1
|
Shen M, Guo W, Tong L, Wang L, Chu PK, Kawi S, Ding Y. Behavior, mechanisms, and applications of low-concentration CO 2 in energy media. Chem Soc Rev 2025; 54:2762-2831. [PMID: 39866134 DOI: 10.1039/d4cs00574k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
This review explores the behavior of low-concentration CO2 (LCC) in various energy media, such as solid adsorbents, liquid absorbents, and catalytic surfaces. It delves into the mechanisms of diffusion, adsorption, and catalytic reactions, while analyzing the potential applications and challenges of these properties in technologies like air separation, compressed gas energy storage, and CO2 catalytic conversion. Given the current lack of comprehensive analyses, especially those encompassing multiscale studies of LCC behavior, this review aims to provide a theoretical foundation and data support for optimizing CO2 capture, storage, and conversion technologies, as well as guidance for the development and application of new materials. By summarizing recent advancements in LCC separation techniques (e.g., cryogenic air separation and direct air carbon capture) and catalytic conversion technologies (including thermal catalysis, electrochemical catalysis, photocatalysis, plasma catalysis, and biocatalysis), this review highlights their importance in achieving carbon neutrality. It also discusses the challenges and future directions of these technologies. The findings emphasize that advancing the efficient utilization of LCC not only enhances CO2 reduction and resource utilization efficiency, promoting the development of clean energy technologies, but also provides an economically and environmentally viable solution for addressing global climate change.
Collapse
Affiliation(s)
- Minghai Shen
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Wei Guo
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Lige Tong
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Li Wang
- Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, School of Energy and Environmental Engineering, China.
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Hong Kong
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Yulong Ding
- Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham, UK.
| |
Collapse
|
2
|
Bora P, Bhuyan C, Gogoi P, Hazarika S. Advances in CO 2 separation from the landscape of porous aromatic framework-based engineered membranes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7834-7859. [PMID: 40063216 DOI: 10.1007/s11356-025-36167-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/19/2025] [Indexed: 03/29/2025]
Abstract
Uncontrolled carbon emission contributes significantly towards global warming and climate change necessitating an urgent and effective remedy. CO2 is one of the major constituents of the greenhouse gas family. The main sources that contribute to CO2 emission are industries, transports, etc., where CO2 gets emitted with other gases. Before released into the environment, effective separation of CO2 from mixture gases can lessen its direct environmental exposure. Traditional techniques for CO2 separation include adsorption, absorption, cryogenic distillation, and membrane separation. Membrane technology is advantageous in CO2 separation due to its excellent properties like energy efficiency, affordability, durability, scalability, processing simplicity, and high separation efficiency. Advancements in membrane materials have introduced various advanced materials among which porous aromatic frameworks (PAFs) are proven highly applicable in gas separation. PAFs are a branch of engineered porous materials that offer excellent porosity, substantial surface area, homogeneous pore size, room for structural modification, and anti-aging properties. PAF-based membranes are widely used in various CO2 separation applications; mostly in natural gas purification and flue gas treatment. This review article has discussed synthetic routes of PAFs, structural modification techniques, membrane applications, and mechanisms in the context of CO2 separation. The current status of PAF-based membranes is briefly highlighted from an economic and industrial point of view. Future directions for PAF-based membranes such as functionalization or integration of PAFs with other materials/nanomaterials to create hybrid materials with greater CO2-phillicity are discussed. Moreover, potential aspects to consider in the near future associated with PAF syntheses are also highlighted.
Collapse
Affiliation(s)
- Prarthana Bora
- Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chinmoy Bhuyan
- Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priyadarshini Gogoi
- Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Swapnali Hazarika
- Chemical Engineering Group and Centre for Petroleum Research, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Sun L, Xu W, Zhang H, Chu J, Wang M, Song K, Wu W, Li J, Wang Y, Pinnau I, Ma X. In-Situ Formation of Three-Dimensional Network Intrinsic Microporous Ladder Polymer Membranes with Ultra-High Gas Separation Performance and Anti-Trade-Off Effect. Angew Chem Int Ed Engl 2025; 64:e202420742. [PMID: 39822022 DOI: 10.1002/anie.202420742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Indexed: 01/19/2025]
Abstract
The global quest for clean energy and sustainable processes makes advanced membrane extremely attractive for energy-intensive industrial gas separations. Here, we disclose a series of ultra-high-performance gas separation membranes (PIM-3D-TB) from novel network polymers of intrinsic microporosity (PIM) that combine the advantages of solution processible PIM and small pore size distribution (PSD) of porous organic polymers (POP), which was synthesized by in situ copolymerization of triptycene-2,6-diamine as linear part and triptycene-2,6,13(14)-triamine (TTA) as crosslinker. The resulting PIM-3D-TB membranes demonstrated outstanding separation properties that outperformed the latest trade-off lines for H2/CH4 and O2/N2. They also showed an anti-trade-off effect by simultaneously enhancing gas permeability and gas-pair selectivity with increasing TTA content. The TTA crosslinking node increased the microporosity, and, shifted the PSD from the ultramicropore (<7 Å) toward the more size sieving submicropore (<4 Å) region. The post-treated TTA-75 displayed an exceptional H2 permeability of 8000 Barrer and H2/CH4 selectivity of 208. These PIM-3D-TB membranes and their design protocol have unparalleled potential in the next generation of membranes for hydrogen purification and air separations.
Collapse
Affiliation(s)
- Luxin Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Wei Xu
- State Key Laboratory of Particle Detection and Electronics & Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics & Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Jiachen Chu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Mengtao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Kai Song
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Wenjie Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Yingge Wang
- Advanced Membranes and Porous Materials Center, Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Ingo Pinnau
- Advanced Membranes and Porous Materials Center, Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Xiaohua Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
4
|
Zhen Y, Xu Z, Cao Q, Pang M, Xu Q, Lin D, Liu J, Wang B. Self-Standing Covalent Organic Polymer Membrane with High Stability and Enhanced Ion-Sieving Effect for Flow Battery. Angew Chem Int Ed Engl 2025; 64:e202413046. [PMID: 39230041 DOI: 10.1002/anie.202413046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Fabrication of ion-conducting membranes with continuous sub-nanometer channels holds fundamental importance for flow batteries in achieving safe integration of renewable energy into grids. Self-standing covalent organic polymer (COP) membranes provide feasibility due to their rapid and selective ion transport. However, the development of a scale-up possible, mechanically robust and chemically stable membranes remains a significant challenge. Herein, using irreversible strong secondary amine linkage, we propose a self-standing COP membrane with sub-nanometer pores ranging from 4.5 to 6.4 Å, by a simple and efficient in situ polymerization approach. This membrane exhibits enhanced selectivity for proton and vanadium ions, especially excellent electrochemical stability, delivering an energy efficiency of over 80 % at the current density of 200 mA cm-2 over 1000 cycles for an all-vanadium redox flow battery (VFB). This study provides novel insights for COP-based ion-sieving membranes in sustainable energy fields.
Collapse
Affiliation(s)
- Yihan Zhen
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Ziang Xu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Qingbin Cao
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Maobin Pang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Qin Xu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Dongchen Lin
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Jing Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Baoguo Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Sumit, Sharma K, Tewatia P, Samota S, Kaur M, Paulik C, Sharma M, Kaushik A. Efficient mercury ion abatement through highly porous cellulose nanofibrils combined with microporous organic polymer enhancements. Int J Biol Macromol 2024; 280:136136. [PMID: 39349077 DOI: 10.1016/j.ijbiomac.2024.136136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/14/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Pristine microporous organic polymer (p-MOP), owing to the presence of heteroatoms, has emerged as a significant platform for sensing and adsorption of heavy metal ions. The present work is a novel approach for developing highly porous hybrid architectures with trimesic acid and phenylene diamine-based p-MOP embedded over rice straw-derived cellulose nanofibers (ACNFs/MOP) for the sensing and remediation of mercury ions in the aqueous medium. The ACNFs/MOP were successfully characterized by various techniques, such as FTIR spectroscopy, BET surface area analysis, X-ray diffraction, XPS, HR-TEM, and TGA. The hybrid exhibited excellent porosity and crystallinity. The ACNFs/MOP hybrid was highly selective for Hg(II) ions, displaying substantial enhancement in fluorescence intensity with an LOD of 3.927 nM while also facilitating simultaneous adsorption. The adsorption showed a strong fit with pseudo-second-order kinetics and Langmuir isotherm models with an excellent adsorption capacity of 416.18 mg g-1, attributed to electrostatic interactions, coordination surface complexation, and metal-π interactions, as confirmed by XPS studies. Thermodynamic studies indicated an endothermic adsorption process. Box-Behnken Design-Response Surface methodology with Design Expert Software-13 was applied to model the process parameters. The hybrids were 97 % efficient even after five cycles of reusability, exhibiting their excellent potential for removing perilous Hg(II) ions from wastewater.
Collapse
Affiliation(s)
- Sumit
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Kavita Sharma
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Preeti Tewatia
- Energy Research Centre, Panjab University, Chandigarh, India
| | | | - Manpreet Kaur
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Christian Paulik
- Institute for Chemical Technology of Organic Materials, Johannes Kepler University, Linz, Austria
| | - Mukta Sharma
- Department of Civil Engineering, IKG Punjab Technical University, Jalandhar, India
| | - Anupama Kaushik
- Energy Research Centre, Panjab University, Chandigarh, India; Dr. SSB University Institutes of Chemical Engineering and Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
6
|
Liu ML, Chen Y, Hu C, Zhang CX, Fu ZJ, Xu Z, Lee YM, Sun SP. Microporous membrane with ionized sub-nanochannels enabling highly selective monovalent and divalent anion separation. Nat Commun 2024; 15:7271. [PMID: 39179599 PMCID: PMC11344077 DOI: 10.1038/s41467-024-51540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Membranes tailored for selective ion transport represent a promising avenue toward enhancing sustainability across various fields including water treatment, resource recovery, and energy conversion and storage. While nanochannels formed by polymers of intrinsic microporosity (PIM) offer a compelling solution with their uniform and durable nanometer-sized pores, their effectiveness is hindered by limited interactions between ions and nanochannel. Herein, we introduce the randomly twisted V-shaped structure of Tröger's Base unit and quaternary ammonium groups to construct ionized sub-nanochannel with a window size of 5.89-6.54 Å between anion hydration and Stokes diameter, which enhanced the dehydrated monovalent ion transport. Combining the size sieving and electrostatic interaction effects, sub-nanochannel membranes achieved exceptional ion selectivity of 106 for Cl-/CO32- and 82 for Cl-/SO42-, significantly surpassing the state-of-the-art membranes. This work provides an efficient template for creating functionalized sub-nanometer channels in PIM membranes, and paves the way for the development of precise ion separation applications.
Collapse
Affiliation(s)
- Mei-Ling Liu
- State Key Laboratories of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- NJTECH University Suzhou Future Membrane Technology Innovation Center, Suzhou, 215100, China
| | - Yu Chen
- State Key Laboratories of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chuan Hu
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Chun-Xu Zhang
- State Key Laboratories of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zheng-Jun Fu
- State Key Laboratories of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhijun Xu
- State Key Laboratories of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Young Moo Lee
- Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Shi-Peng Sun
- State Key Laboratories of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
- NJTECH University Suzhou Future Membrane Technology Innovation Center, Suzhou, 215100, China.
- Suzhou Laboratory, Suzhou, 215100, China.
| |
Collapse
|
7
|
Yao A, Hou J, Dou P, Du J, Sun Q, Song Z, Liu L, Guan J, Liu J. Microporous polyarylate membranes based on 3D phenolphthalein for molecular sieving. SCIENCE ADVANCES 2024; 10:eado7687. [PMID: 39121217 PMCID: PMC11313862 DOI: 10.1126/sciadv.ado7687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/08/2024] [Indexed: 08/11/2024]
Abstract
Thin-film composite (TFC) membranes have gradually replaced some traditional technologies in the extraction, separation, and concentration of high value-added pharmaceutical ingredients due to their controllable microstructure. Nevertheless, devising solvent-stable, scalable TFC membranes with high permeance and efficient molecule selectivity is urgently needed to improve the separation efficiency in the separation process. Here, we propose phenolphthalein, a commercial acid-base indicator, as an economical monomer for optimizing the micropore structure of selective layers with thickness down to 30 nanometers formed by in situ interfacial reactions. Molecular dynamics simulations indicate that the polyarylate membranes prepared using three-dimensional phenolphthalein monomers exhibit tunable microporosity and higher pore interconnectivity. Moreover, the TFC membranes show a high methanol permeance (9.9 ± 0.1 liters per square meter per hour per bar) and small molecular weight cutoff (≈289 daltons) for organic micropollutants in organic solvent systems. The polyarylate membranes exhibit higher mechanical strength (2.4 versus 0.8 gigapascals) compared to the traditional polyamide membrane.
Collapse
Affiliation(s)
- Ayan Yao
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230052, China
| | - Junjun Hou
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230052, China
| | - Pengjia Dou
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230052, China
| | - Jingcheng Du
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230052, China
| | - Qian Sun
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230052, China
| | - Ziye Song
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230052, China
| | - Linghao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230052, China
| | - Jian Guan
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230052, China
| | - Jiangtao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, 230052, China
| |
Collapse
|
8
|
Guo S, Yeo JY, Benedetti FM, Syar D, Swager TM, Smith ZP. A Microporous Poly(Arylene Ether) Platform for Membrane-Based Gas Separation. Angew Chem Int Ed Engl 2024; 63:e202315611. [PMID: 38084884 DOI: 10.1002/anie.202315611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Indexed: 01/18/2024]
Abstract
Membrane-based gas separations are crucial for an energy-efficient future. However, it is difficult to develop membrane materials that are high-performing, scalable, and processable. Microporous organic polymers (MOPs) combine benefits for gas sieving and solution processability. Herein, we report membrane performance for a new family of microporous poly(arylene ether)s (PAEs) synthesized via Pd-catalyzed C-O coupling reactions. The scaffold of these microporous polymers consists of rigid three-dimensional triptycene and stereocontorted spirobifluorene, endowing these polymers with micropore dimensions attractive for gas separations. This robust PAE synthesis method allows for the facile incorporation of functionalities and branched linkers for control of permeation and mechanical properties. A solution-processable branched polymer was formed into a submicron film and characterized for permeance and selectivity, revealing lab data that rivals property sets of commercially available membranes already optimized for much thinner configurations. Moreover, the branching motif endows these materials with outstanding plasticization resistance, and their microporous structure and stability enables benefits from competitive sorption, increasing CO2 /CH4 and (H2 S+CO2 )/CH4 selectivity in mixture tests as predicted by the dual-mode sorption model. The structural tunability, stability, and ease-of-processing suggest that this new platform of microporous polymers provides generalizable design strategies to form MOPs at scale for demanding gas separations in industry.
Collapse
Affiliation(s)
- Sheng Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jing Ying Yeo
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Francesco M Benedetti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Duha Syar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zachary P Smith
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Yu H, Guan J, Chen Y, Sun Y, Zhou S, Zheng J, Zhang Q, Li S, Zhang S. Large-Area Soluble Covalent Organic Framework Oligomer Coating for Organic Solution Nanofiltration Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305613. [PMID: 37712119 DOI: 10.1002/smll.202305613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 09/16/2023]
Abstract
Covalent organic frameworks (COFs) are a family of engaging membrane materials for molecular separation, which remain challenging to fabricate in the form of thin-film composite membranes due to slow crystal growth and insoluble powder. Here, an additive approach is presented to construct COF-based thin-film composite membranes in 10 min via COF oligomer coating onto poly(ether ether ketone) (PEEK)ultrafiltration membranes. By the virtue of ultra-thin liquid phase and liquid-solid interface-confined assembly, the COF oligomers are fast stacked up and grow along the interface with the solvent evaporation. Benefiting from the low out-plane resistance of COFs, COF@PEEK composite membranes exhibit high solvent permeances in a negative correlation with solvent viscosity. The well-defined pore structures enable high molecular sieving ability (Mw = 300 g mol-1 ). Besides, the COF@PEEK composite membranes possess excellent mechanical integrities and steadily operate for over 150 h in the condition of high-pressure cross flow. This work not only exemplifies the high-efficiency and scale-up preparation of COF-based thin-film composite membranes but also provides a new strategy for COF membrane processing.
Collapse
Affiliation(s)
- Huiting Yu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiayu Guan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yaohan Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yuxuan Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shengyang Zhou
- Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jifu Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Qifeng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shenghai Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Suobo Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
10
|
Guo H, Fang C, Li F, Cui W, Xiong R, Yang X, Zhu L. Tailor-made β-ketoenamine-linked covalent organic polymer nanofilms for precise molecular sieving. MATERIALS HORIZONS 2023; 10:5133-5142. [PMID: 37697817 DOI: 10.1039/d3mh00957b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The membranes that accurately separate solutes with close molecular weights in harsh solvents are of crucial importance for the development of highly-precise organic solvent nanofiltration (OSN). The physicochemical structures of the membrane need to be rationally designed to achieve this goal, such as customized crosslinked networks, thickness, and pore size. Herein, we synthesize a type of covalent organic polymer (COP) nanofilms with tailor-made thickness and pore structure using a cyclic deposition strategy for precise molecular sieving. By elaborately designing monomer structures and controlling deposition cycle numbers, the COP nanofilms linked by robust β-ketoenamine blocks were endowed with sub-nanometer micropores and a linearly tunable thickness of 10-40 nm. The composite membranes integrating COP nanofilms exhibited adjustable solvent permeance. The membranes further demonstrated steep and finely-regulated rejection curves within the molecular weight range of 200 to 400 Da, where the difference value was as low as 40 Da. The efficient purification and concentration of the antibacterial drug and its intermediate was well achieved. Therefore, the exploited COP nanofilms markedly facilitate the application of microporous organic polymers for precise molecular separation in OSN.
Collapse
Affiliation(s)
- Hukang Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chuanjie Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Fupeng Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wenshou Cui
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Ruiyan Xiong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xing Yang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Liping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P. R. China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, P. R. China
| |
Collapse
|
11
|
Zhang Z, Wu Q, Xu S, Yue Z, Zhou H, Jin W. Ultra-stable fully-aromatic microporous polyamide membrane for molecular sieving of nitrogen over volatile organic compound. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132151. [PMID: 37506641 DOI: 10.1016/j.jhazmat.2023.132151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Microporous polymer membranes are promising candidates for industrial membrane-based gas separation because of their high separation performance. However, their relatively low stability due to the local rearrangement of polymer chains during usage remains a problem. Hence, we propose the construction of a fully aromatic polymer structure in a microporous polymer membrane to enhance membrane stability. Four triptycene-based microporous polyamides were synthesized via the polymerization of 2,6,14-triaminotriptycene with aromatic acyl chloride and/or aliphatic acyl chlorides. Their properties were characterized and compared by using nuclear magnetic resonance (NMR) and Brunauer-Emmett-Teller analyses. The synthesized polyamides were fabricated into composite membranes by employing a solution process; their stability was evaluated for the molecular sieving of nitrogen over volatile organic compounds such as cyclohexane. Low-field NMR and X-ray photoelectron spectroscopy were used to investigate the differences in the properties of membranes with different structures at different times. The results showed that the fully aromatic polyamide membrane made from 2,6,14-triaminotriptycene and aromatic acyl chloride displayed constant rejection (99 %) and nitrogen permeability (approximately 50 Barrer) for the molecular sieving of nitrogen over cyclohexane during 100-d experiments, indicating good stability. This approach paves the way for the industrialization of microporous polymer membranes from a theoretical perspective.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China
| | - Qiao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China
| | - Shilin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China
| | - Zhongyuan Yue
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China
| | - Haoli Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China; Zhangjiagang Institute of Nanjing Tech University, Suzhou 215699, PR China.
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, PR China
| |
Collapse
|
12
|
Guo H, Li F, Shui X, Wang J, Fang C, Zhu L. Ultrathin Polyamide Nanofilms with Controlled Microporosity for Enhanced Solvent Permeation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37479673 DOI: 10.1021/acsami.3c07440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Organic solvent nanofiltration (OSN) technology shows reduced energy consumption by almost 90% with great potential in achieving low-carbon separation applications. Polyamide nanofilms with controlled intrinsic and extrinsic structures (e.g., thickness and porosity) are important for achieving such a goal but are technically challenging. Herein, ultrathin polyamide nanofilms with controlled microporosity and morphology were synthesized via a molecular layer deposition method for OSN. The key is that the polyamide synthesis is controlled in a homogenous organic phase, rather than an interface, not only involving no monomer kinetic diffusion but also broadening the applicability of amine monomers. The particular nonplanar and rigid amine monomers were superbly used to increase microporosity and the nanofilm was linearly controlled at the nanometer scale to decrease thickness. The composite membrane with the polyamide nanofilms as separation layers displayed highly superior performance to current counterparts. The ethanol and methanol permeances were up to 5.5 and 14.6 L m-2 h-1 bar-1, respectively, but the molecular weight cutoff was tailored as low as 300 Da. Such separation performance remained almost unchanged during a long-term operation. This work demonstrates a promising alternative that could synergistically control the physicochemical structures of ultrathin selective layers to fabricate high-performance OSN membranes for efficient separations.
Collapse
Affiliation(s)
- Hukang Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P.R. China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Fupeng Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P.R. China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xuerong Shui
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P.R. China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jianyu Wang
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Chuanjie Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P.R. China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Liping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P.R. China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P.R. China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| |
Collapse
|
13
|
Covaliu-Mierlă CI, Păunescu O, Iovu H. Recent Advances in Membranes Used for Nanofiltration to Remove Heavy Metals from Wastewater: A Review. MEMBRANES 2023; 13:643. [PMID: 37505009 PMCID: PMC10385156 DOI: 10.3390/membranes13070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023]
Abstract
The presence of heavy metal ions in polluted wastewater represents a serious threat to human health, making proper disposal extremely important. The utilization of nanofiltration (NF) membranes has emerged as one of the most effective methods of heavy metal ion removal from wastewater due to their efficient operation, adaptable design, and affordability. NF membranes created from advanced materials are becoming increasingly popular due to their ability to depollute wastewater in a variety of circumstances. Tailoring the NF membrane's properties to efficiently remove heavy metal ions from wastewater, interfacial polymerization, and grafting techniques, along with the addition of nano-fillers, have proven to be the most effective modification methods. This paper presents a review of the modification processes and NF membrane performances for the removal of heavy metals from wastewater, as well as the application of these membranes for heavy metal ion wastewater treatment. Very high treatment efficiencies, such as 99.90%, have been achieved using membranes composed of polyvinyl amine (PVAM) and glutaraldehyde (GA) for Cr3+ removal from wastewater. However, nanofiltration membranes have certain drawbacks, such as fouling of the NF membrane. Repeated cleaning of the membrane influences its lifetime.
Collapse
Affiliation(s)
- Cristina Ileana Covaliu-Mierlă
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Oana Păunescu
- Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 132 Calea Grivitei, 010737 Bucharest, Romania
| |
Collapse
|
14
|
Fabrication of Organic Solvent Nanofiltration Membrane through Interfacial Polymerization Using N-Phenylthioure as Monomer for Dimethyl Sulfoxide Recovery. SEPARATIONS 2023. [DOI: 10.3390/separations10030179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
To recover dimethyl sulfoxide, an organic solvent nanofiltration membrane is prepared via the interfacial polymerization method. N-Phenylthiourea (NP)is applied as a water-soluble monomer, reacted with trimesoyl chloride (TMC) on the polyetherimide substrate crosslinked by ethylenediamine. The results of attenuated total reflectance-fourier transform infrared spectroscopy and X-ray electron spectroscopy confirm that N-Phenylthiourea reacts with TMC. The membrane morphology is investigated through atomic force microscopy and scanning electronic microscopy, respectively. The resultant optimized TFC membranes NF-1NP exhibited stable permeance of about 4.3 L m−2 h−1 bar-1 and rejection of 97% for crystal violet (407.98 g mol−1) during a 36 h continuous separation operation. It was also found that the NF-1NP membrane has the highest rejection rate in dimethyl sulfoxide (DMSO), and the rejection rates in methanol, acetone, tetrahydrofuran, ethyl acetate and dimethylacetamide(DMAc) are 51%, 84%, 94%, 96% and 92% respectively. The maximum flux in the methanol system is 11 L m−2 h−1 bar−1, while that in acetone, tetrahydrofuran, ethyl acetate and DMAc is 4.3 L m−2 h−1 bar−1, 6.3 L m−2 h−1 bar−1, 3.2 L m−2 h−1 bar−1, 4.9 L m−2 h−1 bar−1 and 2.1 L m−2 h−1 bar−1, respectively. It was also found that the membrane prepared by N-Phenylthiourea containing aromatic groups has lower mobility and stronger solvent resistance than that of by thiosemicarbazide.
Collapse
|
15
|
Mao H, Zhou S, Li M, Wang R, Ma Z, Xiao H, Xue A, Zhao Y, Peng W, Chen C. PVDF ultrafiltration membrane with enhanced mechanical and filtration performance by hydrophilic pH-response nanofibers modification. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
16
|
Intermolecular cross-linked polymer of intrinsic microporosity-1 (PIM-1)-based thin-film composite hollow fiber membrane for organic solvent nanofiltration. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Wang K, Fu W, Wang XM, Xu C, Gao Y, Liu Y, Zhang X, Huang X. Molecular Design of the Polyamide Layer Structure of Nanofiltration Membranes by Sacrificing Hydrolyzable Groups toward Enhanced Separation Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17955-17964. [PMID: 36446026 DOI: 10.1021/acs.est.2c04232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanofiltration (NF) is an effective technology for removing trace organic contaminants (TrOCs), while the inherent trade-off effect between water permeance and solute rejections hinders its widespread application in water treatment. Herein, we propose a novel scheme of "monomers with sacrificial groups" to regulate the microstructure of the polyamide active layer via introducing a hydrolyzable ester group onto piperazine to control the diffusion and interfacial polymerization process. The achieved benefits include narrowing the pore size, improving the interpore connectivity, enhancing the microporosity, and reducing the active layer thickness, which collectively realized the simultaneous improvement of water permeance and enhancement of TrOCs rejection performance. The resulting membranes were superior to both the control and commercial membranes, especially in water-TrOCs selectivity. The effects of using the new monomers on the membrane physicochemical properties were systematically studied, and underlying mechanisms for the enhanced separation performance were further revealed by simulating the polymerization process through density functional theory calculation and measuring the trans-interface diffusion rate of monomers. This study demonstrates a novel promising NF membrane synthesis strategy by designing the structure of reaction monomers for achieving excellent rejection of TrOCs with a low energy input in water treatment.
Collapse
Affiliation(s)
- Kunpeng Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Wenjie Fu
- College of Environment and Resources, Guangxi Normal University, Guilin541004, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Chenyang Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Yawei Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
| | - Xiaoyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| |
Collapse
|
18
|
Shah S, Famta P, Bagasariya D, Charankumar K, Sikder A, Kashikar R, Kotha AK, Chougule MB, Khatri DK, Asthana A, Raghuvanshi RS, Singh SB, Srivastava S. Tuning Mesoporous Silica Nanoparticles in Novel Avenues of Cancer Therapy. Mol Pharm 2022; 19:4428-4452. [PMID: 36109099 DOI: 10.1021/acs.molpharmaceut.2c00374] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The global menace of cancer has led to an increased death toll in recent years. The constant evolution of cancer therapeutics with novel delivery systems has paved the way for translation of innovative therapeutics from bench to bedside. This review explains the significance of mesoporous silica nanoparticles (MSNs) as delivery vehicles with particular emphasis on cancer therapy, including novel opportunities for biomimetic therapeutics and vaccine delivery. Parameters governing MSN synthesis, therapeutic agent loading characteristics, along with tuning of MSN toward cancer cell specificity have been explained. The advent of MSN in nanotheranostics and its potential in forming nanocomposites for imaging purposes have been illustrated. Additionally, various hurdles encountered during the bench to bedside translation have been explained along with potential avenues to circumvent them. This also opens up new horizons in drug delivery, which could be useful to researchers in the years to come.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Deepkumar Bagasariya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Kondasingh Charankumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Anupama Sikder
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Rama Kashikar
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, Georgia 30341, United States
| | - Arun K Kotha
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, Georgia 30341, United States
| | - Mahavir Bhupal Chougule
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, Georgia 30341, United States
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Raj Nagar, Ghaziabad 201002, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| |
Collapse
|
19
|
Samavati Z, Samavati A, Goh PS, Ismail AF, Abdullah MS. A comprehensive review of recent advances in nanofiltration membranes for heavy metal removal from wastewater. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
20
|
Liu Q, Liu J, Li M, Yu T, Hu M, Jia P, Qi N, Chen Z. Plasticization of a novel polysulfone based mixed matrix membrane with high-performance CO 2 separation studied by positron annihilation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Pazani F, Shariatifar M, Salehi Maleh M, Alebrahim T, Lin H. Challenge and promise of mixed matrix hollow fiber composite membranes for CO2 separations. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Cao S, Zhang A, Tian M, Jiang Y, Dong G, Zhang Y, Zhu J. Fabrication of amino-alcohol based polyesteramide thin film composite membranes for nanofiltration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Li Y, Li SH, Xu LH, Mao H, Zhang AS, Zhao ZP. Highly selective PDMS membranes embedded with ILs-decorated halloysite nanotubes for ethyl acetate pervaporation separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Chemically tailored microporous nanocomposite membranes with multi-channels for intensified solvent permeation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Luo W, Niu Z, Mu P, Li J. MXene/poly(ethylene glycol) mixed matrix membranes with excellent permeance for highly efficient separation of CO2/N2 and CO2/CH4. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Holda AK, Perera S, Emanuelsson Patterson EA. Photocatalytic membranes containing homocoupled conjugated microporous poly(phenylene butadiynylene) for chemical-free degradation of organic micropollutants. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
27
|
Jiang W, Wu Y, Zhang X, Chen D, Ma Y, Yang W. Novel Bismaleimide Porous Polymer Microsphere by Self-Stabilized Precipitation Polymerization and Its Application for Catalytic Microreactors. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wenxing Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingxue Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xianhong Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dong Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhong Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers of the Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers of the Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
28
|
Ma ZY, Xue YR, Yang HC, Wu J, Xu ZK. Surface and Interface Engineering of Polymer Membranes: Where We Are and Where to Go. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhao-Yu Ma
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Yu-Ren Xue
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| | - Hao-Cheng Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jian Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Lab of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- The “Belt and Road” Sino-Portugal Joint Lab on Advanced Materials, International Research Center for X Polymers, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
29
|
|
30
|
Zhang Z, Rahman MM, Bajer B, Scharnagl N, Abetz V. Highly selective isoporous block copolymer membranes with tunable polyelectrolyte brushes in soft nanochannels. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Liu S, Li W, Chen C, Chen J, Wu X, Wang J. Ultrathin cyclodextrin nanofilm composite membranes for efficient separation of xylene isomers. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Mixed matrix membranes for post-combustion carbon capture: From materials design to membrane engineering. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Fabrication of Poly(amide-co-ester) Solvent Resistant Nanofiltration Membrane from P-nitrophenol and Trimethyl Chloride via Interfacial Polymerization. SEPARATIONS 2022. [DOI: 10.3390/separations9020028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
P-nitrophenol (PNP), a refractory hazardous substance, has not been efficiently utilized so far. In this paper, PNP is used as a membrane modification material for preparing poly(amide-co-ester) composite nanofiltration membrane. An organic solvent nanofiltration (OSN) membrane was prepared via interfacial polymerization reactionby using PNP and trimethyl chloride (TMC) on a ethylenediamine (EDA) crosslinked polyetherimide substrate. The results of ATR-FTIR and XPS show that interfacial polymerization occurs among with PNP and TMC and the terminal amine groups on the ethylenediamine crosslinked -PEI support forming a poly(amide-co-ester) toplayer. The NF-1PNP membrane maintained stable DMF performance permeance of 2.2 L m−2 h−1 bar−1 and rejection of 98% for Rose Bengal red (RB 1017.64 g mol−1) in 36 h continuous separation process. Furthermore, the average pore diameter of the two membranes including NF-1PNP and NF-1.25PNP, which is 0.40 and 0.36nm, respectively. This study not only provides a good way for the preparation of OSN membrane, but also provides a good demonstration for the comprehensive utilization of PNP and other toxic and harmful pollutants.
Collapse
|
34
|
Hypercrosslinking Polymers Fabricated from Divinyl Benzene via Friedel-Crafts Addition Polymerization. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2667-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Han W, Yin M, Zhang W, Liu Z, Wang N, Yong KT, An Q. Acid-Resistance and Self-Repairing Supramolecular Nanoparticle Membranes via Hydrogen-Bonding for Sustainable Molecules Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102594. [PMID: 34664794 PMCID: PMC8655207 DOI: 10.1002/advs.202102594] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Functional membranes generally wear out when applying in harsh conditions such as a strong acidic environment. In this work, high acid-resistance, long-lasting, and low-cost functional membranes are prepared from engineered hydrogen-bonding and pH-responsive supramolecular nanoparticle materials. As a proof of concept, the prepared membranes for dehydration of alcohols are utilized. The synthesized membranes have achieved a separation factor of 3000 when changing the feed solution pH from 7 to 1. No previous reports have demonstrated such unprecedentedly high-record separation performance (pervaporation separation index is around 1.1 × 107 g m-2 h-1 ). More importantly, the engineered smart membrane possesses fast self-repairing ability (48 h) that is inherited from the dynamic hydrogen bonds between the hydroxyl groups of polyacrylic acid and carbonyl groups of polyvinylpyrrolidone. To this end, the designed supramolecular materials offer the membrane community a new material type for preparing high acid resistance and long-lasting membranes for harsh environmental cleaning applications.
Collapse
Affiliation(s)
- Wang Han
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Environmental and Chemical EngineeringBeijing University of TechnologyBeijing100124China
| | - Ming‐Jie Yin
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Environmental and Chemical EngineeringBeijing University of TechnologyBeijing100124China
| | - Wen‐Hai Zhang
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Environmental and Chemical EngineeringBeijing University of TechnologyBeijing100124China
| | - Zhi‐Jie Liu
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Environmental and Chemical EngineeringBeijing University of TechnologyBeijing100124China
| | - Naixin Wang
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Environmental and Chemical EngineeringBeijing University of TechnologyBeijing100124China
| | - Ken Tye Yong
- The University of Sydney Nano InstituteThe University of SydneySydneyNew South Wales2006Australia
- School of Biomedical EngineeringThe University of SydneySydneyNew South Wales2006Australia
| | - Quan‐Fu An
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Environmental and Chemical EngineeringBeijing University of TechnologyBeijing100124China
| |
Collapse
|
36
|
Wang Z, Liang S, Kang Y, Zhao W, Xia Y, Yang J, Wang H, Zhang X. Manipulating interfacial polymerization for polymeric nanofilms of composite separation membranes. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Amidoxime-functionalized polymer of intrinsic microporosity (AOPIM-1)-based thin film composite membranes with ultrahigh permeance for organic solvent nanofiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
38
|
Kim SJ, Kwon Y, Kim D, Park H, Cho YH, Nam SE, Park YI. A Review on Polymer Precursors of Carbon Molecular Sieve Membranes for Olefin/Paraffin Separation. MEMBRANES 2021; 11:482. [PMID: 34209477 PMCID: PMC8304072 DOI: 10.3390/membranes11070482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
Carbon molecular sieve (CMS) membranes have been developed to replace or support energy-intensive cryogenic distillation for olefin/paraffin separation. Olefin and paraffin have similar molecular properties, but can be separated effectively by a CMS membrane with a rigid, slit-like pore structure. A variety of polymer precursors can give rise to different outcomes in terms of the structure and performance of CMS membranes. Herein, for olefin/paraffin separation, the CMS membranes derived from a number of polymer precursors (such as polyimides, phenolic resin, and polymers of intrinsic microporosity, PIM) are introduced, and olefin/paraffin separation properties of those membranes are summarized. The effects from incorporation of inorganic materials into polymer precursors and from a pyrolysis process on the properties of CMS membranes are also reviewed. Finally, the prospects and future directions of CMS membranes for olefin/paraffin separation and aging issues are discussed.
Collapse
Affiliation(s)
- Seong-Joong Kim
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Yuseong-gu, Daejeon 34114, Korea; (S.-J.K.); (Y.K.); (D.K.); (H.P.); (Y.H.C.); (S.-E.N.)
| | - YongSung Kwon
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Yuseong-gu, Daejeon 34114, Korea; (S.-J.K.); (Y.K.); (D.K.); (H.P.); (Y.H.C.); (S.-E.N.)
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - DaeHun Kim
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Yuseong-gu, Daejeon 34114, Korea; (S.-J.K.); (Y.K.); (D.K.); (H.P.); (Y.H.C.); (S.-E.N.)
- Department of Chemical and Biological Engineering, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 02841, Korea
| | - Hosik Park
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Yuseong-gu, Daejeon 34114, Korea; (S.-J.K.); (Y.K.); (D.K.); (H.P.); (Y.H.C.); (S.-E.N.)
| | - Young Hoon Cho
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Yuseong-gu, Daejeon 34114, Korea; (S.-J.K.); (Y.K.); (D.K.); (H.P.); (Y.H.C.); (S.-E.N.)
| | - Seung-Eun Nam
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Yuseong-gu, Daejeon 34114, Korea; (S.-J.K.); (Y.K.); (D.K.); (H.P.); (Y.H.C.); (S.-E.N.)
| | - You-In Park
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Yuseong-gu, Daejeon 34114, Korea; (S.-J.K.); (Y.K.); (D.K.); (H.P.); (Y.H.C.); (S.-E.N.)
| |
Collapse
|
39
|
Cao Y, Chen G, Wan Y, Luo J. Nanofiltration membrane for bio-separation: Process-oriented materials innovation. Eng Life Sci 2021; 21:405-416. [PMID: 34140851 PMCID: PMC8182275 DOI: 10.1002/elsc.202000100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/20/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Nanofiltration (NF) with advantages of high efficiency and low-cost has attracted increasing attentions in bio-separation. However, the large-scale application is limited by the inferior molecular selectivity, low chemical stability and serious membrane fouling. Many efforts, thus, have been devoted in NF materials design for specific applications to enhance the separation efficiency of bio-products and increase membrane life-time, as well as reduce the operating cost. This review summarized the recent progress of NF applications in bio-separation, discussed various demands for NF membrane in the bio-products purification and corresponding material innovations, finally proposed several practical suggestions for future research, which provided directions and guidance toward further product development and process industrialization.
Collapse
Affiliation(s)
- Yang Cao
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Guoqiang Chen
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
| | - Yinhua Wan
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| | - Jianquan Luo
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
40
|
Goh PS, Wong KC, Ismail AF. Nanocomposite Membranes for Liquid and Gas Separations from the Perspective of Nanostructure Dimensions. MEMBRANES 2020; 10:E297. [PMID: 33096685 PMCID: PMC7589584 DOI: 10.3390/membranes10100297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
One of the critical aspects in the design of nanocomposite membrane is the selection of a well-matched pair of nanomaterials and a polymer matrix that suits their intended application. By making use of the fascinating flexibility of nanoscale materials, the functionalities of the resultant nanocomposite membranes can be tailored. The unique features demonstrated by nanomaterials are closely related to their dimensions, hence a greater attention is deserved for this critical aspect. Recognizing the impressive research efforts devoted to fine-tuning the nanocomposite membranes for a broad range of applications including gas and liquid separation, this review intends to discuss the selection criteria of nanostructured materials from the perspective of their dimensions for the production of high-performing nanocomposite membranes. Based on their dimension classifications, an overview of the characteristics of nanomaterials used for the development of nanocomposite membranes is presented. The advantages and roles of these nanomaterials in advancing the performance of the resultant nanocomposite membranes for gas and liquid separation are reviewed. By highlighting the importance of dimensions of nanomaterials that account for their intriguing structural and physical properties, the potential of these nanomaterials in the development of nanocomposite membranes can be fully harnessed.
Collapse
Affiliation(s)
- Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (K.C.W.); (A.F.I.)
| | | | | |
Collapse
|