1
|
Saadh MJ, Jasim NY, Ahmed MH, Ballal S, Kumar A, Atteri S, Vashishth R, Rizaev J, Alhili A, Jawad MJ, Yazdi F, Salajegheh A, Akhavan-Sigari R. Critical roles of miR-21 in promotions angiogenesis: friend or foe? Clin Exp Med 2025; 25:66. [PMID: 39998742 PMCID: PMC11861128 DOI: 10.1007/s10238-025-01600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
MiRNAs are small RNA strands that are managed following transcription and are of substantial importance in blood vessel formation. It is essential to oversee the growth, differentiation, death, movement and construction of tubes by angiogenesis-affiliated cells. If miRNAs are not correctly regulated in regard to angiogenesis, it can deteriorate the health and lead to various illnesses, which include cancer, cardiovascular disorder, critical limb ischemia, Crohn's disease, ocular diseases, diabetic microvascular complications, and more. Consequently, it is vital to understand the crucial part that miRNAs play in the development of blood vessels, so we can develop reliable treatment plans for vascular diseases. This write-up will assess the critical role of miR-21/exosomal miR-21 in managing angiogenesis associated with bone growth, wound recovery, and other pathological conditions like tumor growth, ocular illnesses, diabetes, and other diseases connected to formation of blood vessels. Previous investigations have demonstrated that miR-21 is present at higher amounts in certain cancerous cells, and it influences a multitude of genes that moderate the increased creation of blood vessels. Furthermore, studies demonstrated that exosomal miR-21 has the capacity to interact with endothelial cells to foster tumor angiogenesis. For that reason, this review explains the critical importance of miR-21/exosomal miR-21 in managing both healthy and diseased states of angiogenesis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Nisreen Yasir Jasim
- College of Nursing, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | | | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Shikha Atteri
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab, 140307, India
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Jasur Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan
| | - Ahmed Alhili
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Farzaneh Yazdi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Reza Akhavan-Sigari
- Dr. Schneiderhan GmbH and ISAR Klinikum, Munich, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw, Management University Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Podyacheva E, Snezhkova J, Onopchenko A, Dyachuk V, Toropova Y. The Role of MicroRNAs in the Pathogenesis of Doxorubicin-Induced Vascular Remodeling. Int J Mol Sci 2024; 25:13335. [PMID: 39769102 PMCID: PMC11728060 DOI: 10.3390/ijms252413335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/14/2025] Open
Abstract
Doxorubicin (DOX), a cornerstone chemotherapeutic agent, effectively combats various malignancies but is marred by significant cardiovascular toxicity, including endothelial damage, chronic heart failure, and vascular remodeling. These adverse effects, mediated by oxidative stress, mitochondrial dysfunction, inflammatory pathways, and dysregulated autophagy, underscore the need for precise therapeutic strategies. Emerging research highlights the critical role of microRNAs (miRNAs) in DOX-induced vascular remodeling and cardiotoxicity. miRNAs, such as miR-21, miR-22, miR-25, miR-126, miR-140-5p, miR-330-5p, miR-146, miR-143, miR-375, miR-125b, miR-451, miR-34a-5p, and miR-9, influence signaling pathways like TGF-β/Smad, AMPKa/SIRT, NF-κB, mTOR, VEGF, and PI3K/AKT/Nrf2, impacting vascular homeostasis, angiogenesis, and endothelial-to-mesenchymal transition. Despite existing studies, gaps remain in understanding the full spectrum of miRNAs involved and their downstream effects on vascular remodeling. This review synthesizes the current knowledge on miRNA dysregulation during DOX exposure, focusing on their dual roles in cardiovascular pathology and tumor progression. Strategies to reduce DOX cardiotoxicity include modulating miRNA expression to restore signaling balance, targeting pro-inflammatory and pro-fibrotic pathways, and leveraging miRNA inhibitors or mimics. This review aims to organize and integrate the existing knowledge on the role of miRNAs in vascular remodeling, particularly in the contexts of DOX treatment and the progression of various cardiovascular diseases, including their potential involvement in tumor growth.
Collapse
Affiliation(s)
| | | | | | | | - Yana Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, 197341 Saint-Petersburg, Russia or (E.P.); (J.S.); (A.O.); (V.D.)
| |
Collapse
|
3
|
Mahdizade AH, Yousefi M, Sarkarian M, Saberi A. Quantitative Investigation of MicroRNA-32 in the Urine of Prostate Cancer Patients and Its Relationship With Clinicopathological Characteristics. Clin Genitourin Cancer 2024; 22:102195. [PMID: 39270621 DOI: 10.1016/j.clgc.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Prostate cancer (PCa) is one of the most common cancers worldwide. PCa diagnosis is mostly based on solid biopsy and prostate-specific antigen (PSA), which have the disadvantages of being invasive and insensitive, respectively. Recently, the detection of microRNAs (miRNAs) in expressed prostatic secretions (EPS) has been a promising approach for PCa diagnosis. The aim of this study is to quantify transcriptional levels of miRNA-32 in the urine of prostate cancer patients. MATERIALS AND METHODS In this study, we evaluated the expression of miRNA-32 in the urine of 27 PCa patients, 48 benign prostatic hyperplasia (BPH) and 20 healthy controls, using quantitative real-time PCR (qPCR). The expression levels were then compared with the clinicopathological characteristics of patients. RESULTS The expression level of miRNA-32 in PCa patients was significantly higher than the control group (P < .01) and BPH cases (P < .01), and was associated with advanced tumor stage (P < .05). In addition, the expression of miRNA-32 had significant correlation with patients' age (r = 0.39, P = .043). Area under ROC curve (AUC) for the discrimination of PCa samples from control and BPH samples were 0.93 (P < .0001) and 0.78 (P < .0001), respectively. We also used logistic regression analysis to integrate the results of PSA, prostate volume and miRNA-32, and presented a predictive model for distinguishing PCa from BPH, highlighting the clinical utility of miRNA-32 in cancer diagnosis and risk assessment. CONCLUSIONS Measurement of miRNA-32 expression in urine may have significance for the detection of PCa. Inclusion of miRNA-32 in logistic regression along with PSA and prostate volume increases the accuracy of cancer diagnosis.
Collapse
Affiliation(s)
- Amir Hossein Mahdizade
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Sarkarian
- Department of Urology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Han C, Zhai C, Li A, Ma Y, Hallajzadeh J. Exercise mediates myocardial infarction via non-coding RNAs. Front Cardiovasc Med 2024; 11:1432468. [PMID: 39553846 PMCID: PMC11563808 DOI: 10.3389/fcvm.2024.1432468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/29/2024] [Indexed: 11/19/2024] Open
Abstract
Myocardial infarction (MI), a widespread cardiovascular issue, mainly occurs due to blood clot formation in the coronary arteries, which reduces blood flow to the heart muscle and leads to cell death. Incorporating exercise into a lifestyle can significantly benefit recovery and reduce the risk of future cardiac events for MI patients. Non-coding RNAs (ncRNAs) play various roles in the effects of exercise on myocardial infarction (MI). ncRNAs regulate gene expression, influence cardiac remodeling, angiogenesis, inflammation, oxidative stress, apoptosis, cardioprotection, and cardiac electrophysiology. The expression of specific ncRNAs is altered by exercise, leading to beneficial changes in heart structure, function, and recovery after MI. These ncRNAs modulate molecular pathways that contribute to improved cardiac health, including reducing inflammation, enhancing angiogenesis, promoting cell survival, and mitigating oxidative stress. Furthermore, they are involved in regulating changes in cardiac remodeling, such as hypertrophy and fibrosis, and can influence the electrical properties of the heart, thereby decreasing the risk of arrhythmias. Knowledge on MI has entered a new phase, with investigations of ncRNAs in physical exercise yielding invaluable insights into the impact of this therapeutic modality. This review compiled research on ncRNAs in MI, with an emphasis on their applicability to physical activity.
Collapse
Affiliation(s)
| | - Cuili Zhai
- College of Chinese Martial Arts, Beijing Sport University, Beijing, China
| | - Ailing Li
- City University of Malyasia, Kuala Lumpur, Malaysia
| | - Yongzhi Ma
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
5
|
Calli AO, Kurt K, Narli G, Kocabey DU, Yilmaz A, Ocal I, Yigit S, Yilmaz I. Are micro-RNA 21 and 143 indicative as prognostic biomarkers in dedifferentiated endometrial adenocarcinoma? Mol Biol Rep 2024; 51:756. [PMID: 38874783 DOI: 10.1007/s11033-024-09663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
AIM Dedifferentiated endometrial adenocarcinoma (DEAC) is a rare, aggressive subtype, accounting for 2% of all endometrial cancers. Poor survival in DEAC prompts the need for effective treatment modalities through better prognostic classification. MicroRNAs (miRNA) have essential roles in tumor angiogenesis, which might enable their use as novel biomarkers. In this study, we aimed to reveal the relationship between the expression of miRNA-21 and miRNA-143, which are associated with angiogenesis, and the prognosis of DEAC. METHOD The study included six cases diagnosed with DEAC. The expression levels of miRNA-21 and miRNA-143 were detected by quantitative real-time PCR. Microvascular density (MVD) was measured by CD34 staining. All data and effects on survival were compared for statistical significance. RESULTS Six cases diagnosed with DEAC were included in the study. The percentage of undifferentiated components ranged from 50 to 90%. The second component of differentiated carcinoma was detected as endometrioid (3/5 grade I, 1/5 grade II, 1/5 grade III) in five cases and serous in one case. The mean MVD was 27 (range 17-44, SD 9.4). In three cases, miRNA-21 expression was down-regulated in neoplastic areas compared to non-neoplastic areas. On the contrary, it was found to be up-regulated in the remaining three cases. MiRNA-143 expression decreased in four cases and increased in two cases. CONCLUSIONS Based on these findings, we found a significant irregular expression of miRNA-21 in DEACs. As in other cancers, angiogenesis is significantly associated with survival in DEACs. This study provides initial data for revealing possible implications of miRNAs as prognostic indicators in DEAC.
Collapse
Affiliation(s)
- Aylin Orgen Calli
- Department of Medical Pathology, Ataturk Training and Research Hospital, Katip Celebi University, Izmir, Turkey
| | - Kerem Kurt
- Department of Medical Pathology, Ataturk Training and Research Hospital, Katip Celebi University, Izmir, Turkey.
| | - Gizem Narli
- Department of Medical Pathology, Mengucek Gazi Training and Research Hospital, Binali Yildirim University, Erzincan, Turkey
| | - Duygu Unal Kocabey
- Department of Medical Pathology, Ataturk Training and Research Hospital, Katip Celebi University, Izmir, Turkey
| | - Alpay Yilmaz
- Department of Gynecology and Obstetrics, Ataturk Training and Research Hospital, Katip Celebi University, Izmir, Turkey
| | - Irfan Ocal
- Department of Medical Pathology, Ataturk Training and Research Hospital, Katip Celebi University, Izmir, Turkey
| | - Seyran Yigit
- Department of Medical Pathology, Tinaztepe University, Izmir, Turkey
| | - Ismail Yilmaz
- Department of Medical Pathology, Sultan Abdulhamid Han Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
6
|
Saadh MJ, Mahdi MS, Allela OQB, Alazzawi TS, Ubaid M, Rakhimov NM, Athab ZH, Ramaiah P, Chinnasamy L, Alsaikhan F, Farhood B. Critical role of miR-21/exosomal miR-21 in autophagy pathway. Pathol Res Pract 2024; 257:155275. [PMID: 38643552 DOI: 10.1016/j.prp.2024.155275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024]
Abstract
Activation of autophagy, a process of cellular stress response, leads to the breakdown of proteins, organelles, and other parts of the cell in lysosomes, and can be linked to several ailments, such as cancer, neurological diseases, and rare hereditary syndromes. Thus, its regulation is very carefully monitored. Transcriptional and post-translational mechanisms domestically or in whole organisms utilized to control the autophagic activity, have been heavily researched. In modern times, microRNAs (miRNAs) are being considered to have a part in post-translational orchestration of the autophagic activity, with miR-21 as one of the best studied miRNAs, it is often more than expressed in cancer cells. This regulatory RNA is thought to play a major role in a plethora of processes and illnesses including growth, cancer, cardiovascular disease, and inflammation. Different studies have suggested that a few autophagy-oriented genes, such as PTEN, Rab11a, Atg12, SIPA1L2, and ATG5, are all targeted by miR-21, indicating its essential role in the regulation.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Tuqa S Alazzawi
- College of dentist, National University of Science and Technology, Dhi Qar, Iraq
| | | | - Nodir M Rakhimov
- Department of Oncology, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Oncology, Tashkent State Dental Institute, Tashkent, Uzbekistan
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia jSchool of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Ni Z, Cong S, Li H, Liu J, Zhang Q, Wei C, Pan G, He H, Liu W, Mao A. Integration of scRNA and bulk RNA-sequence to construct the 5-gene molecular prognostic model based on the heterogeneity of thyroid carcinoma endothelial cell. Acta Biochim Biophys Sin (Shanghai) 2024; 56:255-269. [PMID: 38186223 PMCID: PMC10984871 DOI: 10.3724/abbs.2023254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/22/2023] [Indexed: 01/09/2024] Open
Abstract
Thyroid cancer (TC) is a kind of cancer with high heterogeneity, which leads to significant difference in prognosis. The prognostic molecular processes are not well understood. Cancer cells and tumor microenvironment (TME) cells jointly determine the heterogeneity. However, quite a little attention was paid to cells in the TME in the past years. In this study, we not only reveal that endothelial cells (ECs) are strongly associated with the progress of papillary thyroid cancer (PTC) using single-cell RNA-seq (scRNA-seq) data downloaded from Gene Expression Omnibus (GEO) and WGCNA, but also screen 5 crucial genes of ECs: CLDN5, ABCG2, NOTCH4, PLAT, and TMEM47. Furthermore, the 5-gene molecular prognostic model is constructed, which can predict how well a patient will do on PD-L1 blockade immunotherapy for TC and evaluate prognosis. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrates that PLAT is decreased in TC and the increase of PLAT can restrain the migratory capacity of TC cells. Meanwhile, in TC cells, PLAT suppresses VEGFa/VEGFR2-mediated human umbilical vascular endothelial cell (HUVEC) proliferation and tube formation. Totally, we construct the 5-gene molecular prognostic model from the perspective of EC and provide a new idea for immunotherapy of TC.
Collapse
Affiliation(s)
- Zhaoxian Ni
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Shan Cong
- Department of Laparoscopic Surgerythe First Affiliated Hospital of Dalian Medical UniversityDalian116000China
| | - Hongchang Li
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Jiazhe Liu
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Qing Zhang
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Chuanchao Wei
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Gaofeng Pan
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Hui He
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Laparoscopic Surgerythe First Affiliated Hospital of Dalian Medical UniversityDalian116000China
| | - Weiyan Liu
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Anwei Mao
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| |
Collapse
|
8
|
Ramisetty SK, Garg P, Mohanty A, Mirzapoiazova T, Yue E, Wang E, Horne D, Awasthi S, Kulkarni P, Salgia R, Singhal SS. Regression of ovarian cancer xenografts by depleting or inhibiting RLIP. Biochem Pharmacol 2023; 217:115847. [PMID: 37804871 DOI: 10.1016/j.bcp.2023.115847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Ovarian cancer (OC) is the most prevalent and deadly cancer of the female reproductive system. Women will continue to be impacted by OC-related morbidity and mortality. Despite the fact that chemotherapy with cisplatin is the main component as the first-line anticancer treatment for OC, chemoresistance and unfavorable side effects are important obstacles to effective treatment. Targets for effective cancer therapy are required for cancer cells but not for non-malignant cells because they are expressed differently in cancer cells compared to normal cells. Targets for cancer therapy should preferably be components that already exist in biochemical and signalling frameworks and that significantly contribute to the development of cancer or regulate the response to therapy. RLIP is an important mercapturic acid pathway transporter that is crucial for survival and therapy resistance in cancers, therefore, we examined the role of RLIP in regulating essential signalling proteins involved in relaying the inputs from upstream survival pathways and mechanisms contributing to chemo-radiotherapy resistance in OC. The findings of our research offer insight into a novel anticancer effect of RLIP depletion/inhibition on OC and might open up new therapeutic avenues for OC therapy.
Collapse
Affiliation(s)
- Sravani K Ramisetty
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Pankaj Garg
- Department of Chemistry, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Atish Mohanty
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Tamara Mirzapoiazova
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Er Yue
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Edward Wang
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sanjay Awasthi
- Cayman Health, CTMH Doctors Hospital in Cayman Islands, George Town, Cayman Islands
| | - Prakash Kulkarni
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S Singhal
- Department of Medical Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
9
|
Grizzi F, Hegazi MAAA, Zanoni M, Vota P, Toia G, Clementi MC, Mazzieri C, Chiriva-Internati M, Taverna G. Prostate Cancer Microvascular Routes: Exploration and Measurement Strategies. Life (Basel) 2023; 13:2034. [PMID: 37895416 PMCID: PMC10608780 DOI: 10.3390/life13102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Angiogenesis is acknowledged as a pivotal feature in the pathology of human cancer. Despite the absence of universally accepted markers for gauging the comprehensive angiogenic activity in prostate cancer (PCa) that could steer the formulation of focused anti-angiogenic treatments, the scrutiny of diverse facets of tumoral blood vessel development may furnish significant understanding of angiogenic processes. Malignant neoplasms, encompassing PCa, deploy a myriad of strategies to secure an adequate blood supply. These modalities range from sprouting angiogenesis and vasculogenesis to intussusceptive angiogenesis, vascular co-option, the formation of mosaic vessels, vasculogenic mimicry, the conversion of cancer stem-like cells into tumor endothelial cells, and vascular pruning. Here we provide a thorough review of these angiogenic mechanisms as they relate to PCa, discuss their prospective relevance for predictive and prognostic evaluations, and outline the prevailing obstacles in quantitatively evaluating neovascularization via histopathological examinations.
Collapse
Affiliation(s)
- Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Mohamed A. A. A. Hegazi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | - Matteo Zanoni
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| | - Paolo Vota
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| | - Giovanni Toia
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| | - Maria Chiara Clementi
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| | - Cinzia Mazzieri
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| | - Maurizio Chiriva-Internati
- Departments of Gastroenterology, Hepatology & Nutrition, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Gianluigi Taverna
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| |
Collapse
|
10
|
Jalil AT, Abdulhadi MA, Al-Ameer LR, Abbas HA, Merza MS, Zabibah RS, Fadhil AA. The emerging role of microRNA-126 as a potential therapeutic target in cancer: a comprehensive review. Pathol Res Pract 2023; 248:154631. [PMID: 37393667 DOI: 10.1016/j.prp.2023.154631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/04/2023]
Abstract
MicroRNA-126 (miR-126) has become a key player in the biology of cancer, playing a variety of functions in carcinogenesis and cancer development. The diagnostic and prognostic potential of miR-126 in diverse cancer types is summarized in this thorough analysis, with an emphasis on its role in tumor angiogenesis, invasion, metastasis, cell proliferation, apoptosis, and treatment resistance. MiR-126 dysregulation is linked to a higher risk of developing cancer and a worse prognosis. Notably, miR-126 affects tumor vascularization and development by targeting vascular endothelial growth factor-A (VEGF-A). Through its impact on genes involved in cell adhesion and migration, it also plays a vital part in cancer cell invasion and metastasis. Additionally, miR-126 controls drug resistance, apoptosis, and cell proliferation, which affects cancer cell survival and treatment response. It may be possible to develop innovative therapeutic approaches to stop tumor angiogenesis, invasion, and metastasis, as well as combat drug resistance by focusing on miR-126 or its downstream effectors. The versatility of miR-126's functions highlights the role that it plays in cancer biology. To understand the processes behind miR-126 dysregulation, pinpoint precise targets, and create efficient therapies, more investigation is required. Utilizing miR-126's therapeutic potential might have a significant influence on cancer treatment plans and patient outcomes.
Collapse
Affiliation(s)
| | - Mohanad Ali Abdulhadi
- Department of Medical Laboratory Techniques, Al-maarif University College, Al Anbar, Iraq
| | | | | | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal University College, Babylon 51001, Iraq
| | | | - Ali A Fadhil
- Medical technical college, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|