1
|
Ebright B, Yu Z, Dave P, Dikeman D, Hamm-Alvarez S, de Paiva CS, Louie S. Effects of age on lacrimal gland bioactive lipids. Ocul Surf 2024; 33:64-73. [PMID: 38705236 PMCID: PMC12014011 DOI: 10.1016/j.jtos.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE Polyunsaturated fatty acids (PUFA) are a source of bioactive lipids regulating inflammation and its resolution. METHODS Changes in PUFA metabolism were compared between lacrimal glands (LGs) from young and aged C57BL/6 J mice using a targeted lipidomics assay, as was the gene expression of enzymes involved in the metabolism of these lipids. RESULTS Global reduction in PUFAs and their metabolites was observed in aged LGs compared to young controls, averaging between 25 and 66 % across all analytes. ꞷ-6 arachidonic acid (AA) metabolites were all reduced in aged LGs, where the changes in prostaglandin E2 (PGE2) and lipoxin A4 (LXA4) were statistically significant. Several other 5-lipoxygenase (5-LOX) mediated metabolites were significantly reduced in the aged LGs, including D-series resolvins (e.g., RvD4, RvD5, and RvD6). Along with the RvDs, several ꞷ-3 docosahexaenoic acid (DHA) metabolites such as 14-HDHA, neuroprotectin D1 (NPD1), Maresin 2 (MaR2), and MaR 1 metabolite (22-COOH-MaR1) were significantly reduced in aged LGs. Similarly, ꞷ-3 eicosapentaenoic acid (EPA) and its metabolites were significantly reduced in aged LGs, where the most significantly reduced was 18-HEPE. Using metabolite ratios (product:precursor) for specific metabolic conversions as surrogate enzymatic measures, reduced 12-LOX activity was identified in aged LGs. CONCLUSION In this study, global reduction of PUFAs and their metabolites was found in the LGs of aged female C57BL/6 J compared to young controls. A consistent reduction was observed across all detected lipid analytes except for ꞷ-3 docosapentaenoic acid (DPA) and its special pro-resolving mediator (SPM) metabolites in aged mice, suggesting an increased risk for LG inflammation.
Collapse
Affiliation(s)
- Brandon Ebright
- Department of Clinical Pharmacy, Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States, 90089-9121, USA.
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| | - Priyal Dave
- Department of Clinical Pharmacy, Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States, 90089-9121, USA.
| | - Dante Dikeman
- Department of Clinical Pharmacy, Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States, 90089-9121, USA.
| | - Sarah Hamm-Alvarez
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA; Department of Pharmaceutical Sciences, Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| | - Stan Louie
- Department of Clinical Pharmacy, Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States, 90089-9121, USA.
| |
Collapse
|
2
|
Alba MM, Ebright B, Hua B, Slarve I, Zhou Y, Jia Y, Louie SG, Stiles BL. Eicosanoids and other oxylipins in liver injury, inflammation and liver cancer development. Front Physiol 2023; 14:1098467. [PMID: 36818443 PMCID: PMC9932286 DOI: 10.3389/fphys.2023.1098467] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Liver cancer is a malignancy developed from underlying liver disease that encompasses liver injury and metabolic disorders. The progression from these underlying liver disease to cancer is accompanied by chronic inflammatory conditions in which liver macrophages play important roles in orchestrating the inflammatory response. During this process, bioactive lipids produced by hepatocytes and macrophages mediate the inflammatory responses by acting as pro-inflammatory factors, as well as, playing roles in the resolution of inflammation conditions. Here, we review the literature discussing the roles of bioactive lipids in acute and chronic hepatic inflammation and progression to cancer.
Collapse
Affiliation(s)
- Mario M. Alba
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Brandon Ebright
- Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Brittney Hua
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Ielyzaveta Slarve
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Yiren Zhou
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Yunyi Jia
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Stan G. Louie
- Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
| | - Bangyan L. Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, Unites States
- Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, Unites States
| |
Collapse
|
3
|
Chen XS, Cui JR, Meng XL, Wang SH, Wei W, Gao YL, Shou ST, Liu YC, Chai YF. Angiotensin-(1-7) ameliorates sepsis-induced cardiomyopathy by alleviating inflammatory response and mitochondrial damage through the NF-κB and MAPK pathways. J Transl Med 2023; 21:2. [PMID: 36593471 PMCID: PMC9807106 DOI: 10.1186/s12967-022-03842-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND There is no available viable treatment for Sepsis-Induced Cardiomyopathy (SIC), a common sepsis complication with a higher fatality risk. The septic patients showed an abnormal activation of the renin angiotensin (Ang) aldosterone system (RAAS). However, it is not known how the Ang II and Ang-(1-7) affect SIC. METHODS Peripheral plasma was collected from the Healthy Control (HC) and septic patients and Ang II and Ang-(1-7) protein concentrations were measured. The in vitro and in vivo models of SIC were developed using Lipopolysaccharide (LPS) to preliminarily explore the relationship between the SIC state, Ang II, and Ang-(1-7) levels, along with the protective function of exogenous Ang-(1-7) on SIC. RESULTS Peripheral plasma Ang II and the Ang II/Ang-(1-7) levels in SIC-affected patients were elevated compared to the levels in HC and non-SIC patients, however, the HC showed higher Ang-(1-7) levels. Furthermore, peripheral plasma Ang II, Ang II/Ang-(1-7), and Ang-(1-7) levels in SIC patients were significantly correlated with the degree of myocardial injury. Additionally, exogenous Ang-(1-7) can attenuate inflammatory response, reduce oxidative stress, maintain mitochondrial dynamics homeostasis, and alleviate mitochondrial structural and functional damage by inhibiting nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, thus alleviating SIC. CONCLUSIONS Plasma Ang-(1-7), Ang II, and Ang II/Ang-(1-7) levels were regarded as significant SIC biomarkers. In SIC, therapeutic targeting of RAAS, for example with Ang-(1-7), may exert protective roles against myocardial damage.
Collapse
Affiliation(s)
- Xin-Sen Chen
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Jing-Rui Cui
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Xiang-Long Meng
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Shu-Hang Wang
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Wei Wei
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yu-Lei Gao
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Song-Tao Shou
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yan-Cun Liu
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| | - Yan-Fen Chai
- grid.412645.00000 0004 1757 9434Department of Emergency Medicine, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052 China
| |
Collapse
|
4
|
Batiha GES, Al-Gareeb AI, Elekhnawy E, Al-kuraishy HM. Potential role of lipoxin in the management of COVID-19: a narrative review. Inflammopharmacology 2022; 30:1993-2001. [PMID: 36114383 PMCID: PMC9483298 DOI: 10.1007/s10787-022-01070-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/20/2022] [Indexed: 01/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection leads to the development of coronavirus disease 2019 (COVID-19), which causes endothelial dysfunction (ED), oxidative stress (OS), and inflammatory disorders. These changes cause hypoxia and cytokine storm with the development of cardio-pulmonary complications. Bioactive lipids and other polyunsaturated fatty acids participate in a vital role in the SARS-CoV-2 infection process. One of these mediators is the anti-inflammatory compound, lipoxin (LX). LXs are produced from arachidonic acid (AA) by collaboration between 5-lipoxygenase (5-LO) and 12-15 LO during cell interactions. Thus, our goal was to review the probable role of LXs in COVID-19 regarding the effects of LXs on the inflammatory signaling pathways that are linked with COVID-19 pathogenesis and complications.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| | - Ali I. Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527 Egypt
| | - Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, 14132 Iraq
| |
Collapse
|
5
|
Heinrich L, Booijink R, Khurana A, Weiskirchen R, Bansal R. Lipoxygenases in chronic liver diseases: current insights and future perspectives. Trends Pharmacol Sci 2021; 43:188-205. [PMID: 34961619 DOI: 10.1016/j.tips.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver diseases (CLDs) caused by viral infections, alcohol/drug abuse, or metabolic disorders affect millions of people globally and have increased mortality owing to the lack of approved therapies. Lipoxygenases (LOXs) are a family of multifaceted enzymes that are responsible for the oxidation of polyunsaturated fatty acids (PUFAs) and are implicated in the pathogenesis of multiple disorders including liver diseases. This review describes the three main LOX signaling pathways - 5-, 12-, and 15-LOX - and their involvement in CLDs. We also provide recent insights and future perspectives on LOX-related hepatic pathophysiology, and discuss the potential of LOXs and LOX-derived metabolites as diagnostic biomarkers and therapeutic targets in CLDs.
Collapse
Affiliation(s)
- Lena Heinrich
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede 7500 AE, The Netherlands
| | - Richell Booijink
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede 7500 AE, The Netherlands
| | - Amit Khurana
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede 7500 AE, The Netherlands; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen 52074, Germany; Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT), Hauz Khas, New Delhi 110016, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, Aachen 52074, Germany
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell BioPhysics, Faculty of Science and Technology, Technical Medical Center, University of Twente, Enschede 7500 AE, The Netherlands.
| |
Collapse
|
6
|
Stoyell-Conti FF, Itty S, Abraham C, Rigatto K, West CA, Speth RC. 125I-Angiotensin 1-7 binds to a different site than angiotensin 1-7 in tissue membrane preparations. Endocrine 2021; 72:529-538. [PMID: 33415576 DOI: 10.1007/s12020-020-02572-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE To study the receptor for Angiotensin (Ang) 1-7 using a radioligand (125I-Ang 1-7)-binding assay. For more than a decade, Mas has been viewed as the receptor for Ang 1-7; however, Ang 1-7 binding has not been pharmacologically characterized in tissue membrane preparations. METHODS Radioligand-binding assays were carried out using tissue membrane preparations using radioiodinated Angiotensin 1-7 (125I-Ang 1-7) to characterize its binding site. Non-radioactive 127I-Ang 1-7 was used to test if the addition of an iodine to the tyrosine4 moiety of Ang 1-7 changes the ability of Ang 1-7 to competitively inhibit 125I-Ang 1-7 binding. RESULTS 125I-Ang 1-7 binds saturably, with moderately high affinity (10-20 nM) to a binding site in rat liver membranes that is displaceable by 127I-Ang 1-7 at nanomolar concentrations (IC50 = 62 nM) while Ang 1-7 displaces at micromolar concentrations (IC50 = 80 µM) at ~22 °C. This binding was also displaceable by inhibitors of metalloproteases at room temperature. This suggests that 125I-Ang 1-7 binds to MMPs and/or ADAMs as well as other liver membrane elements at ~ 22 °C. However, when 125I-Ang 1-7-binding assays were run at 0-4 °C, the same MMP inhibitors did not effectively compete for 125I-Ang 1-7. CONCLUSIONS The addition of an iodine molecule to the tyrosine in position 4 of Ang 1-7 drastically changes the binding characteristics of this peptide making it unsuitable for characterization of Ang 1-7 receptors.
Collapse
Affiliation(s)
- Filipe F Stoyell-Conti
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Sarin Itty
- Halmos College of Natural Science & Oceanography, Nova Southeastern University, Fort Lauderdale, FL, USA
- Kiran P. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Christy Abraham
- Halmos College of Natural Science & Oceanography, Nova Southeastern University, Fort Lauderdale, FL, USA
- Kiran P. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Katya Rigatto
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
- Laboratório de Fisiologia Translacional, Universidade Federal de Ciências da Saúde de Porto, Alegre, RS, Brazil
| | - Crystal A West
- Department of Biology, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Robert C Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
- Department of Pharmacology and Physiology, School of Medicine, Georgetown University, Washington, DC, USA.
| |
Collapse
|
7
|
Oz M, Lorke DE, Kabbani N. A comprehensive guide to the pharmacologic regulation of angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor. Pharmacol Ther 2021; 221:107750. [PMID: 33275999 PMCID: PMC7854082 DOI: 10.1016/j.pharmthera.2020.107750] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
The recent emergence of coronavirus disease-2019 (COVID-19) as a global pandemic has prompted scientists to address an urgent need for defining mechanisms of disease pathology and treatment. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for COVID-19, employs angiotensin converting enzyme 2 (ACE2) as its primary target for cell surface attachment and likely entry into the host cell. Thus, understanding factors that may regulate the expression and function of ACE2 in the healthy and diseased body is critical for clinical intervention. Over 66% of all adults in the United States are currently using a prescription drug and while earlier findings have focused on possible upregulation of ACE2 expression through the use of renin angiotensin system (RAS) inhibitors, mounting evidence suggests that various other widely administered drugs used in the treatment of hypertension, heart failure, diabetes mellitus, hyperlipidemias, coagulation disorders, and pulmonary disease may also present a varied risk for COVID-19. Specifically, we summarize mechanisms on how heparin, statins, steroids and phytochemicals, besides their established therapeutic effects, may also interfere with SARS-CoV-2 viral entry into cells. We also describe evidence on the effect of several vitamins, phytochemicals, and naturally occurring compounds on ACE2 expression and activity in various tissues and disease models. This comprehensive review aims to provide a timely compendium on the potential impact of commonly prescribed drugs and pharmacologically active compounds on COVID-19 pathology and risk through regulation of ACE2 and RAS signaling.
Collapse
Key Words
- adam17, a disintegrin and metalloprotease 17
- ace, angiotensin i converting enzyme
- ace-inh., angiotensin i converting enzyme inhibitor
- ampk, amp-activated protein kinase
- ang-ii, angiotensin ii
- arb, angiotensin ii type 1-receptor blocker
- ards, acute respiratory distress syndrome
- at1-r, angiotensin ii type 1-receptor
- βarb, β-adrenergic receptor blockers
- bk, bradykinin
- ccb, calcium channel blockers
- ch25h, cholesterol-25-hydroxylase
- copd, chronic obstructive lung disease
- cox, cyclooxygenase
- covid-19, coronavirus disease-2019
- dabk, [des-arg9]-bradykinin
- erk, extracellular signal-regulated kinase
- 25hc, 25-hydroxycholesterol
- hs, heparan sulfate
- hspg, heparan sulfate proteoglycan
- ibd, inflammatory bowel disease
- map, mitogen-activated protein
- mers, middle east respiratory syndrome
- mrb, mineralocorticoid receptor blocker
- nos, nitric oxide synthase
- nsaid, non-steroid anti-inflammatory drug
- ras, renin-angiotensin system
- sars-cov, severe acute respiratory syndrome coronavirus
- sh, spontaneously hypertensive
- s protein, spike protein
- sirt1, sirtuin 1
- t2dm, type 2 diabetes mellitus
- tcm, traditional chinese medicine
- tmprss2, transmembrane protease, serine 2
- tnf, tumor necrosis factor
- ufh, unfractionated heparin
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nadine Kabbani
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
8
|
Kaur U, Acharya K, Mondal R, Singh A, Saso L, Chakrabarti S, Chakrabarti SS. Should ACE2 be given a chance in COVID-19 therapeutics: A semi-systematic review of strategies enhancing ACE2. Eur J Pharmacol 2020; 887:173545. [PMID: 32926917 PMCID: PMC7485553 DOI: 10.1016/j.ejphar.2020.173545] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
The severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) has resulted in almost 28 million cases of COVID-19 (Corona virus disease-2019) and more than 900000 deaths worldwide since December 2019. In the absence of effective antiviral therapy and vaccine, treatment of COVID-19 is largely symptomatic. By making use of its spike (S) protein, the virus binds to its primary human cell receptor, angiotensin converting enzyme 2 (ACE2) which is present in the pulmonary epithelial cells as well as other organs. SARS-CoV-2 may cause a downregulation of ACE2. ACE2 plays a protective role in the pulmonary system through its Mas-receptor and alamandine-MrgD-TGR7 pathways. Loss of this protective effect could be a major component of COVID-19 pathogenesis. An attractive strategy in SARS-CoV-2 therapeutics would be to augment ACE2 either directly by supplementation or indirectly through drugs which increase its levels or stimulate its downstream players. In this semi-systematic review, we have analysed the pathophysiological interplay between ACE and ACE2 in the cardiopulmonary system, the modulation of these two proteins by SARS-CoV-2, and potential therapeutic avenues targeting ACE-Ang II and ACE2-Ang (1-7) axes, that can be utilized against COVID-19 disease progression.
Collapse
Affiliation(s)
- Upinder Kaur
- Department of Pharmacology, All India Institute of Medical Sciences, Gorakhpur, UP, India
| | - Kumudini Acharya
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, UP, India
| | - Ritwick Mondal
- Department of Internal Medicine, Institute of Post Graduate Medical Education and Research, Kolkata, WB, India
| | - Amit Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, UP, India
| | - Luciano Saso
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Sasanka Chakrabarti
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar (deemed to be) University, Mullana, Ambala, Haryana, India.
| | | |
Collapse
|
9
|
Lin L, Luo X, Wang L, Xu F, He Y, Wang Q, Yuan C, Xu J, Yan L, Hao H. BML-111 inhibits EMT, migration and metastasis of TAMs-stimulated triple-negative breast cancer cells via ILK pathway. Int Immunopharmacol 2020; 85:106625. [PMID: 32485356 DOI: 10.1016/j.intimp.2020.106625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/27/2020] [Accepted: 05/19/2020] [Indexed: 02/05/2023]
Abstract
Triple-negative breast cancer (TNBC) has a more aggressive phenotype and higher metastasis and recurrence rates than other breast cancer subtypes. The immune microenvironment and hypoxic microenvironment of breast cancer constitute the survival environment of cancer cells, which is an important environment to support cancer cells. LXA4 and its analog, BML-111 is an important regulator of inflammatory cytokines, which provides a possible way for the treatment of inflammatory-related tumors. Here, in the in vitro experiment, we showed that BML-111 could inhibit the EMT and migration of TAMs-stimulated TNBC by down-regulating ILK as well as p-Akt and p-GSK3β. And it could prevent the formation of breast cancer cell clusters. In the in vivo experiment, BML-111 could inhibit the metastasis of 4T1 breast cancer cells. We also demonstrated that BML-111 could affect macrophages in tumor microenvironment to prevent metastasis. These results showed that BML-111 could be a possible candidate for breast cancer therapy by targeting ILK and TAMs.
Collapse
Affiliation(s)
- Lan Lin
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Xuliang Luo
- Department of Breast Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Lin Wang
- Department of Breast Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Fen Xu
- Department of General Medicine, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yuanqiao He
- Department of Laboratory Animal Science, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Qingyu Wang
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Chunlei Yuan
- Department of Breast Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Jing Xu
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Liping Yan
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Hua Hao
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
10
|
Zhang T, Hao H, Zhou ZQ, Zeng T, Zhang JM, Zhou XY. Lipoxin A4 inhibited the activation of hepatic stellate cells -T6 cells by modulating profibrotic cytokines and NF-κB signaling pathway. Prostaglandins Other Lipid Mediat 2020; 146:106380. [DOI: 10.1016/j.prostaglandins.2019.106380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
|