1
|
Guo Q, Zhang MJ, Zheng LJ, Chen WX, Zheng H, Fan LH. Enhanced Synthesis of Rare d-Allose from d-Glucose by Positively Pulling and Forcing Reversible Epimerization in Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6072-6080. [PMID: 40017091 DOI: 10.1021/acs.jafc.4c11883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
d-Allose has great potential for application in the food and pharmaceutical industries owing to its remarkable physiological properties. Most studies on d-allose production have primarily focused on enzyme catalysis using the Izumoring strategy, which typically requires the use of expensive d-allulose as a substrate. Herein, a metabolically engineered strain of Escherichia coli was developed to synthesize d-allose directly from inexpensive d-glucose. The synthesis pathway was systematically optimized through a modular metabolic engineering. The functionality of the isomerases involved in the conversion of d-allulose to d-allose was confirmed in vivo, while the byproduct and transporter pathways were blocked to positively pull the reversible epimerization. Gene knockouts were employed to weaken glycolytic pathways, redirecting the carbon flux toward product synthesis. Additionally, the nonphosphorylated transport of d-glucose was introduced to enhance substrate utilization. In fed-batch fermentation, the engineered strain achieved a d-allose titer of 4.17 g/L, with a yield of 0.103 g/g from d-glucose. Our achievements are expected to advance the industrial production of d-allose, and this strategy is also applicable for producing other rare sugars.
Collapse
Affiliation(s)
- Qiang Guo
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Meng-Jun Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Ling-Jie Zheng
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Wei-Xiang Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Huidong Zheng
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Li-Hai Fan
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| |
Collapse
|
2
|
Xu J, Dong H, Chen S, Chang J, Zhang W, Zhao A, Alam MA, Wang S, Wang W, Zhang J, Lv Y, Xu P. Producing D-Ribose from D-Xylose by Demonstrating a Pentose Izumoring Route. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27304-27313. [PMID: 39579380 DOI: 10.1021/acs.jafc.4c08105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
D-Ribose plays fundamental roles in all living organisms and has been applied in food, cosmetics, health care, and pharmaceutical sectors. At present, D-ribose is predominantly produced by microbial fermentation based on the pentose phosphate pathway (PPP). However, this method suffers from a long synthetic pathway, severe growth defect of the host cell, and carbon catabolite repression (CCR). According to the Izumoring strategy, D-ribose can be produced from D-xylose through only three steps. Being not involved in the growth defect or CCR, this shortcut route is promising to produce D-ribose efficiently. However, this route has never been demonstrated in engineering practice, which hinders its application. In this study, we stepwise demonstrated this route and screened out higher active enzymes for each step. The first D-ribose production from D-xylose through the Izumoring route was achieved. By stepwise enzyme dosage tuning and process optimization, 6.87 g/L D-ribose was produced from 40 g/L D-xylose. Feeding D-xylose further improved the D-ribose titer to 9.55 g/L. Finally, we tested the coproduction of D-ribose and D-allose from corn stalk hydrolysate using the route engineered herein. In conclusion, this study demonstrated a pentose Izumoring route, complemented the engineering practices of the Izumoring strategy, paved the way to produce D-ribose from D-xylose, and provided an approach to comprehensively utilize the lignocellulosic sugars.
Collapse
Affiliation(s)
- Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, China
- Center for Lipid Engineering, Muyuan Laboratory, 110 Shangding Road, Zhengzhou, Henan 450016, China
| | - Hanyu Dong
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, China
- Center for Lipid Engineering, Muyuan Laboratory, 110 Shangding Road, Zhengzhou, Henan 450016, China
| | - Song Chen
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Jinmian Chang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, China
- Center for Lipid Engineering, Muyuan Laboratory, 110 Shangding Road, Zhengzhou, Henan 450016, China
| | - Weiping Zhang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan, Shandong 250101, China
| | - Anqi Zhao
- School of Life Sciences, Zhengzhou University, No.100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Shilei Wang
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, China
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Shriram Center, Palo Alto, Stanford, California 94305, United States
| | - Jianguo Zhang
- NEW TUOYANG Bio-engineering Co., Ltd., No. 9 MoPing Road, Hebi, Henan 458000, China
| | - Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, China
- Center for Lipid Engineering, Muyuan Laboratory, 110 Shangding Road, Zhengzhou, Henan 450016, China
- NEW TUOYANG Bio-engineering Co., Ltd., No. 9 MoPing Road, Hebi, Henan 458000, China
| | - Peng Xu
- Center for Lipid Engineering, Muyuan Laboratory, 110 Shangding Road, Zhengzhou, Henan 450016, China
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), 241 Daxue Road, Shantou, Guangdong 515063, China
| |
Collapse
|
3
|
Yoshida H, Izumori K, Yoshihara A. L-rhamnose isomerase: a crucial enzyme for rhamnose catabolism and conversion of rare sugars. Appl Microbiol Biotechnol 2024; 108:488. [PMID: 39412684 PMCID: PMC11485043 DOI: 10.1007/s00253-024-13325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
L-rhamnose isomerase (L-RhI) plays a key role in the microbial L-rhamnose metabolism by catalyzing the reversible isomerization of L-rhamnose to L-rhamnulose. Additionally, the enzyme exhibits activity on various other aldoses and ketoses, and its broad substrate specificity has attracted attention for its potential application in the production of rare sugars; however, improvement of the enzyme properties is desirable, such as thermal stability, enzymatic activity, and a pH optimum suitable for industrial usage. This review summarizes our current insights into L-RhIs with respect to their substrate recognition mechanism and their relationship with D-xylose isomerase (D-XI) based on structural and phylogenetic analyses. These two enzymes are inherently different, but recognize distinctly different substrates, and share common features that may be phylogenetically related. For example, they both have a flexible loop region that is involved in shaping active sites, and this region may also be responsible for various enzymatic properties of L-RhIs, such as substrate specificity and thermal stability. KEY POINTS: •L-RhIs share structural features with D-XI. •There are two types of L-RhIs: E. coli L-RhI-type and D-XI-type. •Flexible loop regions are involved in the specific enzyme properties.
Collapse
Affiliation(s)
- Hiromi Yoshida
- International Institute of Rare Sugar Research and Education, Kagawa University, Kagawa, Japan.
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-Cho, Kita-Gun, Kagawa, 761-0793, Japan.
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education, Kagawa University, Kagawa, Japan
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| | - Akihide Yoshihara
- International Institute of Rare Sugar Research and Education, Kagawa University, Kagawa, Japan
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| |
Collapse
|
4
|
Tang X, Ravikumar Y, Zhang G, Yun J, Zhao M, Qi X. D-allose, a typical rare sugar: properties, applications, and biosynthetic advances and challenges. Crit Rev Food Sci Nutr 2024; 65:2785-2812. [PMID: 38764407 DOI: 10.1080/10408398.2024.2350617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
D-allose, a C-3 epimer of D-glucose and an aldose-ketose isomer of D-allulose, exhibits 80% of sucrose's sweetness while being remarkably low in calories and nontoxic, making it an appealing sucrose substitute. Its diverse physiological functions, particularly potent anticancer and antitumor effects, render it a promising candidate for clinical treatment, garnering sustained attention. However, its limited availability in natural sources and the challenges associated with chemical synthesis necessitate exploring biosynthetic strategies to enhance production. This overview encapsulates recent advancements in D-allose's physicochemical properties, physiological functions, applications, and biosynthesis. It also briefly discusses the crucial role of understanding aldoketose isomerase structure and optimizing its performance in D-allose synthesis. Furthermore, it delves into the challenges and future perspectives in D-allose bioproduction. Early efforts focused on identifying and characterizing enzymes responsible for D-allose production, followed by detailed crystal structure analysis to improve performance through molecular modification. Strategies such as enzyme immobilization and implementing multi-enzyme cascade reactions, utilizing more cost-effective feedstocks, were explored. Despite progress, challenges remain, including the lack of efficient high-throughput screening methods for enzyme modification, the need for food-grade expression systems, the establishment of ordered substrate channels in multi-enzyme cascade reactions, and the development of downstream separation and purification processes.
Collapse
Affiliation(s)
- Xinrui Tang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
5
|
Sharma S, Patel SN, Singh SP. A novel thermotolerant L-rhamnose isomerase variant for biocatalytic conversion of D-allulose to D-allose. Appl Microbiol Biotechnol 2024; 108:279. [PMID: 38564031 PMCID: PMC10987364 DOI: 10.1007/s00253-024-13074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/24/2024] [Accepted: 02/13/2024] [Indexed: 04/04/2024]
Abstract
A novel L-rhamnose isomerase was identified and cloned from an extreme-temperature aquatic habitat metagenome. The deduced amino acid sequence homology suggested the possible source of this metagenomic sequence to be Chloroflexus islandicus. The gene expression was performed in a heterologous host, Escherichia coli, and the recombinant protein L-rhamnose isomerase (L-RIM) was extracted and purified. The catalytic function of L-RIM was characterized for D-allulose to D-allose bioconversion. D-Allose is a sweet, rare sugar molecule with anti-tumour, anti-hypertensive, cryoprotective, and antioxidative properties. The characterization experiments showed L-RIM to be a Co++- or Mn++-dependent metalloenzyme. L-RIM was remarkably active (~ 80%) in a broad spectrum of pH (6.0 to 9.0) and temperature (70 to 80 °C) ranges. Optimal L-RIM activity with D-allulose as the substrate occurred at pH 7.0 and 75 °C. The enzyme was found to be excessively heat stable, displaying a half-life of about 12 days and 5 days at 65 °C and 70 °C, respectively. L-RIM catalysis conducted at slightly acidic pH of 6.0 and 70 °C achieved biosynthesis of about 30 g L-1 from 100 g L-1 D-allulose in 3 h. KEY POINTS: • The present study explored an extreme temperature metagenome to identify a novel gene that encodes a thermostable l-rhamnose isomerase (L-RIM) • L-RIM exhibits substantial (80% or more) activity in a broad spectrum of pH (6.0 to 9.0) and temperature (70 to 80 °C) ranges • L-RIM is excessively heat stable, displaying a half-life of about 12 days and 5 days at 65 °C and 70 °C, respectively.
Collapse
Affiliation(s)
- Sweety Sharma
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI Campus, SAS Nagar, Sector 81, Mohali, India, 140306
- Indian Institute of Science Education and Research Mohali, SAS Nagar, Sector 81, Mohali, India, 140306
| | - Satya Narayan Patel
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI Campus, SAS Nagar, Sector 81, Mohali, India, 140306
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, Biotechnology Research and Innovation Council (Department of Biotechnology, Government of India), NABI Campus, SAS Nagar, Sector 81, Mohali, India, 140306.
| |
Collapse
|
6
|
Mahmood S, Iqbal MW, Tang X, Zabed HM, Chen Z, Zhang C, Ravikumar Y, Zhao M, Qi X. A comprehensive review of recent advances in the characterization of L-rhamnose isomerase for the biocatalytic production of D-allose from D-allulose. Int J Biol Macromol 2024; 254:127859. [PMID: 37924916 DOI: 10.1016/j.ijbiomac.2023.127859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
D-Allose and D-allulose are two important rare natural monosaccharides found in meager amounts. They are considered to be the ideal substitutes for table sugar (sucrose) for, their significantly lower calorie content with around 80 % and 70 % of the sweetness of sucrose, respectively. Additionally, both monosaccharides have gained much attention due to their remarkable physiological properties and excellent health benefits. Nevertheless, D-allose and D-allulose are rare in nature and difficult to produce by chemical methods. Consequently, scientists are exploring bioconversion methods to convert D-allulose into D-allose, with a key enzyme, L-rhamnose isomerase (L-RhIse), playing a remarkable role in this process. This review provides an in-depth analysis of the extractions, physiological functions and applications of D-allose from D-allulose. Specifically, it provides a detailed description of all documented L-RhIse, encompassing their biochemical properties including, pH, temperature, stabilities, half-lives, metal ion dependence, molecular weight, kinetic parameters, specific activities and specificities of the substrates, conversion ratio, crystal structure, catalytic mechanism as well as their wide-ranging applications across diverse fields. So far, L-RhIses have been discovered and characterized experimentally by numerous mesophilic and thermophilic bacteria. Furthermore, the crystal forms of L-RhIses from E. coli and Stutzerimonas/Pseudomonas stutzeri have been previously cracked, together with their catalytic mechanism. However, there is room for further exploration, particularly the molecular modification of L-RhIse for enhancing its catalytic performance and thermostability through the directed evolution or site-directed mutagenesis.
Collapse
Affiliation(s)
- Shahid Mahmood
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Muhammad Waheed Iqbal
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Xinrui Tang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Hossain M Zabed
- School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China
| | - Ziwei Chen
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Cunsheng Zhang
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Yuvaraj Ravikumar
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China
| | - Mei Zhao
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| | - Xianghui Qi
- School of Food & Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China; School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
7
|
Liu F, Chen S, Pan F, Zhao Z, Liu M, Wang L. Establishment of the Biotransformation of D-Allulose and D-Allose Systems in Full-Red Jujube Monosaccharides. PLANTS (BASEL, SWITZERLAND) 2023; 12:3084. [PMID: 37687330 PMCID: PMC10489948 DOI: 10.3390/plants12173084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
In order to reduce sucrose content in jujube juice and prepare a jujube juice beverage rich in rare sugars, jujube juice was used as raw material for multienzyme catalysis in this study. The effects of single factors such as substrate, pH, DPE and L-RI addition ratio, enzyme treatment temperature, and metal ions on sucrose conversion and D-allulose formation in jujube juice were investigated. Changes in glucose, D-allulose, and D-allose contents in jujube juice before and after enzyme conversion were analyzed by high-performance liquid chromatography (HPLC). The results showed that 'Xiangfenmuzao' was more suitable for subsequent double enzyme coupling reactions in different varieties of jujube juice at different periods. Factors such as pH, DPE and L-RI enzyme ratio, temperature, and treatment time had significant effects on sucrose conversion and D-allulose production in 'Xiangfenmuzao' juice (p < 0.05). When the ratio of DPE and L-RI was 1:10, pH was 7.5, and the temperature was 60 °C for 7 h, the fructose content in the full-red stage jujube juice of 'Xiangfenmuzao' and 'Jinsixiaozao' decreased gradually, and the final yield was about 53%. The yield of D-allulose was about 29%, and the yield of D-allulose was about 17%. In this study, DPE and L-RI were used to treat whole red jujube juice, which could effectively reduce sucrose content in jujube juice and obtain a functional jujube juice beverage that is low in calories and rich in rare sugar.
Collapse
Affiliation(s)
- Fawei Liu
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (F.L.); (S.C.); (F.P.)
| | - Shuangjiang Chen
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (F.L.); (S.C.); (F.P.)
| | - Fuxu Pan
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (F.L.); (S.C.); (F.P.)
| | - Zhihui Zhao
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071001, China;
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071001, China;
| | - Lili Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding 071001, China;
| |
Collapse
|
8
|
Kim SH, Cho JY, Hwang JH, Kim HJ, Oh SJ, Kim HJ, Bhatia SK, Yun J, Lee SH, Yang YH. Revealing the key gene involved in bioplastic degradation from superior bioplastic degrader Bacillus sp. JY35. Int J Biol Macromol 2023:125298. [PMID: 37315675 DOI: 10.1016/j.ijbiomac.2023.125298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Abstract
The use of bioplastics, which can alleviate environmental pollution caused by non-degradable bioplastics, has received attention. As there are many types of bioplastics, method that can treat them simultaneously is important. Therefore, Bacillus sp. JY35 which can degrade different types of bioplastics, was screened in previous study. Most types of bioplastics, such as polyhydroxybutyrate (PHB), (P(3HB-co-4HB)), poly(butylene adipate-co-terephthalate) (PBAT), polybutylene succinate (PBS), and polycaprolactone (PCL), can be degraded by esterase family enzymes. To identify the genes that are involved in bioplastic degradation, analysis with whole-genome sequencing was performed. Among the many esterase enzymes, three carboxylesterase and one triacylglycerol lipase were identified and selected based on previous studies. Esterase activity using p-nitrophenyl substrates was measured, and the supernatant of JY35_02679 showed strong emulsion clarification activity compared with others. In addition, when recombinant E. coli was applied to the clear zone test, only the JY35_02679 gene showed activity in the clear zone test with bioplastic containing solid cultures. Further quantitative analysis showed 100 % PCL degradation at 7 days and 45.7 % PBS degradation at 10 days. We identified a gene encoding a bioplastic-degrading enzyme in Bacillus sp. JY35 and successfully expressed the gene in heterologous E. coli, which secreted esterases with broad specificity.
Collapse
Affiliation(s)
- Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jang Yeon Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Suk Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hyun Joong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea
| | - Jeonghee Yun
- Department of Forest Products and Biotechnology, Kookmin University, Seoul, Republic of Korea
| | - Sang-Ho Lee
- Department of Pharmacy, College of Pharmacy, Jeju National University, Jeju-si, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Improved thermostability of D-allulose 3-epimerase from Clostridium bolteae ATCC BAA-613 by proline residue substitution. Protein Expr Purif 2022; 199:106145. [PMID: 35863720 DOI: 10.1016/j.pep.2022.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
d-allulose, a rare sugar that is scarce in nature, exerts several beneficial effects and has commercial potential. d-allulose 3-epimerase (DAEase) plays a vital role in catalyzing the isomerization from d-fructose to d-allulose. However, the industrial application of DAEase for d-allulose production is hindered by its poor long-term thermostability. In the present research, we introduced a proline residue (i) to restrict its spatial conformation and (ii) to reduce the entropy of the unfolded state of DAEase. The t1/2 value of the double-site Clostridium bolteae DAEase mutant Cb-51P/89P was prolonged to 58 min at 55 °C, a 2.32-fold increase compared with wild-type DAEase. The manipulation did not cause obvious changes in the enzymatic properties, including optimum pH, optimal temperature, optimum metal ion, and enzymatic activity. As the accumulation of multiple small effects through proline substitution could dramatically improve the thermostability of the mutant protein, our method to improve the thermostability while roughly retaining the original enzymatic properties is promising.
Collapse
|
10
|
Characterization of a Recombinant l-rhamnose Isomerase from Paenibacillus baekrokdamisoli to Produce d-allose from d-allulose. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Morimoto K, Suzuki T, Ikeda H, Nozaki C, Goto S. One-pot multi-step transformation of D-allose from D-fructose using a co-immobilized biocatalytic system. J GEN APPL MICROBIOL 2022; 68:1-9. [DOI: 10.2323/jgam.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kenji Morimoto
- International Institute of Rare Sugar Research and Education, Kagawa University
| | | | | | | | | |
Collapse
|
12
|
Choi MN, Shin KC, Kim DW, Kim BJ, Park CS, Yeom SJ, Kim YS. Production of D-Allose From D-Allulose Using Commercial Immobilized Glucose Isomerase. Front Bioeng Biotechnol 2021; 9:681253. [PMID: 34336800 PMCID: PMC8320891 DOI: 10.3389/fbioe.2021.681253] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Rare sugars are regarded as functional biological materials due to their potential applications as low-calorie sweeteners, antioxidants, nucleoside analogs, and immunosuppressants. D-Allose is a rare sugar that has attracted substantial attention in recent years, owing to its pharmaceutical activities, but it is still not widely available. To address this limitation, we continuously produced D-allose from D-allulose using a packed bed reactor with commercial glucose isomerase (Sweetzyme IT). The optimal conditions for D-allose production were determined to be pH 8.0 and 60°C, with 500 g/L D-allulose as a substrate at a dilution rate of 0.24/h. Using these optimum conditions, the commercial glucose isomerase produced an average of 150 g/L D-allose over 20 days, with a productivity of 36 g/L/h and a conversion yield of 30%. This is the first report of the successful continuous production of D-allose from D-allulose by commercial glucose isomerase using a packed bed reactor, which can potentially provide a continuous production system for industrial applications of D-allose.
Collapse
Affiliation(s)
- Mi Na Choi
- Wild Plants Industrialization Research Division, Baekdudaegan National Arboretum, Bonghwa, South Korea
| | - Kyung-Chul Shin
- Department of Integrative Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Dae Wook Kim
- Wild Plants Industrialization Research Division, Baekdudaegan National Arboretum, Bonghwa, South Korea
| | - Baek-Joong Kim
- Starch and Sweetener Research Department, Ingredient R&D Center, DAESANG Corporation, Icheon, South Korea
| | - Chang-Su Park
- Department of Food Science and Technology, Daegu Catholic University, Gyeongsan, South Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Yeong-Su Kim
- Wild Plants Industrialization Research Division, Baekdudaegan National Arboretum, Bonghwa, South Korea
| |
Collapse
|
13
|
Iqbal MW, Riaz T, Mahmood S, Ali K, Khan IM, Rehman A, Zhang W, Mu W. A review on selective l-fucose/d-arabinose isomerases for biocatalytic production of l-fuculose/d-ribulose. Int J Biol Macromol 2020; 168:558-571. [PMID: 33296692 DOI: 10.1016/j.ijbiomac.2020.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/16/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
L-Fuculose and D-ribulose are kinds of rare sugars used in food, agriculture, and medicine industries. These are pentoses and categorized into the two main groups, aldo pentoses and ketopentoses. There are 8 aldo- and 4 ketopentoses and only fewer are natural, while others are rare sugars found in a very small amount in nature. These sugars have great commercial applications, especially in many kinds of drugs in the medicine industry. The synthesis of these sugars is very expensive, difficult by chemical methods due to its absence in nature, and could not meet industry demands. The pentose izumoring strategy offers a complete enzymatic tactic to link all kinds of pentoses using different enzymes. The enzymatic production of L-fuculose and D-ribulose through L-fucose isomerase (L-FI) and D-arabinose isomerase (D-AI) is the inexpensive and uncomplicated method up till now. Both enzymes have similar kinds of isomerizing mechanisms and each enzyme can catalyze both L-fucose and D-arabinose. In this review article, the enzymatic process of biochemically characterized L-FI & D-AI, their application to produce L-fuculose and D-ribulose and its uses in food, agriculture, and medicine industries are reviewed.
Collapse
Affiliation(s)
- Muhammad Waheed Iqbal
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tahreem Riaz
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shahid Mahmood
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Khubaib Ali
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
14
|
Kim IJ, Kim KH. Thermophilic l-fucose isomerase from Thermanaeromonas toyohensis for l-fucose synthesis from l-fuculose. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Chen J, Wu H, Zhang W, Mu W. Ribose-5-phosphate isomerases: characteristics, structural features, and applications. Appl Microbiol Biotechnol 2020; 104:6429-6441. [PMID: 32533303 DOI: 10.1007/s00253-020-10735-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 01/21/2023]
Abstract
Ribose-5-phosphate isomerase (Rpi, EC 5.3.1.6) is widespread in microorganisms, animals, and plants. It has a pivotal role in the pentose phosphate pathway and responsible for catalyzing the isomerization between D-ribulose 5-phosphate and D-ribose 5-phosphate. In recent years, Rpi has received considerable attention as a multipurpose biocatalyst for production of rare sugars, including D-allose, L-rhamnulose, L-lyxose, and L-tagatose. Besides, it has been thought of as a potential drug target in the treatment of trypanosomatid-caused diseases such as Chagas' disease, leishmaniasis, and human African trypanosomiasis. Despite increased research activities, up to now, no systematic review of Rpi has been published. To fill this gap, this paper provides detailed information about the enzymatic properties of various Rpis. Furthermore, structural features, catalytic mechanism, and molecular modifications of Rpis are summarized based on extensive crystal structure research. Additionally, the applications of Rpi in rare sugar production and the role of Rpi in trypanocidal drug design are reviewed. Key points • Fundamental properties of various ribose-5-phosphate isomerases (Rpis). • Differences in crystal structure and catalytic mechanism between RpiA and RpiB. • Application of Rpi as a rare sugar producer and a potential drug target.
Collapse
Affiliation(s)
- Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
16
|
Waheed Iqbal M, Riaz T, Hassanin HA, Zhang W, Saeed M, Mahmood S, Abdalla M, Mu W. Biochemical characterization of recombinant L-fucose isomerase from Caldanaerobius polysaccharolyticus for L-fuculose production. Int J Biol Macromol 2020; 146:965-975. [DOI: 10.1016/j.ijbiomac.2019.09.221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/24/2019] [Accepted: 09/20/2019] [Indexed: 01/22/2023]
|
17
|
Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnol Adv 2019; 37:107406. [DOI: 10.1016/j.biotechadv.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
|
18
|
Chen Z, Chen J, Zhang W, Zhang T, Guang C, Mu W. Improving Thermostability and Catalytic Behavior of l-Rhamnose Isomerase from Caldicellulosiruptor obsidiansis OB47 toward d-Allulose by Site-Directed Mutagenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12017-12024. [PMID: 30370768 DOI: 10.1021/acs.jafc.8b05107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
d-Allose, a rare sugar, is an ideal table-sugar substitute and has many advantageous physiological functions. l-Rhamnose isomerase (l-RI) is an important d-allose-producing enzyme, but it exhibits comparatively low catalytic activity on d-allulose. In this study, an array of hydrophobic residues located within β1-α1-loop were solely or collectively replaced with polar amino acids by site-directed mutagenesis. A group of mutants was designed to weaken the hydrophobic environment and strengthen the catalytic behavior on d-allulose. Compared with that of the wild-type enzyme, the relative activities of the V48N/G59N/I63N and V48N/G59N/I63N/F335S mutants toward d-allulose were increased by 105.6 and 134.1%, respectively. Another group of mutants was designed to enhance thermostability. Finally, the t1/2 values of mutant S81A were increased by 7.7 and 1.1 h at 70 and 80 °C, respectively. These results revealed that site-directed mutagenesis is efficient for improving thermostability and catalytic behavior toward d-allulose.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology , Jiangnan University , Wuxi , Jiangsu 214122 , China
- International Joint Laboratory on Food Safety , Jiangnan University , Wuxi , Jiangsu 214122 , China
| |
Collapse
|
19
|
Isomerases and epimerases for biotransformation of pentoses. Appl Microbiol Biotechnol 2018; 102:7283-7292. [PMID: 29968034 DOI: 10.1007/s00253-018-9150-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023]
Abstract
Pentoses represent monosaccharides with five carbon atoms. They are organized into two main groups, aldopentoses and ketopentoses. There are eight aldopentoses and four ketopentoses and each ketopentose corresponds to two aldopentoses. Only D-xylose, D-ribose, and L-arabinose are natural sugars, but others belong to rare sugars that occur in very small quantities in nature. Recently, rare pentoses attract much attention because of their great potentials for commercial applications, especially as precursors of many important medical drugs. Pentoses Izumoring strategy provides a complete enzymatic approach to link all pentoses using four types of enzymes, including ketose 3-epimerases, aldose-ketose isomerases, polyol dehydrogenases, and aldose reductases. At least 10 types of epimerases and isomerases have been used for biotransformation of all aldopentoses and ketopentoses, and these enzymes are reviewed in detail in this article.
Collapse
|
20
|
Chen Z, Xu W, Zhang W, Zhang T, Jiang B, Mu W. Characterization of a thermostable recombinant l-rhamnose isomerase from Caldicellulosiruptor obsidiansis OB47 and its application for the production of l-fructose and l-rhamnulose. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2184-2193. [PMID: 28960307 DOI: 10.1002/jsfa.8703] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND l-Hexoses are rare sugars that are important components and precursors in the synthesis of biological compounds and pharmaceutical drugs. l-Rhamnose isomerase (L-RI, EC 5.3.1.14) is an aldose-ketose isomerase that plays a significant role in the production of l-sugars. In this study, a thermostable, l-sugar-producing L-RI from the hyperthermophile Caldicellulosiruptor obsidiansis OB47 was characterized. RESULTS The recombinant L-RI displayed maximal activity at pH 8.0 and 85 °C and was significantly activated by Co2+ . It exhibited a relatively high thermostability, with measured half-lives of 24.75, 11.55, 4.15 and 3.30 h in the presence of Co2+ at 70, 75, 80 and 85 °C, respectively. Specific activities of 277.6, 57.9, 13.7 and 9.6 U mg-1 were measured when l-rhamnose, l-mannose, d-allose and l-fructose were used as substrates, respectively. l-Rhamnulose was produced with conversion ratios of 44.0% and 38.6% from 25 and 50 g L-1 l-rhamnose, respectively. l-Fructose was also efficiently produced by the L-RI, with conversion ratios of 67.0% and 58.4% from 25 and 50 g L-1 l-mannose, respectively. CONCLUSION The recombinant L-RI could effectively catalyze the formation of l-rhamnulose and l-fructose, suggesting that it was a promising candidate for industrial production of l-rhamnulose and l-fructose. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
21
|
Chen Z, Chen J, Zhang W, Zhang T, Guang C, Mu W. Recent research on the physiological functions, applications, and biotechnological production of D-allose. Appl Microbiol Biotechnol 2018; 102:4269-4278. [PMID: 29577167 DOI: 10.1007/s00253-018-8916-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023]
Abstract
D-Allose is a rare monosaccharide, which rarely appears in the natural environment. D-Allose has an 80% sweetness relative to table sugar but is ultra-low calorie and non-toxic and is thus an ideal candidate to take the place of table sugar in food products. It displays unique health benefits and physiological functions in various fields, including food systems, clinical treatment, and the health care fields. However, it is difficult to produce chemically. The biotechnological production of D-allose has become a research hotspot in recent years. Therefore, an overview of recent studies on the physiological functions, applications, and biotechnological production of D-allose is presented. In this review, the physiological functions of D-allose are introduced in detail. In addition, the different types of D-allose-producing enzymes are compared for their enzymatic properties and for the biotechnological production of D-allose. To date, very little information is available on the molecular modification and food-grade expression of D-allose-producing enzymes, representing a very large research space yet to be explored.
Collapse
Affiliation(s)
- Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jiajun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China. .,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|