xylanase revealed an increase in Km (12.5 and 11.11 mg/ml) and Vmax (12,500 and 10,000 U/mg), respectively. Immobilized (crude) enzymatic hydrolysis of sweet sorghum bagasse released 8.1 g/g (48 h) of reducing sugars. Xylose and other oligosaccharides produced during hydrolysis were detected by High-Performance Liquid Chromatography. The biomass was characterized by Scanning Electron Microscopy, Energy Dispersive X-ray and Fourier Transformation Infrared Spectroscopy. However, this is one of the few reports on high-level cellulase-free xylanase from P. citrinum isolate using sweet sorghum bagasse.
Collapse
|
36
|
Gene cloning, expression, immobilization and characterization of endo-xylanase from Geobacillus sp. TF16 and investigation of its industrial applications. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Çelik A, Dinçer A, Aydemir T. Characterization of β-glucosidase immobilized on chitosan-multiwalled carbon nanotubes (MWCNTS) and their application on tea extracts for aroma enhancement. Int J Biol Macromol 2016; 89:406-14. [DOI: 10.1016/j.ijbiomac.2016.05.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 12/01/2022]
|
38
|
Zhang L, Ma Y, Zhao C, He B, Zhu X, Yang W. Entrapment of Xylanase within a Polyethylene Glycol Net-Cloth Grafted on Polypropylene Nonwoven Fabrics with Exceptional Operational Stability and Its Application for Hydrolysis of Corncob Hemicelluloses. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lihua Zhang
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhong Ma
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changwen Zhao
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bin He
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xing Zhu
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
39
|
Kauldhar BS, Dhau JS, Sooch BS. Covalent linkage of alkalothermophilic catalase onto functionalized cellulose. RSC Adv 2016. [DOI: 10.1039/c6ra02779b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Kallel F, Driss D, Chaari F, Zouari-Ellouzi S, Chaabouni M, Ghorbel R, Chaabouni SE. Statistical optimization of low-cost production of an acidic xylanase by Bacillus mojavensis UEB-FK: Its potential applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2015.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
He F, Zhang S, Liu X. Immobilization of feruloyl esterases on magnetic nanoparticles and its potential in production of ferulic acid. J Biosci Bioeng 2015; 120:330-4. [DOI: 10.1016/j.jbiosc.2015.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/17/2014] [Accepted: 01/07/2015] [Indexed: 11/29/2022]
|
42
|
Bibi Z, Qader SAU, Aman A. Calcium alginate matrix increases the stability and recycling capability of immobilized endo-β-1,4-xylanase from Geobacillus stearothermophilus KIBGE-IB29. Extremophiles 2015; 19:819-27. [PMID: 26001519 DOI: 10.1007/s00792-015-0757-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/10/2015] [Indexed: 12/21/2022]
Abstract
Exploration of microbial pool from extremely diversified ecosystem is significantly important for various industrial applications. Bacterial communities from extreme habitats including volcanic vents, hot springs, and industrial sectors are eagerly explored for the isolation of thermophiles. Geobacillus stearothermophilus KIBGE-IB29, isolated from blast furnace site of a steel processing industry, is capable of producing thermostable endo-β-1,4-xylanase. In the current study, this enzyme was immobilized within calcium alginate beads using entrapment technique. Amalgamation of sodium alginate (40.0 gL(-1)) and calcium chloride (0.4 M) was used for the formation of immobilized beads. It was observed that temperature (50 °C) and pH (7.0) optima of immobilized enzyme remained same, but enzyme-substrate reaction time increased from 5.0 to 30.0 min as compared to free enzyme. Diffusion limit of high molecular weight xylan (corncob) caused a decline in V max of immobilized enzyme from 4773 to 203.7 U min(-1), whereas K m value increased from 0.5074 to 0.5722 mg ml(-1) with reference to free enzyme. Immobilized endo-β-1,4-xylanase showed its stability even at high temperatures as compared to free enzyme and retained 18 and 9 % residual activity at 70 and 80 °C, respectively. Immobilized enzyme also exhibited sufficient recycling efficiency up to five reaction cycles which indicated that this enzyme can be a plausible candidate in paper and pulp industry.
Collapse
Affiliation(s)
- Zainab Bibi
- The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan
| | | | | |
Collapse
|
43
|
Bibi Z, Shahid F, Ul Qader SA, Aman A. Agar–agar entrapment increases the stability of endo-β-1,4-xylanase for repeated biodegradation of xylan. Int J Biol Macromol 2015; 75:121-7. [DOI: 10.1016/j.ijbiomac.2014.12.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/21/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
|
44
|
Shaharuddin S, Muhamad II. Microencapsulation of alginate-immobilized bagasse with Lactobacillus rhamnosus NRRL 442: Enhancement of survivability and thermotolerance. Carbohydr Polym 2015; 119:173-81. [DOI: 10.1016/j.carbpol.2014.11.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 11/28/2022]
|
45
|
Adhyaru DN, Bhatt NS, Modi HA. Optimization of upstream and downstream process parameters for cellulase-poor-thermo-solvent-stable xylanase production and extraction by Aspergillus tubingensis FDHN1. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-014-0029-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Xylanases are important members of the hemicellulolytic enzyme system. Xylanase plays a vital role in the hydrolysis of major hemicellulosic component xylan and converts it into xylooligosaccharides and ultimately yields xylose. Cellulase-lacking or cellulase-poor xylanase with high temperature and pH stability has gained special attention, especially in paper and pulp industries. Most of the available literature highlighted the fungal xylanase production by optimizing environmental and cultural parameters. However, the importance of enzyme recovery from fermented biomass still needs attention. In this study, upstream and downstream process parameters were studied for enhancing xylanase production and extraction by a newly isolated Aspergillus tubingensis FDHN1 under solid-state fermentation using low-cost agro-residues.
Results
In the present study, A. tubingensis FDHN1 was used for the xylanase, with very low level of cellulase, production under solid-state fermentation (SSF). Among various agro-residues, sorghum straw enhanced the xylanase production. Under optimized upstream conditions, the highest xylanase production 2,449 ± 23 U/g was observed. Upon characterization, crude xylanase showed stability over a broad range of pH 3.0 to 8.0 up to 24 h. The temperature stability revealed the nature of the xylanase to be thermostable. Native polyacrylamide gel electrophoresis (native PAGE) and zymogram analysis revealed the multiple forms of the xylanase. Due to the many industrially important characteristics of the xylanases, the study was elaborated for optimizing the downstream process parameters such as volume of extractant, extraction time, temperature and agitation speed to recover maximum xylanase from fermented sorghum straw. The highest amount of xylanase (4,105 ± 22 U/g) was recovered using 0.05 M sodium citrate buffer (pH 6.5) at 12:1 (v/w) extractant/solid ratio, 90-min extraction time, 150-rpm agitation speed and 40°C. Finally, detailed bioprocess optimization shows an overall 6.66-fold enhancement in the xylanase yield.
Conclusions
The present study consolidates the importance of upstream and downstream process optimization for the overall enhancement in the xylanase production. The xylanase from A. tubingensis FDHN1 shows the stability at different pH and temperature, and it was also active in the presence of organic solvents. These properties of xylanase are very much important from an industrial application point of view.
Collapse
|
46
|
Tseng CW, Yeh DJ, Chuang FT, Lee SC, Liu JR. Immobilization ofPiromyces rhizinflataβ-Glucanase on Poly(Dimethylsiloxane) and Si Wafer and Prediction of Optimum Reaction for Enzyme Activity. Prep Biochem Biotechnol 2014; 45:42-55. [DOI: 10.1080/10826068.2014.887579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Panwar D, Kumar Srivastava P, Kapoor M. Production, extraction and characterization of alkaline xylanase from Bacillus sp. PKD-9 with potential for poultry feed. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Production and in vitro evaluation of xylooligosaccharides generated from corncobs using immobilized Penicillium occitanis xylanase. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Kumar L, Nagar S, Mittal A, Garg N, Gupta VK. Immobilization of xylanase purified from Bacillus pumilus VLK-1 and its application in enrichment of orange and grape juices. Journal of Food Science and Technology 2014; 51:1737-49. [PMID: 25190829 DOI: 10.1007/s13197-014-1268-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/05/2013] [Accepted: 01/20/2014] [Indexed: 11/27/2022]
Abstract
This study was conducted to evaluate the efficacy of purified free and immobilized xylanase in enrichment of fruit juices. Extracellular xylanase produced from Bacillus pumilus VLK-1 was purified to apparent homogeneity by 15.4-fold with 88.3 % recovery in a single step using CM-Sephadex C-50. Purified xylanase showed a single band on SDS-polyacrylamide gel with a molecular mass of 22.0 kDa. The purified enzyme was immobilized on glutaraldehyde-activated aluminum oxide pellets and the immobilization process parameters were optimized statistically through response surface methodology. The bound enzyme displayed an increase in optimum temperature from 60 to 65 ºC and pH from 8.0 to 9.0. The pH and temperature stability of the enzyme was also enhanced after immobilization. It could be reused for 10 consecutive cycles with 58 % residual enzyme activity. The potential of purified xylanase (free and immobilized) in juice enrichment from grape (Vitis amurensis) and orange (Citrus sinensis) pulps has been investigated. The optimization of this process using free xylanase revealed maximum juice yield, clarity and reducing sugar on treatment with 20 IU/g fruit pulp for 30 min at 50 ºC. Treatment of both the fruit pulps with xylanase under optimized conditions resulted in an increase in juice yield, clarity, reducing sugars, titratable acidity, and filterability but a decline in turbidity and viscosity. Immobilized enzyme was more effective in improving juice quality as compared to its soluble counterpart. The results showed B. pumilus VLK-1 xylanase, in both free and immobilized form, as a potential candidate for use in fruit juice enrichment.
Collapse
Affiliation(s)
- Lalit Kumar
- Department of Biochemistry, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Sushil Nagar
- Department of Biochemistry, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Anuradha Mittal
- Department of Biochemistry, Kurukshetra University, Kurukshetra, 136119 Haryana India
| | - Neelam Garg
- Department of Microbiology, Kurukshetra University, Kurukshetra, 136 119 India
| | - Vijay Kumar Gupta
- Department of Biochemistry, Kurukshetra University, Kurukshetra, 136119 Haryana India
| |
Collapse
|
50
|
Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R. Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 2014. [DOI: 10.1039/c3ra45991h] [Citation(s) in RCA: 571] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|