1
|
Boondaeng A, Trakunjae C, Vaithanomsat P, Niyomvong N. Isolation of marine bacteria with potential for polyhydroxyalkanoate degradation and optimization for enzyme production. Sci Rep 2025; 15:15586. [PMID: 40320445 PMCID: PMC12050325 DOI: 10.1038/s41598-025-99034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Plastic materials are widely used because of their strength, light weight, durability, and environmental resistance. However, their decomposition rates are significantly slower than their typical lifespans. The rapid and continuous increase in plastic consumption has caused severe environmental impacts due to the accumulation of plastic waste. We identified potential polyhydroxyalkanoate (PHA)-degrading bacteria from marine environments capable of producing extracellular PHA depolymerases crucial for biodegrading PHAs. Marine debris was collected to screen poly [(R)-3-hydroxybutyric acid] (P(3HB))-degrading bacteria. Six isolates showed the ability to produce clear zones surrounding their colonies by degrading the bioplastic P(3HB). The isolate SS1-2, exhibiting the greatest degradation index of 1.44, was chosen for optimization through the statistical technique. The results indicated that NH4Cl was the best nitrogen source for enzyme production, and the response surface methodology (RSM) suggested that the greatest P(3HB) depolymerase production could be achieved when the concentrations of substrate loading and NH4Cl both set at 0.5%. Analysis of the 16S rRNA sequence of isolate SS1-2 revealed similarity to Pseudooceanicola antarcticus CGMCC 1.12662 (97.81% similarity). The findings of this study indicate the potential for further exploitation of this depolymerase in enzyme kinetics studies and its application in PHA degradation experiments.
Collapse
Affiliation(s)
- Antika Boondaeng
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok, 10900, Thailand
| | - Chanaporn Trakunjae
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok, 10900, Thailand
| | - Pilanee Vaithanomsat
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok, 10900, Thailand
| | - Nanthavut Niyomvong
- Department of Biology and Biotechnology, Faculty of Science and Technology, Nakhon Sawan Rajabhat University, Nakhon Sawan, 60000, Thailand.
- Science Center, Nakhon Sawan Rajabhat University, Nakhon Sawan, 60000, Thailand.
| |
Collapse
|
2
|
Zha J, Liu D, Ren J, Liu Z, Wu X. Advances in Metabolic Engineering of Pichia pastoris Strains as Powerful Cell Factories. J Fungi (Basel) 2023; 9:1027. [PMID: 37888283 PMCID: PMC10608127 DOI: 10.3390/jof9101027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Pichia pastoris is the most widely used microorganism for the production of secreted industrial proteins and therapeutic proteins. Recently, this yeast has been repurposed as a cell factory for the production of chemicals and natural products. In this review, the general physiological properties of P. pastoris are summarized and the readily available genetic tools and elements are described, including strains, expression vectors, promoters, gene editing technology mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, and adaptive laboratory evolution. Moreover, the recent achievements in P. pastoris-based biosynthesis of proteins, natural products, and other compounds are highlighted. The existing issues and possible solutions are also discussed for the construction of efficient P. pastoris cell factories.
Collapse
Affiliation(s)
- Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.L.); (J.R.); (Z.L.)
| | | | | | | | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.L.); (J.R.); (Z.L.)
| |
Collapse
|
3
|
Jia L, Rao S, Li H, Wu C, Wang Q, Li T, Huang A. Enhancing HSA-GCSFm fusion protein production by Pichia pastoris with an on-line model-based exponential and DO-stat control modes. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
4
|
Zhu W, Xu R, Gong G, Xu L, Hu Y, Xie L. Medium optimization for high yield production of human serum albumin in Pichia pastoris and its efficient purification. Protein Expr Purif 2021; 181:105831. [PMID: 33508474 DOI: 10.1016/j.pep.2021.105831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To improve the yield of recombinant human serum albumin (HSA) in Pichia pastoris by medium optimization and establish the related purification scheme. RESULTS A simplified version of the generally used buffered glycerol complex medium (BMGY), which contained yeast extract, glycerol and potassium salts, was found to be applicable. By decreasing the salt concentration of basal salt medium (BSM) to half of the original formula further, we achieved a high yield of 17.47 g/L HSA in the supernatant within a 192 h induction, which is the highest rHSA yield ever reported as far as we know. Accompanied with a three-step purification procedure which recovered two thirds of the desired protein at high purity, our work lays a solid foundation for large-scale industrial production of HSA. CONCLUSION Medium optimization plays a significant role in improving the yield of desired protein, lowering the production cost and helping to explore the producing strain's character.
Collapse
Affiliation(s)
- Wen Zhu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, 201203, PR China
| | - Renren Xu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, 201203, PR China
| | - Guihua Gong
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, 201203, PR China
| | - Lei Xu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, 201203, PR China
| | - Youjia Hu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, 201203, PR China
| | - Liping Xie
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, 201203, PR China.
| |
Collapse
|
5
|
Rhizopus oryzae Lipase, a Promising Industrial Enzyme: Biochemical Characteristics, Production and Biocatalytic Applications. Catalysts 2020. [DOI: 10.3390/catal10111277] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lipases are biocatalysts with a significant potential to enable a shift from current pollutant manufacturing processes to environmentally sustainable approaches. The main reason of this prospect is their catalytic versatility as they carry out several industrially relevant reactions as hydrolysis of fats in water/lipid interface and synthesis reactions in solvent-free or non-aqueous media such as transesterification, interesterification and esterification. Because of the outstanding traits of Rhizopus oryzae lipase (ROL), 1,3-specificity, high enantioselectivity and stability in organic media, its application in energy, food and pharmaceutical industrial sector has been widely studied. Significant advances have been made in the biochemical characterisation of ROL particularly in how its activity and stability are affected by the presence of its prosequence. In addition, native and heterologous production of ROL, the latter in cell factories like Escherichia coli, Saccharomyces cerevisiae and Komagataella phaffii (Pichia pastoris), have been thoroughly described. Therefore, in this review, we summarise the current knowledge about R. oryzae lipase (i) biochemical characteristics, (ii) production strategies and (iii) potential industrial applications.
Collapse
|
6
|
Liu W, Xiang H, Zhang T, Pang X, Su J, Liu H, Ma B, Yu L. Development of a New High-Cell Density Fermentation Strategy for Enhanced Production of a Fungus β-Glucosidase in Pichia pastoris. Front Microbiol 2020; 11:1988. [PMID: 32973717 PMCID: PMC7472535 DOI: 10.3389/fmicb.2020.01988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/27/2020] [Indexed: 11/13/2022] Open
Abstract
Traditional diosgenin manufacturing process has led to serious environmental contamination and wastewater. Clean processes are needed that can alternate the diosgenin production. The β-glucosidase FBG1, cloned from Fusarium sp. CPCC 400709, can biotransform trillin and produce diosgenin. In this study, Pichia pastoris production of recombinant FBG1 was implemented to investigate various conventional methanol induction strategies, mainly including DO-stat (constant induction DO), μ-stat (constant exponential feeding rate) and m-stat (constant methanol concentration). The new co-stat strategy combining μ-stat and m-stat strategies was then developed for enhanced FBG1 production during fed-batch high-cell density fermentation on methanol. The fermentation process was characterized with respect to cell growth, methanol consumption, FBG1 production and methanol metabolism. It was found that large amounts of formaldehyde were released by the enhanced dissimilation pathway when the co-stat strategy was implemented, and therefore the energy generation was enhanced because of improved methanol metabolism. Using co-stat feeding, the highest volumetric activity reached ∼89 × 104 U/L, with the maximum specific activity of ∼90 × 102 U/g. After 108 h induction, the highest volumetric production reached ∼403 mg/L, which was ∼91, 154, and 183 mg/L higher than the maximal production obtained at m-stat, μ-stat, and DO-stat strategies, respectively. FBG1 is the first P. pastoris produced recombinant enzyme for diosgenin production through the biotransformation of trillin. Moreover, this newly developed co-stat induction strategy represents the highest expression of FBG1 in P. pastoris, and the strategy can be used to produce FBG1 from similar Pichia strains harboring Fbg1 gene, which lays solid foundation for clean and sustainable production of diosgenin. The current work provides unique information on cell growth, substrate metabolism and protein biosynthesis for enhanced β-glucosidase production using a P. pastoris strain under controlled fermentation conditions. This information may be applicable for expression of similar proteins from P. pastoris strains.
Collapse
Affiliation(s)
- Wancang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haibo Xiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xu Pang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Jing Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongyu Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Baiping Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Ardila-Leal LD, Alvarado-Ramírez MF, Gutiérrez-Rojas IS, Poutou-Piñales RA, Quevedo-Hidalgo B, Pérez-Flórez A, Pedroza-Rodríguez AM. Low-cost media statistical design for laccase rPOXA 1B production in P. pastoris. Heliyon 2020; 6:e03852. [PMID: 32368658 PMCID: PMC7184261 DOI: 10.1016/j.heliyon.2020.e03852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/09/2020] [Accepted: 04/21/2020] [Indexed: 01/09/2023] Open
Abstract
Laccases (E.C. 1.10.3.2) are multicopper oxidases of great importance in the industry due to their non-specificity and high oxidative potential. Laccases are useful to bleach synthetic dyes, oxidize phenolic compounds and degrade pesticides, among others. Hence, the objective of this work was to optimize low cost culture media for recombinant (rPOXA 1B) laccase production from Pleurotus ostreatus in Pichia pastoris. To this end, low cost nitrogen sources were studied, such as malt extract, isolated soy protein and milk serum. Following, two central composite designs (CCD) were performed. In CCD-1 different concentrations of glucose USP (0–13.35 gL-1), protein isolated soy protein (5–25 gL-1), malt extract (3.5–17.5 gL-1) and (NH4)2SO4 (1.3–6.5 gL-1) were evaluated. In CCD-2 only different concentrations of glucose USP (7.9–22 gL-1) and isolated soy protein (15.9–44.9 gL-1) were evaluated. CCD-2 results led to a One Factor Experimental design (OFED) to evaluate higher isolated soy protein (20–80 gL-1) concentrations. In all designs, (CCD-1, CCD-2 and OFED) CuSO4 (0.16 gL-1) and chloramphenicol (0.1 gL-1) concentrations remained unchanged. For the OFED after sequential statistical optimization, an enzyme activity of 12,877.3 ± 481.2 UL−1 at 168 h was observed. rPOXA 1B activity increased 30.54 % in comparison with CCD-2 results. Final composition of optimized media was: 20 gL-1 glucose USP, 50 gL-1 isolated soy protein 90 % (w/w), 11.74 gL-1 malt extract, and 4.91 gL-1 (NH4)2SO4. With this culture media, it was possible to reduce culture media costs by 89.84 % in comparison with improved culture media previously described by our group.
Collapse
Affiliation(s)
- Leidy D Ardila-Leal
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - María F Alvarado-Ramírez
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - Ivonne S Gutiérrez-Rojas
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - Raúl A Poutou-Piñales
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - Balkys Quevedo-Hidalgo
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - Alejandro Pérez-Flórez
- Grupo de Fitoquímica de la PUJ (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| | - Aura M Pedroza-Rodríguez
- Laboratorio de Microbiología Ambiental y de Suelos, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana (PUJ), Bogotá, D.C., Colombia
| |
Collapse
|
8
|
Duan X, Xiang M, Wang L, Yan Q, Yang S, Jiang Z. Biochemical characterization of a novel lipase from Malbranchea cinnamomea suitable for production of lipolyzed milkfat flavor and biodegradation of phthalate esters. Food Chem 2019; 297:124925. [DOI: 10.1016/j.foodchem.2019.05.199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Duan X, Xiang M, Wang L, Yan Q, Yang S, Jiang Z. WITHDRAWN: Biochemical characterization of a novel lipase from Malbranchea cinnamomea suitable for production of lipolyzed milkfat flavor and biodegradation of phthalate esters. Food Chem X 2019. [DOI: 10.1016/j.fochx.2019.100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
10
|
Sun WH, Wang YZ, Xu Y, Yu XW. Genome-wide analysis of long non-coding RNAs in Pichia pastoris during stress by RNA sequencing. Genomics 2018; 111:398-406. [PMID: 29496514 DOI: 10.1016/j.ygeno.2018.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/07/2018] [Accepted: 02/23/2018] [Indexed: 01/08/2023]
Abstract
Long non-coding RNAs play significant roles in many biological processes. The roles of lncRNAs in Pichia pastoris remain unclear. In this work, we focused on the identification of lncRNAs in P. pastoris and exploration of their potential roles in stress response to PLA2 overexpression and methanol induction. By strand specific RNA sequencing, 208 novel long non-coding RNAs were identified and analyzed. Bioinformatic analysis showed potential trans-target genes and cis-regulated genes of 39 differential lncRNAs. Functional annotation and sequence motif analysis indicated that lncRNAs participate in pathways related to methanol degradation and production of the recombinant protein. The differential expression of lncRNAs was validated by qRT-PCR. Lastly, the potential functions of three lncRNAs were evaluated by knockdown of their expression and analysis of the expression levels of target genes. Our study identifies novel lncRNAs in P. pastoris induced during use as a bioreactor, facilitating future functional research.
Collapse
Affiliation(s)
- Wei-Hong Sun
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Ying-Zheng Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| | - Xiao-Wei Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
11
|
Jiao L, Zhou Q, Su Z, Xu L, Yan Y. High-level extracellular production of Rhizopus oryzae lipase in Pichia pastoris via a strategy combining optimization of gene-copy number with co-expression of ERAD-related proteins. Protein Expr Purif 2018; 147:1-12. [PMID: 29452270 DOI: 10.1016/j.pep.2018.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/04/2018] [Accepted: 02/11/2018] [Indexed: 12/17/2022]
Abstract
Rhizopus oryzae lipase (ROL) is an important industrial enzyme limited in application due to its low production in native strains. Here, we used a new combined strategy to overexpress ROL in Pichia pastoris. An efficient method based on bio-brick was developed to construct a series of vectors harboring different copy numbers of ROL gene cassettes, which were then transformed into P. pastoris GS115 to generate a strain with specific copy numbers of ROL. An optimized gene-dosage recombinant strain of GS115/pAOα-5ROL 11# harboring five copies of ROL was screened, revealing production of the highest activity (2700 U/mL), which was 8-fold higher than that of the strain harboring one copy. The activity of GS115/pAOα-5ROL 11# was then enhanced to 3080 U/mL in a shaking flask under optimized culture conditions. Subsequently, the endoplasmic reticulum-associated protein-degradation-related genes Ubc1 or/and Hrd1 were co-expressed with ROL to further increase ROL expression. The activities of the recombinant strains, GS115/5ROL-Ubc1 22#, -Hrd1 15#, and -Hrd1-Ubc1 1#, were 4000 U/mL, 4200 U/mL, and 4750 U/mL, which was 29.9%, 36.4%, and 54.2% higher, respectively, than that observed in GS115/pAOα-5ROL 11#. Using the combined strategy, ROL expression was improved 15.8-fold, with maximum GS115/5ROL-Hrd1-Ubc1 1# activity reaching 33,900 U/mL via a sorbitol/methanol co-feeding strategy in a 3-L fermenter and resulting in a 1.65-, 1.26-, and 1.14-fold enhancement relative to the activities observed in strains GS115/pAOα-5ROL 11#, GS115/5ROL-Ubc1 22#, and GS115/5ROL-Hrd1 15#, respectively. These results indicated that heterologous overexpression of ROL in P. pastoris using this combined strategy is feasible for large-scale industrialization.
Collapse
Affiliation(s)
- Liangcheng Jiao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qinghua Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhixin Su
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Li Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
12
|
Yu XW, Sun WH, Wang YZ, Xu Y. Identification of novel factors enhancing recombinant protein production in multi-copy Komagataella phaffii based on transcriptomic analysis of overexpression effects. Sci Rep 2017; 7:16249. [PMID: 29176680 PMCID: PMC5701153 DOI: 10.1038/s41598-017-16577-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022] Open
Abstract
The methylotrophic yeast Komagataella phaffii (Pichia pastoris) has been developed into a highly successful system for heterologous protein expression in both academia and industry. However, overexpression of recombinant protein often leads to severe burden on the physiology of K. phaffii and triggers cellular stress. To elucidate the global effect of protein overexpression, we set out to analyze the differential transcriptome of recombinant strains with 12 copies and a single copy of phospholipase A2 gene (PLA2) from Streptomyces violaceoruber. Through GO, KEGG and heat map analysis of significantly differentially expressed genes, the results indicated that the 12-copy strain suffered heavy cellular stress. The genes involved in protein processing and stress response were significantly upregulated due to the burden of protein folding and secretion, while the genes in ribosome and DNA replication were significantly downregulated possibly contributing to the reduced cell growth rate under protein overexpression stress. Three most upregulated heat shock response genes (CPR6, FES1, and STI1) were co-overexpressed in K. phaffii and proved their positive effect on the secretion of reporter enzymes (PLA2 and prolyl endopeptidase) by increasing the production up to 1.41-fold, providing novel helper factors for rational engineering of K. phaffii.
Collapse
Affiliation(s)
- Xiao-Wei Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P.R. China.
| | - Wei-Hong Sun
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P.R. China
| | - Ying-Zheng Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P.R. China.
| |
Collapse
|
13
|
Wang XD, Jiang T, Yu XW, Xu Y. Effects of UPR and ERAD pathway on the prolyl endopeptidase production in Pichia pastoris by controlling of nitrogen source. ACTA ACUST UNITED AC 2017; 44:1053-1063. [DOI: 10.1007/s10295-017-1938-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 02/22/2017] [Indexed: 01/12/2023]
Abstract
Abstract
Prolyl endopeptidase (PEP) is very useful in various industries, while the high cost of enzyme production remains a major obstacle for its industrial applications. Pichia pastoris has been used for the PEP production; however, the fermentation process has not be investigated and little is known about the impact of excessive PEP production on the host cell physiology. Here, we optimized the nitrogen source to improve the PEP expression level and further evaluated the cellular response including UPR and ERAD. During methanol induction phase the PEP activity (1583 U/L) was increased by 1.48-fold under the optimized nitrogen concentration of NH4+ (300 mmol/L) and casamino acids [1.0% (w/v)] in a 3-L bioreactor. Evaluated by RT-PCR the UPR and ERAD pathways were confirmed to be activated. Furthermore, a strong decrease of ERAD-related gene transcription was observed with the addition of nitrogen source, which contributed to a higher PEP expression level.
Collapse
Affiliation(s)
- Xiao-Dong Wang
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
- 0000 0001 0708 1323 grid.258151.a State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi People’s Republic of China
| | - Ting Jiang
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
- 0000 0001 0708 1323 grid.258151.a State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi People’s Republic of China
| | - Xiao-Wei Yu
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
- 0000 0001 0708 1323 grid.258151.a State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi People’s Republic of China
| | - Yan Xu
- 0000 0001 0708 1323 grid.258151.a The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
- 0000 0001 0708 1323 grid.258151.a State Key Laboratory of Food Science and Technology Jiangnan University 214122 Wuxi People’s Republic of China
| |
Collapse
|
14
|
Lipases from the genus Rhizopus : Characteristics, expression, protein engineering and application. Prog Lipid Res 2016; 64:57-68. [DOI: 10.1016/j.plipres.2016.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/24/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022]
|
15
|
Lopes VRO, Farias MA, Belo IMP, Coelho MAZ. NITROGEN SOURCES ON TPOMW VALORIZATION THROUGH SOLID STATE FERMENTATION PERFORMED BY Yarrowia lipolytica. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2016. [DOI: 10.1590/0104-6632.20160332s20150146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Yan Q, Duan X, Liu Y, Jiang Z, Yang S. Expression and characterization of a novel 1,3-regioselective cold-adapted lipase from Rhizomucor endophyticus suitable for biodiesel synthesis. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:86. [PMID: 27081399 PMCID: PMC4831154 DOI: 10.1186/s13068-016-0501-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/01/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND The biodiesel production can be carried out by transesterification using either chemical or enzymatic process. The enzymatic transesterification is more promising as it offers an environmental friendly option compared to the chemical process, where the lipases with high catalytic efficiency and good stability play a key role. Hence, it is of great value to identify novel lipases which are suitable for biodiesel production. RESULTS A lipase gene (ReLipA) from Rhizomucor endophyticus was cloned and heterologously expressed in Pichia pastoris. ReLipA shared the highest identity of 61 % with the lipases from Rhizopus delemar, Rhizopus oryzae, and Saccharomyces cerevisiae. The recombinant lipase (ReLipA) was secreted as an active protein with the highest activity of 1961 U mL(-1) in a 5-L fermentor by high cell-density fermentation. ReLipA was purified to homogeneity with a recovery yield of 75.7 %. The purified enzyme was most active at pH 6.0 and 40 °C, respectively, and it was stable up to 55 °C. ReLipA displayed 75 % of its maximal activity at 0 °C, indicating that it is a cold-adapted lipase. It exhibited broad substrate specificity toward various p-nitrophenyl esters and triglycerides. ReLipA hydrolyzed triolein to release mainly 1,2-diolein without the formation of 1,3-diolein, suggesting that it is a sn-1,3 regiospecific lipase. Furthermore, ReLipA synthesized different types of oleates by esterification using oleic acid and short chain alcohols (e.g., methanol, ethanol, and butanol) as the substrates with the highest conversion yield of 82.2 %. Therefore, the cold-adapted lipase may be a good biocatalyst in ester synthesis in biodiesel industry. CONCLUSIONS A novel cold-adapted lipase was identified and characterized. The high yield and excellent properties may confer the enzyme with great potential for biodiesel production in bioenergy industry. This is the first report on a cold-adapted lipase from Rhizomucor species.
Collapse
Affiliation(s)
- Qiaojuan Yan
- />Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing, 100083 China
| | - Xiaojie Duan
- />College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083 China
| | - Yu Liu
- />College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083 China
| | - Zhengqiang Jiang
- />College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083 China
| | - Shaoqing Yang
- />College of Food Science and Nutritional Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100083 China
| |
Collapse
|
17
|
Denise S, Livia TAS, Jamil SO, Marcelo MS, Inayara CAL, Gecernir C, Jacqueline AT. Colletotrichum gloeosporioides lipase: Characterization and use in hydrolysis and esterifications. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajmr2015.7493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|