1
|
Keever K, Askari B. Exacerbation of atherosclerosis, hyperlipidemia and inflammation by MK886, an inhibitor of leukotriene biosynthesis, in obese and diabetic mice. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100203. [PMID: 39497763 PMCID: PMC11532750 DOI: 10.1016/j.crphar.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Leukotrienes are potent mediators of the inflammatory response and 5-lipoxygenase, the enzyme responsible for their synthesis, is dependent on its interaction with 5-lipoxygenase activating protein for optimum catalysis. Previous studies had demonstrated that macrophage infiltration into adipose tissue is associated with obesity and atherosclerosis in LDLR-/- mice fed a high fat-high carbohydrate. The present study was undertaken to determine whether inhibition of 5-lipoxygenase activating protein is efficacious in attenuating adipose tissue inflammation in LDLR-/- mice fed a high fat-high carbohydrate. 10-week old male LDLR-/- mice were fed a high fat-high carbohydrate diet for 22-weeks, with or without MK886 (40 mg/kg/day, ad libitum) a well-established 5-lipoxygenase activating protein inhibitor. All mice had an approximate 2-fold increase in total body weight, but a 6-week course of MK886 treatment had differential effects on adipose tissue size, without affecting macrophage accumulation. MK886 exacerbated the dyslipidemia, increased serum amyloid A content of high-density lipoproteins and caused a profound hepatomegaly. Dyslipidemia and increased serum amyloid A were concomitant with increases in atherosclerosis. In conclusion, MK886 paradoxically exacerbated hyperlipidemia and the pro-inflammatory phenotype in a mouse model of diet-induced atherosclerosis, possibly via a disruption of hepatic lipid metabolism and increased inflammation.
Collapse
Affiliation(s)
- Katherine Keever
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Bardia Askari
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, NY, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
2
|
Abstract
Leukotrienes are powerful immune-regulating lipid mediators with established pathogenic roles in inflammatory allergic diseases of the respiratory tract - in particular, asthma and hay fever. More recent work indicates that these lipids also contribute to low-grade inflammation, a hallmark of cardiovascular, neurodegenerative, and metabolic diseases as well as cancer. Biosynthesis of leukotrienes involves oxidative metabolism of arachidonic acid and proceeds via a set of soluble and membrane enzymes that are primarily expressed by cells of myeloid origin. In activated immune cells, these enzymes assemble at the endoplasmic and perinuclear membrane, constituting a biosynthetic complex. This Review describes recent advances in our understanding of the components of the leukotriene-synthesizing enzyme machinery, emerging opportunities for pharmacological intervention, and the development of new medicines exploiting both antiinflammatory and pro-resolving mechanisms.
Collapse
|
3
|
Soto ME, Guarner-Lans V, Herrera-Morales KY, Pérez-Torres I. Participation of Arachidonic Acid Metabolism in the Aortic Aneurysm Formation in Patients with Marfan Syndrome. Front Physiol 2018; 9:77. [PMID: 29483877 PMCID: PMC5816394 DOI: 10.3389/fphys.2018.00077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
Marfan syndrome (MFS) is a pleiotropic genetic disease involving the cardiovascular system where a fibrillin-1 mutation is present. This mutation is associated with accelerated activation of transforming growth factor β (TGFβ1) which contributes to the formation of aneurysms in the root of the aorta. There is an imbalance in the synthesis of thromboxane A2 (TXA2) and prostacyclin, that is a consequence of a differential protein expression of the isoforms of cyclooxygenases (COXs), suggesting an alteration of arachidonic acid (AA) metabolism. The aim of this study was to analyze the participation of AA metabolism associated with inflammatory factors in the dilation and dissection of the aortic aneurysm in patients with MFS. A decrease in AA (p = 0.02), an increase in oleic acid (OA), TGFβ1, tumor necrosis factor alpha (TNFα), prostaglandin E2 (PGE2) (p < 0.05), and COXs activity (p = 0.002) was found. The expressions of phospholipase A2 (PLA2), cytochrome P450 (CYP450 4A), 5-lipoxygenase (5-LOX), COX2 and TXA2R (p < 0.05) showed a significant increase in the aortic aneurysm of patients with MFS compared to control subjects. COX1, 6-keto-prostaglandin 1 alpha (6-keto-PG1α) and 8-isoprostane did not show significant changes. Histological examination of the aortas showed an increase of cystic necrosis, elastic fibers and collagen in MFS. The results suggest that there are inflammatory factors coupled to genetic factors that predispose to aortic endothelial dysfunction in the aortic tissue of patients with MFS. There is a decrease in the percentage of AA, associated with an increase of PLA2, COX2/TXA2R, CYP450 4A, and 5-LOX which leads to a greater synthesis of PGE2 than of 6-keto-PGF1α, thus contributing to the formation of the aortic aneurysm. The evident loss of the homeostasis in these mechanisms confirms that there is a participation of the AA pathway in the aneurysm progression in MFS.
Collapse
Affiliation(s)
- María E Soto
- Department of Immunology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Karla Y Herrera-Morales
- Cardiothoracic Surgery, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Israel Pérez-Torres
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| |
Collapse
|
4
|
Cysteinyl leukotriene receptor 1 antagonism prevents experimental abdominal aortic aneurysm. Proc Natl Acad Sci U S A 2018; 115:1907-1912. [PMID: 29432192 PMCID: PMC5828611 DOI: 10.1073/pnas.1717906115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cysteinyl-leukotrienes (cys-LTs) are lipid mediators involved in human inflammatory diseases, in particular asthma. We have previously identified cys-LTs in tissue specimens of human abdominal aortic aneurysm (AAA) and linked these mediators to increased metalloproteinase activity. Here we show in vivo that antagonism of the CysLT1 receptor by montelukast, an established antiasthma drug, protects against aneurysm in three mouse models of AAA at doses comparable to human medical practice. Together, these data support the role of cys-LTs in AAA and indicate a new potential therapeutic approach for treatment of this clinically silent and highly lethal disease. Cysteinyl-leukotrienes (cys-LTs) are 5-lipoxygenase-derived lipid mediators involved in the pathogenesis and progression of inflammatory disorders, in particular asthma. We have previously found evidence linking these mediators to increased levels of proteolytic enzymes in tissue specimens of human abdominal aortic aneurysm (AAA). Here we show that antagonism of the CysLT1 receptor by montelukast, an established antiasthma drug, protects against a strong aorta dilatation (>50% increase = aneurysm) in a mouse model of CaCl2-induced AAA at a dose comparable to human medical practice. Analysis of tissue extracts revealed that montelukast reduces the levels of matrix metalloproteinase-9 (MMP-9) and macrophage inflammatory protein-1α (MIP-1α) in the aortic wall. Furthermore, aneurysm progression was specifically mediated through CysLT1 signaling since a selective CysLT2 antagonist was without effect. A significantly reduced vessel dilatation is also observed when treatment with montelukast is started days after aneurysm induction, suggesting that the drug not only prevents but also stops and possibly reverts an already ongoing degenerative process. Moreover, montelukast reduced the incidence of aortic rupture and attenuated the AAA development in two additional independent models, i.e., angiotensin II- and porcine pancreatic elastase-induced AAA, respectively. Our results indicate that cys-LTs are involved in the pathogenesis of AAA and that antagonism of the CysLT1 receptor is a promising strategy for preventive and therapeutic treatment of this clinically silent and highly lethal disease.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Abdominal aortic aneurysm (AAA) is a pathological condition of permanent dilation that portends the potentially fatal consequence of aortic rupture. This review emphasizes recent advances in mechanistic insight into aneurysm pathogenesis and potential pharmacologic therapies that are on the horizon for AAAs. RECENT FINDINGS An increasing body of evidence demonstrates that genetic factors, including 3p12.3, DAB2IP, LDLr, LRP1, matrix metalloproteinase (MMP)-3, TGFBR2, and SORT1 loci, are associated with AAA development. Current human studies and animal models have shown that many leukocytes and inflammatory mediators, such as IL-1, IL-17, TGF-β, and angiotensin II, are involved in the pathogenesis of AAAs. Leukocytic infiltration into aortic media leads to smooth muscle cell depletion, generation of reactive oxygen species, and extracellular matrix fragmentation. Preclinical investigations into pharmacological therapies for AAAs have provided intriguing insight into the roles of microRNAs in regulating many pathological pathways in AAA development. Several large clinical trials are ongoing, seeking to translate preclinical findings into therapeutic options. SUMMARY Recent studies have identified many potential mechanisms involved in AAA pathogenesis that provide insight into the development of a medical treatment for this disease.
Collapse
|
6
|
Abstract
Abdominal aortic aneurysm (AAA) is a significant cause of mortality in older adults. A key mechanism implicated in AAA pathogenesis is inflammation and the associated production of reactive oxygen species (ROS) and oxidative stress. These have been suggested to promote degradation of the extracellular matrix (ECM) and vascular smooth muscle apoptosis. Experimental and human association studies suggest that ROS can be favourably modified to limit AAA formation and progression. In the present review, we discuss mechanisms potentially linking ROS to AAA pathogenesis and highlight potential treatment strategies targeting ROS. Currently, none of these strategies has been shown to be effective in clinical practice.
Collapse
|
7
|
Li X, Ballantyne LL, Che X, Mewburn JD, Kang JX, Barkley RM, Murphy RC, Yu Y, Funk CD. Endogenously generated omega-3 fatty acids attenuate vascular inflammation and neointimal hyperplasia by interaction with free fatty acid receptor 4 in mice. J Am Heart Assoc 2015; 4:jah3926. [PMID: 25845931 PMCID: PMC4579939 DOI: 10.1161/jaha.115.001856] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Omega‐3 polyunsaturated fatty acids (ω3 PUFAs) suppress inflammation through activation of free fatty acid receptor 4 (FFAR4), but this pathway has not been explored in the context of cardiovascular disease. We aimed to elucidate the involvement of FFAR4 activation by ω3 PUFAs in the process of vascular inflammation and neointimal hyperplasia in mice. Methods and Results We used mice with disruption of FFAR4 (Ffar4−/−), along with a strain that synthesizes high levels of ω3 PUFAs (fat‐1) and a group of crossed mice (Ffar4−/−/fat‐1), to elucidate the role of FFAR4 in vascular dysfunction using acute and chronic thrombosis/vascular remodeling models. The presence of FFAR4 in vascular‐associated cells including perivascular adipocytes and macrophages, but not platelets, was demonstrated. ω3 PUFAs endogenously generated in fat‐1 mice (n=9), but not in compound Ffar4−/−/fat‐1 mice (n=9), attenuated femoral arterial thrombosis induced by FeCl3. Neointimal hyperplasia and vascular inflammation in the common carotid artery were significantly curtailed 4 weeks after FeCl3 injury in fat‐1 mice (n=6). This included greater luminal diameter and enhanced blood flow, reduced intima:media ratio, and diminished macrophage infiltration in the vasculature and perivascular adipose tissue compared with control mice. These effects were attenuated in the Ffar4−/−/fat‐1 mice. Conclusions These results indicate that ω3 PUFAs mitigate vascular inflammation, arterial thrombus formation, and neointimal hyperplasia by interaction with FFAR4 in mice. Moreover, the ω3 PUFA–FFAR4 pathway decreases inflammatory responses with dampened macrophage transmigration and infiltration.
Collapse
Affiliation(s)
- Xinzhi Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (X.L., L.L.B., X.C., C.D.F.)
| | - Laurel L Ballantyne
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (X.L., L.L.B., X.C., C.D.F.)
| | - Xinghui Che
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (X.L., L.L.B., X.C., C.D.F.)
| | - Jeffrey D Mewburn
- Cancer Research Institute, Queen's University, Kingston, Ontario, Canada (J.D.M.)
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (J.X.K.)
| | - Robert M Barkley
- Department of Pharmacology, University of Colorado Denver, Aurora, CO (R.M.B., R.C.M.)
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO (R.M.B., R.C.M.)
| | - Ying Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (Y.Y.)
| | - Colin D Funk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (X.L., L.L.B., X.C., C.D.F.)
| |
Collapse
|
8
|
Bhamidipati CM, Whatling CA, Mehta GS, Meher AK, Hajzus VA, Su G, Salmon M, Upchurch GR, Owens GK, Ailawadi G. 5-Lipoxygenase pathway in experimental abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2014; 34:2669-78. [PMID: 25324573 PMCID: PMC4239157 DOI: 10.1161/atvbaha.114.304016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The impact of leukotriene production by the 5-lipoxygenase (5-LO) pathway in the pathophysiology of abdominal aortic aneurysms (AAAs) has been debated. Moreover, a clear mechanism through which 5-LO influences AAA remains unclear. APPROACH AND RESULTS Aneurysm formation was attenuated in 5-LO(-/-) mice, and in lethally irradiated wild-type mice reconstituted with 5-LO(-/-) bone marrow in an elastase perfusion model. Pharmacological inhibition of 5-LO-attenuated aneurysm formation in both aortic elastase perfused wild-type and angiotensin II-treated LDLr(-/-) (low-density lipoprotein receptor) mice, with resultant preservation of elastin and fewer 5-LO and MMP9 (matrix metalloproteinase)-producing cells. Separately, analysis of wild-type mice 7 days after elastase perfusion showed that 5-LO inhibition was associated with reduced polymorphonuclear leukocyte infiltration to the aortic wall. Importantly, 5-LO inhibition initiated 3 days after elastase perfusion in wild-type mice arrested progression of small AAA. Human AAA and control aorta corroborated these elastin and 5-LO expression patterns. CONCLUSIONS Inhibition of 5-LO by pharmacological or genetic approaches attenuates aneurysm formation and prevents fragmentation of the medial layer in 2 unique AAA models. Administration of 5-LO inhibitor in small AAA slows progression of AAA. Targeted interruption of the 5-LO pathway is a potential treatment strategy in AAA.
Collapse
MESH Headings
- Aged
- Angiotensin II/metabolism
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/enzymology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/enzymology
- Aortic Aneurysm, Abdominal/etiology
- Aortic Aneurysm, Abdominal/pathology
- Arachidonate 5-Lipoxygenase/deficiency
- Arachidonate 5-Lipoxygenase/genetics
- Arachidonate 5-Lipoxygenase/metabolism
- Bone Marrow Transplantation
- Disease Models, Animal
- Disease Progression
- Humans
- Hypercholesterolemia/complications
- Hypercholesterolemia/enzymology
- Lipoxygenase Inhibitors/pharmacology
- Male
- Matrix Metalloproteinase 9/biosynthesis
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Neutrophil Infiltration
- Pancreatic Elastase/metabolism
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Signal Transduction
- Transplantation Chimera/metabolism
Collapse
Affiliation(s)
- Castigliano M Bhamidipati
- From the Division of Thoracic and Cardiovascular Surgery, Department of Surgery (C.M.B., A.K.M., V.A.H., G.A.), Department of Surgery (G.S.M.), Division of Vascular and Endovascular Surgery, Department of Surgery (G.S., G.R.U.), Department of Molecular Physiology and Biological Physics (M.S., G.K.O.), Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Center (G.R.U., G.K.O., G.A.), and Department of Biomedical Engineering (G.A.), University of Virginia School of Medicine, Charlottesville; and Cardiovascular Disease Section, Bioscience Department, AstraZeneca R&D, Mölndal, Sweden (C.A.W.)
| | - Carl A Whatling
- From the Division of Thoracic and Cardiovascular Surgery, Department of Surgery (C.M.B., A.K.M., V.A.H., G.A.), Department of Surgery (G.S.M.), Division of Vascular and Endovascular Surgery, Department of Surgery (G.S., G.R.U.), Department of Molecular Physiology and Biological Physics (M.S., G.K.O.), Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Center (G.R.U., G.K.O., G.A.), and Department of Biomedical Engineering (G.A.), University of Virginia School of Medicine, Charlottesville; and Cardiovascular Disease Section, Bioscience Department, AstraZeneca R&D, Mölndal, Sweden (C.A.W.)
| | - Gaurav S Mehta
- From the Division of Thoracic and Cardiovascular Surgery, Department of Surgery (C.M.B., A.K.M., V.A.H., G.A.), Department of Surgery (G.S.M.), Division of Vascular and Endovascular Surgery, Department of Surgery (G.S., G.R.U.), Department of Molecular Physiology and Biological Physics (M.S., G.K.O.), Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Center (G.R.U., G.K.O., G.A.), and Department of Biomedical Engineering (G.A.), University of Virginia School of Medicine, Charlottesville; and Cardiovascular Disease Section, Bioscience Department, AstraZeneca R&D, Mölndal, Sweden (C.A.W.)
| | - Akshaya K Meher
- From the Division of Thoracic and Cardiovascular Surgery, Department of Surgery (C.M.B., A.K.M., V.A.H., G.A.), Department of Surgery (G.S.M.), Division of Vascular and Endovascular Surgery, Department of Surgery (G.S., G.R.U.), Department of Molecular Physiology and Biological Physics (M.S., G.K.O.), Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Center (G.R.U., G.K.O., G.A.), and Department of Biomedical Engineering (G.A.), University of Virginia School of Medicine, Charlottesville; and Cardiovascular Disease Section, Bioscience Department, AstraZeneca R&D, Mölndal, Sweden (C.A.W.)
| | - Vanessa A Hajzus
- From the Division of Thoracic and Cardiovascular Surgery, Department of Surgery (C.M.B., A.K.M., V.A.H., G.A.), Department of Surgery (G.S.M.), Division of Vascular and Endovascular Surgery, Department of Surgery (G.S., G.R.U.), Department of Molecular Physiology and Biological Physics (M.S., G.K.O.), Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Center (G.R.U., G.K.O., G.A.), and Department of Biomedical Engineering (G.A.), University of Virginia School of Medicine, Charlottesville; and Cardiovascular Disease Section, Bioscience Department, AstraZeneca R&D, Mölndal, Sweden (C.A.W.)
| | - Gang Su
- From the Division of Thoracic and Cardiovascular Surgery, Department of Surgery (C.M.B., A.K.M., V.A.H., G.A.), Department of Surgery (G.S.M.), Division of Vascular and Endovascular Surgery, Department of Surgery (G.S., G.R.U.), Department of Molecular Physiology and Biological Physics (M.S., G.K.O.), Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Center (G.R.U., G.K.O., G.A.), and Department of Biomedical Engineering (G.A.), University of Virginia School of Medicine, Charlottesville; and Cardiovascular Disease Section, Bioscience Department, AstraZeneca R&D, Mölndal, Sweden (C.A.W.)
| | - Morgan Salmon
- From the Division of Thoracic and Cardiovascular Surgery, Department of Surgery (C.M.B., A.K.M., V.A.H., G.A.), Department of Surgery (G.S.M.), Division of Vascular and Endovascular Surgery, Department of Surgery (G.S., G.R.U.), Department of Molecular Physiology and Biological Physics (M.S., G.K.O.), Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Center (G.R.U., G.K.O., G.A.), and Department of Biomedical Engineering (G.A.), University of Virginia School of Medicine, Charlottesville; and Cardiovascular Disease Section, Bioscience Department, AstraZeneca R&D, Mölndal, Sweden (C.A.W.)
| | - Gilbert R Upchurch
- From the Division of Thoracic and Cardiovascular Surgery, Department of Surgery (C.M.B., A.K.M., V.A.H., G.A.), Department of Surgery (G.S.M.), Division of Vascular and Endovascular Surgery, Department of Surgery (G.S., G.R.U.), Department of Molecular Physiology and Biological Physics (M.S., G.K.O.), Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Center (G.R.U., G.K.O., G.A.), and Department of Biomedical Engineering (G.A.), University of Virginia School of Medicine, Charlottesville; and Cardiovascular Disease Section, Bioscience Department, AstraZeneca R&D, Mölndal, Sweden (C.A.W.)
| | - Gary K Owens
- From the Division of Thoracic and Cardiovascular Surgery, Department of Surgery (C.M.B., A.K.M., V.A.H., G.A.), Department of Surgery (G.S.M.), Division of Vascular and Endovascular Surgery, Department of Surgery (G.S., G.R.U.), Department of Molecular Physiology and Biological Physics (M.S., G.K.O.), Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Center (G.R.U., G.K.O., G.A.), and Department of Biomedical Engineering (G.A.), University of Virginia School of Medicine, Charlottesville; and Cardiovascular Disease Section, Bioscience Department, AstraZeneca R&D, Mölndal, Sweden (C.A.W.)
| | - Gorav Ailawadi
- From the Division of Thoracic and Cardiovascular Surgery, Department of Surgery (C.M.B., A.K.M., V.A.H., G.A.), Department of Surgery (G.S.M.), Division of Vascular and Endovascular Surgery, Department of Surgery (G.S., G.R.U.), Department of Molecular Physiology and Biological Physics (M.S., G.K.O.), Department of Molecular Physiology and Biological Physics, Robert M. Berne Cardiovascular Research Center (G.R.U., G.K.O., G.A.), and Department of Biomedical Engineering (G.A.), University of Virginia School of Medicine, Charlottesville; and Cardiovascular Disease Section, Bioscience Department, AstraZeneca R&D, Mölndal, Sweden (C.A.W.).
| |
Collapse
|
9
|
Kuhn H, Banthiya S, van Leyen K. Mammalian lipoxygenases and their biological relevance. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:308-30. [PMID: 25316652 DOI: 10.1016/j.bbalip.2014.10.002] [Citation(s) in RCA: 458] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/30/2014] [Accepted: 10/03/2014] [Indexed: 02/07/2023]
Abstract
Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated not only in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOXs oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in the regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- Hartmut Kuhn
- Institute of Biochemistry, University Medicine Berlin - Charite, Chariteplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany.
| | - Swathi Banthiya
- Institute of Biochemistry, University Medicine Berlin - Charite, Chariteplatz 1, CCO-Building, Virchowweg 6, D-10117 Berlin, Germany
| | - Klaus van Leyen
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts Genrel Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
10
|
Lu H, Rateri DL, Bruemmer D, Cassis LA, Daugherty A. Novel mechanisms of abdominal aortic aneurysms. Curr Atheroscler Rep 2013; 14:402-12. [PMID: 22833280 DOI: 10.1007/s11883-012-0271-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Abdominal aortic aneurysms (AAAs) are a common but asymptomatic disease that has high susceptibility to rupture. Current therapeutic options are limited to surgical procedures because no pharmacological approaches have been proven to decrease either expansion or rupture of human AAAs. The current dearth of effective medical treatment is attributed to insufficient understanding of the mechanisms underlying the initiation, propagation and rupture of AAAs. This review will emphasize recent advances in mechanistic studies that may provide insights into potential pharmacological treatments for this disease. While we primarily focus on recent salient findings, we also discuss mechanisms that continue to be controversial depending on models under study. Despite the progress on exploring mechanisms of experimental AAAs, ultimate validation of mechanisms will require completion of prospective double-blinded clinical trials. In addition, we advocate increased emphasis of collaborative studies using animal models and human tissues for determination of mechanisms that explore expansion and rupture of existing AAAs.
Collapse
Affiliation(s)
- Hong Lu
- Saha Cardiovascular Research Center, Biomedical Biological Sciences Research Building, B243, University of Kentucky, Lexington, KY 40536-0509, USA.
| | | | | | | | | |
Collapse
|
11
|
Involvement of the renin-angiotensin system in abdominal and thoracic aortic aneurysms. Clin Sci (Lond) 2012; 123:531-43. [PMID: 22788237 DOI: 10.1042/cs20120097] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aortic aneurysms are relatively common maladies that may lead to the devastating consequence of aortic rupture. AAAs (abdominal aortic aneurysms) and TAAs (thoracic aortic aneurysms) are two common forms of aneurysmal diseases in humans that appear to have distinct pathologies and mechanisms. Despite this divergence, there are numerous and consistent demonstrations that overactivation of the RAS (renin-angiotensin system) promotes both AAAs and TAAs in animal models. For example, in mice, both AAAs and TAAs are formed during infusion of AngII (angiotensin II), the major bioactive peptide in the RAS. There are many proposed mechanisms by which the RAS initiates and perpetuates aortic aneurysms, including effects of AngII on a diverse array of cell types and mediators. These experimental findings are complemented in humans by genetic association studies and retrospective analyses of clinical data that generally support a role of the RAS in both AAAs and TAAs. Given the lack of a validated pharmacological therapy for any form of aortic aneurysm, there is a pressing need to determine whether the consistent findings on the role of the RAS in animal models are translatable to humans afflicted with these diseases. The present review compiles the recent literature that has shown the RAS as a critical component in the pathogenesis of aortic aneurysms.
Collapse
|
12
|
Cao RY, St Amand T, Li X, Yoon SH, Wang CP, Song H, Maruyama T, Brown PM, Zelt DT, Funk CD. Prostaglandin receptor EP4 in abdominal aortic aneurysms. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:313-21. [PMID: 22595380 DOI: 10.1016/j.ajpath.2012.03.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 02/01/2012] [Accepted: 03/06/2012] [Indexed: 01/09/2023]
Abstract
Abdominal aortic aneurysm (AAA) pathogenesis is distinguished by vessel wall inflammation. Cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase-1, key components of the most well-characterized inflammatory prostaglandin pathway, contribute to AAA development in the 28-day angiotensin II infusion model in mice. In this study, we used this model to examine the role of the prostaglandin E receptor subtype 4 (EP4) and genetic knockdown of COX-2 expression (70% to 90%) in AAA pathogenesis. The administration of the prostaglandin receptor EP4 antagonist AE3-208 (10 mg/kg per day) to apolipoprotein E (apoE)-deficient mice led to active drug plasma concentrations and reduced AAA incidence and severity compared with control apoE-deficient mice (P < 0.01), whereas COX-2 genetic knockdown/apoE-deficient mice displayed only a minor, nonsignificant decrease in incidence of AAA. EP4 receptor protein was present in human and mouse AAA, as observed by using Western blot analysis. Aortas from AE3-208-treated mice displayed evidence of a reduced inflammatory phenotype compared with controls. Atherosclerotic lesion size at the aortic root was similar between all groups. In conclusion, the prostaglandin E(2)-EP4 signaling pathway plays a role in the AAA inflammatory process. Blocking the EP4 receptor pharmacologically reduces both the incidence and severity of AAA in the angiotensin II mouse model, potentially via attenuation of cytokine/chemokine synthesis and the reduction of matrix metalloproteinase activities.
Collapse
Affiliation(s)
- Richard Y Cao
- Department of Biomedical and Molecular Sciences, Queen's University and Kingston General Hospital, Kingston, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Capra V, Bäck M, Barbieri SS, Camera M, Tremoli E, Rovati GE. Eicosanoids and Their Drugs in Cardiovascular Diseases: Focus on Atherosclerosis and Stroke. Med Res Rev 2012; 33:364-438. [DOI: 10.1002/med.21251] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| | - Magnus Bäck
- Department of Cardiology and Center for Molecular Medicine; Karolinska University Hospital; Stockholm Sweden
| | | | - Marina Camera
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - Elena Tremoli
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
- Centro Cardiologico Monzino; I.R.C.C.S Milan Italy
| | - G. Enrico Rovati
- Department of Pharmacological Sciences; University of Milan; Via Balzaretti 9 20133 Milan Italy
| |
Collapse
|
14
|
Revermann M, Mieth A, Popescu L, Paulke A, Wurglics M, Pellowska M, Fischer AS, Steri R, Maier TJ, Schermuly RT, Geisslinger G, Schubert-Zsilavecz M, Brandes RP, Steinhilber D. A pirinixic acid derivative (LP105) inhibits murine 5-lipoxygenase activity and attenuates vascular remodelling in a murine model of aortic aneurysm. Br J Pharmacol 2012; 163:1721-32. [PMID: 21410457 DOI: 10.1111/j.1476-5381.2011.01321.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Arachidonic acid derivatives play a central role in inflammation processes. Arachidonic acid is metabolized by several enzymes, particularly cyclooxygenases (COX), 5-lipoxygenase (5-LOX) and microsomal prostaglandin E-synthase-1 (mPGES-1) to pro-inflammatory mediators. EXPERIMENTAL APPROACH We determined the effect of LP105, a pirinixic acid derivative which acts as inhibitor of 5-LOX, COX and mPGES-1, on aortic aneurysm development in mice and on 5-LOX activity in murine monocytes. KEY RESULTS In a monocyte cell line (RAW264.7), LP105 inhibited 5-LOX in whole cells (IC(50) : 1-3 µM) and in supernatants (IC(50) : ∼10 µM). Oral administration of LP105 to mice resulted in therapeutic tissue and plasma levels. Aortic aneurysms were induced in ApoE(-/-) mice by angiotensin II (AngII) and LP105 (5 mg·day(-1) per animal) was co-administered to a subgroup. Compared with animals receiving AngII alone, the LP105+AngII group showed a lower heart rate, a trend towards reduced heart to body weight ratio but similar hypertensive responses. AngII alone significantly increased aortic weight and diameter but co-treatment with LP105+AngII prevented these changes. LC/MS-MS studies revealed increased 15-hydroxytetraenoic acid (15-HETE) and 14,15-epoxyeicosatrienoic acid (14,15-EET) plasma levels in LP105-treated animals. In the murine kidney, mRNAs of EET-generating or metabolizing enzymes and of 5-LOX and 15-LOX were unaffected by LP105. LP105 also did not inhibit the EET-metabolizing soluble epoxide hydrolase. CONCLUSIONS AND IMPLICATIONS LP105 was a potent inhibitor of monocyte 5-LOX and reduced AngII-induced vascular remodelling in mice. A shift of arachidonic acid metabolism to the protective EET pathway may contribute to the beneficial effects of LP105.
Collapse
Affiliation(s)
- M Revermann
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin, Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 2011; 111:5866-98. [PMID: 21936577 DOI: 10.1021/cr200246d] [Citation(s) in RCA: 649] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
16
|
Rateri DL, Howatt DA, Moorleghen JJ, Charnigo R, Cassis LA, Daugherty A. Prolonged infusion of angiotensin II in apoE(-/-) mice promotes macrophage recruitment with continued expansion of abdominal aortic aneurysm. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1542-8. [PMID: 21763672 PMCID: PMC3157213 DOI: 10.1016/j.ajpath.2011.05.049] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/21/2011] [Accepted: 05/09/2011] [Indexed: 12/23/2022]
Abstract
Angiotensin II (AngII) infusion initiates abdominal aortic aneurysm (AAA) development due to medial disruption and results in luminal dilation and thrombus formation. The objective of this study was to determine whether AAA progressed during protracted AngII infusion. Male apoE(-/-) mice were infused with AngII using miniosmotic pumps. On day 27, suprarenal aortic luminal diameters were ultrasonically measured to identify mice exhibiting AAAs. Mice were designated to three groups with similar mean luminal dilation. Group 1 mice were sacrificed on day 28. Group 2 and 3 mice were subsequently infused with saline or AngII, respectively, for an additional 56 days. In Group 2, saline infusion-after the initial 28 days of AngII infusion-led to an immediate decrease in systolic blood pressure. Over the subsequent 56 days of saline infusion, there were no aneurysm-related deaths or significant changes in luminal diameter. In contrast, continuous AngII infusion in Group 3 maintained persistently increased systolic blood pressure, with aneurysmal rupture-associated deaths, increased luminal diameters, and tissue remodeling. Aortic aneurysmal segments that expanded during continuous AngII infusion exhibited macrophage accumulation in regions of medial disruption, predominantly on the adventitial aspect. Macrophages immunostained for CD206 more than for iNOS, consistent with an M2 phenotype. In conclusion, prolonged AngII infusion promotes AAA expansion, and is associated with enhanced rupture rates and increased macrophage infiltration.
Collapse
Affiliation(s)
- Debra L. Rateri
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | | | - Richard Charnigo
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
| | - Lisa A. Cassis
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
17
|
Increased expression of leukotriene C4 synthase and predominant formation of cysteinyl-leukotrienes in human abdominal aortic aneurysm. Proc Natl Acad Sci U S A 2010; 107:21093-7. [PMID: 21078989 DOI: 10.1073/pnas.1015166107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Leukotrienes (LTs) are arachidonic acid-derived lipid mediators involved in the pathogenesis and progression of diverse inflammatory disorders. The cysteinyl-leukotrienes LTC(4), LTD(4), and LTE(4) are important mediators of asthma, and LTB(4) has recently been implicated in atherosclerosis. Here we report that mRNA levels for the three key enzymes/proteins in the biosynthesis of cysteinyl-leukotrienes, 5-lipoxygenase (5-LO), 5-LO-activating protein (FLAP), and LTC(4) synthase (LTC(4)S), are significantly increased in the wall of human abdominal aortic aneurysms (AAAs). In contrast, mRNA levels of LTA(4) hydrolase, the enzyme responsible for the biosynthesis of LTB(4), are not increased. Immunohistochemical staining of AAA wall revealed focal expression of 5-LO, FLAP, and LTC(4)S proteins in the media and adventitia, localized in areas rich in inflammatory cells, including macrophages, neutrophils, and mast cells. Human AAA wall tissue converts arachidonic acid and the unstable epoxide LTA(4) into significant amounts of cysteinyl-leukotrienes and to a lesser extent LTB(4). Furthermore, challenge of AAA wall tissue with exogenous LTD(4) increases the release of matrix metalloproteinase (MMP) 2 and 9, and selective inhibition of the CysLT1 receptor by montelukast blocks this effect. The increased expression of LTC(4)S, together with the predominant formation of cysteinyl-leukotrienes and effects on MMPs production, suggests a mechanism by which LTs may promote matrix degradation in the AAA wall and identify the components of the cysteinyl-leukotriene pathway as potential targets for prevention and treatment of AAA.
Collapse
|
18
|
Cao RY, Amand T, Ford MD, Piomelli U, Funk CD. The Murine Angiotensin II-Induced Abdominal Aortic Aneurysm Model: Rupture Risk and Inflammatory Progression Patterns. Front Pharmacol 2010; 1:9. [PMID: 21713101 PMCID: PMC3112241 DOI: 10.3389/fphar.2010.00009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/22/2010] [Indexed: 01/22/2023] Open
Abstract
An abdominal aortic aneurysm (AAA) is an enlargement of the greatest artery in the body defined as an increase in diameter of 1.5-fold. AAAs are common in the elderly population and thousands die each year from their complications. The most commonly used mouse model to study the pathogenesis of AAA is the angiotensin II (Ang II) infusion method delivered via osmotic mini-pump for 28 days. Here, we studied the site-specificity and onset of aortic rupture, characterized three-dimensional (3D) images and flow patterns in developing AAAs by ultrasound imaging, and examined macrophage infiltration in the Ang II model using 65 apolipoprotein E-deficient mice. Aortic rupture occurred in 16 mice (25%) and was nearly as prevalent at the aortic arch (44%) as it was in the suprarenal region (56%) and was most common within the first 7 days after Ang II infusion (12 of 16; 75%). Longitudinal ultrasound screening was found to correlate nicely with histological analysis and AAA volume renderings showed a significant relationship with AAA severity index. Aortic dissection preceded altered flow patterns and macrophage infiltration was a prominent characteristic of developing AAAs. Targeting the inflammatory component of AAA disease with novel therapeutics will hopefully lead to new strategies to attenuate aneurysm growth and aortic rupture.
Collapse
Affiliation(s)
- Richard Y Cao
- Department of Physiology, Queen's University Kingston, ON, Canada
| | | | | | | | | |
Collapse
|
19
|
Poeckel D, Funk CD. The 5-lipoxygenase/leukotriene pathway in preclinical models of cardiovascular disease. Cardiovasc Res 2010; 86:243-53. [PMID: 20093252 DOI: 10.1093/cvr/cvq016] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Leukotrienes (LTs) derived from 5-lipoxygenase (5-LO) activity are most widely known for their actions during acute inflammation and asthma. 5-LO/LT pathway involvement in cardiovascular disease (CVD) pathogenesis has come to the forefront based on provocative human genetic/population and animal studies leading to the hypothesis that this pathway promotes atherosclerosis, abdominal aortic aneurysm, and myocardial infarction/reperfusion injury via increased leucocyte chemotaxis, vascular inflammation and enhanced permeability, and subsequent tissue/matrix degeneration. A series of pre-clinical studies have tested this hypothesis by means of genetic or pharmacological inhibition of either the LT biosynthesis axis (5-LO, 5-LO-activating protein, LTA(4) hydrolase, LTC(4) synthase) or the cognate LT receptors. Here, we summarize, compare, and analyse these animal studies and relate their findings to human disease pathogenesis. We draw a complex picture of 5-LO/LT participation in cardiovascular disorders, which is further complicated by marked differences between species. Moreover, we discuss how the cytokine footprint of the respective pathological conditions determines the expression level and hence, the contribution of components of the pathway to the overall disease state. Current knowledge implies a role for 5-LO and LTs during the early/acute phase of CVD, but our understanding of a putative 5-LO/LT involvement in more advanced stages of CVD is limited, thereby preventing simple extrapolation of findings from animal studies to humans.
Collapse
Affiliation(s)
- Daniel Poeckel
- Department of Physiology, Queen's University, 433 Botterell Hall, Kingston, ON, Canada K7L 3N6
| | | |
Collapse
|
20
|
Pharmacological inhibition of BLT1 diminishes early abdominal aneurysm formation. Atherosclerosis 2009; 210:107-13. [PMID: 20035940 DOI: 10.1016/j.atherosclerosis.2009.11.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/26/2009] [Accepted: 11/21/2009] [Indexed: 11/23/2022]
Abstract
Leukotriene B(4) (LTB(4)) is a pro-inflammatory lipid mediator generated by the enzymes 5-lipoxygenase (5-LO) and LTA(4)-hydrolase. LTB(4) signals primarily through its G protein-coupled receptor BLT1, which is highly expressed on specific leukocyte subsets. Recent genetic studies in humans as well as knockout studies in mice have implicated the leukotriene synthesis pathway in several vascular pathologies. Here we tested the hypothesis that pharmacological inhibition of BLT1 diminishes abdominal aortic aneurysm (AAA) formation, a major complication associated with atherosclerotic vascular disease. Chow-fed Apoe(-/-) mice were treated with a 4-week infusion of Angiotensin II (AngII, 1000 ng/(kg min)) beginning at 10 weeks of age, in a well-established murine AAA model. Administration of the selective BLT1 antagonist CP-105,696 beginning simultaneously with AngII infusion reduced the incidence of AAA formation from 82% to 40% (p<0.05). There was a concordant reduction in maximal aortic diameter from 2.35 mm to 1.56 mm (p<0.05). While administration of the antagonist on day 14 after the onset of AngII infusion diminished lesional macrophage accumulation, it did not significantly alter the size of AAA by day 42. Thus, pharmacological inhibition of BLT1 may ultimately hold clinical promise, but early intervention may be critical.
Collapse
|
21
|
Houard X, Ollivier V, Louedec L, Michel J, Back M. Differential inflammatory activity across human abdominal aortic aneurysms reveals neutrophilderived leukotriene B4 as a major chemotactic factor released from the intraluminal thrombus. FASEB J 2009; 23:1376-83. [DOI: 10.1096/fj.08-116202] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Xavier Houard
- INSERM U698 Paris 7 Denis Diderot UniversityCardiovascular HematologyBio‐Engineering and RemodelingBichat‐Claude Bernard HospitalParisFrance
| | - Veronique Ollivier
- INSERM U698 Paris 7 Denis Diderot UniversityCardiovascular HematologyBio‐Engineering and RemodelingBichat‐Claude Bernard HospitalParisFrance
| | - Liliane Louedec
- INSERM U698 Paris 7 Denis Diderot UniversityCardiovascular HematologyBio‐Engineering and RemodelingBichat‐Claude Bernard HospitalParisFrance
| | - Jean‐Baptiste Michel
- INSERM U698 Paris 7 Denis Diderot UniversityCardiovascular HematologyBio‐Engineering and RemodelingBichat‐Claude Bernard HospitalParisFrance
| | - Magnus Back
- INSERM U698 Paris 7 Denis Diderot UniversityCardiovascular HematologyBio‐Engineering and RemodelingBichat‐Claude Bernard HospitalParisFrance
- Department of Cardiology and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| |
Collapse
|
22
|
Bäck M. Inflammatory signaling through leukotriene receptors in atherosclerosis. Curr Atheroscler Rep 2008; 10:244-51. [DOI: 10.1007/s11883-008-0038-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Lu H, Rateri DL, Cassis LA, Daugherty A. The role of the renin-angiotensin system in aortic aneurysmal diseases. Curr Hypertens Rep 2008; 10:99-106. [PMID: 18474175 PMCID: PMC2846534 DOI: 10.1007/s11906-008-0020-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The renin-angiotensin system has been invoked in the development of both abdominal and thoracic aortic aneurysms. This has been demonstrated experimentally by the chronic subcutaneous infusion of angiotensin II, which consistently leads to development of abdominal aortic aneurysms (AAAs) in mice. Angiotensin II-induced AAAs have highly heterogenous cellular and extracellular matrix characteristics throughout the aorta that change markedly with infusion duration. The mechanistic basis for the reproducible location of AAA development has not been elucidated, but many insights have been provided, especially regarding receptor and inflammatory mechanisms. A recent clinical study provided limited evidence for extrapolating these results to mechanisms of human AAAs. Experimental evidence has also demonstrated that antagonism of angiotensin II type 1 (AT1) receptors prevents ascending aortic aneurysms in a murine model of Marfan's syndrome. A clinical study is currently ongoing to demonstrate the efficacy of AT1 receptor antagonism in humans.
Collapse
Affiliation(s)
- Hong Lu
- Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Debra L. Rateri
- Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
| | - Lisa A. Cassis
- Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| | - Alan Daugherty
- Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky
| |
Collapse
|