1
|
Choi SH, Jin MS. Crystal structure of γ-carbonic anhydrase from the polyextremophilic bacterium Aeribacillus pallidus. Mol Cells 2025; 48:100165. [PMID: 39637945 PMCID: PMC11721427 DOI: 10.1016/j.mocell.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
The polyextremophilic bacterium Aeribacillus pallidus produces a thermo- and alkali-stable γ-carbonic anhydrase (γ-apCA), a homotrimeric metalloenzyme containing a zinc ion in its active site that catalyzes the reversible hydration of carbon dioxide (CO2). Here, we present the first crystal structure of γ-apCA at 1.7-Å resolution, revealing 2 trimers in the asymmetric unit. The overall structure is consistent with other γ-CAs, where each monomer adopts a prism-like structure consisting of an N-terminal left-handed β-helix and a C-terminal α-helix. The active site, located at the interface between 2 monomers, coordinates the zinc ion with 3 histidine residues (H65, H82, and H87) and a water molecule in a tetrahedral configuration. The structural comparison indicates that the amino acid composition at the active site of γ-apCA differs significantly from the prototypic γ-CA from Methanosarcina thermophila. This variation likely accounts for the lack of measurable CO2 hydration activity in γ-apCA. Additionally, the structure reveals noncatalytic zinc and sulfate ions trapped at the trimer core and trimer-trimer noncrystallographic interfaces. These may contribute to stabilizing enzyme assembly and promoting crystal packing.
Collapse
Affiliation(s)
- Seung Hun Choi
- School of Life Sciences, GIST, Gwangju 61005, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, GIST, Gwangju 61005, Republic of Korea.
| |
Collapse
|
2
|
Zhu J, Sun J, Pang C, Li Q, Yang Z, Li G. Isolation, Identification, and Carbonate Mineralization Characteristics of a Newly Carbonic Anhydrase-Producing Strain. Appl Biochem Biotechnol 2024; 196:8009-8025. [PMID: 38668844 DOI: 10.1007/s12010-024-04947-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 12/14/2024]
Abstract
Carbonic anhydrase-producing microorganisms can rely on their metabolism for carbon sequestration and carbonate precipitation, which is a relatively effective mode among the known microbially induced carbonate precipitation (MICP) methods. A newly carbonic anhydrase-producing strain was isolated from soil samples. 16S rDNA gene sequencing showed this strain had 99.18% sequence identity to Chryseobacterium gambrini. Various culture parameters (temperature, pH, rotational speed, inoculum size, and metal ions) were optimized for optimal microbial growth and CA activities. Optimal culture conditions were as follows: temperature of 30 °C, pH 6-7, rotational speed 150 rpm, and inoculum size 1%. It was observed that Co2+ and Mn2+ can improve CA activity with optimal concentrations of 0.02 mM and 0.01 mM, respectively. Furthermore, the introduction of CO2 for 15 min daily leads to a 36% increase in the final production of biotic CaCO3, reaching 2.884 g/L. Characterization of the mineralization precipitates was conducted to reveal the mechanism of the carbonic anhydrase-producing bacterium. Lastly, an analysis of the crystalline species and content of the biogenic CaCO3 was performed to lay the groundwork for future crystalline adjustments and to offer technical support for the application of the calcium method.
Collapse
Affiliation(s)
- Jiahua Zhu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Jing Sun
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Caiyan Pang
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Qian Li
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China
| | - Zhihui Yang
- School of Metallurgy and Engineer, Central South University, Changsha, 410083, China
| | - Guangyue Li
- School of Resources Environment and Safety Engineering, University of South China, Hengyang, 421001, China.
| |
Collapse
|
3
|
Vivenzio VM, Esposito D, Monti SM, De Simone G. Bacterial α-CAs: a biochemical and structural overview. Enzymes 2024; 55:31-63. [PMID: 39222995 DOI: 10.1016/bs.enz.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Carbonic anhydrases belonging to the α-class are widely distributed in bacterial species. These enzymes have been isolated from bacteria with completely different characteristics including both Gram-negative and Gram-positive strains. α-CAs show a considerable similarity when comparing the biochemical, kinetic and structural features, with only small differences which reflect the diverse role these enzymes play in Nature. In this chapter, we provide a comprehensive overview on bacterial α-CA data, with a highlight to their potential biomedical and biotechnological applications.
Collapse
|
4
|
Wei H, Lunin VV, Alahuhta M, Himmel ME, Huang S, Bomble YJ, Zhang M. Streamlining heterologous expression of top carbonic anhydrases in Escherichia coli: bioinformatic and experimental approaches. Microb Cell Fact 2024; 23:190. [PMID: 38956607 PMCID: PMC11218372 DOI: 10.1186/s12934-024-02463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Carbonic anhydrase (CA) enzymes facilitate the reversible hydration of CO2 to bicarbonate ions and protons. Identifying efficient and robust CAs and expressing them in model host cells, such as Escherichia coli, enables more efficient engineering of these enzymes for industrial CO2 capture. However, expression of CAs in E. coli is challenging due to the possible formation of insoluble protein aggregates, or inclusion bodies. This makes the production of soluble and active CA protein a prerequisite for downstream applications. RESULTS In this study, we streamlined the process of CA expression by selecting seven top CA candidates and used two bioinformatic tools to predict their solubility for expression in E. coli. The prediction results place these enzymes in two categories: low and high solubility. Our expression of high solubility score CAs (namely CA5-SspCA, CA6-SazCAtrunc, CA7-PabCA and CA8-PhoCA) led to significantly higher protein yields (5 to 75 mg purified protein per liter) in flask cultures, indicating a strong correlation between the solubility prediction score and protein expression yields. Furthermore, phylogenetic tree analysis demonstrated CA class-specific clustering patterns for protein solubility and production yields. Unexpectedly, we also found that the unique N-terminal, 11-amino acid segment found after the signal sequence (not present in its homologs), was essential for CA6-SazCA activity. CONCLUSIONS Overall, this work demonstrated that protein solubility prediction, phylogenetic tree analysis, and experimental validation are potent tools for identifying top CA candidates and then producing soluble, active forms of these enzymes in E. coli. The comprehensive approaches we report here should be extendable to the expression of other heterogeneous proteins in E. coli.
Collapse
Affiliation(s)
- Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| | - Vladimir V Lunin
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Markus Alahuhta
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Shu Huang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Yannick J Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| |
Collapse
|
5
|
Manyumwa CV, Zhang C, Jers C, Mijakovic I. Alpha Carbonic Anhydrase from Nitratiruptor tergarcus Engineered for Increased Activity and Thermostability. Int J Mol Sci 2024; 25:5853. [PMID: 38892041 PMCID: PMC11173315 DOI: 10.3390/ijms25115853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
The development of carbon capture and storage technologies has resulted in a rising interest in the use of carbonic anhydrases (CAs) for CO2 fixation at elevated temperatures. In this study, we chose to rationally engineer the α-CA (NtCA) from the thermophilic bacterium Nitratiruptor tergarcus, which has been previously suggested to be thermostable by in silico studies. Using a combination of analyses with the DEEPDDG software and available structural knowledge, we selected residues in three regions, namely, the catalytic pocket, the dimeric interface and the surface, in order to increase thermostability and CO2 hydration activity. A total of 13 specific mutations, affecting seven amino acids, were assessed. Single, double and quadruple mutants were produced in Escherichia coli and analyzed. The best-performing mutations that led to improvements in both activity and stability were D168K, a surface mutation, and R210L, a mutation in the dimeric interface. Apart from these, most mutants showed improved thermostability, with mutants R210K and N88K_R210L showing substantial improvements in activity, up to 11-fold. Molecular dynamics simulations, focusing particularly on residue fluctuations, conformational changes and hydrogen bond analysis, elucidated the structural changes imposed by the mutations. Successful engineering of NtCA provided valuable lessons for further engineering of α-CAs.
Collapse
Affiliation(s)
- Colleen Varaidzo Manyumwa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (C.V.M.); (C.Z.); (C.J.)
| | - Chenxi Zhang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (C.V.M.); (C.Z.); (C.J.)
| | - Carsten Jers
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (C.V.M.); (C.Z.); (C.J.)
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (C.V.M.); (C.Z.); (C.J.)
- Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
6
|
Sharma A, Chiang RA, Manginell M, Nardi I, Coker EN, Vanegas JM, Rempe SB, Bachand GD. Carbonic Anhydrase Robustness for Use in Nanoscale CO 2 Capture Technologies. ACS OMEGA 2023; 8:37830-37841. [PMID: 37867662 PMCID: PMC10586288 DOI: 10.1021/acsomega.3c02630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023]
Abstract
Continued dependence on crude oil and natural gas resources for fossil fuels has caused global atmospheric carbon dioxide (CO2) emissions to increase to record-setting proportions. There is an urgent need for efficient and inexpensive carbon sequestration systems to mitigate large-scale emissions of CO2 from industrial flue gas. Carbonic anhydrase (CA) has shown high potential for enhanced CO2 capture applications compared to conventional absorption-based methods currently utilized in various industrial settings. This study aims to understand structural aspects that contribute to the stability of CA enzymes critical for their applications in industrial processes, which require the ability to withstand conditions different from those in their native environments. Here, we evaluated the thermostability and enzyme activity of mesophilic and thermophilic CA variants at different temperature conditions and in the presence of atmospheric gas pollutants like nitrogen oxides and sulfur oxides. Based on our enzyme activity assays and molecular dynamics simulations, we see increased conformational stability and CA activity levels in thermostable CA variants incubated week-long at different temperature conditions. The thermostable CA variants also retained high levels of CA activity despite changes in solution pH due to increasing NO and SO2 concentrations. A loss of CA activity was observed only at high concentrations of NO/SO2 that possibly can be minimized with the appropriate buffered solutions.
Collapse
Affiliation(s)
- Arjun Sharma
- Department
of Physics, The University of Vermont, Burlington, Vermont 05405-0160, United
States
| | - Rong-an Chiang
- Memzyme,
LLC, Albuquerque, New Mexico 87123, United States
| | - Monica Manginell
- Center
for Integrated Nanotechnologies, Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Isaac Nardi
- Epigentor
Consultants, Inc., Miami, Florida 87185, United States
| | - Eric N. Coker
- Electronic,
Optical, and Nanomaterials Department, Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Juan M. Vanegas
- Department
of Physics, The University of Vermont, Burlington, Vermont 05405-0160, United
States
| | - Susan B. Rempe
- Center
for Integrated Nanotechnologies, Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States
| | - George D. Bachand
- Center
for Integrated Nanotechnologies, Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
7
|
Ali J, Faridi S, Sardar M. Carbonic anhydrase as a tool to mitigate global warming. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83093-83112. [PMID: 37336857 DOI: 10.1007/s11356-023-28122-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
The global average temperature breaks the record every year, and this unprecedented speed at which it is unfolding is causing serious climate change which in turn impacts the lives of humans and other living organisms. Thus, it is imperative to take immediate action to limit global warming. Increased CO2 emission from the industrial sector that relies on fossil fuels is the major culprit. Mitigating global warming is an uphill battle that involves an integration of technologies such as switching to renewable energy, increasing the carbon sink capacity, and implementing carbon capture and sequestration (CCS) on major sources of CO2 emissions. Among all these methods, CCS is globally accepted as a potential technology to address this climate change. CCS using carbonic anhydrase (CA) is gaining momentum due to its advantages over other conventional CCS technologies. CA is a metalloenzyme that catalyses a fundamental reaction for life, i.e. the interconversion of bicarbonate and protons from carbon dioxide and water. The practical application of CA requires stable CAs operating under harsh operational conditions. CAs from extremophilic microbes are the potential candidates for the sequestration of CO2 and conversion into useful by-products. The soluble free form of CA is expensive, unstable, and non-reusable in an industrial setup. Immobilization of CA on various support materials can provide a better alternative for application in the sequestration of CO2. The present review provides insight into several types of CAs, their distinctive characteristics, sources, and recent developments in CA immobilization strategies for application in CO2 sequestration.
Collapse
Affiliation(s)
- Juned Ali
- Enzyme Technology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shazia Faridi
- Enzyme Technology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Meryam Sardar
- Enzyme Technology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
8
|
Iraninasab S, Sharifian S, Homaei A, Homaee MB, Sharma T, Nadda AK, Kennedy JF, Bilal M, Iqbal HMN. Emerging trends in environmental and industrial applications of marine carbonic anhydrase: a review. Bioprocess Biosyst Eng 2022; 45:431-451. [PMID: 34821989 DOI: 10.1007/s00449-021-02667-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023]
Abstract
Biocatalytic conversion of greenhouse gases such as carbon dioxide into commercial products is one of the promising key approaches to solve the problem of climate change. Microbial enzymes, including carbonic anhydrase, NAD-dependent formate dehydrogenase, ribulose bisphosphate carboxylase, and methane monooxygenase, have been exploited to convert atmospheric gases into industrial products. Carbonic anhydrases are Zn2+-dependent metalloenzymes that catalyze the reversible conversion of CO2 into bicarbonate. They are widespread in bacteria, algae, plants, and higher organisms. In higher organisms, they regulate the physiological pH and contribute to CO2 transport in the blood. In plants, algae, and photosynthetic bacteria carbonic anhydrases are involved in photosynthesis. Converting CO2 into bicarbonate by carbonic anhydrases can solidify gaseous CO2, thereby reducing global warming due to the burning of fossil fuels. This review discusses the three-dimensional structures of carbonic anhydrases, their physiological role in marine life, their catalytic mechanism, the types of inhibitors, and their medicine and industry applications.
Collapse
Affiliation(s)
- Sudabeh Iraninasab
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Sana Sharifian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | | | - Tanvi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, The Kyrewood Centre, Tenbury Wells, Worcs, WR15 8FF, UK
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico
| |
Collapse
|
9
|
Steger F, Reich J, Fuchs W, Rittmann SKMR, Gübitz GM, Ribitsch D, Bochmann G. Comparison of Carbonic Anhydrases for CO 2 Sequestration. Int J Mol Sci 2022; 23:957. [PMID: 35055147 PMCID: PMC8777876 DOI: 10.3390/ijms23020957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Strategies for depleting carbon dioxide (CO2) from flue gases are urgently needed and carbonic anhydrases (CAs) can contribute to solving this problem. They catalyze the hydration of CO2 in aqueous solutions and therefore capture the CO2. However, the harsh conditions due to varying process temperatures are limiting factors for the application of enzymes. The current study aims to examine four recombinantly produced CAs from different organisms, namely CAs from Acetobacterium woodii (AwCA or CynT), Persephonella marina (PmCA), Methanobacterium thermoautotrophicum (MtaCA or Cab) and Sulphurihydrogenibium yellowstonense (SspCA). The highest expression yields and activities were found for AwCA (1814 WAU mg-1 AwCA) and PmCA (1748 WAU mg-1 PmCA). AwCA was highly stable in a mesophilic temperature range, whereas PmCA proved to be exceptionally thermostable. Our results indicate the potential to utilize CAs from anaerobic microorganisms to develop CO2 sequestration applications.
Collapse
Affiliation(s)
- Franziska Steger
- Institute of Environmental Biotechnology, Department for Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - Johanna Reich
- Institute of Environmental Biotechnology, Department for Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Werner Fuchs
- Institute of Environmental Biotechnology, Department for Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Georg M Gübitz
- Institute of Environmental Biotechnology, Department for Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| | - Doris Ribitsch
- ACIB-Austrian Centre of Industrial Biotechnology, Krenngasse 37, 8010 Graz, Austria
| | - Günther Bochmann
- Institute of Environmental Biotechnology, Department for Agrobiotechnology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz Str. 20, A-3430 Tulln, Austria
| |
Collapse
|
10
|
In Silico Investigation of Potential Applications of Gamma Carbonic Anhydrases as Catalysts of CO 2 Biomineralization Processes: A Visit to the Thermophilic Bacteria Persephonella hydrogeniphila, Persephonella marina, Thermosulfidibacter takaii, and Thermus thermophilus. Int J Mol Sci 2021; 22:ijms22062861. [PMID: 33799806 PMCID: PMC8000050 DOI: 10.3390/ijms22062861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/29/2022] Open
Abstract
Carbonic anhydrases (CAs) have been identified as ideal catalysts for CO2 sequestration. Here, we report the sequence and structural analyses as well as the molecular dynamics (MD) simulations of four γ-CAs from thermophilic bacteria. Three of these, Persephonella marina, Persephonella hydrogeniphila, and Thermosulfidibacter takaii originate from hydrothermal vents and one, Thermus thermophilus HB8, from hot springs. Protein sequences were retrieved and aligned with previously characterized γ-CAs, revealing differences in the catalytic pocket residues. Further analysis of the structures following homology modeling revealed a hydrophobic patch in the catalytic pocket, presumed important for CO2 binding. Monitoring of proton shuttling residue His69 (P. marina γ-CA numbering) during MD simulations of P. hydrogeniphila and P. marina’s γ-CAs (γ-PhCA and γ-PmCA), showed a different behavior to that observed in the γ-CA of Escherichia coli, which periodically coordinates Zn2+. This work also involved the search for hotspot residues that contribute to interface stability. Some of these residues were further identified as key in protein communication via betweenness centrality metric of dynamic residue network analysis. T. takaii’s γ-CA showed marginally lower thermostability compared to the other three γ-CA proteins with an increase in conformations visited at high temperatures being observed. Hydrogen bond analysis revealed important interactions, some unique and others common in all γ-CAs, which contribute to interface formation and thermostability. The seemingly thermostable γ-CA from T. thermophilus strangely showed increased unsynchronized residue motions at 423 K. γ-PhCA and γ-PmCA were, however, preliminarily considered suitable as prospective thermostable CO2 sequestration agents.
Collapse
|
11
|
Manyumwa CV, Emameh RZ, Tastan Bishop Ö. Alpha-Carbonic Anhydrases from Hydrothermal Vent Sources as Potential Carbon Dioxide Sequestration Agents: In Silico Sequence, Structure and Dynamics Analyses. Int J Mol Sci 2020; 21:E8066. [PMID: 33138066 PMCID: PMC7662607 DOI: 10.3390/ijms21218066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Abstract
With the increase in CO2 emissions worldwide and its dire effects, there is a need to reduce CO2 concentrations in the atmosphere. Alpha-carbonic anhydrases (α-CAs) have been identified as suitable sequestration agents. This study reports the sequence and structural analysis of 15 α-CAs from bacteria, originating from hydrothermal vent systems. Structural analysis of the multimers enabled the identification of hotspot and interface residues. Molecular dynamics simulations of the homo-multimers were performed at 300 K, 363 K, 393 K and 423 K to unearth potentially thermostable α-CAs. Average betweenness centrality (BC) calculations confirmed the relevance of some hotspot and interface residues. The key residues responsible for dimer thermostability were identified by comparing fluctuating interfaces with stable ones, and were part of conserved motifs. Crucial long-lived hydrogen bond networks were observed around residues with high BC values. Dynamic cross correlation fortified the relevance of oligomerization of these proteins, thus the importance of simulating them in their multimeric forms. A consensus of the simulation analyses used in this study suggested high thermostability for the α-CA from Nitratiruptor tergarcus. Overall, our novel findings enhance the potential of biotechnology applications through the discovery of alternative thermostable CO2 sequestration agents and their potential protein design.
Collapse
Affiliation(s)
- Colleen Varaidzo Manyumwa
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown 6140, South Africa;
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran;
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown 6140, South Africa;
| |
Collapse
|
12
|
Crosslinked on novel nanofibers with thermophilic carbonic anhydrase for carbon dioxide sequestration. Int J Biol Macromol 2020; 152:930-938. [DOI: 10.1016/j.ijbiomac.2019.11.234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 11/21/2022]
|
13
|
Engineering of Thermovibrio ammonificans carbonic anhydrase mutants with increased thermostability. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2019.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Jo BH, Hwang IS. Characterization and High-Level Periplasmic Expression of Thermostable α-Carbonic Anhydrase from Thermosulfurimonas Dismutans in Escherichia Coli for CO 2 Capture and Utilization. Int J Mol Sci 2019; 21:ijms21010103. [PMID: 31877855 PMCID: PMC6981361 DOI: 10.3390/ijms21010103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/26/2023] Open
Abstract
Carbonic anhydrase (CA) is a diffusion-controlled enzyme that rapidly catalyzes carbon dioxide (CO2) hydration. CA has been considered as a powerful and green catalyst for bioinspired CO2 capture and utilization (CCU). For successful industrial applications, it is necessary to expand the pool of thermostable CAs to meet the stability requirement under various operational conditions. In addition, high-level expression of thermostable CA is desirable for the economical production of the enzyme. In this study, a thermostable CA (tdCA) of Thermosulfurimonas dismutans isolated from a deep-sea hydrothermal vent was expressed in Escherichia coli and characterized in terms of expression level, solubility, activity and stability. tdCA showed higher solubility, activity, and stability compared to those of CA from Thermovibrio ammonificans, one of the most thermostable CAs, under low-salt aqueous conditions. tdCA was engineered for high-level expression by the introduction of a point mutation and periplasmic expression via the Sec-dependent pathway. The combined strategy resulted in a variant showing at least an 8.3-fold higher expression level compared to that of wild-type tdCA. The E. coli cells with the periplasmic tdCA variant were also investigated as an ultra-efficient whole-cell biocatalyst. The engineered bacterium displayed an 11.9-fold higher activity compared to that of the recently reported system with a halophilic CA. Collectively these results demonstrate that the highly expressed periplasmic tdCA variant, either in an isolated form or within a whole-cell platform, is a promising biocatalyst with high activity and stability for CCU applications.
Collapse
Affiliation(s)
- Byung Hoon Jo
- Division of Life Science and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1321
| | - In Seong Hwang
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
15
|
|
16
|
Hou J, Li X, Kaczmarek MB, Chen P, Li K, Jin P, Liang Y, Daroch M. Accelerated CO₂ Hydration with Thermostable Sulfurihydrogenibium azorense Carbonic Anhydrase-Chitin Binding Domain Fusion Protein Immobilised on Chitin Support. Int J Mol Sci 2019; 20:ijms20061494. [PMID: 30934614 PMCID: PMC6471549 DOI: 10.3390/ijms20061494] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/18/2022] Open
Abstract
Carbonic anhydrases (CAs) represent a group of enzymes that catalyse important reactions of carbon dioxide hydration and dehydration, a reaction crucial to many biological processes and environmental biotechnology. In this study we successfully constructed a thermostable fusion enzyme composed of the Sulfurihydrogenibium azorense carbonic anhydrase (Saz_CA), the fastest CA discovered to date, and the chitin binding domain (ChBD) of chitinase from Bacillus circulans. Introduction of ChBD to the Saz_CA had no major impact on the effect of ions or inhibitors on the enzymatic activity. The fusion protein exhibited no negative effects up to 60 °C, whilst the fusion partner appears to protect the enzyme from negative effects of magnesium. The prepared biocatalyst appears to be thermally activated at 60 °C and could be partially purified with heat treatment. Immobilisation attempts on different kinds of chitin-based support results have shown that the fusion enzyme preferentially binds to a cheap, untreated chitin with a large crystallinity index over more processed forms of chitin. It suggests significant potential economic benefits for large-scale deployment of immobilised CA technologies such as CO2 utilisation or mineralisation.
Collapse
Affiliation(s)
- Juan Hou
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Xingkang Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Michal B Kaczmarek
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
- Institute of Technical Biochemistry, Lodz University of Technology, 90-924 Lodz, Poland.
| | - Pengyu Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Kai Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Peng Jin
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yuanmei Liang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
17
|
Chen F, Jin W, Gao H, Guo Z, Lin H, Li J, Hu K, Guan X, Kalia VC, Lee JK, Zhang L, Li Y. Cloning, Expression and Characterization of Two Beta Carbonic Anhydrases from a Newly Isolated CO 2 Fixer, Serratia marcescens Wy064. Indian J Microbiol 2019; 59:64-72. [PMID: 30728632 DOI: 10.1007/s12088-018-0773-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/06/2018] [Indexed: 12/20/2022] Open
Abstract
Bacterial strains from karst landform soil were enriched via chemostat culture in the presence of sodium bicarbonate. Two chemolithotrophic strains were isolated and identified as Serratia marcescens Wy064 and Bacillus sp. Wy065. Both strains could grow using sodium bicarbonate as the sole carbon source. Furthermore, the supplement of the medium with three electron donors (Na2S, NaNO2, and Na2S2O3) improved the growth of both strains. The activities of carbonic anhydrase (CA) and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) could be detected in the crude enzyme of strain Wy064, implying that the strain Wy064 might employ Calvin cycle to fix CO2. S. marcescens genome mining revealed four potential CA genes designated CA1-CA4. The proteins encoded by genes CA1-3 were cloned and expressed in Escherichia coli. The purified recombinant enzymes of CA1 and CA3 exhibited CO2 hydration activities, whereas enzyme CA2 was expressed in inclusion bodies. A CO2 hydration assay demonstrated that the specific activity of CA3 was significantly higher than that of CA1. The maximum CO2 hydration activities for CA1 and CA3 were observed at pH 7.5 and 40 °C. The activities of CA1 and CA3 were significantly enhanced by several metal ions, especially Zn2+, which resulted in 21.1-fold and 26.1-fold increases of CO2 hydration activities, respectively. The apparent K m and V max for CO2 as substrate were 27 mM and 179 WAU/mg for CA1, and 14 mM and 247 WAU/mg for CA3, respectively. Structure modeling combined with sequence analysis indicated that CA1 and CA3 should belong to the Type II β-CA.
Collapse
Affiliation(s)
- Fanbing Chen
- 1College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002 People's Republic of China
| | - Wensong Jin
- 1College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002 People's Republic of China
| | - Huifang Gao
- 1College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002 People's Republic of China
| | - Zewang Guo
- 1College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002 People's Republic of China
| | - Hui Lin
- 1College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002 People's Republic of China
| | - Jiahuan Li
- 1College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002 People's Republic of China
| | - Kaihui Hu
- 1College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002 People's Republic of China
| | - Xiong Guan
- 1College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002 People's Republic of China
| | - Vipin C Kalia
- 2Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Jung-Kul Lee
- 2Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Liaoyuan Zhang
- 1College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002 People's Republic of China
- 2Department of Chemical Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Yongyu Li
- 3College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 People's Republic of China
| |
Collapse
|
18
|
Lee CH, Jang EK, Yeon YJ, Pack SP. Stabilization of Bovine carbonic anhydrase II through rational site-specific immobilization. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Parra-Cruz R, Jäger CM, Lau PL, Gomes RL, Pordea A. Rational Design of Thermostable Carbonic Anhydrase Mutants Using Molecular Dynamics Simulations. J Phys Chem B 2018; 122:8526-8536. [PMID: 30114369 DOI: 10.1021/acs.jpcb.8b05926] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The stability of enzymes is critical for their application in industrial processes, which generally require different conditions from the natural enzyme environment. Both rational and random protein engineering approaches have been used to increase stability, with the latter requiring extensive experimental effort for the screening of variants. Moreover, some general rules addressing the molecular origin of protein thermostability have been established. Herein, we demonstrate the use of molecular dynamics simulations to gain molecular level understanding of protein thermostability and to engineer stabilizing mutations. Carbonic anhydrase (CA) is an enzyme with a high potential for biotechnological carbon capture applications, provided it can be engineered to withstand the high temperature process environments, inevitable in most gas treatment units. In this study, we used molecular dynamics simulations at 343, 353, and 363 K to study the relationship between structure flexibility and thermostability in bacterial α-CAs and applied this knowledge to the design of mutants with increased stability. The most thermostable α-CA known, TaCA from Thermovibrio ammonificans, had the most rigid structure during molecular dynamics simulations, but also showed regions with high flexibility. The most flexible amino acids in these regions were identified from root mean square fluctuation (RMSF) studies, and stabilizing point mutations were predicted based on their capacity to improve the calculated free energy of unfolding. Disulfide bonds were also designed at sites with suitable geometries and selected based on their location at flexible sites, assessed by B-factor calculation. Molecular dynamics simulations allowed the identification of five mutants with lower RMSF of the overall structure at 400 K, compared to wild-type TaCA. Comparison of free-energy landscapes between wild-type TaCA and the most promising mutants, Pro165Cys-Gln170Cys and Asn140Gly, showed an increased conformational stability of the mutants at 400 K.
Collapse
Affiliation(s)
- Ricardo Parra-Cruz
- Department of Chemical and Environmental Engineering , University of Nottingham Malaysia Campus , Semenyih 43500 , Malaysia
| | - Christof M Jäger
- Faculty of Engineering , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Phei Li Lau
- Department of Chemical and Environmental Engineering , University of Nottingham Malaysia Campus , Semenyih 43500 , Malaysia
| | - Rachel L Gomes
- Faculty of Engineering , University of Nottingham , Nottingham NG7 2RD , U.K
| | - Anca Pordea
- Faculty of Engineering , University of Nottingham , Nottingham NG7 2RD , U.K
| |
Collapse
|
20
|
Kim HS, Hong SG, Woo KM, Teijeiro Seijas V, Kim S, Lee J, Kim J. Precipitation-Based Nanoscale Enzyme Reactor with Improved Loading, Stability, and Mass Transfer for Enzymatic CO2 Conversion and Utilization. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00606] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Han Sol Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sung-Gil Hong
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Kie Moon Woo
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Vanesa Teijeiro Seijas
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seongbeen Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jinwoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
21
|
Fredslund F, Borchert MS, Poulsen JCN, Mortensen SB, Perner M, Streit WR, Lo Leggio L. Structure of a hyperthermostable carbonic anhydrase identified from an active hydrothermal vent chimney. Enzyme Microb Technol 2018; 114:48-54. [PMID: 29685353 DOI: 10.1016/j.enzmictec.2018.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 11/29/2022]
Abstract
Carbonic anhydrases (CAs) are extremely fast enzymes, which have attracted much interest in the past due to their medical relevance and their biotechnological potential. An α-type CA gene was isolated from DNA derived from an active hydrothermal vent chimney, in an effort to identify novel CAs with suitable properties for CO2 capture. The gene product was recombinantly produced and characterized, revealing remarkable thermostability, also in the presence of high ionic strength alkaline conditions, which are used in some CO2 capture applications. The Tm was above 90 °C under all tested conditions. The enzyme was crystallized and the structure determined by molecular replacement, revealing a typical bacterial α-type CA non-covalent dimer, but not the disulphide mediated tetramer observed for the hyperthermophilic homologue used for molecular replacement, from Thermovibrio ammonificans. Structural comparison suggests that an increased secondary structure content, increased content of charges on the surface and ionic interactions compared to mesophilic enzymes, may be main structural sources of thermostability, as previously suggested for the homologue from Sulfurihydrogenibium yellowstonense.
Collapse
Affiliation(s)
- Folmer Fredslund
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, DK-2100, Denmark
| | | | - Jens-Christian N Poulsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, DK-2100, Denmark
| | | | - Mirjam Perner
- Molecular Biology of Microbial Consortia, University of Hamburg, Biocenter Klein Flottbek, Ohnhorststr. 18, 22609, Hamburg, Germany
| | - Wolfgang R Streit
- Microbiology and Biotechnology, Biocenter Klein Flottbek, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, DK-2100, Denmark.
| |
Collapse
|
22
|
Bhagat C, Dudhagara P, Tank S. Trends, application and future prospectives of microbial carbonic anhydrase mediated carbonation process for CCUS. J Appl Microbiol 2017; 124:316-335. [PMID: 28921830 DOI: 10.1111/jam.13589] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/17/2017] [Accepted: 09/06/2017] [Indexed: 12/21/2022]
Abstract
Growing industrialization and the desire for a better economy in countries has accelerated the emission of greenhouse gases (GHGs), by more than the buffering capacity of the earth's atmosphere. Among the various GHGs, carbon dioxide occupies the first position in the anthroposphere and has detrimental effects on the ecosystem. For decarbonization, several non-biological methods of carbon capture, utilization and storage (CCUS) have been in use for the past few decades, but they are suffering from narrow applicability. Recently, CO2 emission and its disposal related problems have encouraged the implementation of bioprocessing to achieve a zero waste economy for a sustainable environment. Microbial carbonic anhydrase (CA) catalyses reversible CO2 hydration and forms metal carbonates that mimic the natural phenomenon of weathering/carbonation and is gaining merit for CCUS. Thus, the diversity and specificity of CAs from different micro-organisms could be explored for CCUS. In the literature, more than 50 different microbial CAs have been explored for mineral carbonation. Further, microbial CAs can be engineered for the mineral carbonation process to develop new technology. CA driven carbonation is encouraging due to its large storage capacity and favourable chemistry, allowing site-specific sequestration and reusable product formation for other industries. Moreover, carbonation based CCUS holds five-fold more sequestration capacity over the next 100 years. Thus, it is an eco-friendly, feasible, viable option and believed to be the impending technology for CCUS. Here, we attempt to examine the distribution of various types of microbial CAs with their potential applications and future direction for carbon capture. Although there are few key challenges in bio-based technology, they need to be addressed in order to commercialize the technology.
Collapse
Affiliation(s)
- C Bhagat
- Department of Biosciences (UGC-SAP-DRS-II), Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - P Dudhagara
- Department of Biosciences (UGC-SAP-DRS-II), Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - S Tank
- Department of Biosciences (UGC-SAP-DRS-II), Veer Narmad South Gujarat University, Surat, Gujarat, India
| |
Collapse
|
23
|
Bose H, Satyanarayana T. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives. Front Microbiol 2017; 8:1615. [PMID: 28890712 PMCID: PMC5574912 DOI: 10.3389/fmicb.2017.01615] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed.
Collapse
|
24
|
Watson SK, Han Z, Su WW, Deshusses MA, Kan E. Carbon dioxide capture using Escherichia coli expressing carbonic anhydrase in a foam bioreactor. ENVIRONMENTAL TECHNOLOGY 2016; 37:3186-3192. [PMID: 27109547 DOI: 10.1080/09593330.2016.1181110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The present study reports CO2 capture and conversion to bicarbonate using Escherichia coli expressing carbonic anhydrase (CA) on its cell surface in a novel foam bioreactor. The very large gas-liquid interfacial area in the foam bioreactor promoted rapid CO2 absorption while the CO2 in the aqueous phase was subsequently converted to bicarbonate ions by the CA. CO2 gas removal in air was investigated at various conditions such as gas velocity, cell density and CO2 inlet concentration. Regimes for kinetic and mass transfer limitations were defined. Very high removal rates of CO2 were observed: 9570 g CO2 m(-3) bioreactor h(-1) and a CO2 removal efficiency of 93% at 4% inlet CO2 when the gas retention time was 24 s, and cell concentration was 4 gdw L(-1). These performances are superior to earlier reports of experimental bioreactors using CA for CO2 capture. Overall, this bioreactor system has significant potential as an alternative CO2 capture technology.
Collapse
Affiliation(s)
- Stuart K Watson
- a Department of Molecular Bioscience and Bioengineering , University of Hawaii at Manoa , Honolulu , HI , USA
| | - Zhenlin Han
- a Department of Molecular Bioscience and Bioengineering , University of Hawaii at Manoa , Honolulu , HI , USA
| | - Wei Wen Su
- a Department of Molecular Bioscience and Bioengineering , University of Hawaii at Manoa , Honolulu , HI , USA
| | - Marc A Deshusses
- b Department of Civil and Environmental Engineering , Duke University , Durham , NC , USA
| | - Eunsung Kan
- a Department of Molecular Bioscience and Bioengineering , University of Hawaii at Manoa , Honolulu , HI , USA
| |
Collapse
|
25
|
Jun SY, Kim SH, Kanth BK, Lee J, Pack SP. Expression and characterization of a codon-optimized alkaline-stable carbonic anhydrase from Aliivibrio salmonicida for CO 2 sequestration applications. Bioprocess Biosyst Eng 2016; 40:413-421. [PMID: 27896426 DOI: 10.1007/s00449-016-1709-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 11/17/2016] [Indexed: 11/28/2022]
Abstract
The CO2 mineralization process, accelerated by carbonic anhydrase (CA) was proposed for the efficient capture and storage of CO2, the accumulation of which in the atmosphere is the main cause of global warming. Here, we characterize a highly stable form of the cloned CA from the Gram-negative marine bacterium Aliivibrio salmonicida, named ASCA that can promote CO2 absorption in an alkaline solvent required for efficient carbon capture. We designed a mature form of ASCA (mASCA) using a codon optimization of ASCA gene and removal of ASCA signal peptide. mASCA was highly expressed (255 mg/L) with a molecular weight of approximately 26 kDa. The mASCA enzyme exhibited stable esterase activity within a temperature range of 10-60 °C and a pH range of 6-11. mASCA activity remained stable for 48 h at pH 10. We also investigated its inhibition profiles using inorganic anions, such as acetazolamide, sulfanilamide, iodide, nitrate, and azide. We also demonstrate that mASCA is capable of catalyzing the conversion of CO2 to CaCO3 (calcite form) in the presence of Ca2+. It should be noted that mASCA enzyme exhibits high production yield and sufficient stabilities against relatively high temperature and alkaline pH, which are required conditions for the development of more efficient enzymatic CCS systems.
Collapse
Affiliation(s)
- So-Young Jun
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-Ro, Sejong, 30019, Korea
| | - Sung Ho Kim
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-Ro, Sejong, 30019, Korea
| | - Bashista Kumar Kanth
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-Ro, Sejong, 30019, Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Seoul, 04107, Korea.
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-Ro, Sejong, 30019, Korea.
| |
Collapse
|
26
|
Ki MR, Nguyen TKM, Kim SH, Kwon I, Pack SP. Chimeric protein of internally duplicated α-type carbonic anhydrase from Dunaliella species for improved expression and CO 2 sequestration. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Park J, Hwang ET, Seo BK, Gu MB. Continuous Modular Biomimetic Utilization of Carbon Dioxide toward Multi- and Chemoenzymatic Systems. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jieun Park
- Department
of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong,
Seongbuk-gu, 136-701 Seoul, Republic of Korea
| | - Ee Taek Hwang
- School
of Biomedical Sciences and the Astbury Centre for Structural Molecular
Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Bo-Kuk Seo
- Department
of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong,
Seongbuk-gu, 136-701 Seoul, Republic of Korea
| | - Man Bock Gu
- Department
of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Anam-dong,
Seongbuk-gu, 136-701 Seoul, Republic of Korea
| |
Collapse
|
28
|
Thermostable Carbonic Anhydrases in Biotechnological Applications. Int J Mol Sci 2015; 16:15456-80. [PMID: 26184158 PMCID: PMC4519908 DOI: 10.3390/ijms160715456] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 01/10/2023] Open
Abstract
Carbonic anhydrases are ubiquitous metallo-enzymes which catalyze the reversible hydration of carbon dioxide in bicarbonate ions and protons. Recent years have seen an increasing interest in the utilization of these enzymes in CO2 capture and storage processes. However, since this use is greatly limited by the harsh conditions required in these processes, the employment of thermostable enzymes, both those isolated by thermophilic organisms and those obtained by protein engineering techniques, represents an interesting possibility. In this review we will provide an extensive description of the thermostable carbonic anhydrases so far reported and the main processes in which these enzymes have found an application.
Collapse
|