1
|
Senthil K, Rathinam M, Parashar M, Dokka N, Tyagi S, Mathur V, Sharma S, Gaikwad K, Bhattacharya R, Sreevathsa R. Establishing a CRISPR/Cas9 genome editing framework in pigeonpea (Cajanus cajan L.) by targeting phytoene desaturase (PDS) gene disruption. J Genet Eng Biotechnol 2025; 23:100465. [PMID: 40074438 PMCID: PMC11847732 DOI: 10.1016/j.jgeb.2025.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/09/2025] [Accepted: 01/26/2025] [Indexed: 03/14/2025]
Abstract
Pigeonpea is an important legume valued for its high nutritional, agricultural, and economic significance in the Asian subcontinent. Despite its potential for high yield, productivity remains stagnant due to several abiotic and biotic stresses. To mitigate these challenges, biotechnological interventions like genome editing offer promising solutions. Towards this, developing a species-specific editing toolkit is crucial for recalcitrant species like pigeonpea. In this study, we established a CRISPR/Cas9 genome editing system targeting the phytoene desaturase (PDS) gene. We developed pigeonpea-compatible vector components, including the CcU6_7.1 promoter and an amenable Cas9 gene driven by the potato ubiquitin promoter, creating a pigeonpea-specific CRISPR/Cas9 binary vector (PP_CRISPR_pCAMBIA2301). The system was validated by Agrobacterium tumefaciens-mediated apical meristem-targeted in planta and in vitro embryonic axis explant transformations, with gene knockout confirmed by albino/bleached phenotypes. Editing efficiencies were 8.80% and 9.16% in the in planta and in vitro transformations respectively. While PCR analysis confirmed T-DNA integration, sequence analysis identified PDS gene mutations. Stability of the phenotype was demonstrated in T1 generation plants of in planta transformation-developed mutants. This system may support functional genomics studies and trait improvement in pigeonpea and other legumes.
Collapse
Affiliation(s)
- Kameshwaran Senthil
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012 India
| | - Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012 India
| | - Manisha Parashar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012 India
| | - Narasimham Dokka
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012 India
| | - Shaily Tyagi
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012 India
| | - Vandana Mathur
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012 India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012 India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012 India
| | | | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012 India.
| |
Collapse
|
2
|
Wang H, Sun H, Yu S, Lian L, Jin T, Peng X, Wang J, Liu W. Flusulfinam, a novel amide herbicide to control weed in rice fields, targets 4-hydroxyphenylpyruvate dioxygenase. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106240. [PMID: 40015842 DOI: 10.1016/j.pestbp.2024.106240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 03/01/2025]
Abstract
Flusulfinam, a post-emergence (POST)-applied herbicide in rice fields to manage annual weeds, has been proven to be safe for various rice strains of japonica and indica. The study confirmed its mechanism of action by inhibiting 4-hydroxyphenylpyruvate dioxygenase (HPPD). The POST application of flusulfinam led to noticeably bleaching symptom in leaves of Echinochloa crus-galli within 3 to 7 days and plant mortality by 10 days. In Echinochloa crus-galli, flusulfinam induced a significant rise in level of phytoene content, while there was a significant decrease in levels of carotenoid and chlorophyll contents. Meanwhile, the increase in levels of chlorophyll content in Spirodela polyrrhiza treated with flusulfinam after homogentisic acid (HGA) addition was observed, suggesting that flusulfinam inhibited HGA production, likely by suppressing HPPD activity. Flusulfinam significantly diminished the catalytic activity of recombinant Arabidopsis thaliana HPPD that was expressed by Escherichia coli, exhibiting an inhibitory efficacy approximately 16-fold higher than the HPPD-inhibiting mesotrione. Additionally, the rice with overexpression of Oryza sativa HPPD showed higher tolerance to flusulfinam than rice of wild type. Furthermore, molecular docking analyses revealed that flusulfinam formed effective bonds with the HPPD active site via the nitrogen atom of the oxadiazole ring and the oxygen atom of the amide group, with distances of 2.0 Å and 2.4 Årespectively, which engaged in bidentate coordination with the Fe2+ ion, with a binding energy of -8.7 kcal mol-1, and HPPD-flusulfinam complex showed low root-mean square deviation values of less than 2 Å in molecular dynamics tests. This study provides the first evidence of the molecular targets of flusulfinam.
Collapse
Affiliation(s)
- Hengzhi Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China; Shandong Province Higher Education Provincial Key Pesticide Toxicology and Application Technology Laboratory, Tai'an 271018, Shandong, PR China
| | - He Sun
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China; Shandong Province Higher Education Provincial Key Pesticide Toxicology and Application Technology Laboratory, Tai'an 271018, Shandong, PR China
| | - Shuo Yu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Lei Lian
- Qingdao KingAgroot Crop Science Co., Ltd., Qingdao 266000, Shandong, PR China
| | - Tao Jin
- Qingdao KingAgroot Crop Science Co., Ltd., Qingdao 266000, Shandong, PR China
| | - Xuegang Peng
- Qingdao KingAgroot Crop Science Co., Ltd., Qingdao 266000, Shandong, PR China
| | - Jinxin Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China; Shandong Province Higher Education Provincial Key Pesticide Toxicology and Application Technology Laboratory, Tai'an 271018, Shandong, PR China
| | - Weitang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China; Shandong Province Higher Education Provincial Key Pesticide Toxicology and Application Technology Laboratory, Tai'an 271018, Shandong, PR China.
| |
Collapse
|
3
|
Huang JJ, Xu W, Lin S, Cheung PCK. The bioactivities and biotechnological production approaches of carotenoids derived from microalgae and cyanobacteria. Crit Rev Biotechnol 2025; 45:276-304. [PMID: 39038957 DOI: 10.1080/07388551.2024.2359966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 07/24/2024]
Abstract
Microalgae and cyanobacteria are a rich source of carotenoids that are well known for their potent bioactivities, including antioxidant, anti-cancer, anti-proliferative, anti-inflammatory, and anti-obesity properties. Recently, many interests have also been focused on the biological activities of these microalgae/cyanobacteria-derived carotenoids, such as fucoxanthin and β-carotene potential to be the salutary nutraceuticals, on treating or preventing human common diseases (e.g., cancers). This is due to their special chemical structures that demonstrate unique bioactive functions, in which the biologically active discrepancies might attribute to the different spatial configurations of their molecules. In addition, their abundance and bioaccessibilities make them more popularly applied in food and pharmaceutical industries, as compared to the macroalgal/fungal-derived ones. This review is focused on the recent studies on the bioactivities of fucoxanthin and some carotenoids derived from microalgae and cyanobacteria in relationship with human health and diseases, with emphasis on their potential applications as natural antioxidants. Various biotechnological approaches employed to induce the production of these specific carotenoids from the culture of microalgae/cyanobacteria are also critically reviewed. These well-developed and emerging biotechnologies present promise to be applied in food and pharmaceutical industries to facilitate the efficient manufacture of the bioactive carotenoid products derived from microalgae and cyanobacteria.
Collapse
Affiliation(s)
- Jim Junhui Huang
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Wenwen Xu
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shaoling Lin
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
| |
Collapse
|
4
|
Montuori E, Lima S, Marchese A, Scargiali F, Lauritano C. Lutein Production and Extraction from Microalgae: Recent Insights and Bioactive Potential. Int J Mol Sci 2024; 25:2892. [PMID: 38474137 PMCID: PMC10931717 DOI: 10.3390/ijms25052892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Microalgae have been reported to be excellent producers of bioactive molecules. Lutein is a pigment reported to have various beneficial effects for humans, and especially for eye well-being. In the current review, we summarize various methods that have been developed to optimize its extraction and bioactivities reported for human health. Several protective effects have been reported for lutein, including antioxidant, anticancer, anti-inflammatory, and cardioprotective activity. This review also reports attempts to increase lutein production by microalgae by changing culturing parameters or by using pilot-scale systems. Genetic engineering lutein production is also discussed. Considering the increasing aging of the worldwide population will create an increased need for lutein, a viable economic and eco-sustainable method to produce lutein is needed to face this market demand.
Collapse
Affiliation(s)
- Eleonora Montuori
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy;
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| | - Serena Lima
- Department of Engineering, University of Palermo, Viale delle Scienze ed. 6, 90128 Palermo, Italy; (S.L.); (A.M.); (F.S.)
| | - Arima Marchese
- Department of Engineering, University of Palermo, Viale delle Scienze ed. 6, 90128 Palermo, Italy; (S.L.); (A.M.); (F.S.)
| | - Francesca Scargiali
- Department of Engineering, University of Palermo, Viale delle Scienze ed. 6, 90128 Palermo, Italy; (S.L.); (A.M.); (F.S.)
| | - Chiara Lauritano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| |
Collapse
|
5
|
Ye Y, Liu M, Yu L, Sun H, Liu J. Nannochloropsis as an Emerging Algal Chassis for Light-Driven Synthesis of Lipids and High-Value Products. Mar Drugs 2024; 22:54. [PMID: 38393025 PMCID: PMC10890015 DOI: 10.3390/md22020054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
In light of the escalating global energy crisis, microalgae have emerged as highly promising producers of biofuel and high-value products. Among these microalgae, Nannochloropsis has received significant attention due to its capacity to generate not only triacylglycerol (TAG) but also eicosapentaenoic acid (EPA) and valuable carotenoids. Recent advancements in genetic tools and the field of synthetic biology have revolutionized Nannochloropsis into a powerful biofactory. This comprehensive review provides an initial overview of the current state of cultivation and utilization of the Nannochloropsis genus. Subsequently, our review examines the metabolic pathways governing lipids and carotenoids, emphasizing strategies to enhance oil production and optimize carbon flux redirection toward target products. Additionally, we summarize the utilization of advanced genetic manipulation techniques in Nannochloropsis. Together, the insights presented in this review highlight the immense potential of Nannochloropsis as a valuable model for biofuels and synthetic biology. By effectively integrating genetic tools and metabolic engineering, the realization of this potential becomes increasingly feasible.
Collapse
Affiliation(s)
- Ying Ye
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China; (Y.Y.); (M.L.); (L.Y.)
| | - Meijing Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China; (Y.Y.); (M.L.); (L.Y.)
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Lihua Yu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China; (Y.Y.); (M.L.); (L.Y.)
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing 100871, China; (Y.Y.); (M.L.); (L.Y.)
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| |
Collapse
|
6
|
Kim M, Kim J, Lee S, Khanh N, Li Z, Polle JEW, Jin E. Deciphering the β-carotene hyperaccumulation in Dunaliella by the comprehensive analysis of Dunaliella salina and Dunaliella tertiolecta under high light conditions. PLANT, CELL & ENVIRONMENT 2024; 47:213-229. [PMID: 37727131 DOI: 10.1111/pce.14724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023]
Abstract
The green microalga Dunaliella salina hyperaccumulates β-carotene in the chloroplast, which turns its cells orange. This does not occur in the sister species Dunaliella tertiolecta. However, the molecular mechanisms of β-carotene hyperaccumulation were still unclear. Here, we discovered the reasons for β-carotene hyperaccumulation by comparing the morphology, physiology, genome, and transcriptome between the carotenogenic D. salina and the noncarotenogenic D. tertiolecta after transfer to high light. The differences in photosynthetic capacity, cell growth, and the concentration of stored carbon suggest that these species regulate the supply and utilization of carbon differently. The number of β-carotene-containing plastid lipid globules increased in both species, but much faster and to a greater extent in D. salina than in D. tertiolecta. Consistent with the accumulation of plastid lipid globules, the expression of the methyl-erythritol-phosphate and carotenoid biosynthetic pathways increased only in D. salina, which explains the de novo synthesis of β-carotene. In D. salina, the concomitantly upregulated expression of the carotene globule proteins suggests that hyperaccumulation of β-carotene also requires a simultaneous increase in its sink capacity. Based on genomic analysis, we propose that D. salina has genetic advantages for routing carbon from growth to carotenoid metabolism.
Collapse
Affiliation(s)
- Minjae Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jongrae Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Sangmuk Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Nguyen Khanh
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Zhun Li
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Juergen E W Polle
- Department of Biology, Brooklyn College of the City University of New York, New York, Brooklyn, USA
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Vazquez‐Vilar M, Fernandez‐del‐Carmen A, Garcia‐Carpintero V, Drapal M, Presa S, Ricci D, Diretto G, Rambla JL, Fernandez‐Muñoz R, Espinosa‐Ruiz A, Fraser PD, Martin C, Granell A, Orzaez D. Dually biofortified cisgenic tomatoes with increased flavonoids and branched-chain amino acids content. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2683-2697. [PMID: 37749961 PMCID: PMC10651156 DOI: 10.1111/pbi.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 09/27/2023]
Abstract
Higher dietary intakes of flavonoids may have a beneficial role in cardiovascular disease prevention. Additionally, supplementation of branched-chain amino acids (BCAAs) in vegan diets can reduce risks associated to their deficiency, particularly in older adults, which can cause loss of skeletal muscle strength and mass. Most plant-derived foods contain only small amounts of BCAAs, and those plants with high levels of flavonoids are not eaten broadly. Here we describe the generation of metabolically engineered cisgenic tomatoes enriched in both flavonoids and BCAAs. In this approach, coding and regulatory DNA elements, all derived from the tomato genome, were combined to obtain a herbicide-resistant version of an acetolactate synthase (mSlALS) gene expressed broadly and a MYB12-like transcription factor (SlMYB12) expressed in a fruit-specific manner. The mSlALS played a dual role, as a selectable marker as well as being key enzyme in BCAA enrichment. The resulting cisgenic tomatoes were highly enriched in Leucine (21-fold compared to wild-type levels), Valine (ninefold) and Isoleucine (threefold) and concomitantly biofortified in several antioxidant flavonoids including kaempferol (64-fold) and quercetin (45-fold). Comprehensive metabolomic and transcriptomic analysis of the biofortified cisgenic tomatoes revealed marked differences to wild type and could serve to evaluate the safety of these biofortified fruits for human consumption.
Collapse
Affiliation(s)
- Marta Vazquez‐Vilar
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | - Asun Fernandez‐del‐Carmen
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | - Victor Garcia‐Carpintero
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | | | - Silvia Presa
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | - Dorotea Ricci
- Biotechnology LaboratoryItalian Agency for New Technologies, Energy and Sustainable Development (ENEA)RomeItaly
| | - Gianfranco Diretto
- Biotechnology LaboratoryItalian Agency for New Technologies, Energy and Sustainable Development (ENEA)RomeItaly
| | - José Luis Rambla
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
- Department of Biology, Biochemistry and Natural SciencesUniversitat Jaume ICastellón de la PlanaSpain
| | - Rafael Fernandez‐Muñoz
- Departamento de Mejora Genética y Biotecnología, Estación Experimental La Mayora, Instituto de Hortofruticultura Subtropical y Mediterránea La MayoraUniversidad de Málaga‐Consejo Superior de Investigaciones CientíficasMálagaSpain
| | - Ana Espinosa‐Ruiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | | | | | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones CientíficasUniversitat Politècnica de ValénciaValenciaSpain
| |
Collapse
|
8
|
McQuillan JL, Cutolo EA, Evans C, Pandhal J. Proteomic characterization of a lutein-hyperaccumulating Chlamydomonas reinhardtii mutant reveals photoprotection-related factors as targets for increasing cellular carotenoid content. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:166. [PMID: 37925447 PMCID: PMC10625216 DOI: 10.1186/s13068-023-02421-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Microalgae are emerging hosts for the sustainable production of lutein, a high-value carotenoid; however, to be commercially competitive with existing systems, their capacity for lutein sequestration must be augmented. Previous attempts to boost microalgal lutein production have focussed on upregulating carotenoid biosynthetic enzymes, in part due to a lack of metabolic engineering targets for expanding lutein storage. RESULTS Here, we isolated a lutein hyper-producing mutant of the model green microalga Chlamydomonas reinhardtii and characterized the metabolic mechanisms driving its enhanced lutein accumulation using label-free quantitative proteomics. Norflurazon- and high light-resistant C. reinhardtii mutants were screened to yield four mutant lines that produced significantly more lutein per cell compared to the CC-125 parental strain. Mutant 5 (Mut-5) exhibited a 5.4-fold increase in lutein content per cell, which to our knowledge is the highest fold increase of lutein in C. reinhardtii resulting from mutagenesis or metabolic engineering so far. Comparative proteomics of Mut-5 against its parental strain CC-125 revealed an increased abundance of light-harvesting complex-like proteins involved in photoprotection, among differences in pigment biosynthesis, central carbon metabolism, and translation. Further characterization of Mut-5 under varying light conditions revealed constitutive overexpression of the photoprotective proteins light-harvesting complex stress-related 1 (LHCSR1) and LHCSR3 and PSII subunit S regardless of light intensity, and increased accrual of total chlorophyll and carotenoids as light intensity increased. Although the photosynthetic efficiency of Mut-5 was comparatively lower than CC-125, the amplitude of non-photochemical quenching responses of Mut-5 was 4.5-fold higher than in CC-125 at low irradiance. CONCLUSIONS We used C. reinhardtii as a model green alga and identified light-harvesting complex-like proteins (among others) as potential metabolic engineering targets to enhance lutein accumulation in microalgae. These have the added value of imparting resistance to high light, although partially compromising photosynthetic efficiency. Further genetic characterization and engineering of Mut-5 could lead to the discovery of unknown players in photoprotective mechanisms and the development of a potent microalgal lutein production system.
Collapse
Affiliation(s)
- Josie L McQuillan
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| | - Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Caroline Evans
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| |
Collapse
|
9
|
Dowell JA, Mason C. Candidate pathway association and genome-wide association approaches reveal alternative genetic architectures of carotenoid content in cultivated sunflower ( Helianthus annuus). APPLICATIONS IN PLANT SCIENCES 2023; 11:e11558. [PMID: 38106540 PMCID: PMC10719882 DOI: 10.1002/aps3.11558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 12/19/2023]
Abstract
Premise The explosion of available genomic data poses significant opportunities and challenges for genome-wide association studies. Current approaches via linear mixed models (LMM) are straightforward but prevent flexible assumptions of an a priori genomic architecture, while Bayesian sparse LMMs (BSLMMs) allow this flexibility. Complex traits, such as specialized metabolites, are subject to various hierarchical effects, including gene regulation, enzyme efficiency, and the availability of reactants. Methods To identify alternative genetic architectures, we examined the genetic architecture underlying the carotenoid content of an association mapping panel of Helianthus annuus individuals using multiple BSLMM and LMM frameworks. Results The LMMs of genome-wide single-nucleotide polymorphisms (SNPs) identified a single transcription factor responsible for the observed variations in the carotenoid content; however, a BSLMM of the SNPs with the bottom 1% of effect sizes from the results of the LMM identified multiple biologically relevant quantitative trait loci (QTLs) for carotenoid content external to the known (annotated) carotenoid pathway. A candidate pathway analysis (CPA) suggested a β-carotene isomerase to be the enzyme with the highest impact on the observed carotenoid content within the carotenoid pathway. Discussion While traditional LMM approaches suggested a single unknown transcription factor associated with carotenoid content variation in sunflower petals, BSLMM proposed several QTLs with interpretable biological relevance to this trait. In addition, the CPA allowed for the dissection of the regulatory vs. biosynthetic genetic architectures underlying this metabolic trait.
Collapse
Affiliation(s)
- Jordan A. Dowell
- Department of Plant SciencesUniversity of CaliforniaDavisCalifornia95616USA
- Present address:
Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana70803USA
| | - Chase Mason
- Department of BiologyUniversity of Central FloridaOrlandoFlorida32816USA
| |
Collapse
|
10
|
Chen Y, Du H, Liang H, Hong T, Li T. Enhanced Carotenoid Production in Chlamydomonas reinhardtii by Overexpression of Endogenousand Exogenous Beta-Carotene Ketolase ( BKT) Genes. Int J Mol Sci 2023; 24:11382. [PMID: 37511141 PMCID: PMC10379168 DOI: 10.3390/ijms241411382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Chlamydomonas reinhardtii is a unicellular green alga that can grow heterotrophically by using acetate as a carbon source. Carotenoids are natural pigments with biological activity and color, which have functions such as antioxidant, anti-inflammatory, vision protection, etc., and have high commercial value and prospects. We transformed Chlamydomonas reinhardtii with the BKT genes from Phaffia rhodozyma (PrBKT) and Chlamydomonas reinhardtii (CrBKT) via plasmid vector, and screened out the stable transformed algal strains C18 and P1. Under the condition that the cell density of growth was not affected, the total carotenoid content of C18 and P1 was 2.13-fold and 2.20-fold higher than that of the WT, respectively. CrBKT increased the levels of β-carotene and astaxanthin by 1.84-fold and 1.21-fold, respectively, while PrBKT increased them by 1.11-fold and 1.27-fold, respectively. Transcriptome and metabolome analysis of C18 and P1 showed that the overexpression of CrBKT only up-regulated the transcription level of BKT and LCYE (the gene of lycopene e-cyclase). However, in P1, overexpression of PrBKT also led to the up-regulation of ZDS (the gene of ζ-carotene desaturase) and CHYB (the gene of β-carotene hydroxylase). Metabolome results showed that the relative content of canthaxanthin, an intermediate metabolite of astaxanthin synthesis in C18 and P1, decreased. The overall results indicate that there is a structural difference between CrBKT and PrBKT, and overexpression of PrBKT in Chlamydomonas reinhardtii seems to cause more genes in carotenoid pathway metabolism to be up-regulated.
Collapse
Affiliation(s)
- Yuanhao Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510000, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510000, China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Honghao Liang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Ting Hong
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Tangcheng Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| |
Collapse
|
11
|
Lian L, Wang H, Zhang F, Liu W, Lu X, Jin T, Wang J, Gan X, Song B. Cypyrafluone, a 4-Hydroxyphenylpyruvate Dioxygenase Inhibitor to Control Weed in Wheat Fields. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37262424 DOI: 10.1021/acs.jafc.3c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
As a bleaching herbicide, cypyrafluone was applied postemergence in wheat fields for annual weed control; especially, this herbicide possesses high efficacy against cool-season grass weed species such as Alopecurus aequalis and Alopecurus japonicus. In this study, the target of action of cypyrafluone on 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibition was confirmed. This herbicide caused severe foliar whitening symptoms at 5-7 days after treatment (DAT) and death of the whole plant within 10 DAT. Significant increases in phytoene content and significant decreases in kinds of carotenoid and chlorophyll pigments were observed. The content of chlorophyll pigments in cypyrafluone-treated Spirodela polyrhiza decreased upon the addition of homogentisic acid (HGA), which indicated that cypyrafluone prevents the HGA production, possibly by inhibiting the catalytic activity of 4-HPPD. Indeed, cypyrafluone strongly inhibited the catalytic activity of Arabidopsis thaliana HPPD produced by Escherichia coli, which was approximately 2 times less effective than mesotrione. In addition, overexpression of Oryza sativa HPPD in rice and A. thaliana both conferred a high tolerance level to cypyrafluone on them. Molecular docking found that cypyrafluone bonded well to the active site of the HPPD and formed a bidentate coordination interaction with the Fe2+ atom, with distances of 2.6 and 2.7 Å between oxygen atoms and the Fe2+ atom and a binding energy of -8.0 kcal mol-1.
Collapse
Affiliation(s)
- Lei Lian
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
- Qingdao Kingagroot Compounds Co. Ltd., Qingdao 266000, Shandong, PR China
| | - Hengzhi Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Fengwen Zhang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Weitang Liu
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Xingtao Lu
- Qingdao Kingagroot Compounds Co. Ltd., Qingdao 266000, Shandong, PR China
| | - Tao Jin
- Qingdao Kingagroot Compounds Co. Ltd., Qingdao 266000, Shandong, PR China
| | - Jinxin Wang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Xiuhai Gan
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Baoan Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
12
|
Fu Y, Wang Y, Yi L, Liu J, Yang S, Liu B, Chen F, Sun H. Lutein production from microalgae: A review. BIORESOURCE TECHNOLOGY 2023; 376:128875. [PMID: 36921637 DOI: 10.1016/j.biortech.2023.128875] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Lutein production from microalgae is a sustainable and economical strategy to offer the increasing global demands, but is still challenged with low lutein content at the high-cell density for commercial production. This review summarizes the suitable conditions for cell growth and lutein accumulation, and presents recent cultivation strategies to further improve lutein productivity. Light and nitrogen play critical roles in lutein biosynthesis that lead to the efficient multi-stage cultivation by increasing lutein content at the later stage. In addition, metabolic and genetic designs for carbon regulation and lutein biosynthesis are discussed at the molecule level. The in-situ lutein accumulation in fermenters by regulating carbon metabolism is considered as a cost-effective direction. Then, downstream processes are summarized for the efficient lutein recovery. Finally, challenges of current lutein production from microalgae are discussed. Meanwhile, potential solutions are proposed to improve lutein content and drive down costs of microalgal biomass.
Collapse
Affiliation(s)
- Yunlei Fu
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yinan Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China
| | - Lanbo Yi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Shufang Yang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Han Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
13
|
Pigment Production of Chlamydomonas Strains in Response to Norflurazon and ZnO Nanoparticles. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Numerous species of microalgae have been utilized for pigment production. More and more species are gaining popularity due to their ability to accumulate pigments with varying chemical compositions and the fact that some have distinctive byproducts that can be co-produced. Despite the fact that many of the species have unique by-products and traits, they are not being used economically due to high production costs. Utilizing agricultural and industrial wastewater for algae cultivation is one way to lower manufacturing costs. Herbicide-contaminated wastewater can result from agricultural contamination. Norflurazon is a popular pesticide frequently used for weed control. The presence of norflurazon in water renders that water unusable and requires proper treatment. Nanoparticles of ZnO (ZnO NPs), on the other hand, are utilized in a variety of industrial productions of numerous household goods. Water contaminated with ZnO NPs can present potential risks to human health and the environment. In this study, two field isolates of the green microalga Chlamydomonas reinhardtii, a widely used model organism, were examined for their reaction to these two compounds in order to assess the responses of different natural strains to environmental stresses. Norflurazon at 10 µM had a higher inhibitory effect on growth and pigment production than ZnO NPs at 200 mg L−1. Although both norflurazon and ZnO NPs inhibit cell growth and pigmentation, they do so through distinct processes. Norflurazon induces oxidative stress in cells, resulting in photosystem damage. ZnO nanoparticles, on the other hand, did not cause photosystem damage but rather mechanical cell damage and disintegration. In addition, the physiological responses of the two Chlamydomonas strains were distinct, supporting the utilization of natural algal strains for specific types of environmental pollutants.
Collapse
|
14
|
Sirohi P, Verma H, Singh SK, Singh VK, Pandey J, Khusharia S, Kumar D, Kaushalendra, Teotia P, Kumar A. Microalgal Carotenoids: Therapeutic Application and Latest Approaches to Enhance the Production. Curr Issues Mol Biol 2022; 44:6257-6279. [PMID: 36547088 PMCID: PMC9777246 DOI: 10.3390/cimb44120427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Microalgae are microscopic photosynthetic organisms frequently found in fresh and marine water ecosystems. Various microalgal species have been considered a reservoir of diverse health-value products, including vitamins, proteins, lipids, and polysaccharides, and are broadly utilized as food and for the treatment of human ailments such as cancer, cardiovascular diseases, allergies, and immunodeficiency. Microalgae-derived carotenoids are the type of accessory pigment that possess light-absorbing potential and play a significant role in metabolic functions. To date, nearly a thousand carotenoids have been reported, but a very less number of microalgae have been used for the commercial production of carotenoids. This review article briefly discussed the carotenoids of microalgal origin and their therapeutic application. In addition, we have briefly compiled the optimization of culture parameters used to enhance microalgal carotenoid production. In addition, the latest biotechnological approaches used to improve the yields of carotenoid has also been discussed.
Collapse
Affiliation(s)
- Priyanka Sirohi
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Hariom Verma
- Department of Botany, B.R.D. Government Degree College Duddhi, Sonbhadra 231216, India
| | - Sandeep Kumar Singh
- Division of Microbiology, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | | | - Jyoti Pandey
- Department of Biochemistry, Singhania University, Pacheri Barı, Jhunjhunu 333515, India
| | - Saksham Khusharia
- Kuwar SatyaVira College of Engineering and Management, Bijnor 246701, India
| | - Dharmendra Kumar
- Department of Zoology, C.M.B. College, Deorh, Ghoghardiha 847402, India
| | - Kaushalendra
- Department of Zoology, Mizoram University (A Central University), Pachhunga University College Campus, Aizawl 796001, India
| | - Pratibha Teotia
- Department of Biotechnology, Noida International University, Greater Noida 203201, India
| | - Ajay Kumar
- Department of Postharvest Science, Agricultural Research Organization (ARO)—Volcani Center, Rishon Lezion 7505101, Israel
| |
Collapse
|
15
|
Li X, Lan C, Li X, Hu Z, Jia B. A review on design-build-test-learn cycle to potentiate progress in isoprenoid engineering of photosynthetic microalgae. BIORESOURCE TECHNOLOGY 2022; 363:127981. [PMID: 36130687 DOI: 10.1016/j.biortech.2022.127981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Currently, the generation of isoprenoid factories in microalgae relies on two strategies: 1) enhanced production of endogenous isoprenoids; or 2) production of heterologous terpenes by metabolic engineering. Nevertheless, low titers and productivity are still a feature of isoprenoid biotechnology and need to be addressed. In this context, the mechanisms underlying isoprenoid biosynthesis in microalgae and its relationship with central carbon metabolism are reviewed. Developments in microalgal biotechnology are discussed, and a new approach of integrated "design-build-test-learn" cycle is advocated to the trends, challenges and prospects involved in isoprenoid engineering. The emerging and promising strategies and tools are discussed for microalgal engineering in the future. This review encourages a systematic engineering perspective aimed at potentiating progress in isoprenoid engineering of photosynthetic microalgae.
Collapse
Affiliation(s)
- Xiangyu Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chengxiang Lan
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xinyi Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Bin Jia
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
16
|
Recent Advances in Marine Microalgae Production: Highlighting Human Health Products from Microalgae in View of the Coronavirus Pandemic (COVID-19). FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Blue biotechnology can greatly help solve some of the most serious social problems due to its wide biodiversity, which includes marine environments. Microalgae are important resources for human needs as an alternative to terrestrial plants because of their rich biodiversity, rapid growth, and product contributions in many fields. The production scheme for microalgae biomass mainly consists of two processes: (I) the Build-Up process and (II) the Pull-Down process. The Build-Up process consists of (1) the super strain concept and (2) cultivation aspects. The Pull-Down process includes (1) harvesting and (2) drying algal biomass. In some cases, such as the manufacture of algal products, the (3) extraction of bioactive compounds is included. Microalgae have a wide range of commercial applications, such as in aquaculture, biofertilizer, bioenergy, pharmaceuticals, and functional foods, which have several industrial and academic applications around the world. The efficiency and success of biomedical products derived from microalgal biomass or its metabolites mainly depend on the technologies used in the cultivation, harvesting, drying, and extraction of microalgae bioactive molecules. The current review focuses on recent advanced technologies that enhance microalgae biomass within microalgae production schemes. Moreover, the current work highlights marine drugs and human health products derived from microalgae that can improve human immunity and reduce viral activities, especially COVID-19.
Collapse
|
17
|
Liu M, Ding W, Yu L, Shi Y, Liu J. Functional characterization of carotenogenic genes provides implications into carotenoid biosynthesis and engineering in the marine alga Nannochloropsis oceanica. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Van Vu T, Das S, Hensel G, Kim JY. Genome editing and beyond: what does it mean for the future of plant breeding? PLANTA 2022; 255:130. [PMID: 35587292 PMCID: PMC9120101 DOI: 10.1007/s00425-022-03906-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/26/2022] [Indexed: 05/04/2023]
Abstract
MAIN CONCLUSION Genome editing offers revolutionized solutions for plant breeding to sustain food production to feed the world by 2050. Therefore, genome-edited products are increasingly recognized via more relaxed legislation and community adoption. The world population and food production are disproportionally growing in a manner that would have never matched each other under the current agricultural practices. The emerging crisis is more evident with the subtle changes in climate and the running-off of natural genetic resources that could be easily used in breeding in conventional ways. Under these circumstances, affordable CRISPR-Cas-based gene-editing technologies have brought hope and charged the old plant breeding machine with the most energetic and powerful fuel to address the challenges involved in feeding the world. What makes CRISPR-Cas the most powerful gene-editing technology? What are the differences between it and the other genetic engineering/breeding techniques? Would its products be labeled as "conventional" or "GMO"? There are so many questions to be answered, or that cannot be answered within the limitations of our current understanding. Therefore, we would like to discuss and answer some of the mentioned questions regarding recent progress in technology development. We hope this review will offer another view on the role of CRISPR-Cas technology in future of plant breeding for food production and beyond.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, km 02, Pham Van Dong Road, Co Nhue 1, Bac Tu Liem, Hanoi, 11917, Vietnam
| | - Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany.
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic.
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
19
|
Velmurugan A, Kodiveri Muthukaliannan G. Genetic manipulation for carotenoid production in microalgae an overview. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
20
|
Palma-Bautista C, Vázquez-García JG, Domínguez-Valenzuela JA, Ferreira Mendes K, Alcántara de la Cruz R, Torra J, De Prado R. Non-Target-Site Resistance Mechanisms Endow Multiple Herbicide Resistance to Five Mechanisms of Action in Conyza bonariensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14792-14801. [PMID: 34852464 DOI: 10.1021/acs.jafc.1c04279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The repeated use of herbicides can lead to the selection of multiple resistance weeds. Some populations of Conyza bonariensis occurring in olive groves from southern Spain have developed resistance to various herbicides. This study determined the resistance levels to 2,4-D, glyphosate, diflufenican, paraquat, and tribenuron-methyl in a putative resistant (R) C. bonariensis population, and the possible non-target-site resistance (NTSR) mechanisms involved were characterized. Resistance factors varied as follows: glyphosate (8.9), 2,4-D (4.8), diflufenican (5.0), tribenuron-methyl (19.6), and paraquat (85.5). Absorption of 14C-glyphosate was up to 25% higher in the susceptible (S) population compared to the R one, but 14C-paraquat absorption was similar (up to 70%) in both populations. S plants translocated more than 60% of both 14C-glyphosate and 14C-paraquat toward shoots and roots, while R plants translocated less than 10%. The R population was able to metabolize 57% of the 2,4-D into nontoxic metabolites and 68% of the tribenuron-methyl into metsulfuron-methyl (10%), metsulfuron-methyl-hydroxylate (18%), and conjugate-metsulfuron-methyl (40%). Among the NTSR mechanisms investigated, absorption and translocation could be involved in glyphosate resistance, but only translocation for paraquat. Proofs of the presence of enhanced metabolism as a resistance mechanism were found for tribenuron-methyl and 2,4-D, but not for diflufenican. This research informs the first occurrence of multiple resistance to five herbicide classes (acetolactate synthase inhibitors, 5-enolpyruvylshikimate-3-phosphate synthase inhibitors, photosystem I electron diverters, photosystem II inhibitors, and synthetic auxin herbicides) in C. bonariensis.
Collapse
Affiliation(s)
- Candelario Palma-Bautista
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, 14014 Córdoba, Spain
| | - José G Vázquez-García
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, 14014 Córdoba, Spain
| | | | - Kassio Ferreira Mendes
- Departamento de Agronomia, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | | | - Joel Torra
- Department d'Hortofruticultura, Botànica i Jardineria, Agrotecnio, Universitat de Lleida, 25198 Lleida, Spain
| | - Rafael De Prado
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, 14014 Córdoba, Spain
| |
Collapse
|
21
|
Hu Q, Song M, Huang D, Hu Z, Wu Y, Wang C. Haematococcus pluvialis Accumulated Lipid and Astaxanthin in a Moderate and Sustainable Way by the Self-Protection Mechanism of Salicylic Acid Under Sodium Acetate Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:763742. [PMID: 34868161 PMCID: PMC8639525 DOI: 10.3389/fpls.2021.763742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 05/03/2023]
Abstract
To elucidate the mechanism underlying increased fatty acid and astaxanthin accumulation in Haematococcus pluvialis, transcriptome analysis was performed to gain insights into the multiple defensive systems elicited by salicylic acid combined with sodium acetate (SAHS) stresses with a time course. Totally, 112,886 unigenes and 61,323 non-repeat genes were identified, and genes involved in carbon metabolism, primary and secondary metabolism, and immune system responses were identified. The results revealed that SA and NaAC provide both energy and precursors to improve cell growth of H. pluvialis and enhance carbon assimilation, astaxanthin, and fatty acids production in this microalga with an effective mechanism. Interestingly, SA was considered to play an important role in lowering transcriptional activity of the fatty acid and astaxanthin biosynthesis genes through self-protection metabolism in H. pluvialis, leading to its adaption to HS stress and finally avoiding massive cell death. Moreover, positive correlations between 15 key genes involved in astaxanthin and fatty acid biosynthesis pathways were found, revealing cooperative relation between these pathways at the transcription level. These results not only enriched our knowledge of the astaxanthin accumulation mechanism in H. pluvialis but also provided a new view on increasing astaxanthin production in H. pluvialis by a moderate and sustainable way in the future.
Collapse
Affiliation(s)
- Qunju Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Marine Resources Big Data Center of South China Sea, Southern Marine Science and Engineering Guangdong Laboratory Zhanjiang, Zhanjiang, China
| | - Mingjian Song
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Danqiong Huang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yan Wu
- Instrumental Analysis Center, Shenzhen University, Shenzhen, China
| | - Chaogang Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
22
|
Zhang Y, Ye Y, Bai F, Liu J. The oleaginous astaxanthin-producing alga Chromochloris zofingiensis: potential from production to an emerging model for studying lipid metabolism and carotenogenesis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:119. [PMID: 33992124 PMCID: PMC8126118 DOI: 10.1186/s13068-021-01969-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/07/2021] [Indexed: 05/05/2023]
Abstract
The algal lipids-based biodiesel, albeit having advantages over plant oils, still remains high in the production cost. Co-production of value-added products with lipids has the potential to add benefits and is thus believed to be a promising strategy to improve the production economics of algal biodiesel. Chromochloris zofingiensis, a unicellular green alga, has been considered as a promising feedstock for biodiesel production because of its robust growth and ability of accumulating high levels of triacylglycerol under multiple trophic conditions. This alga is also able to synthesize high-value keto-carotenoids and has been cited as a candidate producer of astaxanthin, the strongest antioxidant found in nature. The concurrent accumulation of triacylglycerol and astaxanthin enables C. zofingiensis an ideal cell factory for integrated production of the two compounds and has potential to improve algae-based production economics. Furthermore, with the advent of chromosome-level whole genome sequence and genetic tools, C. zofingiensis becomes an emerging model for studying lipid metabolism and carotenogenesis. In this review, we summarize recent progress on the production of triacylglycerol and astaxanthin by C. zofingiensis. We also update our understanding in the distinctive molecular mechanisms underlying lipid metabolism and carotenogenesis, with an emphasis on triacylglycerol and astaxanthin biosynthesis and crosstalk between the two pathways. Furthermore, strategies for trait improvements are discussed regarding triacylglycerol and astaxanthin synthesis in C. zofingiensis.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Ying Ye
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Fan Bai
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
23
|
Hu Q, Huang D, Li A, Hu Z, Gao Z, Yang Y, Wang C. Transcriptome-based analysis of the effects of salicylic acid and high light on lipid and astaxanthin accumulation in Haematococcus pluvialis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:82. [PMID: 33794980 PMCID: PMC8017637 DOI: 10.1186/s13068-021-01933-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/19/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND The unicellular alga Haematococcus pluvialis has achieved considerable interests for its capacity to accumulate large amounts of triacylglycerol and astaxanthin under various environmental stresses. To our knowledge, studies focusing on transcriptome research of H. pluvialis under exogenous hormones together with physical stresses are rare. In the present study, the change patterns at transcriptome level were analyzed to distinguish the multiple defensive systems of astaxanthin and fatty acid metabolism against exogenous salicylic acid and high light (SAHL) stresses. RESULTS Based on RNA-seq data, a total of 112,463 unigenes and 61,191 genes were annotated in six databases, including NR, KEGG, Swiss-Prot, PFAM, COG and GO. Analysis of differentially expressed genes (DEGs) in KEGG identified many transcripts that associated with the biosynthesis of primary and secondary metabolites, photosynthesis, and immune system responses. Furthermore, 705 unigenes predicted as putative transcription factors (TFs) were identified, and the most abundant TFs families were likely to be associated with the biosynthesis of astaxanthin and fatty acid in H. pluvialis upon exposure to SAHL stresses. Additionally, majority of the fifteen key genes involved in astaxanthin and fatty acid biosynthesis pathways presented the same expression pattern, resulting in increased accumulation of astaxanthin and fatty acids in single celled H. pluvialis, in which astaxanthin content increased from 0.56 ± 0.05 mg·L-1 at stage Control to 0.89 ± 0.12 mg·L-1 at stage SAHL_48. And positive correlations were observed among these studied genes by Pearson Correlation (PC) analysis, indicating the coordination between astaxanthin and fatty acid biosynthesis. In addition, protein-protein interaction (PPI) network analysis also demonstrated that this coordination might be at transcriptional level. CONCLUSION The results in this study provided valuable information to illustrate the molecular mechanisms of coordinate relations between astaxanthin and fatty acid biosynthesis. And salicylic acid might play a role in self-protection processes of cells, helping adaption of H. pluvialis to high light stress.
Collapse
Affiliation(s)
- Qunju Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Nanshan District, Xueyuan Road No. 1066, Shenzhen, 518060 Guangdong People’s Republic of China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 China
- College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041 China
| | - Danqiong Huang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Nanshan District, Xueyuan Road No. 1066, Shenzhen, 518060 Guangdong People’s Republic of China
| | - Anguo Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Nanshan District, Xueyuan Road No. 1066, Shenzhen, 518060 Guangdong People’s Republic of China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Nanshan District, Xueyuan Road No. 1066, Shenzhen, 518060 Guangdong People’s Republic of China
| | - Zhengquan Gao
- College of Life Sciences, Shandong University of Technology, Zibo, 255049 China
| | - Yongli Yang
- College of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041 China
| | - Chaogang Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Nanshan District, Xueyuan Road No. 1066, Shenzhen, 518060 Guangdong People’s Republic of China
| |
Collapse
|
24
|
Sharma PK, Goud VV, Yamamoto Y, Sahoo L. Efficient Agrobacterium tumefaciens-mediated stable genetic transformation of green microalgae, Chlorella sorokiniana. 3 Biotech 2021; 11:196. [PMID: 33927987 DOI: 10.1007/s13205-021-02750-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
The green oleaginous microalgae, Chlorella sorokiniana, is a highly productive Chlorella species and a potential host for the production of biofuel, nutraceuticals, and recombinant therapeutic proteins. The lack of a stable and efficient genetic transformation system is the major bottleneck in improving this species. We report an efficient and stable Agrobacterium tumefaciens-mediated transformation system for the first time in C. sorokiniana. Cocultivation of C. sorokiniana cells (optical density at λ 680 = 1.0) with Agrobacterium at a cell density of OD600 = 0.6, on BG11 agar medium (pH 5.6) supplemented with 100 μM of acetosyringone, for three days at 25 ± 2 °C in the dark, resulted in significantly higher transformation efficiency (220 ± 5 hygromycin-resistant colonies per 106 cells). Transformed cells primarily selected on BG11 liquid medium with 30 mg/L hygromycin followed by selecting homogenous transformants on BG11 agar medium with 75 mg/L hygromycin. PCR analysis confirmed the presence of hptII, and the absence of virG amplification ruled out the Agrobacterium contamination in transformed microalgal cells. Southern hybridization confirmed the integration of the hptII gene into the genome of C. sorokiniana. The qRT-PCR and Western blot analyses confirmed hptII and GUS gene expression in the transgenic cell lines. The specific growth rate, biomass doubling time, PSII activity, and fatty-acid profile of transformed cells were found similar to wild-type untransformed cells, clearly indicating the growth and basic metabolic processes not compromised by transgene expression. This protocol can facilitate opportunities for future production of biofuel, carotenoids, nutraceuticals, and therapeutic proteins. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02750-7.
Collapse
Affiliation(s)
- Prabin Kumar Sharma
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Vaibhab V Goud
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| | - Y Yamamoto
- Department of Applied Biological Sciences, Gifu University, Gifu, 501-1194 Japan
| | - Lingaraj Sahoo
- Centre for Energy, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039 India
| |
Collapse
|
25
|
Enfissi EMA, Drapal M, Perez-Fons L, Nogueira M, Berry HM, Almeida J, Fraser PD. New plant breeding techniques and their regulatory implications: An opportunity to advance metabolomics approaches. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153378. [PMID: 33631493 DOI: 10.1016/j.jplph.2021.153378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 05/21/2023]
Abstract
Over the previous decades, biotechnological innovations have led to improved agricultural productivity, more nutritious foods and lower chemical usage. Both in western societies and Low Medium Income Countries (LMICs). However, the projected increases in the global population, means the production of nutritious food stuffs must increase dramatically. Building on existing genetic modification technologies a series of New Plant Breeding Technologies (NPBT) has recently emerged. These approaches include, Agro-infiltration, grafting, cis and intragenesis and gene editing technologies. How these new techniques should be regulated has fostered considerable debate. Concerns have also been raised, to ensure over-regulation does not arise, creating administrative and economic burden. In this article the existing landscape of genetically modified crops is reviewed and the potential of several New Plant Breeding Techniques (NPBT) described. Metabolomics is an omic technology that has developed in a concurrent manner with biotechnological advances in plant breeding. There is potentially further opportunities to advance our metabolomic technologies to characterise the outputs of New Plant Breeding Technologies, in a manner that is beneficial both from an academic, biosafety and industrial perspective.
Collapse
Affiliation(s)
- Eugenia M A Enfissi
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, United Kingdom
| | - Margit Drapal
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, United Kingdom
| | - Laura Perez-Fons
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, United Kingdom
| | - Marilise Nogueira
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, United Kingdom
| | - Harriet M Berry
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, United Kingdom
| | - Juliana Almeida
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, United Kingdom
| | - Paul D Fraser
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, United Kingdom.
| |
Collapse
|
26
|
Tokunaga S, Morimoto D, Koyama T, Kubo Y, Shiroi M, Ohara K, Higashine T, Mori Y, Nakagawa S, Sawayama S. Enhanced Lutein Production in Chlamydomonas reinhardtii by Overexpression of the Lycopene Epsilon Cyclase Gene. Appl Biochem Biotechnol 2021; 193:1967-1978. [PMID: 33528746 DOI: 10.1007/s12010-021-03524-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Chlamydomonas reinhardtii is a well-established microalgal model species with a shorter doubling time, which is a promising natural source for the efficient production of high-value carotenoids. In the microalgal carotenoid biosynthetic pathway, lycopene is converted either into β-carotene by lycopene β-cyclase or into α-carotene by lycopene ε-cyclase (LCYE) and lycopene β-cyclase. In this study, we overexpressed the LCYE gene in C. reinhardtii to estimate its effect on lycopene metabolism and lutein production. Chlamydomonas transformants (CrLCYE#L1, #L5, and #L6) produced significantly increased amounts of lutein per culture (up to 2.6-fold) without a decrease in cell yields. Likewise, the expression levels of LCYE gene in transformants showed a significant increase compared with that of the wild-type strain. These results suggest that LCYE overexpression enhances the conversion of lycopene to α-carotene, which in turn improves lutein productivity. Interestingly, their β-carotene productivity appeared to increase slightly rather than decrease. Considering that the inhibition of the lycopene cyclization steps often induces higher expression in genes upstream of metabolic branches, this result implies that the redirection from β-carotene to α-carotene by LCYE overexpression might also enhance upstream gene expression, thereby leading to auxiliary β-carotene production.
Collapse
Affiliation(s)
- Saki Tokunaga
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Daichi Morimoto
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Takahisa Koyama
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuki Kubo
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Mai Shiroi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kanta Ohara
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tokuhiro Higashine
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuki Mori
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Satoshi Nakagawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shigeki Sawayama
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
27
|
Kato Y, Hasunuma T. Metabolic Engineering for Carotenoid Production Using Eukaryotic Microalgae and Prokaryotic Cyanobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1261:121-135. [PMID: 33783735 DOI: 10.1007/978-981-15-7360-6_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Eukaryotic microalgae and prokaryotic cyanobacteria are diverse photosynthetic organisms that produce various useful compounds. Due to their rapid growth and efficient biomass production from carbon dioxide and solar energy, microalgae and cyanobacteria are expected to become cost-effective, sustainable bioresources in the future. These organisms also abundantly produce various carotenoids, but further improvement in carotenoid productivity is needed for a successful commercialization. Metabolic engineering via genetic manipulation and mutational breeding is a powerful tool for generating carotenoid-rich strains. This chapter focuses on carotenoid production in microalgae and cyanobacteria, as well as strategies and potential target genes for metabolic engineering. Recent achievements in metabolic engineering that improved carotenoid production in microalgae and cyanobacteria are also reviewed.
Collapse
Affiliation(s)
- Yuichi Kato
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe-city, Hyogo, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe-city, Hyogo, Japan.
| |
Collapse
|
28
|
Zhang MP, Wang M, Wang C. Nuclear transformation of Chlamydomonas reinhardtii: A review. Biochimie 2020; 181:1-11. [PMID: 33227342 DOI: 10.1016/j.biochi.2020.11.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/14/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
Chlamydomonas reinhardtii is a model organism with three sequenced genomes capable of genetic transformation. C. reinhardtii has the advantages of being low cost, non-toxic, and having a post-translational modification system that ensures the recombinant proteins have the same activity as natural proteins, thus making it a great platform for application in molecular biology and other fields. In this review, we summarize the existing methods for nuclear transformation of C. reinhardtii, genes for selection, examples of foreign protein expression, and factors affecting transformation efficiency, to provide insights into effective strategies for the nuclear transformation of C. reinhardtii.
Collapse
Affiliation(s)
- Meng-Ping Zhang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan province, China
| | - Mou Wang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan province, China
| | - Chuan Wang
- College of Biotechnology, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan province, China.
| |
Collapse
|
29
|
Abstract
Lutein is particularly known to help maintain normal visual function by absorbing and attenuating the blue light that strikes the retina in our eyes. The effect of overexposure to blue light on our eyes due to the excessive use of electronic devices is becoming an issue of modern society due to insufficient dietary lutein consumption through our normal diet. There has, therefore, been an increasing demand for lutein-containing dietary supplements and also in the food industry for lutein supplementation in bakery products, infant formulas, dairy products, carbonated drinks, energy drinks, and juice concentrates. Although synthetic carotenoid dominates the market, there is a need for environmentally sustainable carotenoids including lutein production pathways to match increasing consumer demand for natural alternatives. Currently, marigold flowers are the predominant natural source of lutein. Microalgae can be a competitive sustainable alternative, which have higher growth rates and do not require arable land and/or a growth season. Currently, there is no commercial production of lutein from microalgae, even though astaxanthin and β-carotene are commercially produced from specific microalgal strains. This review discusses the potential microalgae strains for commercial lutein production, appropriate cultivation strategies, and the challenges associated with realising a commercial market share.
Collapse
|
30
|
Rosales-Mendoza S, García-Silva I, González-Ortega O, Sandoval-Vargas JM, Malla A, Vimolmangkang S. The Potential of Algal Biotechnology to Produce Antiviral Compounds and Biopharmaceuticals. Molecules 2020; 25:E4049. [PMID: 32899754 PMCID: PMC7571207 DOI: 10.3390/molecules25184049] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023] Open
Abstract
The emergence of the Coronavirus Disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has led to an unprecedented pandemic, which demands urgent development of antiviral drugs and antibodies; as well as prophylactic approaches, namely vaccines. Algae biotechnology has much to offer in this scenario given the diversity of such organisms, which are a valuable source of antiviral and anti-inflammatory compounds that can also be used to produce vaccines and antibodies. Antivirals with possible activity against SARS-CoV-2 are summarized, based on previously reported activity against Coronaviruses or other enveloped or respiratory viruses. Moreover, the potential of algae-derived anti-inflammatory compounds to treat severe cases of COVID-19 is contemplated. The scenario of producing biopharmaceuticals in recombinant algae is presented and the cases of algae-made vaccines targeting viral diseases is highlighted as valuable references for the development of anti-SARS-CoV-2 vaccines. Successful cases in the production of functional antibodies are described. Perspectives on how specific algae species and genetic engineering techniques can be applied for the production of anti-viral compounds antibodies and vaccines against SARS-CoV-2 are provided.
Collapse
Affiliation(s)
- Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (I.G.-S.); (O.G.-O.); (J.M.S.-V.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2. Sección, San Luis Potosí 78210, Mexico
| | - Ileana García-Silva
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (I.G.-S.); (O.G.-O.); (J.M.S.-V.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2. Sección, San Luis Potosí 78210, Mexico
| | - Omar González-Ortega
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (I.G.-S.); (O.G.-O.); (J.M.S.-V.)
| | - José M. Sandoval-Vargas
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; (I.G.-S.); (O.G.-O.); (J.M.S.-V.)
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2. Sección, San Luis Potosí 78210, Mexico
| | - Ashwini Malla
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
31
|
Zhang F, Yao X, Sun S, Wang L, Liu W, Jiang X, Wang J. Effects of mesotrione on oxidative stress, subcellular structure, and membrane integrity in Chlorella vulgaris. CHEMOSPHERE 2020; 247:125668. [PMID: 31931307 DOI: 10.1016/j.chemosphere.2019.125668] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Mesotrione is a selective herbicide used to prevent weed attack of corn. It is extensively used, and hence, is being increasingly detected in aquatic ecosystems and may exert adverse effects on aquatic organisms. To evaluate the effects of mesotrione on photosynthesis-related gene expression, antioxidant enzyme activities, subcellular structure, and membrane integrity in algal cells, a comprehensive study was conducted using the green alga, Chlorella vulgaris. Exposure to 4-50 mg/L mesotrione resulted in a progressive inhibition of cell growth, with a 96-h median inhibition concentration (96 h- ErC50) value of 18.8 mg/L. Further, 18 and 37.5 mg/L mesotrione affected the algal photosynthetic capacity by decreasing the cell pigment content and reducing transcript abundance of photosynthesis-related genes. Mesotrione induced oxidative stress, as confirmed by increased cellular levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and altered antioxidant enzyme activities. It also damaged the algal cellular structure, observed as plasmolysis, blurred organelle shape, and disruption of the chloroplast structure. Flow cytometry analysis revealed that mesotrione exposure led to uneven cell growth and interior irregularities in the algal cell. The apparent propidium iodide (PI) influx also confirmed that the herbicide induced damage of the cell membrane integrity. This study will facilitate the understanding of the physiological and morphological changes induced by mesotrione in C. vulgaris cells, and provide basic information for understanding the biological mechanisms of mesotrione-induced algal toxicity.
Collapse
Affiliation(s)
- Fengwen Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Xiangfeng Yao
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Shiang Sun
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Lipeng Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Weitang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Xingyin Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Jinxin Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, PR China.
| |
Collapse
|
32
|
Kumari S, Vira C, Lali AM, Prakash G. Heterologous expression of a mutant Orange gene from Brassica oleracea increases carotenoids and induces phenotypic changes in the microalga Chlamydomonas reinhardtii. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
33
|
Li C, Ji J, Wang G, Li Z, Wang Y, Fan Y. Over-Expression of LcPDS, LcZDS, and LcCRTISO, Genes From Wolfberry for Carotenoid Biosynthesis, Enhanced Carotenoid Accumulation, and Salt Tolerance in Tobacco. FRONTIERS IN PLANT SCIENCE 2020; 11:119. [PMID: 32174932 PMCID: PMC7054348 DOI: 10.3389/fpls.2020.00119] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/27/2020] [Indexed: 05/15/2023]
Abstract
It is of great importance to combine stress tolerance and plant quality for breeding research. In this study, the role of phytoene desaturase (PDS), ζ-carotene desaturase (ZDS) and carotene isomerase (CRTISO) in the carotenoid biosynthesis are correlated and compared. The three genes were derived from Lycium chinenses and involved in the desaturation of tetraterpene. Their over-expression significantly increased carotenoid accumulation and enhanced photosynthesis and salt tolerance in transgenic tobacco. Up-regulation of almost all the genes involved in the carotenoid biosynthesis pathway and only significant down-regulation of lycopene ε-cyclase (ε-LCY) gene were detected in those transgenic plants. Under salt stress, proline content, and activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) were significantly increased, whereas malonaldehyde (MDA) and hydrogen peroxide (H2O2) accumulated less in the transgenic plants. The genes encoding ascorbate peroxidase (APX), CAT, POD, SOD, and pyrroline-5-carboxylate reductase (P5CR) were shown to responsive up-regulated significantly under the salt stress in the transgenic plants. This study indicated that LcPDS, LcZDS, and LcCRTISO have the potential to improve carotenoid content and salt tolerance in higher plant breeding.
Collapse
Affiliation(s)
- Chen Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Jing Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Gang Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Zhaodi Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Yurong Wang
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Yajun Fan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
34
|
Metabolic Engineering of Chlamydomonas reinhardtii for Enhanced β-Carotene and Lutein Production. Appl Biochem Biotechnol 2019; 190:1457-1469. [PMID: 31782090 DOI: 10.1007/s12010-019-03194-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/11/2019] [Indexed: 01/27/2023]
Abstract
The metabolic engineering of Chlamydomonas reinhardtii, one of the fastest-growing microalgae, is a potential alternative for enhanced carotenoid productivity. CrtYB (phytoene-β-carotene synthase - PBS) gene from red yeast Xanthophyllomyces dendrorhous encodes for a bifunctional enzyme that harbours both phytoene synthase (psy) and lycopene cyclization (lcyb) activities. Heterologous expression of this bifunctional PBS gene led to 38% enhancement in β-carotene along with 60% increase in the lutein yields under low light conditions of 75 μmol photons m-2 s-1. Short Duration-High Light induction strategy led to overall 72% and 83% increase in β-carotene and lutein yield reaching up to 22.8 mg g-1 and 8.9 mg g-1, respectively. This is the first report of expression of heterologous bifunctional PBS gene resulting in simultaneous enhancement in β-carotene and lutein content in phototrophic engineered cells. Graphical Abstract.
Collapse
|
35
|
M U N, Mehar JG, Mudliar SN, Shekh AY. Recent Advances in Microalgal Bioactives for Food, Feed, and Healthcare Products: Commercial Potential, Market Space, and Sustainability. Compr Rev Food Sci Food Saf 2019; 18:1882-1897. [PMID: 33336956 DOI: 10.1111/1541-4337.12500] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022]
Abstract
To combat food scarcity as well as to ensure nutritional food supply for sustainable living of increasing population, microalgae are considered as innovative sources for adequate nutrition. Currently, the dried biomass, various carotenoids, phycocyanin, phycoerythrin, omega fatty acids, and enzymes are being used as food additives, food coloring agents, and food supplements. Apart from nutritional importance, microalgae are finding the place in the market as "functional foods." When compared to the total market size of food and feed products derived from all the possible sources, the market portfolio of microalgae-based products is still smaller, but increasing steadily. On the other hand, the genetic modification of microalgae for enhanced production of commercially important metabolites holds a great potential. However, the success of commercial application of genetically modified (GM) algae will be defined by their safety to human health and environment. In view of this, the present study attempts to highlight the industrially important microalgal metabolites, their production, and application in food, feed, nutraceuticals, pharmaceuticals, and cosmeceuticals. The current and future market trends for microalgal products have been thoroughly discussed. Importantly, the safety pertaining to microalgae cultivation and consumption, and regulatory issues for GM microalgae have also been covered.
Collapse
Affiliation(s)
- Nethravathy M U
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Inst. (CFTRI), Mysore, 570020, India
| | - Jitendra G Mehar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Inst. (CFTRI), Mysore, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sandeep N Mudliar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Inst. (CFTRI), Mysore, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ajam Y Shekh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Inst. (CFTRI), Mysore, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
36
|
Taparia Y, Zarka A, Leu S, Zarivach R, Boussiba S, Khozin-Goldberg I. A novel endogenous selection marker for the diatom Phaeodactylum tricornutum based on a unique mutation in phytoene desaturase 1. Sci Rep 2019; 9:8217. [PMID: 31160749 PMCID: PMC6546710 DOI: 10.1038/s41598-019-44710-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/21/2019] [Indexed: 01/10/2023] Open
Abstract
Phaeodactylum tricornutum is a well-developed model diatom for both marine ecology and microalgal biotechnology, which has been enabled by the sequenced genome and the availability of gene delivery tools, such as biolistic transformation and E. coli-mediated conjugation. Till now, these tools have mainly relied on two selectable markers of bacterial origin which confer resistance to antibiotics Zeocin and nourseothricin. An alternative cost-effective and preferably endogenous selectable marker would facilitate gene stacking efforts through successive transformation or conjugation. We performed UV-mutagenesis of P. tricornutum to obtain mutations in the phytoene desaturase (PDS) gene, conferring resistance to the bleaching herbicide norflurazon. Two mutants displaying high tolerance to norflurazon and carrying unique mutations in PtPDS1 (PHATRDRAFT_45735) were selected. These mutants revealed novel point mutations at a conserved residue Gly290 to Ser/Arg. Homology-based structural modeling of mutated PDS1, over a resolved crystallographic model of rice PDS1 complexed with norflurazon, suggests steric hindrance by bulkier residue substitution may confer herbicide resistance. We report the characterization of PtPDS1 mutants and the development of the first endogenous selectable marker in diatoms suitable for industrial strain development, with the added benefit of biocontainment. The plasmid carrying the mutated PDS1 as a selection marker and eGFP as a reporter was created. An optimized biolistic transformation system is reported which allowed the isolation of positive transgenic events at the rate of 96.7%. Additionally, the ease of in vivo UV-mutagenesis may be employed as a strategy to create PDS-norflurazon-based selectable markers for other diatoms.
Collapse
Affiliation(s)
- Yogesh Taparia
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture & Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Aliza Zarka
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture & Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Stefan Leu
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture & Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Raz Zarivach
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture & Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture & Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel.
| |
Collapse
|
37
|
Manipulation of trophic capacities in Haematococcus pluvialis enables low-light mediated growth on glucose and astaxanthin formation in the dark. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
Prasad B, Lein W, Thiyam G, Lindenberger CP, Buchholz R, Vadakedath N. Stable nuclear transformation of rhodophyte species Porphyridium purpureum: advanced molecular tools and an optimized method. PHOTOSYNTHESIS RESEARCH 2019; 140:173-188. [PMID: 30276605 DOI: 10.1007/s11120-018-0587-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
A mutated phytoene desaturase (pds) gene, pds-L504R, conferring resistance to the herbicide norflurazon has been reported as a dominant selectable marker for the genetic engineering of microalgae (Steinbrenner and Sandmann in Appl Environ Microbiol 72:7477-7484, 2006; Prasad et al. in Appl Microbiol Biotechnol 98(20):8629-8639, 2014). However, this mutated genomic clone harbors several introns and the entire expression cassette including its native promoter and terminator has a length > 5.6 kb, making it unsuitable as a standard selection marker. Therefore, we designed a synthetic, short pds gene (syn-pds-int) by removing introns and unwanted internal restriction sites, adding suitable restriction sites for cloning purposes, and introduced the first intron from the Chlamydomonas reinhardtii RbcS2 gene close to the 5'end without changing the amino acid sequence. The syn-pds-int gene (1872 bp) was cloned into pCAMBIA 1380 under the control of a short sequence (615 bp) of the promoter of pds (pCAMBIA 1380-syn-pds-int). This vector and the plasmid pCAMBIA1380-pds-L504R hosting the mutated genomic pds were used for transformation studies. To broaden the existing transformation portfolio, the rhodophyte Porphyridium purpureum was targeted. Agrobacterium-mediated transformation of P. purpureum with both the forms of pds gene, pds-L504R or syn-pds-int, yielded norflurazon-resistant (NR) cells. This is the first report of a successful nuclear transformation of P. purpureum. Transformation efficiency and lethal norflurazon dosage were determined to evaluate the usefulness of syn-pds-int gene and functionality of the short promoter of pds. PCR and Southern blot analysis confirmed transgene integration into the microalga. Both forms of pds gene expressed efficiently as evidenced by the stability, tolerance and the qRT-PCR analysis. The molecular toolkits and transformation method presented here could be used to genetically engineer P. purpureum for fundamental studies as well as for the production of high-value-added compounds.
Collapse
Affiliation(s)
- Binod Prasad
- Institute of Bioprocess Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Wolfgang Lein
- Institute for Biotechnology, Technical University Berlin, 13353, Berlin, Germany
- Department of Biotechnology, Dongseo University, Busan, South Korea
| | - General Thiyam
- Department of Biotechnology, Dongseo University, Busan, South Korea
| | - Christoph Peter Lindenberger
- Institute of Bioprocess Engineering, Friedrich-Alexander-University of Erlangen Nuremberg Busan Campus, 1276 Jisa-Dong, Gangseo-Gu, Busan, 618-230, South Korea
| | - Rainer Buchholz
- Institute of Bioprocess Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Nithya Vadakedath
- Institute of Bioprocess Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany.
| |
Collapse
|
39
|
Zhu QL, Guo SN, Wen F, Zhang XL, Wang CC, Si LF, Zheng JL, Liu J. Transcriptional and physiological responses of Dunaliella salina to cadmium reveals time-dependent turnover of ribosome, photosystem, and ROS-scavenging pathways. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:153-162. [PMID: 30572175 DOI: 10.1016/j.aquatox.2018.12.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Effects on short-term (6 h) and long-term (96 h) exposure to cadmium (Cd) at 0.1, 0.5 and 2.5 mg/L in microalga Dunaliella salina were assessed using both physiological end points and gene expression analysis. Different physiological responses between the short-term and long-term exposures were observed. Upon 6 h after Cd exposure, lipid peroxidation and cell ultrastructure remained unchanged, while contents of chlorophyll a, chlorophyll b, carotenoids were increased at 0.5 and 2.5 mg/L Cd. Contrarily, 96 h after Cd exposure, lipid peroxidation levels were increased, while pigments content was decreased, and damaged cell ultrastructure was apparent at 2.5 mg/L Cd. Activities of antioxidant enzymes (APX, SOD, GST, GPX, and GR) changed differently both at 6 h and 96 h after Cd exposure. Upon 6 h after Cd exposure, SOD and GST activity increased at all three doses, GR and GPX activity increased at 0.5 mg/L Cd while APX activity increased at 0.1 mg/L Cd. Contrarily, 96 h after Cd exposure, activities of all the antioxidant enzymes increased both at 0.1 and 0.5 mg/L Cd; but there was a decrease in SOD and GR activity in D. salina exposed to 2.5 mg/L Cd. RNA-seq and qRT-PCR analyses indicated that genes involved in ROS-scavenge, photosystem, and ribosome functions were differentially expressed. The most significantly enriched function was the ribosome, in which more than 30 ribosome genes were up-regulated at 6 h but down-regulated at 96 h after Cd exposure at 2.5 mg/L. Our study indicated for the first time that genes encoding ribosomal proteins are the primary target for Cd in microalgae, which allowed gaining new insights into temporal dynamics of toxicity and adaptive response pathways in microalgae exposed to metals.
Collapse
Affiliation(s)
- Qing-Ling Zhu
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316000, Zhejiang, China
| | - Sai-Nan Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
| | - Fang Wen
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316000, Zhejiang, China
| | - Xiao-Lin Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316000, Zhejiang, China
| | - Cheng-Cheng Wang
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
| | - Lan-Fang Si
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
| | - Jianhua Liu
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316000, Zhejiang, China.
| |
Collapse
|
40
|
Suttangkakul A, Sirikhachornkit A, Juntawong P, Puangtame W, Chomtong T, Srifa S, Sathitnaitham S, Dumrongthawatchai W, Jariyachawalid K, Vuttipongchaikij S. Evaluation of strategies for improving the transgene expression in an oleaginous microalga Scenedesmus acutus. BMC Biotechnol 2019; 19:4. [PMID: 30630453 PMCID: PMC6327543 DOI: 10.1186/s12896-018-0497-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/25/2018] [Indexed: 01/04/2023] Open
Abstract
Background Genetic transformation of microalgae has been hampered by inefficient transgene expression, limiting the progress of microalgal biotechnology. Many vector tools and strategies have been developed in recent years to improve transgene expression in the model microalga Chlamydomonas, but these were hardly applied to other microalgae. In this work, naturally-isolated oleaginous microalgae were accessed for genetic transformation, and various expression systems were evaluated in a selected microalga to circumvent inefficient transgene expression. Results Initially, a strain of Scenedesmus acutus was selected from the oleaginous microalgal collection based on its highest transformation rate and transgene stability. This strain, which had very low or no GFP reporter expression, was first tested to improve transgene expression by using intron-containing constructs and the transcript fusion using ble::E2A. The intron-containing constructs yielded 2.5–7.5% of transformants with 2–4-fold fluorescence signals, while the majority of the transformants of the transcript fusion had the fluorescence signals up to 10-fold. Subsequently, three UV-induced S. acutus mutants were isolated with moderate increases in the level and frequency of transgene expression (2–3-fold and 10–12%, respectively). Finally, a transcript fusion system was developed using psy white mutants with an expression vector containing PSY::E2A for complementation and light selection. Transformants with green colonies were selected under light exposure, and the transgene expression was detected at protein levels. Although the improvement using PSY::E2A was only minor (1–2-fold increase and ~ 7% of transformants), this system provides an alternative selectable marker that is compatible with large-scale culture. Conclusions Here, the overall improvement of transgene expression using the Chlamydomonas tools was moderate. The most effective tool so far is the transcript fusion using ble::E2A system. This work demonstrates that, so far, genetic engineering of non-model microalgae is still a challenging task. Further development of tools and strategies for transgene expression in microalgae are critically needed. Electronic supplementary material The online version of this article (10.1186/s12896-018-0497-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anongpat Suttangkakul
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand.,Center of Advanced studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand
| | - Anchalee Sirikhachornkit
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand.,Center of Advanced studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand
| | - Piyada Juntawong
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand.,Center of Advanced studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand
| | - Wilasinee Puangtame
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand
| | - Thitikorn Chomtong
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand
| | - Suchada Srifa
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand
| | - Sukhita Sathitnaitham
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand
| | - Wasawat Dumrongthawatchai
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand
| | - Kanidtha Jariyachawalid
- PTT Research and Technology Institute, PTT Public Company Limited, Ayuthaya, 13170, Thailand
| | - Supachai Vuttipongchaikij
- Special Research Unit in Microalgal Molecular Genetics and Functional Genomics (MMGFG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand. .,Center of Advanced studies for Tropical Natural Resources, Kasetsart University, 50 Ngam Wong Wan road, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
41
|
Dang HT, Malone JM, Gill G, Preston C. Cross-resistance to diflufenican and picolinafen and its inheritance in oriental mustard (Sisymbrium orientale L.). PEST MANAGEMENT SCIENCE 2019; 75:195-203. [PMID: 29799165 DOI: 10.1002/ps.5087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/05/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND An oriental mustard population (P40) was identified as resistant to diflufenican by screening at the field rate. As diflufenican and picolinafen both target phytoene desaturase (PDS), cross-resistance to picolinafen was suspected. The mechanism of resistance and its inheritance to diflufenican and picolinafen were investigated. RESULTS At the lethal dose (LD50 ) level, population P40 was 237-fold more resistant to diflufenican and seven-fold more resistant to picolinafen compared to two susceptible populations. Population P40 also had a significantly higher resistance to diflufenican (237-fold) than a previously described P3 population (143-fold). In addition to the Leu-498-Val mutation in PDS identified in all individuals of the P3 and P40 populations, a Glu-425-Asp mutation was also found in P40. Neither mutation was detected in any individuals of the susceptible population. As the segregation of phenotype and genotype of the F2 individuals fitted the model for a single dominant allele, resistance to both diflufenican and picolinafen is likely encoded on the nuclear genome and is dominant. CONCLUSION Resistance to diflufenican and picolinafen in the P40 population is likely conferred by Leu-498-Val and Glu-425-Asp mutations in the PDS gene. Inheritance of resistance to these herbicides is managed by a single dominant gene. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hue T Dang
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, Australia
| | - Jenna M Malone
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, Australia
| | - Gurjeet Gill
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, Australia
| | - Christopher Preston
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, Australia
| |
Collapse
|
42
|
Xu K, Racine F, He Z, Juneau P. Impacts of hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor (mesotrione) on photosynthetic processes in Chlamydomonas reinhardtii. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:295-303. [PMID: 30343230 DOI: 10.1016/j.envpol.2018.09.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/27/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Mesotrione, an herbicide increasingly found in aquatic systems due to its increased application frequency in corn fields, is an inhibitor of the p-hydroxyphenylpyruvate dioxygenase (HPPD), a key enzyme for plastoquinone-9, α-tocopherol and indirectly for carotenoid biosynthesis. The direct effect of mesotrione on plastoquinone-9 and α-tocopherol synthesis and their degradation rates are well documented, but few information exists on its action on photosynthetic processes under various light intensities. We therefore investigated the photosynthetic activity, energy dissipation processes, pigment composition and α-tocopherol content when Chlamydomonas reinhardtii were exposed to mesotrione for 24 h under low light condition and then the impacts of HL treatment (75 min) were also investigated. Under low light growth conditions, mesotrione did not induce PSII photoinhihition, while substantially decreased Car:Chl-a ratio, maximal energy-dependant quenching and state 1 to state 2 transition. Under high light conditions (HL), PSII activity was highly decreased in presence of mesotrione, and the non-photochemical energy dissipation processes were drastically affected in these conditions compared to the HL treatment alone. Mesotrinone also prevent the complete recovery of PSII damage caused by HL. Light condition seems therefore to be a non-negligible factor modulating mesotrione toxicity, and this has an obvious importance in agricultural waterbodies where phytoplankton is subjected to fluctuating light intensities.
Collapse
Affiliation(s)
- Kui Xu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Sun Yat-sen University, Guangzhou, 510006, China
| | - Francis Racine
- Department of Biological Sciences, GRIL-TOXEN, Ecotoxicology of Aquatic Microorganisms Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, Montréal, Québec, Canada
| | - Zhili He
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Sun Yat-sen University, Guangzhou, 510006, China
| | - Philippe Juneau
- Department of Biological Sciences, GRIL-TOXEN, Ecotoxicology of Aquatic Microorganisms Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, Montréal, Québec, Canada.
| |
Collapse
|
43
|
Dang HT, Malone JM, Boutsalis P, Gill G, Preston C. The mechanism of diflufenican resistance and its inheritance in oriental mustard (Sisymbrium orientale L.) from Australia. PEST MANAGEMENT SCIENCE 2018; 74:1279-1285. [PMID: 29330913 DOI: 10.1002/ps.4858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/22/2017] [Accepted: 01/09/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND An oriental mustard population (P3) collected near Quambatook, Victoria was identified as being resistant to diflufenican by screening with the field rate (200 g a.i. ha-1 ) of the herbicide. The mechanism(s) of diflufenican resistance and its inheritance in this population were therefore investigated. RESULTS Dose-response experiments confirmed that population P3 was 140-fold more resistant to diflufenican than susceptible populations, as determined by the comparison of 50% lethal (LD50 ) values. The phytoene desaturase (PDS) gene from five individuals each of the S1 [susceptible (S)] and P3 [resistant (R)] populations was sequenced, and a substitution of valine for leucine at position 526 (Leu-526-Val) was detected in all five individuals of P3, but not in the S1 population. Inheritance studies showed that diflufenican resistance is encoded in the nuclear genome and is dominant, as the response to diflufenican at 200 g a.i. ha-1 of F1 families was equivalent to that of the resistant biotype. The segregation of F2 phenotypes fitted a 3:1 inheritance model. Segregation of 42 F2 individuals by genotype sequencing fitted a 1:2:1 (ss:Rs:RR) ratio. CONCLUSION Resistance to diflufenican in oriental mustard is conferred by the Leu-526-Val mutation in the PDS gene. Inheritance of resistance is managed by a single gene with high levels of dominance. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hue Thi Dang
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia, Australia
| | - Jenna Moira Malone
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia, Australia
| | - Peter Boutsalis
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia, Australia
| | - Gurjeet Gill
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia, Australia
| | - Christopher Preston
- School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia, Australia
| |
Collapse
|
44
|
Over-accumulation of astaxanthin in Haematococcus pluvialis through chloroplast genetic engineering. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.02.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Koschmieder J, Fehling-Kaschek M, Schaub P, Ghisla S, Brausemann A, Timmer J, Beyer P. Plant-type phytoene desaturase: Functional evaluation of structural implications. PLoS One 2017; 12:e0187628. [PMID: 29176862 PMCID: PMC5703498 DOI: 10.1371/journal.pone.0187628] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/04/2017] [Indexed: 11/19/2022] Open
Abstract
Phytoene desaturase (PDS) is an essential plant carotenoid biosynthetic enzyme and a prominent target of certain inhibitors, such as norflurazon, acting as bleaching herbicides. PDS catalyzes the introduction of two double bonds into 15-cis-phytoene, yielding 9,15,9'-tri-cis-ζ-carotene via the intermediate 9,15-di-cis-phytofluene. We present the necessary data to scrutinize functional implications inferred from the recently resolved crystal structure of Oryza sativa PDS in a complex with norflurazon. Using dynamic mathematical modeling of reaction time courses, we support the relevance of homotetrameric assembly of the enzyme observed in crystallo by providing evidence for substrate channeling of the intermediate phytofluene between individual subunits at membrane surfaces. Kinetic investigations are compatible with an ordered ping-pong bi-bi kinetic mechanism in which the carotene and the quinone electron acceptor successively occupy the same catalytic site. The mutagenesis of a conserved arginine that forms a hydrogen bond with norflurazon, the latter competing with plastoquinone, corroborates the possibility of engineering herbicide resistance, however, at the expense of diminished catalytic activity. This mutagenesis also supports a "flavin only" mechanism of carotene desaturation not requiring charged residues in the active site. Evidence for the role of the central 15-cis double bond of phytoene in determining regio-specificity of carotene desaturation is presented.
Collapse
Affiliation(s)
| | | | - Patrick Schaub
- University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Sandro Ghisla
- University of Konstanz, Department of Biology, Konstanz, Germany
| | - Anton Brausemann
- University of Freiburg, Institute for Biochemistry, Freiburg, Germany
| | - Jens Timmer
- University of Freiburg, Department of Physics, Freiburg, Germany
- University of Freiburg, BIOSS Center for Biological Signaling Studies, Freiburg, Germany
- * E-mail: (PB); (JT)
| | - Peter Beyer
- University of Freiburg, Faculty of Biology, Freiburg, Germany
- University of Freiburg, BIOSS Center for Biological Signaling Studies, Freiburg, Germany
- * E-mail: (PB); (JT)
| |
Collapse
|
46
|
Ng I, Tan S, Kao P, Chang Y, Chang J. Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bio‐Based Chemicals. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600644] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/24/2017] [Indexed: 12/15/2022]
Affiliation(s)
- I‐Son Ng
- Department of Chemical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
- Research Center for Energy Technology and StrategyNational Cheng Kung UniversityTainan70101Taiwan
| | - Shih‐I Tan
- Department of Chemical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Pei‐Hsun Kao
- Department of Chemical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Yu‐Kaung Chang
- Graduate School of Biochemical EngineeringMing Chi University of TechnologyNew Taipei City24301Taiwan
| | - Jo‐Shu Chang
- Department of Chemical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
- Research Center for Energy Technology and StrategyNational Cheng Kung UniversityTainan70101Taiwan
| |
Collapse
|
47
|
Hess SK, Lepetit B, Kroth PG, Mecking S. Production of chemicals from microalgae lipids - status and perspectives. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201700152] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sandra K. Hess
- Department of Chemistry; Chair of Chemical Materials Science; University of Konstanz; Konstanz Germany
| | - Bernard Lepetit
- Department of Biology; Plant Ecology; University of Konstanz; Konstanz Germany
| | - Peter G. Kroth
- Department of Biology; Plant Ecology; University of Konstanz; Konstanz Germany
| | - Stefan Mecking
- Department of Chemistry; Chair of Chemical Materials Science; University of Konstanz; Konstanz Germany
| |
Collapse
|
48
|
Lin H, Lee YK. Genetic engineering of medium-chain-length fatty acid synthesis in Dunaliella tertiolecta for improved biodiesel production. JOURNAL OF APPLIED PHYCOLOGY 2017; 29:2811-2819. [PMID: 29213182 PMCID: PMC5705751 DOI: 10.1007/s10811-017-1210-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
Genetic engineering of microalgae to accumulate high levels of medium-chain-length fatty acids (MCFAs) represents an attractive strategy to improve the quality of microalgae-based biodiesel, but it has thus far been least successful. We demonstrate that one limitation is the availability of fatty acyl-acyl carrier protein (ACP) substrate pool for acyl-ACP thioesterase (TE). A combinational expression platform that involved plant lauric acid-biased TE (C12TE) and MCFA-specific ketoacyl-ACP synthase (KASIV) increased lauric acid (C12:0) and myristic acid (C14:0) accumulation by almost sevenfold and fourfold, respectively, compared with native strain. These findings suggest a platform for further investigation into the enlargement of MCFA acyl-ACP substrate pool as an approach to sustainably improve quality of microalgae-based biodiesel with regard to MCFA production.
Collapse
Affiliation(s)
- Huixin Lin
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, 5 Science Drive 2, Singapore, 117545 Singapore
| | - Yuan Kun Lee
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, 5 Science Drive 2, Singapore, 117545 Singapore
| |
Collapse
|
49
|
Brausemann A, Gemmecker S, Koschmieder J, Ghisla S, Beyer P, Einsle O. Structure of Phytoene Desaturase Provides Insights into Herbicide Binding and Reaction Mechanisms Involved in Carotene Desaturation. Structure 2017; 25:1222-1232.e3. [PMID: 28669634 DOI: 10.1016/j.str.2017.06.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/10/2017] [Accepted: 06/01/2017] [Indexed: 11/16/2022]
Abstract
Cyanobacteria and plants synthesize carotenoids via a poly-cis pathway starting with phytoene, a membrane-bound C40 hydrocarbon. Phytoene desaturase (PDS) introduces two double bonds and concomitantly isomerizes two neighboring double bonds from trans to cis. PDS assembles into homo-tetramers that interact monotopically with membranes. A long hydrophobic tunnel is proposed to function in the sequential binding of phytoene and the electron acceptor plastoquinone. The herbicidal inhibitor norflurazon binds at a plastoquinone site thereby blocking reoxidation of FADred. Comparison with the sequence-dissimilar bacterial carotene desaturase CRTI reveals substantial similarities in the overall protein fold, defining both as members of the GR2 family of flavoproteins. However, the PDS active center architecture is unprecedented: no functional groups are found in the immediate flavin vicinity that might participate in dehydrogenation and isomerization. This suggests that the isoalloxazine moiety is sufficient for catalysis. Despite mechanistic differences, an ancient evolutionary relation of PDS and CRTI is apparent.
Collapse
Affiliation(s)
- Anton Brausemann
- Institute for Biochemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Sandra Gemmecker
- Faculty of Biology, Albert-Ludwigs Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Julian Koschmieder
- Faculty of Biology, Albert-Ludwigs Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Sandro Ghisla
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Peter Beyer
- Faculty of Biology, Albert-Ludwigs Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | - Oliver Einsle
- Institute for Biochemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Schänzlestrasse 1, 79104 Freiburg, Germany.
| |
Collapse
|
50
|
Jha D, Jain V, Sharma B, Kant A, Garlapati VK. Microalgae-based Pharmaceuticals and Nutraceuticals: An Emerging Field with Immense Market Potential. CHEMBIOENG REVIEWS 2017. [DOI: 10.1002/cben.201600023] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Durga Jha
- Jaypee University of Information Technology; Department of Biotechnology and Bioinformatics; 173 234 Waknaghat, Himachal Pradesh India
| | - Vishakha Jain
- Jaypee University of Information Technology; Department of Biotechnology and Bioinformatics; 173 234 Waknaghat, Himachal Pradesh India
| | - Brinda Sharma
- Jaypee University of Information Technology; Department of Biotechnology and Bioinformatics; 173 234 Waknaghat, Himachal Pradesh India
| | - Anil Kant
- Jaypee University of Information Technology; Department of Biotechnology and Bioinformatics; 173 234 Waknaghat, Himachal Pradesh India
| | - Vijay Kumar Garlapati
- Jaypee University of Information Technology; Department of Biotechnology and Bioinformatics; 173 234 Waknaghat, Himachal Pradesh India
| |
Collapse
|