1
|
Li X, Meng M, Shi H, Zhou S, Ma N, Shen X. Dietary supplementation of yeast polysaccharides enhance lamb growth performance by improving immune and intestinal barrier function and the abundance of cecal microbiota. Int J Biol Macromol 2025; 309:142849. [PMID: 40188919 DOI: 10.1016/j.ijbiomac.2025.142849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/12/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Weaning stress can affect the growth performance and intestinal health of lambs. Yeast polysaccharides are green and safe feed additives that have been shown to improve growth performance and intestinal health in other animals. The aim of this study was to explore the effects of dietary yeast polysaccharides on the growth performance and intestinal health of weaned lambs. Twenty-four healthy lambs were randomly divided into four groups and fed different doses of yeast polysaccharides (Y) with a basal diet: 0 g/day (control, C), 0.5 g/day (low dose, LY), 1 g/day (medium dose, MY), and 2 g/day (high dose, HY). Results showed that the MY group had a significantly higher average daily gain and a lower feed-to-gain ratio than the control group. Yeast polysaccharide supplementation significantly increased the immunoglobin G (IgG), immunoglobin A (IgA), and β-defensin contents in serum, as well as the secretory immunoglobulin A (SIgA) content in the intestinal mucosa. It also enhanced intestinal villus development, increased the villus height-to-crypt depth ratio, and upregulated the mRNA and protein expression of Claudin1, Occludin, and ZO1. Cecal microbiota analysis revealed an increased relative abundance of Firmicutes, Ruminococcus, Clostridium, Butyrivibrio and Adlercreutzia, along with elevated volatile fatty acid levels. Taken together, these findings suggest that yeast polysaccharides improve growth performance, immune function and intestinal healthy in weaned lambs. Under the conditions of this experiment, 0.5-1 g/d is the optimal dose for production.
Collapse
Affiliation(s)
- Xuerui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Meijuan Meng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Huimin Shi
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Shendong Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Nana Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
2
|
Tao Y, Gu Y, Wang H, Zhong G, Wang A, Qu J, Feng J, Zhang Y. Persistent effects of early-life exposure to dibutyl phthalate on zebrafish: Immune system dysfunction via HPA axis. ENVIRONMENT INTERNATIONAL 2025; 198:109386. [PMID: 40117685 DOI: 10.1016/j.envint.2025.109386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/17/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
The plasticizer dibutyl phthalate (DBP) is one of the common contaminants in the aquatic environment and has been verified to be detrimental to aquatic organisms. In this research, zebrafish was employed to explore the toxic mechanism of DBP at environmental concentrations. The findings indicated that DBP led to abnormal development of zebrafish larvae, encompassing an increase in heart rate and malformation rate, as well as a reduction in survival rate and hatching rate. DBP also induced HPA axis activation, increased glucocorticoid content and microglia activation in zebrafish larvae. Moreover, adult zebrafish in the early-life exposure and long-term exposure groups demonstrated anxiety-like and depression-like behaviors. RNA-seq analysis revealed that early embryonic exposure to DBP led to persistent damage in zebrafish that could not be recovered in adulthood. The HPA axis was more severely disorganized in males than in females, and sex-specific differences were also shown in immunotoxicity. It is speculated that the immune system disorder could partially attribute to the out-of-control HPA axis, while the activation of inflammatory cells and inflammatory factors will further exacerbate the situation of HPA axis dysregulation.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yanyan Gu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Haorui Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Guanyu Zhong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiayi Feng
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
3
|
Rassmidatta K, Theapparat Y, Chanaksorn N, Carcano P, Adeyemi KD, Ruangpanit Y. Dietary Kluyveromyces marxianus hydrolysate alters humoral immunity, jejunal morphology, cecal microbiota and metabolic pathways in broiler chickens raised under a high stocking density. Poult Sci 2024; 103:103970. [PMID: 38970846 PMCID: PMC11264189 DOI: 10.1016/j.psj.2024.103970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024] Open
Abstract
This study investigated the impact of dietary supplementation with hydrolyzed yeast (Kluyveromyces marxianus) on growth performance, humoral immunity, jejunal morphology, cecal microbiota and metabolic pathways in broilers raised at 45 kg/m2. A total of 1,176 mixed sex 1-day-old Ross 308 broilers were distributed into 42 pens and randomly assigned to either the control group, the control + 250 g hydrolyzed yeast (HY)/ton, 250HY group, or the control + 500 g HY/ton, 500HY group for 42 d. HY did not affect growth performance. However, HY reduced (P < 0.05) mortality at 25 to 35 d. Dietary HY lowered the heterophil/lymphocyte ratio and enhanced the villus height/crypt depth ratio and Newcastle disease titer (P < 0.05). Compared with HY250 and the control, HY500 upregulated (P < 0.05) IL-10. HY enhanced the α diversity, inferring the richness and evenness of the ceca microbiota. HY500 had greater β diversity than the control (P < 0.05). Six bacterial phyla, namely, Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Verrucomicrobia, and Cyanobacteria, were found. The relative abundance of Firmicutes was greater in the HY500 treatment group than in the HY250 and control groups. HY decreased the abundance of Actinobacteria. HY supplementation altered (P < 0.05) the abundance of 8 higher-level taxa consisting of 2 classes (Bacilli and Clostridia), 1 order (Lactobacillales), 1 family (Streptococcaceae), and five genera (Streptococcus, Lachnospiraceae_uc, Akkermansiaceae, PACO01270_g, and LLKB_g). HY500 improved (P < 0.05) the abundance of Bacilli, Clostridia, Lactobacillales, Streptococcaceae, Streptococcus, PACO01270_g, and Lachnospiraceae_uc, while HY250 enhanced (P < 0.05) the abundance of Akkermansiaceae and LLKB_g. HY improved the abundance of Lactobacillus and Akkermansia spp. Minimal set of pathway analyses revealed that compared with the control, both HY250 and HY500 regulated 20 metabolic pathways. These findings suggest that dietary K. marxianus hydrolysate, especially HY500, improved humoral immunity and jejunal morphology and beneficially altered the composition and metabolic pathways of the cecal microbiota in broilers raised at 45 kg/m2.
Collapse
Affiliation(s)
- Konkawat Rassmidatta
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Sean, Kasetsart University, Kamphang Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Yongyuth Theapparat
- Center of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | | | | | - Kazeem D Adeyemi
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Yuwares Ruangpanit
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Sean, Kasetsart University, Kamphang Saen Campus, Nakhon Pathom, 73140 Thailand.
| |
Collapse
|
4
|
Li X, Bian J, Xing T, Zhao L, Li J, Zhang L, Gao F. Effects of guanidinoacetic acid supplementation on growth performance, hypothalamus-pituitary-adrenal axis, and immunity of broilers challenged with chronic heat stress. Poult Sci 2023; 102:103114. [PMID: 37826903 PMCID: PMC10571022 DOI: 10.1016/j.psj.2023.103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 10/14/2023] Open
Abstract
Heat stress can cause systemic immune dysregulation and threaten the health of broilers. Guanidinoacetic acid (GAA) has been shown to be effective against heat stress, but whether it is beneficial for immunity is unclear. Therefore, the effects of dietary GAA supplementation on the immunity of chronic heat-stressed broilers were evaluated. A total of 192 Arbor Acres male broilers (28-day old) were randomly allocated to 4 treatments: the normal control group (NC, 22°C, ad libitum feeding), the heat stress group (HS, 32°C, ad libitum feeding), the pair-fed group (PF, kept at 22°C and received food equivalent to that consumed by the HS group on the previous day), and the GAA group (HG, 32°C, ad libitum feeding; basal diet supplemented with 0.6 g/kg GAA). Samples were collected on d 7 and 14 after treatment. Results showed that broilers exposed to heat stress exhibited a decrease (P < 0.05) in ADG, ADFI, thymus and bursa of Fabricius indexes, and an increase (P < 0.05) in feed conversion ratio and panting frequency, compared to the NC group. Levels of corticotropin-releasing factor, corticosterone (CORT), heat shock protein 70 (HSP70), IL-6, and TNF-α were elevated (P < 0.05) while lysozyme and IgG concentration was decreased (P < 0.05) in the HS group compared with the NC group after 7 d of heat exposure. The concentrations of IgG and IL-2 were decreased (P < 0.05) and CORT was increased (P < 0.05) in the HS group compared with the NC group after 14 d of heat exposure. Noticeably, GAA supplementation decreased the levels of CORT (P < 0.05) and increased the IL-2, IgG, and IgM concentrations (P < 0.05) compared with the HS group. In conclusion, chronic heat stress increased CORT release, damaged immune organs, and impaired the immunity of broilers. Dietary supplementation of 0.6 g/kg GAA can reduce the CORT level and improve the immune function of broilers under heat stress conditions.
Collapse
Affiliation(s)
- Xin Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiawei Bian
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiaolong Li
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
5
|
Lee J, Cheng V, Kiarie EG. Growth and response to Escherichia coli lipopolysaccharide challenge in Lohmann LSL-Lite pullets when fed a source of omega-3 fatty acids and yeast bioactives from hatch through to 16 wk of age. Poult Sci 2023; 102:102940. [PMID: 37562132 PMCID: PMC10432835 DOI: 10.1016/j.psj.2023.102940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/06/2023] [Accepted: 07/15/2023] [Indexed: 08/12/2023] Open
Abstract
Growth and response to Escherichia coli lipopolysaccharide (LPS) challenge in Lohmann LSL-Lite pullets when fed a source of omega-3 fatty acids (n-3 FA) and yeast bioactives (YB) from hatch through to 16 wk of age (woa) were investigated. Co-extruded full fat flaxseed and pulse mixture (FFF; 1:1 wt/wt) supplied n-3 FA and YB were yeast cell walls processed with β-1,3-glucan hydrolase. A total of 1,064-day-old pullets were placed in cages (19 birds/cage) and allocated to 7 diets (n = 8). The iso-caloric and iso-nitrogenous diets were control, control + 1, 3, or 5% FFF and + 0.025, 0.05, or 0.1% YB. The birds had ad libitum access to feed and water. Body weight (BW), feed intake, and lymphoid organs weight were recorded. At 15 woa, 2 pairs of pullets/cage received intravenous injection of either 1 mL of sterile saline without or with 8 mg LPS/kg BW. Injected pullets were bled, monitored for BW and cloaca temperature at time points within 168 h. Birds fed 1% FFF were heavier (P < 0.04) than birds fed other diets at 16 woa with FFF and YB exhibiting non-linear responses. Control birds had heavier (P = 0.02) thymus at 4 woa. Spleen weight increased quadratically (P < 0.05) in response to FFF at 8 and YB at 16 woa. The LPS increased cloaca temperature and altered concentration of several plasma metabolites (P < 0.05). The interaction (P < 0.05) between LPS and diet was such that control birds exhibited lower creatine kinase (CK) upon challenge with LPS relative to birds fed other diets. The LPS birds fed 1% FFF and 0.05% YB showed higher plasma albumin than non-LPS cohorts. Non-LPS birds fed control, 1 and 3% FFF had higher plasma K than LPS cohorts. In general, FFF and YB exhibited linear and quadratic effects (P < 0.05) on select plasma metabolites. In conclusion, dietary provision of n-3 FA and YB influenced pullet BW at sexual maturity, development of lymphoid organs and modulated some plasma metabolites in response to LPS.
Collapse
Affiliation(s)
- Junhyung Lee
- University of Guelph, Department of Animal Biosciences, Guelph, ON, Canada, N1G 2W1
| | - Veronica Cheng
- University of Guelph, Department of Animal Biosciences, Guelph, ON, Canada, N1G 2W1
| | - Elijah G Kiarie
- University of Guelph, Department of Animal Biosciences, Guelph, ON, Canada, N1G 2W1.
| |
Collapse
|
6
|
Lv W, Ma Y, Zhang Y, Wang T, Huang J, He S, Du H, Guo S. Effects of Lactobacillus plantarum fermented Shenling Baizhu San on gut microbiota, antioxidant capacity, and intestinal barrier function of yellow-plumed broilers. Front Vet Sci 2023; 10:1103023. [PMID: 36908522 PMCID: PMC9992544 DOI: 10.3389/fvets.2023.1103023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
The current study focused on the effects of Shenling Baizhu San (SLBZS) fermented by Lactobacillus plantarum (L. plantarum) on gut microbiota, antioxidant capacity, and intestinal barrier function of yellow-plumed broilers. Our results showed that the content of ginsenoside Rb1 was the highest when SLBZS were inoculated with 3% L. plantarum and fermented at 28°C for 24 h. One-day-old male broilers were divided into five treatment groups. Treatment consisted of a basal diet as a control (Con), 0.1% unfermented SLBZS (U-SLBZS), 0.05% fermented SLBZS (F-SLBZS-L), 0.1% fermented SLBZS (F-SLBZS-M), and 0.2% fermented SLBZS (F-SLBZS-H). On days 14, 28, and 42, six chickens from each group were randomly selected for blood collection and tissue sampling. The results showed that the addition of 0.1% fermented SLBZS could significantly increase average daily feed intake (ADFI) and average daily gain (ADG), and decrease feed conversion ratio (FCR) of broilers. The addition of 0.1 and 0.2% fermented SLBZS significantly increased the lymphoid organ index of broilers on day 28 and 42. The addition of 0.1 and 0.2% fermented SLBZS could improve the antioxidant capacity of broilers. Moreover, the addition of 0.1 and 0.2% fermented SLBZS could significantly increase the villus height/crypt depth of the ileum, and significantly increase the expression of tight junction. In addition, fermentation of SLBZS increase the abundance of Coprococcus, Bifidobacterium and Bilophila in the gut of broilers. These results indicate that the supplementation of fermented SLBZS in the diet could improve the growth performance, lymphoid organ index, antioxidant capacity, and positively affect the intestinal health of broilers.
Collapse
Affiliation(s)
- Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, China
| | - Yimu Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yingwen Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Tianze Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jieyi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shiqi He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hongliang Du
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, Guangzhou, China
| |
Collapse
|
7
|
Yeast-Derived Products: The Role of Hydrolyzed Yeast and Yeast Culture in Poultry Nutrition—A Review. Animals (Basel) 2022; 12:ani12111426. [PMID: 35681890 PMCID: PMC9179594 DOI: 10.3390/ani12111426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Yeast and yeast-derived products are largely employed in animal nutrition to support animals’ health and to improve their performance. Thanks to their components, including mannans, β-glucans, nucleotides, vitamins, and other compounds, yeasts have numerous beneficial effects. Among yeast-derived products, hydrolyzed yeasts and yeast cultures have received less attention, but, although the results are somewhat conflicting, in most of the cases, the available literature shows improved performance and health in poultry. Thus, the aim of this review is to provide an overview of hydrolyzed-yeast and yeast-culture employment in poultry nutrition, exploring their effects on the production performance, immune response, oxidative status, gut health, and nutrient digestibility. A brief description of the main yeast bioactive compounds is also provided. Abstract Yeasts are single-cell eukaryotic microorganisms that are largely employed in animal nutrition for their beneficial effects, which are owed to their cellular components and bioactive compounds, among which are mannans, β-glucans, nucleotides, mannan oligosaccharides, and others. While the employment of live yeast cells as probiotics in poultry nutrition has already been largely reviewed, less information is available on yeast-derived products, such as hydrolyzed yeast (HY) and yeast culture (YC). The aim of this review is to provide the reader with an overview of the available body of literature on HY and YC and their effects on poultry. A brief description of the main components of the yeast cell that is considered to be responsible for the beneficial effects on animals’ health is also provided. HY and YC appear to have beneficial effects on the poultry growth and production performance, as well as on the immune response and gut health. Most of the beneficial effects of HY and YC have been attributed to their ability to modulate the gut microbiota, stimulating the growth of beneficial bacteria and reducing pathogen colonization. However, there are still many areas to be investigated to better understand and disentangle the effects and mechanisms of action of HY and YC.
Collapse
|
8
|
Dietary Saccharomyces cerevisiae improves intestinal flora structure and barrier function of Pekin ducks. Poult Sci 2022; 102:101940. [PMID: 36436368 PMCID: PMC9700307 DOI: 10.1016/j.psj.2022.101940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 01/10/2023] Open
Abstract
This study aimed at investigating the effects of dietary Saccharomyces cerevisiae (SC) on the intestinal flora structure and barrier function of Pekin duck. A total of 180 1-day-old Pekin ducks were randomly divided into 3 groups with 6 replicates in each group and 10 birds per replicate. The birds in the control group (CON) were fed the basal diet, and those in the experimental group were fed the basal diets supplemented with 600 mg/kg SC (LSC) and 1,200 mg/kg (HSC), respectively. The trial lasted for 42 d. Results showed that LSC and HSC treatments tended to improve the feed conversion efficiency during the trial. The ileum length of birds in the LSC and HSC groups was elevated. Additionally, with 600mg/kg SC supplemented, the mRNA levels of villin, claudin3, and MUC 2 in d21 were up-regulated, as well as the mRNA levels of villin, claudin3, occludin, i-FABP, ZO-1, and MUC 2 in d42. In addition, dietary SC supplementation improved the α-diversity of the bacteria in cecal chyme and tended to increase the abundance (RA) of Bacteroidetes (P = 0.071). Besides, the RA of Ruminococcaceae_UCG-014 was raised in the LSC group. Beyond that, the RA of Proteobacteria was descended with two levels of SC added. In conclusion, dietary Saccharomyces cerevisiae, particularly at 600 mg/kg level, improved the intestinal flora structure and barrier function of Pekin duck.
Collapse
|
9
|
Antioxidant Status, Blood Constituents and Immune Response of Broiler Chickens Fed Two Types of Diets with or without Different Concentrations of Active Yeast. Animals (Basel) 2022; 12:ani12040453. [PMID: 35203163 PMCID: PMC8868459 DOI: 10.3390/ani12040453] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Rations for broilers can be safely supplemented with probiotics such as active Saccharomyces cerevisiae (SC) yeast to stimulate oxidative reactions and immune response against stress and infectious agents. The current study suggested that SC yeast enhanced antioxidant capacity, growth rate, immune organ weights, immune response and the survival rate of broilers after Avian Influenza virus challenge at 38 days of age. Abstract Probiotics, such as active yeasts, are widely used to enhance poultry production and reduce feeding costs. This study aimed to investigate the antioxidant and immune responses of broilers to different concentrations of active Saccharomyces cerevisiae (SC) when supplemented to two types of diets. A total of 216 1-day-old Arbor Acres unsexed chicks were used in a factorial design, involving two feeds (regular- versus low-density diet) and three concentrations of SC (0%, 0.02% and 0.04%). The results revealed that the low-density diet reduced the body weight and production index of broilers. The addition of SC improved the production index more than the control diet. Total antioxidant capacity (TAC), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and eosinophils were significantly higher in response to the regular-density diet than the low-density diet; however, phagocytic activity (PA), lymphocyte and lysozyme activity (LYS) were lower. Saccharomyces cerevisiae reduced ALT, AST, malondialdehyde (MAD) and TAC more than the standard set, but improved packed cell volume (PCV), hemoglobin (Hgb), red blood cells (RBCs), lymphocytes, monocytes, heterophils, phagocytic index (PI) and the immune response to Newcastle disease virus (NDV) and avian influenza (AI). In conclusion, supplementation of a regular- or low-density diet with SC at a concentration of 0.02% or 0.04% improved the antioxidant parameters, immune status and production index of broilers against stress and infectious agents.
Collapse
|
10
|
Aflatoxins associated oxidative stress and immunological alterations are mitigated by dietary supplementation of Pichia kudriavzevii in broiler chicks. Microb Pathog 2021; 161:105279. [PMID: 34742894 DOI: 10.1016/j.micpath.2021.105279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022]
Abstract
Mycotoxins are the secondary metabolites of certain toxigenic fungi which pose severe health stress in humans, animals and poultry. Certain biological agents and components are used to adsorb mycotoxins in poultry industry which provide promising results in this regard. Pichia kudriazevii (PK), a novel yeast, has the ability to enhance the immune status of poultry chicks. The present study was designed to investigate the ameliorative potential of PK against aflatoxins associated immunosuppression and oxidative stress in broiler chicks. 180-one day old broiler chicks were equally divided into six groups and given different combinations of aflatoxins (300 and 600 μg/kg) and PK (1 g/kg). Parameters studied were antibody response to sheep red blood cells, lymphoproliferative response to PHA-P; phagocytic response by carbon clearance assay system, total antioxidant capacity and total oxidant status of chicks. Results of this experiment confirmed the immunomodulation and antioxidant capacity of PK against 300 μg/kg aflatoxin level. However such amelioration was partial when PK was used with 600 μg/kg aflatoxins. Moreover, the exact ratio of aflatoxin: PK to cause such amelioration still needs to be investigated.
Collapse
|
11
|
Szpręgiel I, Wronska D. Effect of short-term fasting on the expression of ACTH (cMC2) receptor in the adrenal glands of chicken (Gallus domesticus). ROCZNIKI NAUKOWE POLSKIEGO TOWARZYSTWA ZOOTECHNICZNEGO 2021. [DOI: 10.5604/01.3001.0015.5024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
<b>Domestic hen is a full model in terms of stress and adrenal function. The main hormone produced by the hens’ adrenals is corticosterone, synthesized and secreted by stimulating the HPA axis during stress. Direct activation of adrenal activity is conditioned by ACTH, which binds to the melanocortin receptor cMC2 in adrenals. It stimulates the synthesis and release of corticosterone. One of the factors that stimulate the HPA axis activity is the starvation, to which the hen is very sensitive. The purpose of this study was to determine the ACTH receptor cMC2 expression in the hens’ adrenals during the short-term fasting and after restoring the proper level of nutrition (refeeding). The results of the experiment show that 24-hour of food deprivation is stressful for the hen, as indicated by increased concentrations of corticosterone in the adrenals and in blood plasma. Changes in cMC2R expression and level of corticosterone in the adrenals during fasting and refeeding indicate a rapid increase of HPA axis activity in response to differentiated levels of nutrition. The results of this experiment confirm the direct effect of ACTH on the avian adrenals in corticosterone release.
Collapse
Affiliation(s)
- Izabela Szpręgiel
- University of Agriculture in Krakow Faculty of Animal Sciences Department of Animal Physiology and Endocrinology
| | - Danuta Wronska
- Katedra Fizjologii i Endokrynologii Zwierząt
Wydział Hodowli i Biologii Zwierząt
Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie
| |
Collapse
|
12
|
Han M, Chen Y, Li J, Dong Y, Miao Z, Li J, Zhang L. Effects of organic chromium sources on growth performance, lipid metabolism, antioxidant status, breast amino acid and fatty acid profiles in broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3917-3926. [PMID: 33368290 PMCID: PMC8248325 DOI: 10.1002/jsfa.11053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/20/2020] [Accepted: 12/26/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Trivalent chromium (Cr) is involved in carbohydrate, lipid, protein and nucleic acid metabolism in animals. This study evaluated the effects of different organic Cr forms with Cr methionine (CrMet), Cr picolinate (CrPic), Cr nicotinate (CrNic), and Cr yeast (Cr-yeast) at the level of 400 μg kg-1 Cr, on growth performance, lipid metabolism, antioxidant status, breast amino acid and fatty acid profiles of broilers. In total, 540 one-day-old Arbor Acres male broilers were randomly assigned to five treatments with six replicates (18 broilers per replicate) until day 42. RESULTS The results showed growth performance was not affected by Cr sources. The Cr-yeast group had lower serum cortisol levels than the CrNic group (P < 0.05). Besides, Cr-yeast increased methionine and cysteine content in breast compared with the control group. Liver malondialdehyde content was lower in the CrMet group than the CrPic group on day 42 (P < 0.05). The n-3 polyunsaturated fatty acid (PUFA) values were increased, but the n-6/n-3 PUFA ratio was decreased in both CrMet and CrNic groups (P < 0.05). There were no significant effects on broilers' serum antioxidant status and breast total essential amino acid content among all treatments. CONCLUSIONS Diets supplemented with organic Cr could regulate lipid metabolism, and improve amino acid and fatty acid profiles in broiler breast. Moreover, Cr-yeast was the most effective source in improving methionine and cysteine content, whereas CrMet was more effective than CrNic in increasing n-3 PUFA value and decreasing n-6/n-3 PUFA ratio in breast meat and effectively strengthened liver antioxidant ability than CrPic. © 2020 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Miaomiao Han
- State Key Laboratory of Animal NutritionChina Agricultural UniversityBeijingPR China
- College of Animal ScienceShanxi Agricultural UniversityTaiguPR China
| | - Yiqiang Chen
- State Key Laboratory of Animal NutritionChina Agricultural UniversityBeijingPR China
| | - Juntao Li
- State Key Laboratory of Animal NutritionChina Agricultural UniversityBeijingPR China
| | - Yuanyang Dong
- College of Animal ScienceShanxi Agricultural UniversityTaiguPR China
| | - Zhiqiang Miao
- College of Animal ScienceShanxi Agricultural UniversityTaiguPR China
| | - Jianhui Li
- College of Animal ScienceShanxi Agricultural UniversityTaiguPR China
| | - Liying Zhang
- State Key Laboratory of Animal NutritionChina Agricultural UniversityBeijingPR China
| |
Collapse
|
13
|
Feye KM, Dittoe DK, Rubinelli PM, Olson EG, Ricke SC. Yeast Fermentate-Mediated Reduction of Salmonella Reading and Typhimurium in an in vitro Turkey Cecal Culture Model. Front Microbiol 2021; 12:645301. [PMID: 33936004 PMCID: PMC8081899 DOI: 10.3389/fmicb.2021.645301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/11/2021] [Indexed: 01/04/2023] Open
Abstract
Salmonella Reading is an ongoing public health issue in the turkey industry, leading to significant morbidity in humans in the United States. Pre-harvest intervention strategies that contribute to the reduction of foodborne pathogens in food animals, such as the yeast fermentation metabolites of Original XPCTM (XPC), may become the key to multi-hurdle farm to fork strategies. Therefore, we developed an anaerobic in vitro turkey cecal model to assess the effects of XPC on the ceca of commercial finisher tom turkeys fed diets void of XPC and antibiotics. Using the in vitro turkey cecal culture method, ceca were tested with and without XPC for their anti-Salmonella Reading and the previously defined anti-Typhimurium (ST97) effects. Ultimately, the anti-Salmonella effects were independent of serovar (P > 0.05). At 0 h post inoculation (hpi), Salmonella levels were equivalent between treatments at 7.3 Log10 CFU/mL, and at 24 hpi, counts in XPC were reduced by 5 Log10 CFU/mL, which was 2.1 Log10 lower than the control (P < 0.05). No differences in serovar prevalence existed (P > 0.05), with a 92% reduction in Salmonella positive XPC-treated ceca cultures by 48 hpi (P < 0.05). To evaluate changes to the microbiota independent of the immune response, the 16S rDNA was sequenced using the Illumina MiSeq platform. Data indicated a profound effect of time and treatment for the reduction of Salmonella irrespective of serovar. XPC sustained diversity metrics compared to the control, demonstrating a reduction in diversity over time (Q < 0.05).
Collapse
Affiliation(s)
- Kristina M. Feye
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Dana K. Dittoe
- Meat Science and Animal Biologics Discovery, Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Peter M. Rubinelli
- Center for Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Elena G. Olson
- Meat Science and Animal Biologics Discovery, Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery, Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
14
|
Nelson JR, Ibrahim MM, Sobotik EB, Athrey G, Archer GS. Effects of yeast fermentate supplementation on cecal microbiome, plasma biochemistry and ileal histomorphology in stressed broiler chickens. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|