1
|
Pánek T, Tice AK, Corre P, Hrubá P, Žihala D, Kamikawa R, Yazaki E, Shiratori T, Kume K, Hashimoto T, Ishida KI, Hradilová M, Silberman JD, Roger A, Inagaki Y, Eliáš M, Brown MW, Čepička I. An expanded phylogenomic analysis of Heterolobosea reveals the deep relationships, non-canonical genetic codes, and cryptic flagellate stages in the group. Mol Phylogenet Evol 2025; 204:108289. [PMID: 39826589 DOI: 10.1016/j.ympev.2025.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
The phylum Heterolobosea Page and Blanton, 1985 is a group of eukaryotes that contains heterotrophic flagellates, amoebae, and amoeboflagellates, including the infamous brain-eating amoeba Naegleria fowleri. In this study, we investigate the deep evolutionary history of Heterolobosea by generating and analyzing transcriptome data from 16 diverse isolates and combine this with previously published data in a comprehensive phylogenomic analysis. This dataset has representation of all but one of the major lineages classified here as orders. Our phylogenomic analyses recovered a robustly supported phylogeny of Heterolobosea providing a phylogenetic framework for understanding their evolutionary history. Based on the newly recovered relationships, we revised the classification of Heterolobosea to the family level. We describe two new classes (Eutetramitea cl. nov. and Selenaionea cl. nov) and one new order (Naegleriida ord. nov.), and provide a new delimitation of the largest family of Heterolobosea, Vahlkampfiidae Jollos, 1917. Unexpectedly, we unveiled the first two cases of genetic code alterations in the group: UAG as a glutamine codon in the nuclear genome of Dactylomonas venusta and UGA encoding tryptophan in the mitochondrial genome of Neovahlkampfia damariscottae. In addition, analysis of the genome of the latter species confirmed its inability to make flagella, whereas we identified hallmark flagellum-specific genes in most other heteroloboseans not previously observed to form flagellates, suggesting that the loss of flagella in Heterolobosea is much rarer than generally thought. Finally, we define the first autapomorphy of the subphylum Pharyngomonada, represented by a fusion of two key genes for peroxisomal β-oxidation enzymes.
Collapse
Affiliation(s)
- Tomáš Pánek
- Charles University, Faculty of Science, Department of Zoology, Prague, Czechia.
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA; Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Pia Corre
- Charles University, Faculty of Science, Department of Zoology, Prague, Czechia
| | - Pavla Hrubá
- Charles University, Faculty of Science, Department of Zoology, Prague, Czechia
| | - David Žihala
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Ostrava, Czechia; Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | | | - Euki Yazaki
- University of Tsukuba, Tsukuba, Japan; Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | | | | | | | | | - Miluše Hradilová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic, Czechia
| | - Jeffrey D Silberman
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia; University of Arkansas, Department of Biological Sciences, Fayetteville, AR, USA
| | - Andrew Roger
- Dalhousie University, Dept. of Biochemistry and Molecular Biology, Halifax, Canada
| | | | - Marek Eliáš
- University of Ostrava, Faculty of Science, Department of Biology and Ecology, Ostrava, Czechia
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA; Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS, USA
| | - Ivan Čepička
- Charles University, Faculty of Science, Department of Zoology, Prague, Czechia
| |
Collapse
|
2
|
Foučková M, Uhrová K, Kubánková A, Pánek T, Čepička I. Lighting lantern above Psalteriomonadidae: Unveiling novel diversity within the genus Psalteriomonas (Discoba: Heterolobosea). Eur J Protistol 2024; 93:126052. [PMID: 38302295 DOI: 10.1016/j.ejop.2024.126052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Psalteriomonadidae are a small family of anaerobic free-living protists belonging to Heterolobosea, Discoba. We cultured 74 new strains of mostly amoeboid Psalteriomonadidae obtained from mainly freshwater habitats and sequenced their 18S rRNA gene. Based on the phylogenetic analysis and genetic distances, we report multiple novel species, four of which we formally describe based on the light-microscopic morphology (Psalteriomonas minuta, P. australis, P. fimbriata, and P. parva). We also examined the ultrastructure of two Psalteriomonas species using transmission electron microscopy. We transfer Sawyeria marylandensis into the genus Psalteriomonas and synonymize Sawyeria with Psalteriomonas. In addition, we studied the flagellate stage of P. marylandensis comb. nov. for the first time, using light and scanning electron microscopy.
Collapse
Affiliation(s)
- Martina Foučková
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czech Republic
| | - Kristýna Uhrová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czech Republic
| | - Aneta Kubánková
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czech Republic
| | - Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 128 00, Czech Republic.
| |
Collapse
|
3
|
Lee HB, Jeong DH, Park JS. Accumulation patterns of intracellular salts in a new halophilic amoeboflagellate, Euplaesiobystra salpumilio sp. nov., (Heterolobosea; Discoba) under hypersaline conditions. Front Microbiol 2022; 13:960621. [PMID: 35992684 PMCID: PMC9389213 DOI: 10.3389/fmicb.2022.960621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022] Open
Abstract
Halophilic microbial eukaryotes are present in many eukaryotic lineages and major groups; however, our knowledge of their diversity is still limited. Furthermore, almost nothing is known about the intracellular accumulation of salts in most halophilic eukaryotes. Here, we isolate a novel halophilic microbial eukaryote from hypersaline water of 134 practical salinity units (PSU) in a solar saltern. This species is an amoeboflagellate (capable of the amoeba-flagellate-cyst transformation) in the heterolobosean group and belongs to the genus Euplaesiobystra based on morphological data and 18S rDNA sequences. However, the isolate is distinct from any of the described Euplaesiobystra species. Especially, it is the smallest Euplaesiobystra to date, has a distinct cytostome, and grows optimally at 75–100 PSU. Furthermore, the phylogenetic tree of the 18S rDNA sequences demonstrates that the isolate forms a strongly supported group, sister to Euplaesiobystra hypersalinica. Thus, we propose that the isolate, Euplaesiobystra salpumilio, is a novel species. E. salpumilio displays a significantly increased influx of the intracellular Na+ and K+ at 50, 100, and 150 PSU, compared to freshwater species. However, the intracellular retention of the Na+ and K+ at 150 PSU does not significantly differ from 100 PSU, suggesting that E. salpumilio can extrude the Na+ and K+ from cells under high-salinity conditions. Interestingly, actively growing E. salpumilio at 100 and 150 PSU may require more intracellular accumulation of Na+ than the no-growth but-viable state at 50 PSU. It seems that our isolate displays two salt metabolisms depending on the tested salinities. E. salpumilio shows a salt-in strategy for Na+ at lower salinity of 100 PSU, while it displays a salt-out strategy for Na+ at higher salinity of 150 PSU. Our results suggest that the novel halophilic E. salpumilio fundamentally uses a salt-out strategy at higher salinities, and the accumulation patterns of intracellular salts in this species are different from those in other halophilic microbial eukaryotes.
Collapse
|
4
|
Cavalier-Smith T. Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi. PROTOPLASMA 2022; 259:487-593. [PMID: 34940909 PMCID: PMC9010356 DOI: 10.1007/s00709-021-01665-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 05/03/2021] [Indexed: 05/19/2023]
Abstract
I thoroughly discuss ciliary transition zone (TZ) evolution, highlighting many overlooked evolutionarily significant ultrastructural details. I establish fundamental principles of TZ ultrastructure and evolution throughout eukaryotes, inferring unrecognised ancestral TZ patterns for Fungi, opisthokonts, and Corticata (i.e., kingdoms Plantae and Chromista). Typical TZs have a dense transitional plate (TP), with a previously overlooked complex lattice as skeleton. I show most eukaryotes have centriole/TZ junction acorn-V filaments (whose ancestral function was arguably supporting central pair microtubule-nucleating sites; I discuss their role in centriole growth). Uniquely simple malawimonad TZs (without TP, simpler acorn) pinpoint the eukaryote tree's root between them and TP-bearers, highlighting novel superclades. I integrate TZ/ciliary evolution with the best multiprotein trees, naming newly recognised major eukaryote clades and revise megaclassification of basal kingdom Protozoa. Recent discovery of non-photosynthetic phagotrophic flagellates with genome-free plastids (Rhodelphis), the sister group to phylum Rhodophyta (red algae), illuminates plant and chromist early evolution. I show previously overlooked marked similarities in cell ultrastructure between Rhodelphis and Picomonas, formerly considered an early diverging chromist. In both a nonagonal tube lies between their TP and an annular septum surrounding their 9+2 ciliary axoneme. Mitochondrial dense condensations and mitochondrion-linked smooth endomembrane cytoplasmic partitioning cisternae further support grouping Picomonadea and Rhodelphea as new plant phylum Pararhoda. As Pararhoda/Rhodophyta form a robust clade on site-heterogeneous multiprotein trees, I group Pararhoda and Rhodophyta as new infrakingdom Rhodaria of Plantae within subkingdom Biliphyta, which also includes Glaucophyta with fundamentally similar TZ, uniquely in eukaryotes. I explain how biliphyte TZs generated viridiplant stellate-structures.
Collapse
|
5
|
Gao Z, Jousset A, Kowalchuk GA, Geisen S. Five Groups in the Genus Allovahlkampfia and the Description of the New Species Vahlkampfia bulbosis n.sp. Protist 2022; 173:125870. [DOI: 10.1016/j.protis.2022.125870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/15/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
|
6
|
Maciver SK, McLaughlin PJ, Apps DK, Piñero JE, Lorenzo-Morales J. Opinion: Iron, Climate Change and the ‘Brain Eating Amoeba’ Naegleria fowleri. Protist 2021. [DOI: 10.1016/j.protis.2020.125791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Choi J, Park JS. Comparative analyses of the V4 and V9 regions of 18S rDNA for the extant eukaryotic community using the Illumina platform. Sci Rep 2020; 10:6519. [PMID: 32300168 PMCID: PMC7162856 DOI: 10.1038/s41598-020-63561-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Illumina sequencing is a representative tool for understanding the massive diversity of microbial eukaryotes in natural ecosystems. Here, we investigated the eukaryotic community in a pond (salinity of 2–4) on Dokdo (island) in the East Sea, Korea, using Illumina sequencing with primer sets for the V4 and V9 regions of 18S rDNA from 2016 to 2018 for the first time. Totally, 1,413 operational taxonomic units (OTUs) and 915 OTUs were detected using the V9 and V4 primer sets, respectively. Taxonomic analyses of these OTUs revealed that although the V4 primer set failed to describe the extant diversity for some major sub-division groups, the V9 primer set represented their diversity. Moreover, the rare taxa with <1% of total reads were exclusively detected using V9 primer set. Hence, the diversity of the eukaryotic community can vary depending on the choice of primers. The Illumina sequencing data of the V9 region of 18S rDNA may be advantageous for estimating the richness of the eukaryotic community including a rare biosphere, whereas the simultaneous application of two biomarkers may be suitable for understanding the molecular phylogenetic relationships. We strongly recommend both biomarkers be used to assess the diversity and phylogenetic relationship within the eukaryotic community in natural samples.
Collapse
Affiliation(s)
- Jaeho Choi
- Department of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jong Soo Park
- Department of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea. .,Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, 41566, Republic of Korea. .,Kyungpook Institute of Oceanography, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
8
|
Kolisko M, Flegontova O, Karnkowska A, Lax G, Maritz JM, Pánek T, Táborský P, Carlton JM, Čepička I, Horák A, Lukeš J, Simpson AGB, Tai V. EukRef-excavates: seven curated SSU ribosomal RNA gene databases. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5996027. [PMID: 33216898 PMCID: PMC7678783 DOI: 10.1093/database/baaa080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/04/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
The small subunit ribosomal RNA (SSU rRNA) gene is a widely used molecular marker to study the diversity of life. Sequencing of SSU rRNA gene amplicons has become a standard approach for the investigation of the ecology and diversity of microbes. However, a well-curated database is necessary for correct classification of these data. While available for many groups of Bacteria and Archaea, such reference databases are absent for most eukaryotes. The primary goal of the EukRef project (eukref.org) is to close this gap and generate well-curated reference databases for major groups of eukaryotes, especially protists. Here we present a set of EukRef-curated databases for the excavate protists—a large assemblage that includes numerous taxa with divergent SSU rRNA gene sequences, which are prone to misclassification. We identified 6121 sequences, 625 of which were obtained from cultures, 3053 from cell isolations or enrichments and 2419 from environmental samples. We have corrected the classification for the majority of these curated sequences. The resulting publicly available databases will provide phylogenetically based standards for the improved identification of excavates in ecological and microbiome studies, as well as resources to classify new discoveries in excavate diversity.
Collapse
Affiliation(s)
- Martin Kolisko
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Olga Flegontova
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, 02-089 Warsaw, Poland.,Department of Parasitology, BIOCEV, Faculty of Science, Charles University, 128 43 Vestec, Czech Republic
| | - Gordon Lax
- Department of Biology and Centre of Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Julia M Maritz
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Tomáš Pánek
- Department of Zoology, Charles University, 128 00 Prague, Czech Republic
| | - Petr Táborský
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Jane M Carlton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Ivan Čepička
- Department of Zoology, Charles University, 128 00 Prague, Czech Republic
| | - Aleš Horák
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 370 05 České Budeějovice (Budweis), Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budeějovice (Budweis), Czech Republic
| | - Alastair G B Simpson
- Department of Biology and Centre of Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Vera Tai
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
9
|
Tikhonenkov DV, Jhin SH, Eglit Y, Miller K, Plotnikov A, Simpson AGB, Park JS. Ecological and evolutionary patterns in the enigmatic protist genus Percolomonas (Heterolobosea; Discoba) from diverse habitats. PLoS One 2019; 14:e0216188. [PMID: 31465455 PMCID: PMC6715209 DOI: 10.1371/journal.pone.0216188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/14/2019] [Indexed: 12/26/2022] Open
Abstract
The heterotrophic flagellate Percolomonas cosmopolitus (Heterolobosea) is often observed in saline habitats worldwide, from coastal waters to saturated brines. However, only two cultures assigned to this morphospecies have been examined using molecular methods, and their 18S rRNA gene sequences are extremely different. Further the salinity tolerances of individual strains are unknown. Thus, our knowledge on the autecology and diversity in this morphospecies is deficient. Here, we report 18S rRNA gene data on seven strains similar to P. cosmopolitus from seven geographically remote locations (New Zealand, Kenya, Korea, Poland, Russia, Spain, and the USA) with sample salinities ranging from 4‰ to 280‰, and compare morphology and salinity tolerance of the nine available strains. Percolomonas cosmopolitus-like strains show few-to-no consistent morphological differences, and form six clades separated by often extremely large 18S rRNA gene divergences (up to 42.4%). Some strains grow best at salinities from 75 to 125‰ and represent halophiles. All but one of these belong to two geographically heterogeneous clusters that form a robust monophyletic group in phylogenetic trees; this likely represents an ecologically specialized subclade of halophiles. Our results suggest that P. cosmopolitus is a cluster of several cryptic species (at least), which are unlikely to be distinguished by geography. Interestingly, the 9 Percolomonas strains formed a clade in 18S rRNA gene phylogenies, unlike most previous analyses based on two sequences.
Collapse
Affiliation(s)
- Denis V. Tikhonenkov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
- Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Soo Hwan Jhin
- Department of Oceanography, Research Institute for Dok-do and Ulleung-do Island and Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, Korea
| | - Yana Eglit
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kai Miller
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrey Plotnikov
- Center of Shared Scientific Equipment “Persistence of Microorganisms”, Institute for Cellular and Intracellular Symbiosis UB RAS, Orenburg, Russia
| | - Alastair G. B. Simpson
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Institute for Advanced Research, Program in Integrated Microbial Diversity, Toronto, Ontario, Canada
| | - Jong Soo Park
- Department of Oceanography, Research Institute for Dok-do and Ulleung-do Island and Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, Korea
- * E-mail:
| |
Collapse
|
10
|
Was the Mitochondrion Necessary to Start Eukaryogenesis? Trends Microbiol 2018; 27:96-104. [PMID: 30466901 DOI: 10.1016/j.tim.2018.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/21/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022]
Abstract
Arguments based on cell energetics favour the view that a mitochondrion capable of oxidative phosphorylation was a prerequisite for the evolution of other features of the eukaryotic cell, including increased volume, genome size and, eventually, phagotrophy. Contrary to this we argue that: (i) extant amitochondriate eukaryotes possess voluminous phagotrophic cells with large genomes; (ii) picoeukaryotes demonstrate that phagotrophy is feasible at prokaryotic cell sizes; and (iii) the assumption that evolution of complex features requires extra ATP, often mentioned in this context, is unfounded and should not be used in such considerations. We claim that the diversity of cell organisations and functions observed today in eukaryotes gives no reason to postulate that a mitochondrion must have preceded phagocytosis in eukaryogenesis.
Collapse
|
11
|
Jhin SH, Park JS. A New Halophilic Heterolobosean Flagellate, Aurem hypersalina gen. n. et sp. n., Closely Related to the Pleurostomum-Tulamoeba Clade: Implications for Adaptive Radiation of Halophilic Eukaryotes. J Eukaryot Microbiol 2018; 66:221-231. [PMID: 29938869 DOI: 10.1111/jeu.12664] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/28/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022]
Abstract
Halophilic protozoa are independently scattered across the molecular phylogeny of eukaryotes; most of which are assigned to Heterolobosea. Here, we isolated a biflagellate from a hypersaline water of 342‰ salinity. This isolate shared several morphological features with typical halophilic heterolobosean flagellates. In addition, molecular phylogenetic trees of the 18S rRNA gene sequences clearly indicated flagellate is a heterolobosean species closely related to the halophilic Tulamoebidae. However, the flagellate was not accommodated to any described genus. Cells were ovoid-shaped, and no amoebae were observed. The two unequal flagella beat heterodynamically. An ear-like bulge at the margin of a cytostomal groove was observed. Flagellates could grow at 100-200‰ salinity, suggesting an obligately halophilic species. Currently, it appears that the new halophilic Aurem hypersalina forms a strong clade with Tulamoebidae, and is sister to the Tulamoebidae, indicating that this new clade is composed almost entirely of obligate halophilic taxa. Thus, A. hypersalina and the Tulamoebidae clade currently represent a unique adaptive radiation of halophilic eukaryotes.
Collapse
Affiliation(s)
- Soo Hwan Jhin
- Department of Oceanography, Research Institute for Dok-do and Ulleung-do Island and Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, Korea
| | - Jong Soo Park
- Department of Oceanography, Research Institute for Dok-do and Ulleung-do Island and Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
12
|
Tropidoatractidae fam. nov., a Deep Branching Lineage of Metopida (Armophorea, Ciliophora) Found in Diverse Habitats and Possessing Prokaryotic Symbionts. Protist 2018; 169:362-405. [DOI: 10.1016/j.protis.2018.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 11/29/2022]
|
13
|
Hanousková P, Táborský P, Čepička I. Dactylomonas gen. nov., a Novel Lineage of Heterolobosean Flagellates with Unique Ultrastructure, Closely Related to the Amoeba Selenaion koniopes Park, De Jonckheere & Simpson, 2012. J Eukaryot Microbiol 2018; 66:120-139. [PMID: 29791056 DOI: 10.1111/jeu.12637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/27/2018] [Accepted: 05/16/2018] [Indexed: 11/29/2022]
Abstract
We report the discovery of a new genus of heterolobosean flagellates, Dactylomonas gen. nov., with two species, D. venusta sp. nov. and D. crassa sp. nov. Phylogenetic analysis of the SSU rRNA gene showed that Dactylomonas is closely related to the amoeba Selenaion, the deepest-branching lineage of Tetramitia. Dactylomonads possess two flagella, and ultrastructural studies revealed an unexpected organization of the flagellar apparatus, which resembled Pharyngomonada (the second lineage of Heterolobosea) instead of Tetramitia: basal bodies were orthogonal to each other and a putative root R1 was present in the mastigont. On the other hand, Dactylomonas displayed several features uncommon in Heterolobosea: a microtubular corset, a distinctive rostrum supported by the main part of the right microtubular root, a finger-like projection on the proximal part of the recurrent flagellum, and absence of a ventral groove. In addition, Dactylomonas is anaerobic and seems to have lost mitochondrial cristae. Dactylomonas and Selenaion are accommodated in the family Selenaionidae fam. nov. and order Selenionida ord. nov. The taxonomy of Tetramitia is partially revised, and the family Neovahlkampfiidae fam. nov. is established.
Collapse
Affiliation(s)
- Pavla Hanousková
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, 128 44, Czech Republic
| | - Petr Táborský
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, 128 44, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague, 128 44, Czech Republic
| |
Collapse
|
14
|
Peña-Diaz P, Lukeš J. Fe-S cluster assembly in the supergroup Excavata. J Biol Inorg Chem 2018; 23:521-541. [PMID: 29623424 PMCID: PMC6006210 DOI: 10.1007/s00775-018-1556-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
The majority of established model organisms belong to the supergroup Opisthokonta, which includes yeasts and animals. While enlightening, this focus has neglected protists, organisms that represent the bulk of eukaryotic diversity and are often regarded as primitive eukaryotes. One of these is the “supergroup” Excavata, which comprises unicellular flagellates of diverse lifestyles and contains species of medical importance, such as Trichomonas, Giardia, Naegleria, Trypanosoma and Leishmania. Excavata exhibits a continuum in mitochondrial forms, ranging from classical aerobic, cristae-bearing mitochondria to mitochondria-related organelles, such as hydrogenosomes and mitosomes, to the extreme case of a complete absence of the organelle. All forms of mitochondria house a machinery for the assembly of Fe–S clusters, ancient cofactors required in various biochemical activities needed to sustain every extant cell. In this review, we survey what is known about the Fe–S cluster assembly in the supergroup Excavata. We aim to bring attention to the diversity found in this group, reflected in gene losses and gains that have shaped the Fe–S cluster biogenesis pathways.
Collapse
Affiliation(s)
- Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
15
|
Táborský P, Pánek T, Čepička I. Anaeramoebidae fam. nov., a Novel Lineage of Anaerobic Amoebae and Amoeboflagellates of Uncertain Phylogenetic Position. Protist 2017; 168:495-526. [DOI: 10.1016/j.protis.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022]
|
16
|
Pánek T, Žihala D, Sokol M, Derelle R, Klimeš V, Hradilová M, Zadrobílková E, Susko E, Roger AJ, Čepička I, Eliáš M. Nuclear genetic codes with a different meaning of the UAG and the UAA codon. BMC Biol 2017; 15:8. [PMID: 28193262 PMCID: PMC5304391 DOI: 10.1186/s12915-017-0353-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/23/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Departures from the standard genetic code in eukaryotic nuclear genomes are known for only a handful of lineages and only a few genetic code variants seem to exist outside the ciliates, the most creative group in this regard. Most frequent code modifications entail reassignment of the UAG and UAA codons, with evidence for at least 13 independent cases of a coordinated change in the meaning of both codons. However, no change affecting each of the two codons separately has been documented, suggesting the existence of underlying evolutionary or mechanistic constraints. RESULTS Here, we present the discovery of two new variants of the nuclear genetic code, in which UAG is translated as an amino acid while UAA is kept as a termination codon (along with UGA). The first variant occurs in an organism noticed in a (meta)transcriptome from the heteropteran Lygus hesperus and demonstrated to be a novel insect-dwelling member of Rhizaria (specifically Sainouroidea). This first documented case of a rhizarian with a non-canonical genetic code employs UAG to encode leucine and represents an unprecedented change among nuclear codon reassignments. The second code variant was found in the recently described anaerobic flagellate Iotanema spirale (Metamonada: Fornicata). Analyses of transcriptomic data revealed that I. spirale uses UAG to encode glutamine, similarly to the most common variant of a non-canonical code known from several unrelated eukaryotic groups, including hexamitin diplomonads (also a lineage of fornicates). However, in these organisms, UAA also encodes glutamine, whereas it is the primary termination codon in I. spirale. Along with phylogenetic evidence for distant relationship of I. spirale and hexamitins, this indicates two independent genetic code changes in fornicates. CONCLUSIONS Our study documents, for the first time, that evolutionary changes of the meaning of UAG and UAA codons in nuclear genomes can be decoupled and that the interpretation of the two codons by the cytoplasmic translation apparatus is mechanistically separable. The latter conclusion has interesting implications for possibilities of genetic code engineering in eukaryotes. We also present a newly developed generally applicable phylogeny-informed method for inferring the meaning of reassigned codons.
Collapse
Affiliation(s)
- Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - David Žihala
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Martin Sokol
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Romain Derelle
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud/Paris-Saclay, AgroParisTech, Orsay, France
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic
| | - Miluše Hradilová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Eliška Zadrobílková
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague, Czech Republic
| | - Edward Susko
- Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, Toronto, ON, Canada
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 710 00, Ostrava, Czech Republic.
| |
Collapse
|
17
|
Tyml T, Lares-Jiménez LF, Kostka M, Dyková I. Neovahlkampfia nana n. sp. Reinforcing an Underrepresented Subclade of Tetramitia, Heterolobosea. J Eukaryot Microbiol 2016; 64:78-87. [PMID: 27327621 DOI: 10.1111/jeu.12341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 11/28/2022]
Abstract
The study provides robust genetic evidence that a newly isolated naked ameba with morphological and ultrastructural features indicative of Heterolobosea is a new species. Neovahlkampfia nana n. sp. associates with the yet underrepresented subclade of Tetramitia I. Considerable differences found in 18S rRNA gene sequences of individual molecular clones derived from DNA of five clonal cultures, using a low fidelity DNA polymerase, raised the issue of intragenomic sequence variation, a phenomenon that has not been previously studied in Heterolobosea. However, as proved using a higher fidelity DNA polymerase, the sequence variability observed was introduced by PCR mediated by the low fidelity polymerase and fixed by molecular cloning. This points to the potentially dubious validity of some current nominal species of Heterolobosea that differ from one another in just one or two base positions.
Collapse
Affiliation(s)
- Tomáš Tyml
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.,Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Luis F Lares-Jiménez
- Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Martin Kostka
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Iva Dyková
- Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| |
Collapse
|
18
|
Pánek T, Táborský P, Pachiadaki MG, Hroudová M, Vlček Č, Edgcomb VP, Čepička I. Combined Culture-Based and Culture-Independent Approaches Provide Insights into Diversity of Jakobids, an Extremely Plesiomorphic Eukaryotic Lineage. Front Microbiol 2015; 6:1288. [PMID: 26635756 PMCID: PMC4649034 DOI: 10.3389/fmicb.2015.01288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/03/2015] [Indexed: 11/13/2022] Open
Abstract
We used culture-based and culture-independent approaches to discover diversity and ecology of anaerobic jakobids (Excavata: Jakobida), an overlooked, deep-branching lineage of free-living nanoflagellates related to Euglenozoa. Jakobids are among a few lineages of nanoflagellates frequently detected in anoxic habitats by PCR-based studies, however only two strains of a single jakobid species have been isolated from those habitats. We recovered 712 environmental sequences and cultured 21 new isolates of anaerobic jakobids that collectively represent at least ten different species in total, from which four are uncultured. Two cultured species have never been detected by environmental, PCR-based methods. Surprisingly, culture-based and culture-independent approaches were able to reveal a relatively high proportion of overall species diversity of anaerobic jakobids—60 or 80%, respectively. Our phylogenetic analyses based on SSU rDNA and six protein-coding genes showed that anaerobic jakobids constitute a clade of morphologically similar, but genetically and ecologically diverse protists—Stygiellidae fam. nov. Our investigation combines culture-based and environmental molecular-based approaches to capture a wider extent of species diversity and shows Stygiellidae as a group that ordinarily inhabits anoxic, sulfide- and ammonium-rich marine habitats worldwide.
Collapse
Affiliation(s)
- Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University in Prague Prague, Czech Republic
| | - Petr Táborský
- Department of Zoology, Faculty of Science, Charles University in Prague Prague, Czech Republic
| | - Maria G Pachiadaki
- Geology and Geophysics Department, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | - Miluše Hroudová
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences Prague, Czech Republic
| | - Čestmír Vlček
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Czech Academy of Sciences Prague, Czech Republic
| | - Virginia P Edgcomb
- Geology and Geophysics Department, Woods Hole Oceanographic Institution Woods Hole, MA, USA
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University in Prague Prague, Czech Republic
| |
Collapse
|
19
|
Park JS, Simpson AG. Characterization of a Deep-Branching Heterolobosean, Pharyngomonas turkanaensis
n. sp., Isolated from a Non-Hypersaline Habitat, and Ultrastructural Comparison of Cysts and Amoebae Among Pharyngomonas
Strains. J Eukaryot Microbiol 2015; 63:100-11. [DOI: 10.1111/jeu.12260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Jong Soo Park
- Department of Oceanography and Kyungpook Institute of Oceanography; School of Earth System Sciences; Kyungpook National University; Daegu Korea
| | - Alastair G.B. Simpson
- Department of Biology; Dalhousie University; Halifax Nova Scotia Canada
- Canadian Institute for Advanced Research; Program in Integrated Microbial Diversity; Toronto Ontario Canada
| |
Collapse
|