1
|
Liu D, Sun X, Qi X, Liang C. Sexual spores in mushrooms: bioactive compounds, factors and molecular mechanisms of spore formation. Arch Microbiol 2025; 207:38. [PMID: 39836288 DOI: 10.1007/s00203-024-04220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Throughout the life cycle of mushrooms, countless spores are released from the fruiting bodies. The spores have significant implications in the food and medicine industries due to pharmacological effects attributed to their bioactive ingredients. Moreover, high concentration of mushroom spores can induce extrinsic allergic reactions in mushroom cultivation workers. Therefore, it is important to study the bioactive ingredients of medicinal mushroom spores and molecular mechanisms of spore formation to develop healthcare products utilizing medicinal mushroom spores and breed sporeless/low- or high-spore-producing strains. This review summarizes the bioactive compounds of mushroom spores, the influence factors and molecular mechanisms of spore formation. Many bioactive compounds extracted from mushroom spores have a wide range of pharmacological activities. Several exogenous factors such as temperature, humidity, light, nutrients, and culture matrix, and endogenous factors such as metabolism-related enzymes activities and expression levels of genes related to sporulation individually or in combination affect the formation, size, and discharge of spores. The future research directions are also discussed for supplying references to analyze the bioactive compounds of spores and the molecular mechanisms of spore formation in mushrooms.
Collapse
Affiliation(s)
- Dongmei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xueyan Sun
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| |
Collapse
|
2
|
Shi D, Xu F, Li Y, Shang X, Liao N, Jin H, Liu G, Shao D. Enhancement of exercise-induced fatigue alleviation and liver selenium regulation through in situ nanoselenium synthesis by Lactobacillus rhamnosus cells, empowered by Ganoderma lucidum spore loading. J Food Sci 2024; 89:7992-8005. [PMID: 39366768 DOI: 10.1111/1750-3841.17392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 10/06/2024]
Abstract
Given the increasing awareness of the negative effects of fatigue on daily activities, mental health, and quality of life, antifatigue supplements are becoming increasingly popular among consumers. Selenium has been found to have antifatigue potential in high dosage, but may cause toxicity effects to the body. In this study, inorganic selenium was first converted to nanoselenium particles via in situ synthesis by Lactobacillus rhamnosus SHA113 (Se-LRS), and then loaded by Ganoderma lucidum spores (GLS). The resulting products were not only assessed for their antioxidant activities, but also the antifatigue potential in mice. As a result, both Se-LRS and the Se-LRS/GLS complex exhibited higher antioxidant and antibacterial activities in simulated gastrointestinal fluids compared to isolated selenium nanoparticles. The Se-LRS/GLS complex demonstrated sustained release of selenium in simulated gastrointestinal fluids and showed significant alleviation of exercise-induced fatigue indicators, but relatively lower liver selenium accumulation in the mice, surpassing the effects of isolated nanoselenium. No toxicity was found to Caco-2 cells for Se-LRS/GLS complex at 2 µg/mL. This is a novel approach to enhance the antifatigue potential of selenium without causing extra toxicity.
Collapse
Affiliation(s)
- Dingyu Shi
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Fengqin Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yinghui Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xinzhe Shang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ning Liao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Han Jin
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Guanwen Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Dongyan Shao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, P. R. China
| |
Collapse
|
3
|
Ahmad MF, Ahmad FA, Hasan N, Alsayegh AA, Hakami O, Bantun F, Tasneem S, Alamier WM, Babalghith AO, Aldairi AF, Kambal N, Elbendary EY. Ganoderma lucidum: Multifaceted mechanisms to combat diabetes through polysaccharides and triterpenoids: A comprehensive review. Int J Biol Macromol 2024; 268:131644. [PMID: 38642691 DOI: 10.1016/j.ijbiomac.2024.131644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
Diabetes is a chronic metabolic disorder. Diabetes complications can affect many organs and systems in the body. Ganoderma lucidum (G. lucidum) contains various compounds that have been studied for their potential antidiabetic effects, including polysaccharides, triterpenoids (ganoderic acids, ganoderol B), proteoglycans, and G. lucidum extracts. G. lucidum polysaccharides (GLPs) and triterpenoids have been shown to act through distinct mechanisms, such as improving glucose metabolism, modulating the mitogen-activated protein kinase (MAPK) system, inhibiting the nuclear factor-kappa B (NF-κB) pathway, and protecting the pancreatic beta cells. While GLPs exhibit a significant role in controlling diabetic nephropathy and other associated complications. This review states the G. lucidum antidiabetic mechanisms of action and potential biologically active compounds that contribute to diabetes management and associated complications. To make G. lucidum an appropriate replacement for the treatment of diabetes with fewer side effects, more study is required to completely comprehend the number of physiologically active compounds present in it as well as the underlying cellular mechanisms that influence their effects on diabetes.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gurugram 122103, Haryana, India
| | - Nazim Hasan
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P. O. Box. 114, Jazan 45142, Saudi Arabia; Nanotechnology research unit, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia.
| | - Abdulrahman A Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Othman Hakami
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P. O. Box. 114, Jazan 45142, Saudi Arabia; Nanotechnology research unit, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shadma Tasneem
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P. O. Box. 114, Jazan 45142, Saudi Arabia
| | - Waleed M Alamier
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P. O. Box. 114, Jazan 45142, Saudi Arabia; Nanotechnology research unit, College of Science, Jazan University, P.O. Box. 114, Jazan 45142, Saudi Arabia
| | - Ahmad O Babalghith
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdullah F Aldairi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ehab Y Elbendary
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
4
|
Milhorini SDS, Zavadinack M, Santos JFD, Lara ELD, Smiderle FR, Iacomini M. Structural variety of glucans from Ganoderma lucidum fruiting bodies. Carbohydr Res 2024; 538:109099. [PMID: 38574411 DOI: 10.1016/j.carres.2024.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/09/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Ganoderma lucidum, widely used in traditional medicine, has several biological properties. Polysaccharides, mainly glucans, are known as one of its main bioactive compounds. Consequently, the achievement and chemical investigation of such molecules are of pharmaceutical interest. Herein, we obtained water-insoluble and water-soluble polysaccharides from G. lucidum by alkaline extraction. Fractionation process yielded three fractions (GLC-1, GLC-2, and GLC-3). All samples showed to be composed mainly of glucans. GLC-1 is a linear (1 → 3)-linked β-glucan; GLC-2 is a mixture of three different linear polysaccharides: (1 → 3)-β-glucan, (1 → 3)-α-glucan, and (1 → 4)-α-mannan; while GLC-3 is a branched β-glucan with a (1 → 4)-linked main chain, which is branched at O-3 or O-6 by (1 → 3)- or (1 → 6)-linked side chains. This research reports the variability of glucans in Ganoderma lucidum fruiting bodies and applicable methodologies to obtain such molecules. These polysaccharides can be further applied in biological studies aiming to investigate how their chemical differences may affect their biological properties.
Collapse
Affiliation(s)
- Shayane da Silva Milhorini
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CEP 81531-980, Curitiba, PR, Brazil.
| | - Matheus Zavadinack
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CEP 81531-980, Curitiba, PR, Brazil
| | - Jean Felipe Dos Santos
- Faculdades Pequeno Príncipe, CEP 80230-020, Curitiba, PR, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, CEP 80240-060, Curitiba, PR, Brazil
| | - Eliane Leal de Lara
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CEP 81531-980, Curitiba, PR, Brazil
| | - Fhernanda Ribeiro Smiderle
- Faculdades Pequeno Príncipe, CEP 80230-020, Curitiba, PR, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, CEP 80240-060, Curitiba, PR, Brazil
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CEP 81531-980, Curitiba, PR, Brazil
| |
Collapse
|
5
|
Gao X, Homayoonfal M. Exploring the anti-cancer potential of Ganoderma lucidum polysaccharides (GLPs) and their versatile role in enhancing drug delivery systems: a multifaceted approach to combat cancer. Cancer Cell Int 2023; 23:324. [PMID: 38104078 PMCID: PMC10724890 DOI: 10.1186/s12935-023-03146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
There has been a growing global interest in the potential health benefits of edible natural bioactive products in recent years. Ganoderma lucidum, a medicinal mushroom, has gained attention for its decadent array of therapeutic and pharmaceutical compounds. Notably, G. lucidum exhibits significant anti-cancer effects against various cancer types. Polysaccharides, a prominent component in G. lucidum, are pivotal in conferring its diverse biological and medicinal properties. The primary focus of this study was to investigate the anti-cancer activities of G. lucidum polysaccharides (GLPs), with particular attention to their potential to mitigate chemotherapy-associated toxicity and enhance targeted drug delivery. Our findings reveal that GLPs exhibit anti-cancer effects through diverse mechanisms, including cytotoxicity, antioxidative properties, apoptosis induction, reactive oxygen species (ROS) generation, and anti-proliferative effects. Furthermore, the potential of GLPs-based nanoparticles (NPs) as delivery vehicles for bioactive constituents was explored. These GLPs-based NPs are designed to target various cancer tissues, enhancing the biological activity of encapsulated compounds. As such, GLPs derived from G. lucidum represent a promising avenue for inhibiting cancer progression, minimizing chemotherapy-related side effects, and supporting their utilization in combination therapies as natural adjuncts.
Collapse
Affiliation(s)
- Xiaoli Gao
- Department of Life Science, Lyuliang University, Lyuliang, 033001, Shanxi, China.
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. of Iran.
| |
Collapse
|
6
|
Li X, Sossah FL, Tuo Y, Hu J, Wei Q, Li S, Rong N, Wiafe-Kwagyan M, Li C, Zhang B, Li X, Li Y. Characterization and fungicide sensitivity of Trichoderma species causing green mold of Ganoderma sichuanense in China. Front Microbiol 2023; 14:1264699. [PMID: 37928660 PMCID: PMC10620716 DOI: 10.3389/fmicb.2023.1264699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Green mold disease, caused by Trichoderma spp., is one of the most devastating diseases of mushrooms in China. The application of fungicides remains one of the important control methods among the integrated pest management tools for disease management in mushroom farms. This study aimed to identify Trichoderma spp., isolated from G. sichuanense fruiting bodies displaying green mold symptoms collected from mushroom farms in Zhejiang, Hubei, and Jilin Province, China, and evaluate their in vitro sensitivity to six fungicides. A total of 47 isolates were obtained and classified into nine Trichoderma spp. namely, T. asperellum, T. citrinoviride, T. ganodermatiderum, T. guizhouense, T. hamatum, T. harzianum, T. koningiopsis, T. paratroviride, and T. virens, through morphological characteristics and phylogenetic analysis of concatenated sequences of translation elongation factor 1-alpha (TEF) and DNA-dependent RNA polymerase II subunit (RPB2) genes. The pathogenicity test was repeated two times, and re-isolation of the nine Trichoderma spp. from the fruiting bodies of G. sichuanense fulfilled Koch's postulates. Prochloraz manganese showed the best performance against most species. This research contributes to our understanding of green mold disease, reveals the phylogenetic relationships among Trichoderma species, and expands our knowledge of Trichoderma species diversity associated with green mold disease in G. sichuanense.
Collapse
Affiliation(s)
- Xuefei Li
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Frederick Leo Sossah
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Coconut Research Programme, Council for Scientific and Industrial Research (CSIR), Oil Palm Research Institute, Kade, Ghana
| | - Yonglan Tuo
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Jiajun Hu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Qian Wei
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Shiyu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Na Rong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Michael Wiafe-Kwagyan
- Department of Plant and Environmental Biology, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Changtian Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Bo Zhang
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Xiao Li
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Yu Li
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
7
|
Thuy NHL, Tu VL, Thu LNA, Giang TT, Huyen DTK, Loc DH, Tam DNH, Phat NT, Huynh HH, Truyen TTTT, Nguyen QH, Do U, Nguyen D, Dat TV, Minh LHN. Pharmacological Activities and Safety of Ganoderma lucidum Spores: A Systematic Review. Cureus 2023; 15:e44574. [PMID: 37790044 PMCID: PMC10545004 DOI: 10.7759/cureus.44574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/05/2023] Open
Abstract
Ganoderma lucidum is traditionally used to prevent and treat some diseases such as liver disorders, hypertension, insomnia, diabetes, and cancer. G. lucidum spore extracts are also reported to share similar bioactivities as extracts from its other parts. However, there is no systematic review that elucidates its pharmacological effect. Our aim is to comprehensively summarise current evidence of G. lucidum spore extracts to clarify its benefits to be applied in further studies. We searched five primary databases: PubMed, Virtual Health Library (VHL), Global Health Library (GHL), System for Information on Grey Literature in Europe (SIGLE), and Google Scholar on September 13, 2021. Articles were selected according to inclusion and exclusion criteria. A manual search was applied to find more relevant articles. Ninety studies that reported the pharmacological effects and/or safety of G. lucidum spores were included in this review. The review found that G. lucidum spore extracts showed quite similar effects as other parts of this medicinal plant including anti-tumor, anti-inflammatory, antioxidant effects, and immunomodulation. G. lucidum sporoderm-broken extract demonstrated higher efficiency than unbroken spore extract. G. lucidum extracts also showed their effects on some genes responsible for the body's metabolism, which implied the benefits in metabolic diseases. The safety of G. lucidum should be investigated in depth as high doses of the extract could increase levels of cancer antigen (CA)72-4, despite no harmful effect shown on body organs. Generally, there is a lot of potential in the studies of compounds with pharmacological effects and new treatments. Sporoderm breaking technique could contribute to the production of extracts with more effective prevention and treatment of diseases. High doses of G. lucidum spore extract should be used with caution as there was a concern about the increase in CA.
Collapse
Affiliation(s)
- Nguyen Huu Lac Thuy
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Vo Linh Tu
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Le Nguyen Anh Thu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Tran Thanh Giang
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, USA
| | - Dao Tang Khanh Huyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Duong Hoang Loc
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Dao Ngoc Hien Tam
- Department of Regulatory Affairs, Asia Shine Trading & Service Company Ltd, Ho Chi Minh City, VNM
| | - Nguyen Tuan Phat
- Faculty of Medicine, Hue University of Medicine and Pharmacy, Hue, VNM
- Department of Cardiovascular Research, Methodist Hospital Southlake, Merrillville, USA
| | - Hong-Han Huynh
- International Master Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, TWN
| | | | - Quang-Hien Nguyen
- Department of Cardiovascular Research, Methodist Hospital Southlake, Merrillville, USA
| | - Uyen Do
- Science Department, Lone Star College, Houston, USA
| | - Dang Nguyen
- Department of Medical Engineering, University of South Florida, Tampa, USA
| | - Truong Van Dat
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, VNM
| | - Le Huu Nhat Minh
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, TWN
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, TWN
| |
Collapse
|
8
|
Investigating the cellular antioxidant and anti-inflammatory effects of the novel peptides in lingzhi mushrooms. Heliyon 2022; 8:e11067. [PMID: 36303910 PMCID: PMC9593296 DOI: 10.1016/j.heliyon.2022.e11067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/09/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
The lingzhi mushroom (Ganoderma lucidum) is well known for its medicinal properties and has long played a role in traditional oriental medicine due to its health-giving benefits and potential to extend life expectancy. The mushroom contains a number of highly bioactive compounds and can also act as an excellent source of protein. This research investigated the peptides obtained from the protein hydrolysates of lingzhi mushrooms to assess their free radical scavenging abilities. These peptides were acquired via different proteases (Alcalase, Neutrase, papain, and pepsin-pancreatin) and were tested at a range of different concentrations (1.0%, 2.5%, and 5.0% w/v). The highest levels of 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging activities were presented by lingzhi mushroom hydrolysate using 2.5% (w/v) pepsin-pancreatin after 6 h of digestion. The hydrolysate was then fractionated using 10, 5, 3, and 0.65 kDa molecular weight cut-off membranes. The results showed that the MW 0.65 kDa fraction had the highest level of free radical scavenging activity. Further analysis of this MW 0.65 kDa fraction began with another RP-HPLC fractionation technique to obtain three further sub-fractions. De novo peptide sequencing using electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF-MS/MS) was chosen as the optimum method for studying the F3 sub-fraction. DRVSIYGWG and ALLSISSF were discovered as new peptides with different antioxidant properties. Adenocarcinoma colon (Caco-2) cells showed the antioxidant action of these synthesized peptides. This activity was linked to peptide concentration. The peptides and their pure synthetic counterparts were found to reduce NO generation by RAW 264.7 macrophages without causing cytotoxicity. The results of gene expression reveal that the DRVSIYGWG and ALLSISSF peptides were able to cut the expression of the proinflammatory cytokine genes iNOS, IL-6, TNF-α, and COX-2 in the context of RAW 264.7 macrophages.
Collapse
|
9
|
Dat TD, Viet ND, Thanh VH, Linh NTT, Ngan NTK, Nam HM, Phong MT, Hieu NH. Optimization of Triterpenoid Extraction from
Ganoderma lucidum
by Ethanol‐Modified Supercritical Carbon Dioxide andthe Biological Properties of the Extract. ChemistrySelect 2022. [DOI: 10.1002/slct.202103444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tran Do Dat
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Nguyen Duc Viet
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Vuong Hoai Thanh
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Ngo Thi Thuy Linh
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Nguyen Thi Kim Ngan
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Hoang Minh Nam
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Mai Thanh Phong
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| | - Nguyen Huu Hieu
- VNU-HCMC, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab) Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, District 10 Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering Ho Chi Minh City University of Technology (HCMUT) 268 Ly Thuong Kiet Street, Ward 14, District 10, Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City Ho Chi Minh City Vietnam
| |
Collapse
|
10
|
Babamiri S, Mojani Qomi MS, Shiehmorteza M. The Efficacy of Ganoderma lucidum in Overweight Individuals: A Randomized Placebo-controlled trial. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2022. [DOI: 10.3233/mnm-211533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: There are growing interests in the use of medicinal mushrooms in controlling overweight and obesity. OBJECTIVE: The aim of the present study was to assess the effect of Lingzhi on anthropometric indices, fasting blood sugar, lipid profile and blood pressure of overweight individuals METHODS: This randomized double-blind clinical trial was performed on seventy-two overweight individuals (Body Mass Index (BMI) = 25–29.9 kg/m2) received 3 capsule Ganoderma Lucidum (each capsule containing 220 mg of whole powder and 30 mg of pure aqueous extract) daily or matching placebo for 6 weeks. Anthropometric indices, metabolic tests (fasting blood sugar (FBS) and serum lipid profile) and blood pressure were measured before and after treatment. RESULTS: Data analyses indicated that body weight and BMI were decreased after 6-week intervention (P < 0.05). The beneficial effect of supplementation was evident on some anthropometric indices. Changes in LDL-cholesterol were significantly different between two treatment and placebo groups (P < 0.05). FBS, other components of lipid profile and blood pressure did not significantly change by Lingzi treatment. CONCLUSIONS: Results showed that Ganoderma Lucidum might have some potential benefits on anthropometric indices and mild effects on lipid profile, but and there is no claim for weight lose function. Hence, further long-term studies are recommended.
Collapse
Affiliation(s)
- Shilan Babamiri
- Department of Clinical Pharmacy, Faculty ofPharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mansooreh Sadat Mojani Qomi
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic AzadUniversity, Tehran, Iran
- Nutrition and FoodSciences Research Center, Tehran Medical Sciences, Islamic AzadUniversity, Tehran, Iran
| | - Maryam Shiehmorteza
- Department of Clinical Pharmacy, Faculty ofPharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Zhao S, Rong C, Gao Y, Wu L, Luo X, Song S, Liu Y, Wong JH, Wang H, Yi L, Ng T. Antidepressant-like effect of Ganoderma lucidum spore polysaccharide-peptide mediated by upregulation of prefrontal cortex brain-derived neurotrophic factor. Appl Microbiol Biotechnol 2021; 105:8675-8688. [PMID: 34716786 DOI: 10.1007/s00253-021-11634-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Accepted: 10/05/2021] [Indexed: 10/19/2022]
Abstract
A 28-kDa polysaccharide-peptide (PGL) with antidepressant-like activities was isolated from spores of the mushroom Ganoderma lucidum. It was unadsorbed on DEAE-cellulose. Its internal amino acid sequences manifested pronounced similarity with proteins from the mushrooms Lentinula edodes and Agaricus bisporus. The monosaccharides present in 28-kDa PGL comprised predominantly of glucose (over 90%) and much fewer galactose, mannose residues, and other residues. PGL manifested antidepressant-like activities as follows. It enhanced viability and DNA content in corticosterone-injured PC12 cells(a cell line derived from a pheochromocytoma of the rat adrenal medulla with an embryonic origin from the neural crest containing a mixture of neuroblastic cells and eosinophilic cells) and reduced LDH release. A single acute PGL treatment shortened the duration of immobility of mice in both tail suspension and forced swimming tests. PGL treatment enhanced sucrose preference and shortened the duration of immobility in mice exposed to chronic unpredictable mild stress (CUMS). Chronic PGL treatment reversed the decline in mouse brain serotonin and norepinephrine levels but did not affect dopamine levels. PGL decreased serum corticosterone levels and increased BDNF mRNA and protein levels and increased synapsin I and PSD95 levels in the prefrontal cortex. This effect was completely blocked by pretreatment with the BDNF antagonist K252a, indicating that PGL increased synaptic proteins in a BDNF-dependent manner.Key points• An antidepressive polysaccharide-peptide PGL was isolated from G. lucidum spores.• PGL protected PC12 nerve cells from the toxicity of corticosterone.• PGL upregulated BDNF expression and influenced key factors in the prefrontal cortex.
Collapse
Affiliation(s)
- Shuang Zhao
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chengbo Rong
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yi Gao
- Beijing Xicheng District Health Care Center for Mothers and Children, Beijing, 100053, China
| | - Linfeng Wu
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaoheng Luo
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuang Song
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yu Liu
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, New Territories, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, 100193, China.
| | - Litao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Fujian Province, 361021, Xiamen, China.
| | - Tzibun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, New Territories, China.
| |
Collapse
|
12
|
Xu H, Hu Y, Hu Q, Liu J, Su A, Xie M, Ma G, Pei F, Mariga AM, Yang W. Isolation, characterization and HepG-2 inhibition of a novel proteoglycan from Flammulina velutipes. Int J Biol Macromol 2021; 189:11-17. [PMID: 34411611 DOI: 10.1016/j.ijbiomac.2021.08.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 01/31/2023]
Abstract
Flammulina velutipes has anti-inflammatory, immunomodulatory, antioxidant and many bioactive properties with high contents of carbohydrate, proteins and fibers. In this study, a novel proteoglycan with polysaccharide complexes and protein chain, named PGD1-1, was isolated from F. velutipes. The structural characteristics of PGD1-1 were then determined, and its anti-proliferation and pro-apoptotic activities against HepG-2 cells were demonstrated in vitro. Results proved that the average molecular weight of PGD1-1 was 32.71 kDa, and the carbohydrate and protein contents were 93.35 and 2.33%, respectively. The protein moiety was bonded to a polysaccharide chain via O-glycosidic linkage. The monosaccharides consisted of d-glucose, D-galactose and D-xylose in a molar ratio of 21.90:2.84:1.00. PGD1-1 significantly inhibited the proliferation of HepG-2 cells by affecting cell lipid peroxidation and nitric oxide production. In addition, PGD1-1 promoted the apoptosis of HepG-2 cells, especially the early apoptosis. These findings proved that PGD1-1 was a novel potent ingredient against the proliferation of HepG-2, which will provide a theoretical basis for the development and utilization of the functional ingredients of the F. velutipes.
Collapse
Affiliation(s)
- Hui Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ye Hu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Qiuhui Hu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jianhui Liu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Anxiang Su
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Minhao Xie
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Gaoxing Ma
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Fei Pei
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Alfred Mugambi Mariga
- School of Agriculture and Food Science, Meru University of Science Technology, P.O. Box 972-60400, Meru, Kenya
| | - Wenjian Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
13
|
Ahmad R, Riaz M, Khan A, Aljamea A, Algheryafi M, Sewaket D, Alqathama A. Ganoderma lucidum (Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties. Phytother Res 2021; 35:6030-6062. [PMID: 34411377 DOI: 10.1002/ptr.7215] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Reishi owes an exceptional value in nutritional, cosmeceutical, and medical treatments; however, none of the studies has provided its future-driven critical assessment. This study documents an up-to-date review (2015-2020, wherever applicable) and provide valuable insights (preclinical and clinical evidence-based) with comprehensive and critical assessments. Various databases 'Google scholar', 'Web of Science', 'ScienceDirect', 'PubMed', 'Springer Link', books, theses, and library resources were used. The taxonomic chaos of G. lucidum and its related species was discussed in detail with solution-oriented emphasis. Reishi contains polysaccharides (α/β-D-glucans), alkaloids, triterpenoids (ganoderic acids, ganoderenic acids, ganoderol, ganoderiol, lucidenic acids), sterols/ergosterol, proteins (LZ-8, LZ-9), nucleosides (adenosine, inosine, uridine), and nucleotides (guanine, adenine). Some active drugs are explored at an optimum level to make them potential drug candidates. The pharmacological potential was observed in diabetes, inflammation, epilepsy, neurodegeneration, cancer, anxiety, sedation, cardiac diseases, depression, hepatic diseases, and immune disorders; however, most of the studies are preclinical with a number of drawbacks. In particular, quality clinical data are intensely needed to support pharmacological activities for human use. The presence of numerous micro-, macro, and trace elements imparts an essential nutritional and cosmeceutical value to Reishi, and various marketed products are available already, but the clinical studies regarding safety and efficacy, interactions with foods/drinks, chronic use, teratogenicity, mutagenicity, and genotoxicity are missing for Reishi. Reishi possesses many valuable pharmacological activities, and the number of patents and clinical trials is increasing for Reishi. Yet, a gap in research exists for Reishi, which is discussed in detail in the forthcoming sections.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir, Bhutto University, Sheringal Dir (U), Pakistan
| | - Aslam Khan
- Basic Sciences Department, College of Science and Health Professions, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Ahmed Aljamea
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad Algheryafi
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Deya Sewaket
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Aljawharah Alqathama
- Department of Pharmacognosy, Pharmacy College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
14
|
Zhang Y, Cai H, Tao Z, Yuan C, Jiang Z, Liu J, Kurihara H, Xu W. Ganoderma lucidum spore oil (GLSO), a novel antioxidant, extends the average life span in Drosophila melanogaster. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2020.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
In vitro gastrointestinal digestion and fermentation properties of Ganoderma lucidum spore powders and their extracts. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Sun X, Zhao Q, Si Y, Li K, Zhu J, Gao X, Liu W. Bioactive structural basis of proteoglycans from Sarcandra glabra based on spectrum-effect relationship. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112941. [PMID: 32389856 DOI: 10.1016/j.jep.2020.112941] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Proteoglycans are one of the active ingredients of great importance in Sarcandra glabra. The biological activities of proteoglycans extracted from Sarcandra glabra including suppressing tumor growth and antioxidant activity were studied. However, raw materials from different regions may cause differences in the activity of natural extracts, especially for bioactive biomacromolecules. Conventional identification of S.glabra cannot accurately reflect the distinguishing relationship between internal components and the pharmacological activity. The identification of biologically active structures was obtained by constructing multiple fingerprint and spectrum-effect relationship. AIM OF THE STUDY To evaluate the bioactive structural basis of proteoglycans from S.glabra based on spectrum-effect relationship and chemometric methods. MATERIALS AND METHODS Multiple fingerprinting including HPSEC, PMP-HPLC, and FT-IR of proteoglycans was established from 18 batches of samples based on the structural characteristics. Both antitumor activity and antioxidant activity were determined. Mathematical analysis was used to analyze the spectrum-effect relationship. RESULTS PCA results showed monosaccharides including Xly, Rha, and GlcA, carboxyl group in acidic sugars, peptide bond in proteins, and methylene groups could be used as markers for distinguishing the samples from different sources. The results of the spectrum-effect relationship analysis indicated that the bioactive markers of inhibitory activity on MG63 and U2OS cells by PLS-DA were related to GlcA, Xyl, Fuc, β-glycosidic bonds, peptide linkage, and methylene groups. Markers composing monosaccharide for antioxidant activity were Xyl, GlcA, and GlcN. Meanwhile, the group markers were pyranose ring, carboxyl group, peptide linkage, and methylene structure. CONCLUSIONS The material basis that affects the pharmacological efficacy could be found according to the spectrum-effect relationship analysis. This study could lay a foundation for further exploring the relationship between structural characteristics and pharmacodynamics of macromolecular glycoconjugates in Traditional Chinese Medicine.
Collapse
Affiliation(s)
- Xuyang Sun
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Qianqian Zhao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yu Si
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Kaidong Li
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jingyi Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
17
|
Nurmatova NT, Kayumova VR, Rakhmatullaeva DU, Khodzhaeva FK. Scientific rationale for the use of dietary supplements based on Ganoderma luсidum in the comprehensive prevention of dental caries in children. Pediatr Dent 2020. [DOI: 10.33925/1683-3031-2020-20-1-15-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Relevance. Numerous studies on the etiology, diagnosis and treatment of decay of temporary teeth objectify the relevance of this problem. Currently used fluoride preparations are very effective, but nonetheless, there is an increase in caries from year to year. Therefore, as an addition to fluorine preparations, the use of dietary supplements based on Ganoderma Lucidum has been proposed. Purpose. Conduct an open, randomized study of the dietary supplements based on the Ganoderma Lucidum in the comprehensive prevention of dental caries in children. Materials and methods. To achieve this goal, 78 children aged 3 to 12 years were examined in terms of indicators: estimates of the prevalence of caries (%), the intensity of caries (CSD – carious, sealed, distant and CFS – carious, filled surfaces), the simplified OHI-S index (Green-Wermillion), CPITN, and oral cavity IG according to Kuzmina EM. (2000). All children, depending on the prevalence of caries, were divided into 2 groups: group 1 – the main (41 children, age 6.4 ± 4.8 years) – for complex prevention, fluoride preparations were used with dietary supplements based on Ganoderma Lucidum, group 2 – comparison group (37 children, age 7.3 ± 3.7 years) – fluorine preparations were used for complex prophylaxis. Results. After 4 months of application of the dietary supplements based on Ganoderma Lucidum, an improvement in oral hygiene was recorded. So, in the main group, IG improved by 57% and amounted to 0.21 ± 0.02, in the comparison group – by 33% and amounted to 0.52 ± 0.03 (p≤0.05). In the comparison group, before the use of fluoride preparations, the% of sanitized was 63%, whereas after the use of fluorine this indicator was 72%. The CSD index before application was 3.32 ± 0.01 and after application was 2.56 ± 0.02. CPITN before use was 1.2 ± 0.04 whereas after use it was 0.76 ± 0.03. OHI-S before application was 40.03% and after application of fluorine it was 21.05%. The increase in caries before the use of fluorine was 0.76 ± 0.04 and after the use of fluorine was 0.33 ± 0.02.Conclusions. The use of dietary supplements based on Ganoderma Lucidum in combination with fluorine preparations is more appropriate for a comprehensive prevention program than the usual use of fluorine preparations.
Collapse
|
18
|
Zhu LF, Chen X, Ahmad Z, Peng Y, Chang MW. A core–shell multi-drug platform to improve gastrointestinal tract microbial health using 3D printing. Biofabrication 2020; 12:025026. [DOI: 10.1088/1758-5090/ab782c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Shen SF, Zhu LF, Wu Z, Wang G, Ahmad Z, Chang MW. Production of triterpenoid compounds from Ganoderma lucidum spore powder using ultrasound-assisted extraction. Prep Biochem Biotechnol 2019; 50:302-315. [PMID: 31755817 DOI: 10.1080/10826068.2019.1692218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
When ingested as a dietary supplement, Ganoderma lucidum spore powders (GLSP) provide various health benefits such as enhanced immunity, liver protection and anti-cancer effects. In this study, triterpenoid extraction from GLSP was achieved using an ultrasound-assisted process which was optimized using response surface methodology (RSM). Ultrasound-assisted extraction (UAE) was also compared to the most conventional chemical extraction method. For UAE, optimum extraction conditions were found to be ethanol concentration = 95% v/v; solvent to solid ratio = 50:1 mL/g; ultrasound time = 5.4 min; ultrasound power = 564.7 w, and ultrasound probe distance = 8.2 cm. At optimal UAE conditions, no significant differences were found between experimental (0.97 ± 0.04 %) and predicted values (99%); which indicates appreciable correlation at the 97% confidence interval. The findings show the application of Box-Behnken design (BBD) to predict and optimize triterpenoid yield for UAE of triterpenoid from GLSP. Furthermore, glucose consumption was 2.68 times that of control samples when tested with insulin-resistant HepG2 cell, showing potential use in type 2 diabetes. In addition, triterpenoid extracts show good biocompatibility and inhibition of antioxidant activity.
Collapse
Affiliation(s)
- Shuang-Fei Shen
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, P. R. China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Li-Fang Zhu
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, P. R. China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Zijing Wu
- Tianhe Agricultural Group, Longquan City, P. R. China
| | - Guangkun Wang
- Tianhe Agricultural Group, Longquan City, P. R. China
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Ming-Wei Chang
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, P. R. China.,Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey, UK
| |
Collapse
|