1
|
Gil-Paterna P, Furmark T. Imaging the cerebellum in post-traumatic stress and anxiety disorders: a mini-review. Front Syst Neurosci 2023; 17:1197350. [PMID: 37645454 PMCID: PMC10460913 DOI: 10.3389/fnsys.2023.1197350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) and anxiety disorders are among the most prevalent psychiatric conditions worldwide sharing many clinical manifestations and, most likely, neural mechanisms as suggested by neuroimaging research. While the so-called fear circuitry and traditional limbic structures of the brain, particularly the amygdala, have been extensively studied in sufferers of these disorders, the cerebellum has been relatively underexplored. The aim of this paper was to present a mini-review of functional (task-activity or resting-state connectivity) and structural (gray matter volume) results on the cerebellum as reported in magnetic resonance imaging studies of patients with PTSD or anxiety disorders (49 selected studies in 1,494 patients). While mixed results were noted overall, e.g., regarding the direction of effects and anatomical localization, cerebellar structures like the vermis seem to be highly involved. Still, the neurofunctional and structural alterations reported for the cerebellum in excessive anxiety and trauma are complex, and in need of further evaluation.
Collapse
|
2
|
Yu X, Ruan Y, Zhang Y, Wang J, Liu Y, Zhang J, Zhang L. Cognitive Neural Mechanism of Social Anxiety Disorder: A Meta-Analysis Based on fMRI Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115556. [PMID: 34067468 PMCID: PMC8196988 DOI: 10.3390/ijerph18115556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
Objective: The present meta-analysis aimed to explore the cognitive and neural mechanism of social anxiety disorder (SAD) from a whole-brain view, and compare the differences in brain activations under different task paradigms. Methods: We searched Web of Science Core Collection and other databases with the keywords related to social anxiety, social phobia, and functional magnetic resonance imaging (fMRI) for comparing persons with SAD to healthy controls and used the activation likelihood estimation method. Thirty-seven papers met the inclusion criteria, including 15 with emotional faces as stimuli, 8 presenting specific situations as stimuli, and 14 using other types of tasks as stimuli. Among these papers, 654 participants were in the SAD group and 594 participants were in the control group with 335 activation increase points and 115 activation decrease points. Results: Whole-brain analysis showed that compared with healthy controls, persons with SAD showed significantly lower activation of the left anterior cingulate gyrus (MNI coordinate: x = −6, y = 22, z = 38; p 0.001). Sub-group analysis based on task indicated that when performing tasks with emotional faces as stimuli, persons with SAD showed significantly lower activation of the left cerebellar slope and fusiform gyrus (MNI coordinate: x = −26, y = −68, z = −12; p 0.001), and significantly higher activation of the right supramarginal gyrus and angular gyrus, than healthy controls (MNI coordinate: x = 58, y = −52, z = 30; p 0.001). Conclusion: Individuals with social anxiety disorder show abnormal activation in the cingulate gyrus, which is responsible for the process of attention control, and task type can influence the activation pattern.
Collapse
Affiliation(s)
- Xianglian Yu
- Department of Education, Jianghan University, Wuhan 430056, China; (X.Y.); (J.W.); (Y.L.)
- Key Laboratory of Adolescent Cyberpsychology and Behavior, Ministry of Education, Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan 430056, China
| | - Yijun Ruan
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Yawen Zhang
- Department of Medical Psychology, School of Health Humanities, Peking University, Beijing 100191, China;
| | - Jiayi Wang
- Department of Education, Jianghan University, Wuhan 430056, China; (X.Y.); (J.W.); (Y.L.)
| | - Yuting Liu
- Department of Education, Jianghan University, Wuhan 430056, China; (X.Y.); (J.W.); (Y.L.)
| | - Jibiao Zhang
- Department of Education, Jianghan University, Wuhan 430056, China; (X.Y.); (J.W.); (Y.L.)
- Correspondence: (J.Z.); (L.Z.); Tel.: +86-151-1631-9551 (J.Z.); Tel.: +86-186-2215-2329 (L.Z.)
| | - Lin Zhang
- Key Laboratory of Adolescent Cyberpsychology and Behavior, Ministry of Education, Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan 430056, China
- Correspondence: (J.Z.); (L.Z.); Tel.: +86-151-1631-9551 (J.Z.); Tel.: +86-186-2215-2329 (L.Z.)
| |
Collapse
|
3
|
Yang C, Zhang Y, Lu M, Ren J, Li Z. White Matter Structural Brain Connectivity of Young Healthy Individuals With High Trait Anxiety. Front Neurol 2020; 10:1421. [PMID: 32116992 PMCID: PMC7031248 DOI: 10.3389/fneur.2019.01421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/30/2019] [Indexed: 02/01/2023] Open
Abstract
Background: Although functional brain connectivity in anxiety-related disorders has been studied, brain connectivity in non-clinical populations with high trait anxiety has been rarely reported. Whether structural brain connectivity changes in young healthy individuals with high trait anxiety remains unknown. Methods: Thirty-eight young healthy individuals with high anxiety levels and 34 healthy subjects with low anxiety levels who were matched by age, gender, and educational level were recruited. Diffusion tensor images were acquired to analyze white matter connectivity. A two-sample t-test was used for group comparison of weighted networks and graph properties. Results: Different connections were detected in fractional anisotropy- and fiber number-weighted networks. These connections were widely distributed in various regions, where relative significance was located in the inter-hemispheric frontal lobe, the frontal-limbic lobe in the right intra-hemisphere, and the frontal-temporal lobe in the ipsilateral hemisphere. However, no significant difference was found in fiber length-weighted network and in graph properties among the three networks. Conclusions: The structural connectivity of white matter may be a vulnerability marker. Hence, healthy individuals with high trait anxiety levels are susceptible to anxiety-related psychopathology. The findings may help elucidate the pathological mechanism of anxiety and establish interventions for populations susceptible to anxiety disorders.
Collapse
Affiliation(s)
- Chunlan Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Yining Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Min Lu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jiechuan Ren
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhimei Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Task MRI-Based Functional Brain Network of Anxiety. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1191:3-20. [PMID: 32002919 DOI: 10.1007/978-981-32-9705-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Magnetic resonance imaging (MRI) is a good tool for researchers to understand the biological mechanisms and pathophysiology of the brain due to the translational characteristics of MRI methods. For the psychiatric illness, this kind of mental disorders usually have minor alterations when compared to traditional neurological disorders. Therefore the functional study, such as functional connectivity, would play a significant role for understanding the pathophysiology of mental disorders. This chapter would focus on the discussion of task MRI-based functional network studies in anxiety. For social anxiety disorder, the limbic system, such as the temporal lobe, amygdala, and hippocampus, would show alterations in the functional connectivity with frontal regions, such as anterior cingulate, prefrontal, and orbitofrontal cortices. PD has anterior cingulate cortex-amygdala alterations in fear conditioning, frontoparietal alterations in attention network task, and limbic-prefrontal alterations in emotional task. A similar amygdala-based aberrant functional connectivity in specific phobia is observed. The mesocorticolimbic and limbic-prefrontal functional alterations are found in generalized anxiety disorder. The major components of task MRI-based functional connectivity in anxiety include limbic and frontal regions which might play a vital role for the origination of anxiety under different scenarios and tasks.
Collapse
|
5
|
Not intended, still embarrassed: Social anxiety is related to increased levels of embarrassment in response to unintentional social norm violations. Eur Psychiatry 2020; 52:15-21. [DOI: 10.1016/j.eurpsy.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/16/2018] [Accepted: 03/07/2018] [Indexed: 12/16/2022] Open
Abstract
AbstractBackground:Social anxiety disorder (SAD) is associated with altered social norm (SN) processing: SAD-patients rate stories on SN violations as more inappropriate and more embarrassing than healthy participants, with the most prominent effect for stories on unintentional SN violations (i.e. committing a blunder). Until now it’s unknown how levels of social anxiety (SA) are related to ratings of SN violations in the general population, in which SA-symptoms are present at a continuum. More insight in this relationship could improve our understanding of the symptom profile of SAD. Therefore, we investigated the relation between ratings of SN violations and SA-levels in the general population.Methods:Adults and adolescents (n = 87) performed the revised Social Norm Processing Task (SNPT-R) and completed self-report questionnaires on social anxiety. Repeated-measures ANCOVAs were used to investigate the effect of SA on the ratings of inappropriateness and embarrassment.Results:As hypothesized, participants with higher SA-levels rated SN violations as more inappropriate and more embarrassing. Whereas participants with low-to-intermediate SA-levels rated unintentional SN violations as less embarrassing than intentional SN violations, participants with high SA-levels (z-score SA ≥ 1.6) rated unintentional SN violations as equally embarrassing as intentional SN violations.Conclusion:These findings indicate that increased embarrassment for unintentional SN violations is an important characteristic of social anxiety. These high levels of embarrassment are likely related to the debilitating concern of socially-anxious people that their skills and behavior do not meet expectations of others, and to their fear of blundering. This concern might be an important target for future therapeutic interventions.
Collapse
|
6
|
Walia V, Garg C, Garg M. Amantadine exerts anxiolytic like effect in mice: Evidences for the involvement of nitrergic and GABAergic signaling pathways. Behav Brain Res 2019; 380:112432. [PMID: 31838141 DOI: 10.1016/j.bbr.2019.112432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 01/08/2023]
Abstract
Amantadine is a glutamatergic antagonist that works by inhibiting the NMDA receptor. Besides the inhibition of NMDA receptors amantadine also stabilizes the glutamatergic system and protects the neurons against the NMDA toxicity. Amantadine treatment also reduces the production of NO and metabolism of GABA. Therefore amantadine modulates glutamate, GABA and NO which are known to be implicated in the pathogenesis of anxiety and related behavior. The present study was designed to investigate the anxiolytic like effect of amantadine in mice. Nitrergic and GABAergic signaling influence in the anxiolytic like effect of amantadine was also studied. Amantadine (25, 50 and 75 mg/kg, i.p.) was administered and the anxiety related behavior was determined using light and dark box (LDB) and elevated plus maze (EPM) methods. Further, the effect of various treatments on the whole brain glutamate, nitrite and GABA levels were also determined. The results obtained demonstrated that the amantadine (50 mg/kg, i.p.) exerted anxiolytic like effect in mice and reduced the levels of glutamate, nitrite and GABA in the brain of mice as compared to control. Further, the influence of NO and GABA in the anxiolytic like effect of the amantadine was also determined. The results obtained demonstrated that NO donor counteracted while NO inhibitor potentiated the anxiolytic like effect of amantadine in mice. Also the combined treatment of amantadine (25 mg/kg, i.p.) and diazepam (1 mg/kg, i.p.) did not affect the anxiety related behavior, brain GABA and nitrite level of mice but reduced the levels the brain glutamate levels significantly as compared to amantadine (25 mg/kg, i.p.) and diazepam (1 mg/kg, i.p.) treated mice. Thus, amantadine exerted anxiolytic like effect in mice and the anxiolytic like effect of amantadine was modulated by nitrergic and GABAergic signaling pathway.
Collapse
Affiliation(s)
- Vaibhav Walia
- Faculty of Pharmacy, DIT University, Dehradun, India.
| | - Chanchal Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| | - Munish Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
7
|
Is there an "antisocial" cerebellum? Evidence from disorders other than autism characterized by abnormal social behaviours. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:1-8. [PMID: 30153496 DOI: 10.1016/j.pnpbp.2018.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022]
Abstract
The cerebellum is a hindbrain structure which involvement in functions not related to motor control and planning is being increasingly recognized in the last decades. Studies on Autism Spectrum Disorders (ASD) have reported cerebellar involvement on these conditions characterized by social deficits and repetitive motor behavior patterns. Although such an involvement hints at a possible cerebellar participation in the social domain, the fact that ASD patients present both social and motor deficits impedes drawing any firm conclusion regarding cerebellar involvement in pathological social behaviours, probably influenced by the classical view of the cerebellum as a purely "motor" brain structure. Here, we suggest the cerebellum can be a key node for the production and control of normal and particularly aberrant social behaviours, as indicated by its involvement in other neuropsychiatric disorders which main symptom is deregulated social behaviour. Therefore, in this work, we briefly review cerebellar involvement in social behavior in rodent models, followed by discussing the findings linking the cerebellum to those other psychiatric conditions characterized by defective social behaviours. Finally, possible commonalities between the studies and putative underlying impaired functions will be discussed and experimental approaches both in patients and experimental animals will also be proposed, aimed at stimulating research on the role of the cerebellum in social behaviours and disorders characterized by social impairments, which, if successful, will definitely help reinforcing the proposed cerebellar involvement in the social domain.
Collapse
|
8
|
Phasic amygdala and BNST activation during the anticipation of temporally unpredictable social observation in social anxiety disorder patients. NEUROIMAGE-CLINICAL 2019; 22:101735. [PMID: 30878610 PMCID: PMC6423472 DOI: 10.1016/j.nicl.2019.101735] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/17/2019] [Accepted: 02/21/2019] [Indexed: 01/05/2023]
Abstract
Anticipation of potentially threatening social situations is a key process in social anxiety disorder (SAD). In other anxiety disorders, recent research of neural correlates of anticipation of temporally unpredictable threat suggests a temporally dissociable involvement of amygdala and bed nucleus of the stria terminalis (BNST) with phasic amygdala responses and sustained BNST activation. However, the temporal profile of amygdala and BNST responses during temporal unpredictability of threat has not been investigated in patients suffering from SAD. We used functional magnetic resonance imaging (fMRI) to investigate neural activation in the central nucleus of the amygdala (CeA) and the BNST during anticipation of temporally unpredictable aversive (video camera observation) relative to neutral (no camera observation) events in SAD patients compared to healthy controls (HC). For the analysis of fMRI data, we applied two regressors (phasic/sustained) within the same model to detect temporally dissociable brain responses. The aversive condition induced increased anxiety in patients compared to HC. SAD patients compared to HC showed increased phasic activation in the CeA and the BNST for anticipation of aversive relative to neutral events. SAD patients as well as HC showed sustained activity alterations in the BNST for aversive relative to neutral anticipation. No differential activity during sustained threat anticipation in SAD patients compared to HC was found. Taken together, our study reveals both CeA and BNST involvement during threat anticipation in SAD patients. The present results point towards potentially SAD-specific threat processing marked by elevated phasic but not sustained CeA and BNST responses when compared to HC. fMRI in SAD during anticipation of temporally unpredictable aversive events. Anticipation of social observation induces increased anxiety in SAD patients. SAD patients show elevated phasic activity in fundamental anxiety network regions. Evidence of SAD-specific threat processing.
Collapse
|
9
|
Chang J, Yu R. Alternations in functional connectivity of amygdalar subregions under acute social stress. Neurobiol Stress 2018; 9:264-270. [PMID: 30450390 PMCID: PMC6234264 DOI: 10.1016/j.ynstr.2018.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/27/2018] [Accepted: 06/02/2018] [Indexed: 12/19/2022] Open
Abstract
The amygdala has long been considered a vital region involved in acute and chronic stress responses. Extensive evidences from animal and human studies suggest that the functional connectivity of amygdalar subnuclei (basolateral amygdala (BLA), centromedial amygdala (CMA) and superficial amygdala (SFA)) undergo specific alterations in stress-related psychopathology. However, whether and how intrinsic functional connectivity within the amygdalar subcomponents is differently altered in the aftermath of an acute stressor remains unknown. In the present study, using a within-subject design, we examined the impact of acute psychological social stress on the functional connectivity of amygdalar subregions at rest. Results showed that stress mainly affected the connectivity pattern of CMA. In particular, in the stress condition compared with the control, the connectivity of CMA to left posterior cingulate cortex and right thalamus was decreased under stress, while the connectivity of CMA to left caudate connectivity was increased at rest post-stressor. The findings suggest that healthy individuals may adapt to threatening surroundings by reducing threatening information input, and shifting to well-learned procedural behaviors.
Collapse
Affiliation(s)
- Jingjing Chang
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Rongjun Yu
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
- Department of Psychology, National University of Singapore, Singapore
| |
Collapse
|
10
|
Moreno-Rius J. The cerebellum in fear and anxiety-related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:23-32. [PMID: 29627508 DOI: 10.1016/j.pnpbp.2018.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 01/06/2023]
Abstract
Fear and anxiety-related disorders are highly prevalent psychiatric conditions characterized by avoidant and fearful reactions towards specific stimuli or situations, which are disproportionate given the real threat such stimuli entail. These conditions comprise the most common mental disorder group. There are a high proportion of patients who fail to achieve remission and the presence of high relapse rates indicate the therapeutic options available are far from being fully efficient. Despite an increased understanding the neural circuits underlying fear and anxiety-related behaviors in the last decades, a factor that could be partially contributing to the lack of adequate therapies may be an insufficient understanding of the core features of the disorders and their associated neurobiology. Interestingly, the cerebellum shows connections with fear and anxiety-related brain areas and functional involvement in such processes, but explanations for its role in anxiety disorders are lacking. Therefore, the aims of this review are to provide an overview of the neural circuitry of fear and anxiety and its connections to the cerebellum, and of the animal studies that directly assess an involvement of the cerebellum in these processes. Then, the studies performed in patients suffering from anxiety disorders that explore the cerebellum will be discussed. Finally, we'll propose a function for the cerebellum in these disorders, which could guide future experimental approaches to the topic and lead to a better understanding of the neurobiology of anxiety-related disorders, ultimately helping to develop more effective treatments for these conditions.
Collapse
Affiliation(s)
- Josep Moreno-Rius
- Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
11
|
A common brain network among state, trait, and pathological anxiety from whole-brain functional connectivity. Neuroimage 2018; 172:506-516. [DOI: 10.1016/j.neuroimage.2018.01.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/27/2018] [Accepted: 01/30/2018] [Indexed: 01/18/2023] Open
|
12
|
Yang X, Liu J, Meng Y, Xia M, Cui Z, Wu X, Hu X, Zhang W, Gong G, Gong Q, Sweeney JA, He Y. Network analysis reveals disrupted functional brain circuitry in drug-naive social anxiety disorder. Neuroimage 2017; 190:213-223. [PMID: 29223742 DOI: 10.1016/j.neuroimage.2017.12.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 10/17/2017] [Accepted: 12/05/2017] [Indexed: 02/05/2023] Open
Abstract
Social anxiety disorder (SAD) is a common and disabling condition characterized by excessive fear and avoidance of public scrutiny. Psychoradiology studies have suggested that the emotional and behavior deficits in SAD are associated with abnormalities in regional brain function and functional connectivity. However, little is known about whether intrinsic functional brain networks in patients with SAD are topologically disrupted. Here, we collected resting-state fMRI data from 33 drug-naive patients with SAD and 32 healthy controls (HC), constructed functional networks with 34 predefined regions based on previous meta-analytic research with task-based fMRI in SAD, and performed network-based statistic and graph-theory analyses. The network-based statistic analysis revealed a single connected abnormal circuitry including the frontolimbic circuit (termed the "fear circuit", including the dorsolateral prefrontal cortex, ventral medial prefrontal cortex and insula) and posterior cingulate/occipital areas supporting perceptual processing. In this single altered network, patients with SAD had higher functional connectivity than HC. At the global level, graph-theory analysis revealed that the patients exhibited a lower normalized characteristic path length than HC, which suggests a disorder-related shift of network topology toward randomized configurations. SAD-related deficits in nodal degree, efficiency and participation coefficient were detected in the parahippocampal gyrus, posterior cingulate cortex, dorsolateral prefrontal cortex, insula and the calcarine sulcus. Aspects of abnormal connectivity were associated with anxiety symptoms. These findings highlight the aberrant topological organization of functional brain network organization in SAD, which provides insights into the neural mechanisms underlying excessive fear and avoidance of social interactions in patients with debilitating social anxiety.
Collapse
Affiliation(s)
- Xun Yang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China; Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Jin Liu
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yajing Meng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Mingrui Xia
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zaixu Cui
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Xi Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xinyu Hu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Wei Zhang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Gaolang Gong
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China; Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, 610041, China; Department of Psychology, School of Public Administration, Sichuan University, Chengdu, 610065, China.
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, 45219, USA
| | - Yong He
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
13
|
Burklund LJ, Torre JB, Lieberman MD, Taylor SE, Craske MG. Neural responses to social threat and predictors of cognitive behavioral therapy and acceptance and commitment therapy in social anxiety disorder. Psychiatry Res 2017; 261:52-64. [PMID: 28129556 PMCID: PMC5435374 DOI: 10.1016/j.pscychresns.2016.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/19/2016] [Accepted: 12/27/2016] [Indexed: 02/08/2023]
Abstract
Previous research has often highlighted hyperactivity in emotion regions to simple, static social threat cues in social anxiety disorder (SAD). Investigation of the neurobiology of SAD using more naturalistic paradigms can further reveal underlying mechanisms and how these relate to clinical outcomes. We used fMRI to investigate responses to novel dynamic rejection stimuli in individuals with SAD (N=70) and healthy controls (HC; N=17), and whether these responses predicted treatment outcomes following cognitive behavioral therapy (CBT) or acceptance and commitment therapy (ACT). Both HC and SAD groups reported greater distress to rejection compared to neutral social stimuli. At the neural level, HCs exhibited greater activations in social pain/rejection regions, including dorsal anterior cingulate cortex and anterior insula, to rejection stimuli. The SAD group evidenced a different pattern, with no differences in these rejection regions and relatively greater activations in the amygdala and other regions to neutral stimuli. Greater responses in anterior cingulate cortex and the amygdala to rejection vs. neutral stimuli predicted better CBT outcomes. In contrast, enhanced activity in sensory-focused posterior insula predicted ACT responses.
Collapse
Affiliation(s)
- Lisa J Burklund
- University of California Los Angeles, Department of Psychology, Los Angeles, CA 90095-1563, United States.
| | - Jared B Torre
- University of California Los Angeles, Department of Psychology, Los Angeles, CA 90095-1563, United States
| | - Matthew D Lieberman
- University of California Los Angeles, Department of Psychology, Los Angeles, CA 90095-1563, United States
| | - Shelley E Taylor
- University of California Los Angeles, Department of Psychology, Los Angeles, CA 90095-1563, United States
| | - Michelle G Craske
- University of California Los Angeles, Department of Psychology, Los Angeles, CA 90095-1563, United States
| |
Collapse
|
14
|
Bas-Hoogendam JM, Blackford JU, Brühl AB, Blair KS, van der Wee NJ, Westenberg PM. Neurobiological candidate endophenotypes of social anxiety disorder. Neurosci Biobehav Rev 2016; 71:362-378. [DOI: 10.1016/j.neubiorev.2016.08.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/15/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023]
|
15
|
Tadayonnejad R, Klumpp H, Ajilore O, Leow A, Phan KL. Aberrant pulvinar effective connectivity in generalized social anxiety disorder. Medicine (Baltimore) 2016; 95:e5358. [PMID: 27828859 PMCID: PMC5106065 DOI: 10.1097/md.0000000000005358] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent neuroimaging findings in general social anxiety disorder (gSAD) have extended our understanding of the neural mechanisms of gSAD beyond an amygdala-centric fear-based hyperactivity model to include other brain regions and networks relevant to salient cues. In particular, higher order areas compromising visual networks that process emotional and social information have been implicated. The pulvinar anchors this network and is a key regulatory node that mediates complex sensory inputs and the integration between limbic and frontal brain systems. However, the role of the pulvinar and specifically alteration of its effective connectivity with the rest of the brain has not been examined in the pathophysiology of gSAD, a disorder characterized by aberrant socio-emotional processing. The main aim of this study was to examine the pulvinar network effective connectivity in gSAD. In this study, we recruited 21 individuals with gSAD and 19 demographically matched healthy controls (HC), who performed an emotional face processing task while brain activity was recorded using functional magnetic resonance imaging (fMRI). To examine pulvinar-based network dynamics, Granger causality (GC) based effective connectivity (EC) analysis was applied on fMRI data to compare gSAD and HC. The EC analysis revealed heightened casual influential dynamics between pulvinar in higher order visual and frontal regions in gSAD. In conclusion, these preliminary data suggest a novel network-based cortico-pulvino-cortical neural mechanism in the pathophysiology of gSAD.
Collapse
Affiliation(s)
- Reza Tadayonnejad
- Department of Psychiatry
- Correspondence: Reza Tadayonnejad, Room # 27.432, 760 Westwood Plaza, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angles, CA 90024 (e-mail: )
| | - Heide Klumpp
- Department of Psychiatry
- Department of Psychology
| | | | - Alex Leow
- Department of Psychiatry
- Department of Bioengineering
| | - Kinh Luan Phan
- Department of Psychiatry
- Department of Psychology
- Department of Anatomy and Cell Biology, University of Illinois at Chicago
- Mental Health Service Line, Jesse Brown VA Medical Center, Chicago, IL
| |
Collapse
|
16
|
Doruyter A, Lochner C, Jordaan GP, Stein DJ, Dupont P, Warwick JM. Resting functional connectivity in social anxiety disorder and the effect of pharmacotherapy. Psychiatry Res Neuroimaging 2016; 251:34-44. [PMID: 27111811 DOI: 10.1016/j.pscychresns.2016.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/11/2016] [Accepted: 04/14/2016] [Indexed: 11/28/2022]
Abstract
Neuroimaging research has reported differences in resting-state functional connectivity (RFC) between social anxiety disorder (SAD) patients and healthy controls (HCs). Limited research has examined the effect of treatment on RFC in SAD. We performed a study to identify differences in RFC between SAD and HC groups, and to investigate the effect of pharmacotherapy on RFC in SAD. Seed-based RFC analysis was performed on technetium-99m hexamethylpropylene amine oxime (Tc-99m HMPAO) SPECT scans using a cross-subject approach in SPM-12. Seeds were chosen to represent regions in a recently published network model of SAD. A second-level regression analysis was performed to further characterize the underlying relationships identified in the group contrasts. Twenty-three SAD participants were included, of which 18 underwent follow-up measures after an 8-week course of citalopram or moclobemide. Fifteen healthy control (HC) scans were included. SAD participants at baseline demonstrated several significant connectivity disturbances consistent with the existing network model as well as one previously unreported finding (increased connectivity between cerebellum and posterior cingulate cortex). After therapy, the SAD group demonstrated significant increases in connectivity with dorsal anterior cingulate cortex which may explain therapy-induced modifications in how SAD sufferers interpret emotions in others and improvements in self-related and emotional processing.
Collapse
Affiliation(s)
- Alexander Doruyter
- Division of Nuclear Medicine, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Christine Lochner
- US/UCT MRC Unit for Stress and Anxiety Disorders, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerhard P Jordaan
- Department of Psychiatry, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Dan J Stein
- US/UCT MRC Unit for Stress and Anxiety Disorders, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Patrick Dupont
- Laboratory for Cognitive Neurology and Medical Imaging Centre, KU Leuven, Leuven, Belgium
| | - James M Warwick
- Division of Nuclear Medicine, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
17
|
MacNamara A, DiGangi J, Phan KL. Aberrant Spontaneous and Task-Dependent Functional Connections in the Anxious Brain. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:278-287. [PMID: 27141532 DOI: 10.1016/j.bpsc.2015.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A number of brain regions have been implicated in the anxiety disorders, yet none of these regions in isolation has been distinguished as the sole or discrete site responsible for anxiety disorder pathology. Therefore, the identification of dysfunctional neural networks as represented by alterations in the temporal correlation of blood-oxygen level dependent (BOLD) signal across several brain regions in anxiety disorders has been increasingly pursued in the past decade. Here, we review task-independent (e.g., resting state) and task-induced functional connectivity magnetic resonance imaging (fcMRI) studies in the adult anxiety disorders (including trauma- and stressor-related and obsessive compulsive disorders). The results of this review suggest that anxiety disorder pathophysiology involves aberrant connectivity between amygdala-frontal and frontal-striatal regions, as well as within and between canonical "intrinsic" brain networks - the default mode and salience networks, and that evidence of these aberrations may help inform findings of regional activation abnormalities observed in the anxiety disorders. Nonetheless, significant challenges remain, including the need to better understand mixed findings observed using different methods (e.g., resting state and task-based approaches); the need for more developmental work; the need to delineate disorder-specific and transdiagnostic fcMRI aberrations in the anxiety disorders; and the need to better understand the clinical significance of fcMRI abnormalities. In meeting these challenges, future work has the potential to elucidate aberrant neural networks as intermediate, brain-based phenotypes to predict disease onset and progression, refine diagnostic nosology, and ascertain treatment mechanisms and predictors of treatment response across anxiety, trauma-related and obsessive compulsive disorders.
Collapse
Affiliation(s)
- Annmarie MacNamara
- Department of Psychiatry (AM, JD, KLP), University of Illinois at Chicago, Chicago, IL; Departments of Psychology and Anatomy and Cell Biology, and the Graduate Program in Neuroscience (KLP), University of Illinois at Chicago, Chicago, IL; Mental Health Service Line (JD, KLP), Jesse Brown VA Medical Center, Chicago, IL
| | - Julia DiGangi
- Department of Psychiatry (AM, JD, KLP), University of Illinois at Chicago, Chicago, IL; Departments of Psychology and Anatomy and Cell Biology, and the Graduate Program in Neuroscience (KLP), University of Illinois at Chicago, Chicago, IL; Mental Health Service Line (JD, KLP), Jesse Brown VA Medical Center, Chicago, IL
| | - K Luan Phan
- Department of Psychiatry (AM, JD, KLP), University of Illinois at Chicago, Chicago, IL; Departments of Psychology and Anatomy and Cell Biology, and the Graduate Program in Neuroscience (KLP), University of Illinois at Chicago, Chicago, IL; Mental Health Service Line (JD, KLP), Jesse Brown VA Medical Center, Chicago, IL
| |
Collapse
|
18
|
Gentili C, Cristea IA, Angstadt M, Klumpp H, Tozzi L, Phan KL, Pietrini P. Beyond emotions: A meta-analysis of neural response within face processing system in social anxiety. Exp Biol Med (Maywood) 2015; 241:225-37. [PMID: 26341469 DOI: 10.1177/1535370215603514] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Patients with social anxiety disorder (SAD) experience anxiety and avoidance in face-to-face interactions. We performed a meta-analysis of functional magnetic resonance imaging (fMRI) studies in SAD to provide a comprehensive understanding of the neural underpinnings of face perception in this disorder. To this purpose, we adopted an innovative approach, asking authors for unpublished data. This is a common procedure for behavioral meta-analyses, which, however has never been used in neuroimaging studies. We searched Pubmed with the key words "Social Anxiety AND faces" and "Social Phobia AND faces." Then, we selected those fMRI studies for which we were able to obtain data for the comparison between SAD and healthy controls (HC) in a face perception task, either from the published papers or from the authors themselves. In this way, we obtained 23 studies (totaling 449 SAD and 424 HC individuals). We identified significant clusters in which faces evoked a higher response in SAD in bilateral amygdala, globus pallidus, superior temporal sulcus, visual cortex, and prefrontal cortex. We also found a higher activity for HC in the lingual gyrus and in the posterior cingulate. Our findings show that altered neural response to face in SAD is not limited to emotional structures but involves a complex network. These results may have implications for the understanding of SAD pathophysiology, as they suggest that a dysfunctional face perception process may bias patient person-to-person interactions.
Collapse
Affiliation(s)
- Claudio Gentili
- Clinical Psychology Branch - Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa 56126, Italy Department of General Psychology - University of Padua, Padua 35131, Italy
| | - Ioana Alina Cristea
- Clinical Psychology Branch - Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa 56126, Italy Department of Clinical Psychology and Psychotherapy, University Babes-Bolyai, Cluj-Napoca, RO 400015, Romania
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Heide Klumpp
- Department of Psychiatry and Psychology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - K Luan Phan
- Department of Psychiatry and Psychology, University of Illinois at Chicago, Chicago, IL 60612, USA Department Anatomy and Cell Biology and the Graduate Program in Neuroscience, Chicago, IL 60612, USA Mental Health Service Line, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Pietro Pietrini
- Clinical Psychology Branch - Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa 56126, Italy
| |
Collapse
|
19
|
Ganger S, Hahn A, Küblböck M, Kranz GS, Spies M, Vanicek T, Seiger R, Sladky R, Windischberger C, Kasper S, Lanzenberger R. Comparison of continuously acquired resting state and extracted analogues from active tasks. Hum Brain Mapp 2015; 36:4053-63. [PMID: 26178250 PMCID: PMC4950683 DOI: 10.1002/hbm.22897] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/02/2015] [Accepted: 06/26/2015] [Indexed: 01/11/2023] Open
Abstract
Functional connectivity analysis of brain networks has become an important tool for investigation of human brain function. Although functional connectivity computations are usually based on resting-state data, the application to task-specific fMRI has received growing attention. Three major methods for extraction of resting-state data from task-related signal have been proposed (1) usage of unmanipulated task data for functional connectivity; (2) regression against task effects, subsequently using the residuals; and (3) concatenation of baseline blocks located in-between task blocks. Despite widespread application in current research, consensus on which method best resembles resting-state seems to be missing. We, therefore, evaluated these techniques in a sample of 26 healthy controls measured at 7 Tesla. In addition to continuous resting-state, two different task paradigms were assessed (emotion discrimination and right finger-tapping) and five well-described networks were analyzed (default mode, thalamus, cuneus, sensorimotor, and auditory). Investigating the similarity to continuous resting-state (Dice, Intraclass correlation coefficient (ICC), R(2) ) showed that regression against task effects yields functional connectivity networks most alike to resting-state. However, all methods exhibited significant differences when compared to continuous resting-state and similarity metrics were lower than test-retest of two resting-state scans. Omitting global signal regression did not change these findings. Visually, the networks are highly similar, but through further investigation marked differences can be found. Therefore, our data does not support referring to resting-state when extracting signals from task designs, although functional connectivity computed from task-specific data may indeed yield interesting information.
Collapse
Affiliation(s)
- Sebastian Ganger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Martin Küblböck
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - René Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Ronald Sladky
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Christian Windischberger
- MR Center of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Duval ER, Javanbakht A, Liberzon I. Neural circuits in anxiety and stress disorders: a focused review. Ther Clin Risk Manag 2015; 11:115-26. [PMID: 25670901 PMCID: PMC4315464 DOI: 10.2147/tcrm.s48528] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Anxiety and stress disorders are among the most prevalent neuropsychiatric disorders. In recent years, multiple studies have examined brain regions and networks involved in anxiety symptomatology in an effort to better understand the mechanisms involved and to develop more effective treatments. However, much remains unknown regarding the specific abnormalities and interactions between networks of regions underlying anxiety disorder presentations. We examined recent neuroimaging literature that aims to identify neural mechanisms underlying anxiety, searching for patterns of neural dysfunction that might be specific to different anxiety disorder categories. Across different anxiety and stress disorders, patterns of hyperactivation in emotion-generating regions and hypoactivation in prefrontal/regulatory regions are common in the literature. Interestingly, evidence of differential patterns is also emerging, such that within a spectrum of disorders ranging from more fear-based to more anxiety-based, greater involvement of emotion-generating regions is reported in panic disorder and specific phobia, and greater involvement of prefrontal regions is reported in generalized anxiety disorder and posttraumatic stress disorder. We summarize the pertinent literature and suggest areas for continued investigation.
Collapse
Affiliation(s)
- Elizabeth R Duval
- Department of Psychiatry, University of Michigan Health System, Ann Arbor, MI, USA
| | - Arash Javanbakht
- Department of Psychiatry, University of Michigan Health System, Ann Arbor, MI, USA
| | - Israel Liberzon
- Department of Psychiatry, University of Michigan Health System, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Özkucur N, Quinn KP, Pang JC, Du C, Georgakoudi I, Miller E, Levin M, Kaplan DL. Membrane potential depolarization causes alterations in neuron arrangement and connectivity in cocultures. Brain Behav 2015; 5:24-38. [PMID: 25722947 PMCID: PMC4321392 DOI: 10.1002/brb3.295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The disruption of neuron arrangement is associated with several pathologies. In contrast to action potentials, the role of resting potential (Vmem) in regulating connectivity remains unknown. METHODS Neuron assemblies were quantified when their Vmem was depolarized using ivermectin (Ivm), a drug that opens chloride channels, for 24 h in cocultures with astrocytes. Cell aggregation was analyzed using automated cluster analysis methods. Neural connectivity was quantified based on the identification of isolated somas in phase-contrast images using image processing. Vmem was measured using voltage-sensitive dyes and whole-cell patch clamping. Immunocytochemistry and Western blotting were used to detect changes in the distribution and production of the proteins. RESULTS Data show that Vmem regulates cortical tissue shape and connectivity. Automated cluster analysis methods revealed that the degree of neural aggregation was significantly increased (0.26 clustering factor vs. 0.21 in controls, P ≤ 0.01). The number of beta-tubulin III positive neural projections was also significantly increased in the neural aggregates in cocultures with Ivm. Hyperpolarized neuron cells formed fewer connections (33% at 24 h, P ≤ 0.05) compared to control cells in 1-day cultures. Glia cell densities increased (33.3%, P ≤ 0.05) under depolarizing conditions. CONCLUSION Vmem can be a useful tool to probe neuronal cells, disease tissues models, and cortical tissue arrangements.
Collapse
Affiliation(s)
- Nurdan Özkucur
- Department of Biomedical Engineering, Tufts University 4 Colby St., Medford, Massachusetts, 02155 ; Biology Department, Tufts University 200 Boston Avenue, Suite 4600, Medford, Massachusetts, 02155
| | - Kyle P Quinn
- Department of Biomedical Engineering, Tufts University 4 Colby St., Medford, Massachusetts, 02155
| | - Jin C Pang
- Department of Electrical and Computer Engineering, Tufts University 161 College Avenue, Medford, Massachusetts, 02155
| | - Chuang Du
- Department of Biomedical Engineering, Tufts University 4 Colby St., Medford, Massachusetts, 02155 ; Department of Neuroscience, Tufts University 136 Harrison Ave, Boston, Massachusetts
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University 4 Colby St., Medford, Massachusetts, 02155
| | - Eric Miller
- Department of Electrical and Computer Engineering, Tufts University 161 College Avenue, Medford, Massachusetts, 02155
| | - Michael Levin
- Biology Department, Tufts University 200 Boston Avenue, Suite 4600, Medford, Massachusetts, 02155
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University 4 Colby St., Medford, Massachusetts, 02155
| |
Collapse
|
22
|
Irle E, Barke A, Lange C, Ruhleder M. Parietal abnormalities are related to avoidance in social anxiety disorder: a study using voxel-based morphometry and manual volumetry. Psychiatry Res 2014; 224:175-83. [PMID: 25240316 DOI: 10.1016/j.pscychresns.2014.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 06/13/2014] [Accepted: 08/22/2014] [Indexed: 01/08/2023]
Abstract
Evidence is accumulating that various mental disorders are related to neural abnormalities in the parietal cortices that are associated with the default mode network (DMN). Participants comprised 67 persons with social anxiety disorder (SAD) and 64 matched healthy controls who underwent structural magnetic resonance imaging (MRI) and a comprehensive clinical assessment. Voxel-based morphometry (VBM) across the entire brain and manual volumetry of the parietal cortices were performed. The results indicate abnormal manually segmented volumes or gray matter (GM) volumes within the precuneus, postcentral gyrus and inferior parietal cortex, as well as in the premotor cortices including the supplementary motor cortex. Significant negative correlations were obtained between parietal, especially precuneus, abnormalities and social avoidance severity, indicating stronger avoidance in SAD participants with smaller volumes or less GM. We conclude that pathological avoidance behaviors in SAD are associated with structural deficits of parietal regions that are associated with the DMN, which has been shown to mediate introspection and reflection upon one's own mental state in healthy humans.
Collapse
Affiliation(s)
- Eva Irle
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Von-Siebold-Str. 5, D-37075 Göttingen, Germany.
| | - Antonia Barke
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Von-Siebold-Str. 5, D-37075 Göttingen, Germany
| | - Claudia Lange
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Von-Siebold-Str. 5, D-37075 Göttingen, Germany
| | - Mirjana Ruhleder
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Von-Siebold-Str. 5, D-37075 Göttingen, Germany
| |
Collapse
|
23
|
|
24
|
Neuroimaging in social anxiety disorder—A meta-analytic review resulting in a new neurofunctional model. Neurosci Biobehav Rev 2014; 47:260-80. [PMID: 25124509 DOI: 10.1016/j.neubiorev.2014.08.003] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 06/26/2014] [Accepted: 08/01/2014] [Indexed: 01/30/2023]
|
25
|
Arnold Anteraper S, Triantafyllou C, Sawyer AT, Hofmann SG, Gabrieli JD, Whitfield-Gabrieli S. Hyper-connectivity of subcortical resting-state networks in social anxiety disorder. Brain Connect 2014; 4:81-90. [PMID: 24279709 DOI: 10.1089/brain.2013.0180] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Social anxiety disorder-related alterations in basal ganglia regions, such as striatum and globus pallidus, though evident from metabolic imaging, remain to be explored using seed-based resting-state functional connectivity magnetic resonance imaging. Capitalizing on the enhanced sensitivity of a multichannel array coil, we collected high-resolution (2-mm isotropic) data from medication-naive patients and healthy control participants. Subcortical resting-state networks from structures including the striatum (caudate and putamen), globus pallidus, thalamus, amygdala, and periaqueductal gray were compared between the two groups. When compared with controls, the caudate seed revealed significantly higher functional connectivity (hyper-connectivity) in the patient group in medial frontal, prefrontal (anterior and dorsolateral), orbito-frontal, and anterior cingulate cortices, which are regions that are typically associated with emotional processing. In addition, with the putamen seed, the patient data exhibited increased connectivity in the fronto-parietal regions (executive control network) and subgenual cingulate (affective network). The globus pallidus seed showed significant increases in connectivity in the patient group, primarily in the precuneus, which is part of the default mode network. Significant hyper-connectivity in the precuneus, interior temporal, and parahippocampal cortices was also observed with the thalamus seed in the patient population, when compared with controls. With amygdala as seed region, between-group differences were primarily in supplementary motor area, inferior temporal gyrus, secondary visual cortex, angular gyrus, and cingulate gyrus. Seed from periaqueductal gray resulted in hyper-connectivity in the patient group, when compared with controls, in dorsolateral prefrontal cortex, precuneus, middle temporal gyrus, and inferior parietal lobule. In all the subcortical regions examined in this study, the control group did not have any significant enhancements in functional connectivity when compared with the patient group.
Collapse
Affiliation(s)
- Sheeba Arnold Anteraper
- 1 A.A. Martinos Imaging Center, McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | | | | | | | | | | |
Collapse
|
26
|
Giménez M, Ortiz H, Soriano-Mas C, López-Solà M, Farré M, Deus J, Martín-Santos R, Fernandes S, Fina P, Bani M, Zancan S, Pujol J, Merlo-Pich E. Functional effects of chronic paroxetine versus placebo on the fear, stress and anxiety brain circuit in Social Anxiety Disorder: initial validation of an imaging protocol for drug discovery. Eur Neuropsychopharmacol 2014; 24:105-16. [PMID: 24332890 DOI: 10.1016/j.euroneuro.2013.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 09/07/2013] [Accepted: 09/09/2013] [Indexed: 11/28/2022]
Abstract
Recent studies suggest that pharmacologic effects of anxiolytic agents can be mapped as functional changes in the fear, stress and anxiety brain circuit. In this work we investigated the effects of a standard treatment, paroxetine (20mg/day), in subjects with Social Anxiety Disorder (SAD) versus placebo using different fMRI paradigms. The fMRI sessions, performed before and after the treatment, consisted of a public exposition of recorded performance task (PERPT), an emotional face processing task (EFPT) and a 6-min resting state followed by an off-scanner public speaking test. Paroxetine significantly improved the clinical conditions of SAD patients (n=17) vs. placebo (n=16) as measured with Clinical Global Inventory - Improvement (CGI-I) while no change was seen when using Liebowitz Social Anxiety Scale, as expected given the small size of the study population. Paroxetine reduced the activation of insula, thalamus and subgenual/anterior cingulate cortex (ACC) in PERPT. Resting-state fMRI assessment using Independent Component Analysis indicated that paroxetine reduced functional connectivity in insula, thalamus and ACC when compared with placebo. Both paradigms showed significant correlation with CGI-I in rostral prefrontal cortex. Conversely, paroxetine compared to placebo produced activation of right amygdala and bilateral insula and no effects in ACC when tested with EFPT. No treatment effects on distress scores were observed in the off-scanner Public Speaking Test. Overall this study supports the use of fMRI as sensitive approach to explore the neurobiological substrate of the effects of pharmacologic treatments and, in particular, of resting state fMRI given its simplicity and task independence.
Collapse
Affiliation(s)
- Mónica Giménez
- MRI Research Unit, CRC-Mar, Hospital del Mar, Barcelona, Spain
| | - Hector Ortiz
- MRI Research Unit, CRC-Mar, Hospital del Mar, Barcelona, Spain
| | - Carles Soriano-Mas
- Bellvitge Biomedical Research Institute-IDIBELL, Psychiatry Department, Bellvitge University Hospital, CIBERSAM, Barcelona, Spain
| | - Marina López-Solà
- MRI Research Unit, CRC-Mar, Hospital del Mar, Barcelona, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Psychiatry Department, Bellvitge University Hospital, CIBERSAM, Barcelona, Spain
| | - Magí Farré
- Human Pharmacology and Neurosciences, IMIM-Hospital del Mar, Red RTA, Barcelona, Spain; Clinical Pharmacology, Autonomous University of Barcelona, Barcelona, Spain
| | - Joan Deus
- MRI Research Unit, CRC-Mar, Hospital del Mar, Barcelona, Spain; Department of Clinical and Health Psychology, Autonomous University of Barcelona, Spain
| | - Rocio Martín-Santos
- Human Pharmacology and Neurosciences, IMIM-Hospital del Mar, Red RTA, Barcelona, Spain; Clinical Institute of Neuroscience, Hospital Clínic-IDIBAPS, CIBERSAM, Barcelona and Department of Psychiatry and Clinical Psychobiology, University of Barcelona, Spain
| | - Sofia Fernandes
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline R&D, Verona, Italy
| | - Paolo Fina
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline R&D, Verona, Italy
| | - Massimo Bani
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline R&D, Verona, Italy
| | - Stefano Zancan
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline R&D, Verona, Italy
| | - Jesús Pujol
- MRI Research Unit, CRC-Mar, Hospital del Mar, Barcelona, Spain
| | - Emilio Merlo-Pich
- Neurosciences Centre of Excellence for Drug Discovery, GlaxoSmithKline R&D, Verona, Italy.
| |
Collapse
|
27
|
Scharmüller W, Leutgeb V, Schöngaßner F, Hermann A, Stark R, Schienle A. Altered functional connectivity of basal ganglia circuitry in dental phobia. Soc Cogn Affect Neurosci 2013; 9:1584-8. [PMID: 24084590 DOI: 10.1093/scan/nst150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent symptom provocation studies that compared patients suffering from dental phobia with healthy controls identified hyperactivation of basal ganglia structures, but none have assessed striatal functional connectivity. We reanalyzed data from a previous functional magnetic resonance imaging study on dental phobia. Patients (20 men, 25 women) and healthy controls (18 men, 23 women) had been exposed to pictures showing dental treatment, and neutral contents. We conducted connectivity analyses via psychophysiological interactions (PPIs). Relative to non-phobic controls, the patients showed decreased connectivity between prefrontal and basal ganglia regions. Moreover, the clinical group was characterized by increased internal basal ganglia connectivity, which was more pronounced in female compared with male patients. This study provides first evidence for an altered information flow within a fronto-striatal network in dentophobic individuals during visual symptom provocation, which can be considered a neuromarker of this disorder.
Collapse
Affiliation(s)
- Wilfried Scharmüller
- Department of Clinical Psychology, University of Graz, Universitätsplatz 2/III, A-8010 Graz, Austria and Department of Psychotherapy and Systems Neuroscience, Bender Institute of Neuroimaging, University of Giessen, Otto-Behaghel-Str.10, 35394 Giessen, Germany
| | - Verena Leutgeb
- Department of Clinical Psychology, University of Graz, Universitätsplatz 2/III, A-8010 Graz, Austria and Department of Psychotherapy and Systems Neuroscience, Bender Institute of Neuroimaging, University of Giessen, Otto-Behaghel-Str.10, 35394 Giessen, Germany
| | - Florian Schöngaßner
- Department of Clinical Psychology, University of Graz, Universitätsplatz 2/III, A-8010 Graz, Austria and Department of Psychotherapy and Systems Neuroscience, Bender Institute of Neuroimaging, University of Giessen, Otto-Behaghel-Str.10, 35394 Giessen, Germany
| | - Andrea Hermann
- Department of Clinical Psychology, University of Graz, Universitätsplatz 2/III, A-8010 Graz, Austria and Department of Psychotherapy and Systems Neuroscience, Bender Institute of Neuroimaging, University of Giessen, Otto-Behaghel-Str.10, 35394 Giessen, Germany
| | - Rudolf Stark
- Department of Clinical Psychology, University of Graz, Universitätsplatz 2/III, A-8010 Graz, Austria and Department of Psychotherapy and Systems Neuroscience, Bender Institute of Neuroimaging, University of Giessen, Otto-Behaghel-Str.10, 35394 Giessen, Germany
| | - Anne Schienle
- Department of Clinical Psychology, University of Graz, Universitätsplatz 2/III, A-8010 Graz, Austria and Department of Psychotherapy and Systems Neuroscience, Bender Institute of Neuroimaging, University of Giessen, Otto-Behaghel-Str.10, 35394 Giessen, Germany Department of Clinical Psychology, University of Graz, Universitätsplatz 2/III, A-8010 Graz, Austria and Department of Psychotherapy and Systems Neuroscience, Bender Institute of Neuroimaging, University of Giessen, Otto-Behaghel-Str.10, 35394 Giessen, Germany
| |
Collapse
|
28
|
Pujol J, Giménez M, Ortiz H, Soriano-Mas C, López-Solà M, Farré M, Deus J, Merlo-Pich E, Harrison BJ, Cardoner N, Navinés R, Martín-Santos R. Neural response to the observable self in social anxiety disorder. Psychol Med 2013; 43:721-731. [PMID: 22895096 DOI: 10.1017/s0033291712001857] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Distorted images of the observable self are considered crucial in the development and maintenance of social anxiety. We generated an experimental situation in which participants viewed themselves from an observer's perspective when exposed to scrutiny and evaluation by others. Method Twenty patients with social anxiety disorder (SAD) and 20 control subjects were assessed using functional magnetic resonance imaging (fMRI) during the public exposure of pre-recorded videos in which they were each shown performing a verbal task. The examiners acted as the audience in the experiment and rated performance. Whole-brain functional maps were computed using Statistical Parametric Mapping. RESULTS Robust activation was observed in regions related to self-face recognition, emotional response and general arousal in both study groups. Patients showed significantly greater activation only in the primary visual cortex. By contrast, they showed significant deactivation or smaller activation in dorsal frontoparietal and anterior cingulate cortices relevant to the cognitive control of negative emotion. Task-related anxiety ratings revealed a pattern of negative correlation with activation in this frontoparietal/cingulate network. Importantly, the relationship between social anxiety scores and neural response showed an inverted-U function with positive correlations in the lower score range and negative correlations in the higher range. CONCLUSIONS Our findings suggest that exposure to scrutiny and evaluation in SAD may be associated with changes in cortical systems mediating the cognitive components of anxiety. Disorder severity seems to be relevant in shaping the neural response pattern, which is distinctively characterized by a reduced cortical response in the most severe cases.
Collapse
Affiliation(s)
- J Pujol
- Institut d'Alta Tecnologia-PRBB, CRC Mar, Hospital de Mar, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Terasawa Y, Shibata M, Moriguchi Y, Umeda S. Anterior insular cortex mediates bodily sensibility and social anxiety. Soc Cogn Affect Neurosci 2013; 8:259-66. [PMID: 22977199 PMCID: PMC3594729 DOI: 10.1093/scan/nss108] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/05/2012] [Indexed: 11/14/2022] Open
Abstract
Studies in psychiatry and cognitive neuroscience have reported an important relationship between individual interoceptive accuracy and anxiety level. This indicates that greater attention to one's bodily state may contribute to the development of intense negative emotions and anxiety disorders. We hypothesized that reactivity in the anterior insular cortex underlies the intensity of interoceptive awareness and anxiety. To elucidate this triadic mechanism, we conducted functional magnetic resonance imaging (fMRI) and mediation analyses to examine the relationship between emotional disposition and activation in the anterior insular cortex while participants evaluated their own emotional and bodily states. Our results indicated that right anterior insular activation was positively correlated with individual levels of social anxiety and neuroticism and negatively correlated with agreeableness and extraversion. The results of the mediation analyses revealed that activity in the right anterior insula mediated the activity of neural correlates of interoceptive sensibility and social fear. Our findings suggest that attention to interoceptive sensation affects personality traits through how we feel emotion subjectively in various situations.
Collapse
Affiliation(s)
- Yuri Terasawa
- Japan Society for the Promotion of Science, Department of Psychophysiology, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi Cho, Kodaira, Tokyo, Japan.
| | | | | | | |
Collapse
|