1
|
Gholami Ahmadabadi K, Rahimi M, Raei H, Majedifar R, Karimi Torshizi MA. Research note: Protective effects of compound mycotoxin detoxifier in broiler chicken fed aflatoxins-contaminated diets. Poult Sci 2025; 104:104802. [PMID: 39848212 PMCID: PMC11795558 DOI: 10.1016/j.psj.2025.104802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/25/2025] Open
Abstract
This study was planned and executed to investigate the effects of two levels of compound toxin binder (CTB) on growth performance, serum biochemistry, antioxidant status, intestinal morphology, and the ileal selected microflora population in broiler chickens. A total of 240 one-day-old Ross 308 broiler chickens were divided into four treatments and six replicates (10 chickens per replicate). Experimental groups included; 1, negative control (NC; no aflatoxins (AFs) and no additives); 2, positive control (PC; 490 µg/kg AFs); 3, low levels of compound toxin binder (LCTB), PC + 1 g/kg available CTB (Navacidox); and 4, high levels of compound toxin binder (HCTB), PC + 2 g/kg Navacidox. Increasing body weight gain (BWG) following feeding HCTB were found compared to the PC (P < 0.05). The highest feed intake (FI) was observed in the NC (P < 0.05). Feeding broilers with AFs decreased villus height, villus width, and crypt depth compared to the NC (P < 0.05). The increasing lactic acid bacteria population in HCTB was recorded compared to the PC (P < 0.05). Among biochemistry parameters, total protein, LDL, and uric acid decreased in LCTB compared to the PC (P < 0.05). Lower concentrations of ALP, LDH, AST, and ALT in LCTB were observed compared to the PC (P < 0.05). Although total antioxidant capacity, GPx, and SOD activities were not affected by treatments (P > 0.05), the lowest catalase levels were found in HCTB (P < 0.05). In conclusion, AFs feeding impaired growth performance, biochemistry parameters, antioxidant capacity, and intestinal morphology. However, the inclusion of CTB in AFs-contaminated diets effectively mitigated the harmful effects of AFs.
Collapse
Affiliation(s)
- Kourosh Gholami Ahmadabadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Rahimi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Iran
| | - Hamid Raei
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Iran.
| | - Reza Majedifar
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, PO Box 14115-336, Iran
| | | |
Collapse
|
2
|
Vakili R, Zanghaneh A, Qharari F, Mortzavi F. Hydroalcoholic Extract of Saffron Petals, Yeast Cell Wall and Bentonite Reduce Contamination Effects With Aflatoxin B 1 and Ochratoxin A in Exposed Broilers. Vet Med Sci 2025; 11:e70122. [PMID: 39575531 PMCID: PMC11582473 DOI: 10.1002/vms3.70122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Contamination is not surprising in light of the ubiquitous nature of the fungi that produce aflatoxin and ochratoxin A. The presence of these toxins in the broiler diet leads to increased losses, an increased feed conversion ratio, and decreased productivity. OBJECTIVES This study aimed to investigate the effects of the use of hydroalcoholic extracts of saffron petals, yeast cell walls and bentonite in the diets of broiler chickens contaminated with aflatoxin B1 and ochratoxin A. METHODS In a completely randomised design, 350 one-day-old Ross 308 broilers were allocated into seven treatment groups and five replications: a negative control diet (without toxins or additives), a positive control diet (2.5 mg/kg aflatoxin + 2 mg/kg ochratoxin A (mg/kg) and diets containing toxins with a commercial toxin binder or yeast cell wall, processed bentonite or saffron petal extract alone or together. RESULTS Compared with those in the positive control treatment, the relative weights of the carcasses, breasts and drumsticks improved with the addition of toxic adsorbent compounds (p < 0.05). Compared with the control treatment, the inclusion of a toxin binder had a significant effect on the concentration of glucose (p < 0.05). The concentrations of alanine aminotransferase and gamma-glutamyltransferase enzymes in the yeast cell wall + processed bentonite + saffron petal extract treatment were lower than those in the other treatments (p < 0.05). Toxin adsorbent compounds significantly improved the morphology of the small intestine in chickens fed contaminated diets (p < 0.05). CONCLUSION The inclusion of toxic adsorbent compounds can reduce the negative effects caused by the presence of Aflatoxin B1 and Ocratoxin A. Saffron petal extract can potentially be used to modulate diets contaminated with Aflatoxin B1 and Ocratoxin A, which is best achieved with 750 mg/kg saffron petal extract along with 0.1% yeast cell wall extract and 1% processed bentonite.
Collapse
Affiliation(s)
- Reza Vakili
- Animal Science Department, Kashmar BranchIslamic Azad UniversityKashmarIran
| | - Ali Zanghaneh
- Animal Science Research DepartmentKhorassan Razavi Agricultural and Natural Resources Resources Research and Education Center of MashhadMashhadIran
| | - Faezeh Qharari
- Saffron InstituteUniversity of Torbat HeydariehTorbat HeydariehIran
| | - Fathmeh Mortzavi
- Research & Development DepartmentMakian Mokmel CompanyMashhadIran
| |
Collapse
|
3
|
Li G, Wang H, Yang J, Qiu Z, Liu Y, Wang X, Yan H, He D. The protective effects of Lactobacillus SNK-6 on growth, organ health, and intestinal function in geese exposed to low concentration Aflatoxin B1. Poult Sci 2024; 103:103904. [PMID: 38880050 PMCID: PMC11228886 DOI: 10.1016/j.psj.2024.103904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Aflatoxin B1 (AFB1) is a prevalent mycotoxin present in feed ingredients. In this study, we investigated the effects of Lactobacillus salivarius (L. salivarius) on the Landes geese exposed to AFB1. The 300 one-day-old Landes geese were randomly divided into five groups: The control group received a basic diet, while the other groups were fed a basic diet supplemented with 10 μg/kg AFB1, 10 μg/kg AFB1+ 4*108 cfu/g L. salivarius, 50 μg/kg AFB1, and 50 μg/kg AFB1 + 4*108 cfu/g L. salivarius for 63 d. Results showed that high level AFB1 exposure significantly decreased final BW and ADG, increased feed/gain ratio (F/G) and liver index (P < 0.05). L. salivarius improved levels of IL-1, IL-6, and IL-12 under low level of AFB1 exposure (P < 0.05), along with similar trends observed in serum IgA, IgG, IgM, T3, T4, TNF-ɑ, and EDT (P < 0.05). AFB1 exposure reduced jejunum villus high and villus high/crypt depth ratio, and suppressed expression of ZO-1, Occludin, and Claudin-1 mRNA, and significant improved with L. salivarius supplementation under low level AFB1 exposure (P < 0.05). AFB1 significantly increased expression levels of TLR3 and NF-kB1, with supplementation of L. salivarius showing significant improvement under low AFB1 exposure (P < 0.05). Cecal microbiota sequencing revealed that under low level AFB1 exposure, supplementation with L. salivarius increased the abundance of Bacteroidetes and Lactococcus. In summary, supplementation with 4*108 cfu/g L. salivarius under 10 μg/kg AFB1 exposure improved growth performance and immune capacity, enhanced jejunum morphology, reduced liver inflammation, altered the cecal microbial structure, and positively affected the growth and development of geese.
Collapse
Affiliation(s)
- Guangquan Li
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Huiying Wang
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Junhua Yang
- Institute for Agricultural Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhi Qiu
- Institute for Agricultural Food Standard and Testing, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yi Liu
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Xianze Wang
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Huaxiang Yan
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China
| | - Daqian He
- Institute of Agricultural Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201100, China.
| |
Collapse
|
4
|
Lumsangkul C, Kaewtui P, Huanhong K, Tso KH. Antioxidative and Antimycotoxigenic Efficacies of Thunbergia laurifolia Lindl. for Addressing Aflatoxicosis in Cherry Valley Ducks. Toxins (Basel) 2024; 16:334. [PMID: 39195744 PMCID: PMC11360618 DOI: 10.3390/toxins16080334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
This study aimed to assess the effectiveness of aflatoxin B1 (AFB1) and Thunbergia laurifolia extract (TLE) in the diets of Cherry Valley ducklings. Our investigation covered growth indicators, blood biochemical indices, meat quality, intestinal morphology, immune response, and CP450 enzyme-related gene expression. We conducted the study with 180 seven-day-old Cherry Valley ducks, randomly divided into five dietary treatments. These treatments included a basal diet without AFB1 (T1 group), TLE, or a commercial binder; the basal diet containing 0.1 mg AFB1/kg (T2 group), 0.1 mg AFB1/kg and 100 mg TLE/kg (T3 group), 0.1 mg AFB1/kg and 200 mg TLE/kg (T4 group), and 0.1 mg AFB1/kg and 0.5 g/kg of a commercial binder (T5 group), respectively. Ducklings fed with the T2 diet exhibited lower final body weight (BW), average body weight gain (ADG), and poor feed conversion ratio (FCR) during the 42-day trials. However, all ducklings in the T3, T4, and T5 groups showed significant improvements in final BW, ADG, and FCR compared to the T2 group. Increased alanine transaminase (ALT) concentration and increased expression of CYP1A1 and CYP1A2 indicated hepatotoxicity in ducklings fed the T2 diet. In contrast, ducklings fed T3, T4, and T5 diets all showed a decrease in the expression of CYP1A1 and CYP1A2, but only the T4 treatment group showed improvement in ALT concentration. AFB1 toxicity considerably raised the crypt depth (CD) in both the duodenum and jejunum of the T2 group, while the administration of 200 mg TLE/kg (T4) or a commercial binder (T5) effectively reduced this toxicity. Additionally, the villus width of the jejunum in the T2 treatment group decreased significantly, while all T3, T4, and T5 groups showed improvement in this regard. In summary, T. laurifolia extract can detoxify aflatoxicosis, leading to growth reduction and hepatic toxicosis in Cherry Valley ducklings.
Collapse
Affiliation(s)
- Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (K.H.)
- Multidisciplinary Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Chiang Mai 50200, Thailand
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Phruedrada Kaewtui
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (K.H.)
| | - Kiattisak Huanhong
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (P.K.); (K.H.)
| | - Ko-Hua Tso
- Dr. Bata Ltd., Bajcsy-Zs. u. 139, H-2364 Ócsa, Hungary
| |
Collapse
|
5
|
Rahim Abro M, Rashid N, Khanoranga, Siddique Z. In-vivo evaluation of the adverse effects of ochratoxin A on broiler chicken health and adsorption efficacy of indigenous and commercial clay of Balochistan, Pakistan. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:833-845. [PMID: 38771562 DOI: 10.1080/19440049.2024.2354491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Mycotoxins in animal feed pose health risks and economic losses, but using various adsorbent types could potentially protect animals from mycotoxicosis. The study aimed to assess the effect of OTA on the health of broiler chickens and to envisage the ameliorative potential of clay adsorbents. The objectives of this in vivo study were to investigate the effects of OTA on productivity, biochemical parameters, fecal residues, and the preventive effects of indigenous and commercial clay of Balochistan as adsorbents to alleviate the adverse effects of exposure. Male broiler chickens (n = 160) were treated with 400 μg/kg OTA and 0.5 g/kg clay adsorbent for 42 days, with feed and water available in an ad libitum manner. The amount of OTA in diet and fecal residues was assessed through HPLC. The administration of OTA in the diet, resulted in a significant (p < 0.05) decrease in the average daily gain (ADG) and average daily feed intake (ADFI) while increasing the feed conversion ratio (FCR) as compared to the control group. Furthermore, no significant (p > 0.05) differences were found between the weight gain of broiler chickens fed without OTA (positive control) and that of chickens fed adsorbent. The group given a diet containing OTA without adsorbents as compared to the control and adsorbent-supplemented group has shown a significant (p < 0.05) increase in the relative weight of the liver, kidney, gizzard, and proventriculus while decreasing the relative weight of the spleen and bursa of Fabricius. Alterations in the levels of serum total protein (TP), cholesterol (CHL), serum urea (SU), enzymatic activity (aspartate aminotransferase (AST) and alanine transaminase (ALT)), and creatinine were observed in the OTA-intoxicated and adsorbent-supplemented groups as compared to the control group. Adsorbent supplementation resulted in a significantly (p < 0.05) higher OTA content in the faeces. It can be concluded from the results of this study, that OTA intoxication negatively affects the health of broiler chickens, and the clay of Balochistan has shown effective adsorption potential against OTA.
Collapse
Affiliation(s)
- Mustafa Rahim Abro
- Department of Nutrition and Toxicology, Center for Advanced Studies Vaccinology and Biotechnology, University of Balochistan, Quetta, Pakistan
| | - Nadeem Rashid
- Department of Nutrition and Toxicology, Center for Advanced Studies Vaccinology and Biotechnology, University of Balochistan, Quetta, Pakistan
| | - Khanoranga
- Department of Environmental Science, Sardar Bhadur khan women's University Quetta, Balochistan, Pakistan
| | - Zainab Siddique
- Department of Zoology, Sardar Bhadur khan women's University Quetta, Balochistan, Pakistan
| |
Collapse
|
6
|
Putra RP, Astuti D, Respati AN, Ningsih N, Triswanto, Yano AA, Gading BMWT, Jayanegara A, Sholikin MM, Hassim HA, Azmi AFM, Adli DN, Irawan A. Protective effects of feed additives on broiler chickens exposed to aflatoxins-contaminated feed: a systematic review and meta-analysis. Vet Res Commun 2024; 48:225-244. [PMID: 37644237 DOI: 10.1007/s11259-023-10199-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
Aflatoxin contamination in feed is a common problem in broiler chickens. The present systematic review and meta-analysis examined the impact of aflatoxin-contaminated feed and the efficacy of various feed additives on the production performance of broiler chickens fed aflatoxin-contaminated feed (AF-feed). A total of 35 studies comprising 53 AF-feed experiments were selected following PRISMA guidelines. Feed additives included in the analyses were toxins binder (TB), mannan-oligosaccharides (MOS), organic acid (OA), probiotics (PRO), protein supplementation (PROT), phytobiotics (PHY), and additive mixture (MIX). Random effects model and a frequentist network meta-analysis (NMA) were performed to rank the efficacy of feed additives, reported as standardized means difference (SMD) at 95% confidence intervals (95% CI). Overall, broiler chickens fed AF-feed had significantly lower final body weight (BW) (SMD = 198; 95% CI = 198 to 238) and higher feed conversion ratio (SMD = 0.17; 95% CI = 0.13 to 0.21) than control. Treatments with TB, MOS, and PHY improved the BW of birds fed AF-feed (P < 0.05) to be comparable with non-contaminated feed or control. Predictions on final BW from the broiler-fed aflatoxin-contaminated diet were 15% lower than the control diet. Including feed additives in the aflatoxins diet could ameliorate the depressive effect. Remarkably, our network meta-analysis highlighted that TB was the highest-performing additive (P-score = 0.797) to remedy aflatoxicosis. Altogether, several additives, especially TB, are promising to ameliorate aflatoxicosis in broiler chickens, although the efficacy was low regarding the severity of the aflatoxicosis.
Collapse
Affiliation(s)
- Reza Pratama Putra
- Department of Agriculture and Horticulture, Province of Jambi, Jambi, 36122, Indonesia
- Animal Health Vocational Program, Jambi University, Muaro Jambi, 36361, Indonesia
| | - Dian Astuti
- Agrotechnology Innovation Center, Universitas Gadjah Mada, Sleman, 55573, Indonesia
| | - Adib Norma Respati
- Department of Animal Science, Politeknik Negeri Jember, Jember, 68101, Indonesia
| | - Niati Ningsih
- Department of Animal Science, Politeknik Negeri Jember, Jember, 68101, Indonesia
| | - Triswanto
- Department of Feed Technology, PT. Charoen Pokphand Indonesia, Jakarta Utara, 14350, Indonesia
| | - Aan Andri Yano
- Vocational School, Universitas Sebelas Maret, Surakarta, 57126, Indonesia
| | | | - Anuraga Jayanegara
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, 16680, Indonesia
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor, 16680, Indonesia
| | - Mohammad Miftakhus Sholikin
- Animal Feed and Nutrition Modelling (AFENUE) Research Group, Faculty of Animal Science, IPB University, Bogor, 16680, Indonesia
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor, 16915, Indonesia
- Meta-Analysis in Plant Science (MAPS) Research Group, Bandung, 40621, Indonesia
- Center For Tropical Animal Studies (CENTRAS), The Institute of Research and Community Empowerment of IPB (LPPM IPB), Bogor, 16680, Indonesia
| | - Hasliza Abu Hassim
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Institute of Tropical Agriculture and Food Security Universiti Putra Malaysia (UPM), Serdang, Selangor, 43400, Malaysia
| | - Amirul Faiz Mohd Azmi
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Institute of Tropical Agriculture and Food Security Universiti Putra Malaysia (UPM), Serdang, Selangor, 43400, Malaysia
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Sciences, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia
| | - Danung Nur Adli
- Faculty of Animal Science, Universitas Brawijaya, Malang, 65145, Indonesia
| | - Agung Irawan
- Vocational School, Universitas Sebelas Maret, Surakarta, 57126, Indonesia.
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
7
|
Zou Y, Liu SB, Zhang Q, Tan HZ. Effects of Aflatoxin B 1 on growth performance, carcass traits, organ index, blood biochemistry and oxidative status in Chinese yellow chickens. J Vet Med Sci 2023; 85:1015-1022. [PMID: 37482424 PMCID: PMC10539818 DOI: 10.1292/jvms.23-0130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
In this study, the effects of different levels of aflatoxin B1 (AFB1) on the growth performance, carcass traits, organ index, blood biochemistry, and antioxidant capacity of yellow-feathered broilers were investigated to provide a reference for the application of AFB1-containing feed ingredients. In this test, yellow-feathered broilers were chosen as the research objects and divided into five treatment groups, with seven replicates in each group and 75 broilers in each replicate. The AFB1 concentration in the diets of groups 1 to 5 were 1.5 μg/kg, 15 μg/kg, 30 μg/kg, 45 μg/kg, and 60 μg/kg, respectively. The results showed that when dietary AFB1 levels were greater than 45 μg/kg, the feed conversion ratios of broilers of 1-21, 22-42, and 43-63 days of age increased (P<0.05). When dietary AFB1 levels were 30 μg/kg, liver glutathione peroxidase (GPx) activity was decreased (P<0.05), and serum transaminase (AST) activity was increased (P<0.05). Overall, dietary AFB1 levels had negative effects on growth performance, antioxidant capacity, blood biochemistry, and liver metabolism in yellow-feathered broilers. Based on using growth performance as the effect index, AFB1 levels in the diets of yellow-feathered broilers should not exceed 45 μg/kg. Based on using antioxidant capacity, liver function, and blood biochemistry as effect indexes, AFB1 levels in the diets of yellow-feathered broilers should not exceed 30 μg/kg.
Collapse
Affiliation(s)
- Yi Zou
- Poultry Business Division of Wens Foodstuff Group Co., Ltd., Ministry of Agriculture Key Laboratory of Animal Nutrition and Healthy Cultivation, Department of Poultry Nutrition and Feed Science, Guangdong Province, China
| | - Song-Bai Liu
- Poultry Business Division of Wens Foodstuff Group Co., Ltd., Ministry of Agriculture Key Laboratory of Animal Nutrition and Healthy Cultivation, Department of Poultry Nutrition and Feed Science, Guangdong Province, China
| | - Qi Zhang
- Poultry Business Division of Wens Foodstuff Group Co., Ltd., Ministry of Agriculture Key Laboratory of Animal Nutrition and Healthy Cultivation, Department of Poultry Nutrition and Feed Science, Guangdong Province, China
| | - Hui-Ze Tan
- Poultry Business Division of Wens Foodstuff Group Co., Ltd., Ministry of Agriculture Key Laboratory of Animal Nutrition and Healthy Cultivation, Department of Poultry Nutrition and Feed Science, Guangdong Province, China
| |
Collapse
|
8
|
Fang M, Hu W, Liu B. Effects of nano-selenium on cecum microbial community and metabolomics in chickens challenged with Ochratoxin A. Front Vet Sci 2023; 10:1228360. [PMID: 37732141 PMCID: PMC10507861 DOI: 10.3389/fvets.2023.1228360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Ochratoxin A (OTA) is a widely distributed mycotoxin. Nano-selenium (Nano-Se) is an emerging form of selenium known for its superior bioavailability, remarkable catalytic efficiency, and robust adsorbing capacity. Despite these characteristics, its impact on the microbial community and metabolomics in the cecum of chickens exposed to OTA has been infrequently investigated. This research examined the microbiota and metabolomic alterations linked to OTA in chickens, with or without Nano-Se present. Methods A cohort of 80 healthy chickens at the age of 1 day was randomly distributed into four groups of equal numbers, namely the Se cohort (1 mg/kg Nano-Se), the OTA cohort (50 μg/kg OTA), the OTA-Se cohort (50 μg/kg OTA + 1 mg/kg Nano-Se), and the control group. Each chicken group's caecal microbiome and metabolome were characterized using 16S rRNA sequencing and Liquid chromatography coupled with mass spectrometry (LC-MS) analyses. Results and discussion Our results showed that the on day 21, the final body weight was significantly reduced in response to OTA treatments (p < 0.05), the average daily gain in the OTA group was found to be inferior to the other groups (p < 0.01). In addition, Nano-Se supplementation could reduce the jejunum and liver pathological injuries caused by OTA exposure. The 16S rRNA sequencing suggest that Nano-Se supplementation in OTA-exposed chickens mitigated gut microbiota imbalances by promoting beneficial microbiota and suppressing detrimental bacteria. Moreover, untargeted metabolomics revealed a significant difference in caecal metabolites by Nano-Se pretreatment. Collectively, the dataset outcomes highlighted that Nano-Se augmentation regulates intestinal microbiota and associated metabolite profiles, thus influencing critical metabolic pathways, and points to a possible food-additive product.
Collapse
Affiliation(s)
- Manxin Fang
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Wei Hu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| | - Ben Liu
- College of Life Science and Resources and Environment, Yichun University, Yichun, China
- Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun, China
| |
Collapse
|
9
|
Jobe MC, Mthiyane DMN, Dludla PV, Mazibuko-Mbeje SE, Onwudiwe DC, Mwanza M. Pathological Role of Oxidative Stress in Aflatoxin-Induced Toxicity in Different Experimental Models and Protective Effect of Phytochemicals: A Review. Molecules 2023; 28:5369. [PMID: 37513242 PMCID: PMC10386527 DOI: 10.3390/molecules28145369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Aflatoxin B1 is a secondary metabolite with a potentially devastating effect in causing liver damage in broiler chickens, and this is mainly facilitated through the generation of oxidative stress and malonaldehyde build-up. In the past few years, significant progress has been made in controlling the invasion of aflatoxins. Phytochemicals are some of the commonly used molecules endowed with potential therapeutic effects to ameliorate aflatoxin, by inhibiting the production of reactive oxygen species and enhancing intracellular antioxidant enzymes. Experimental models involving cell cultures and broiler chickens exposed to aflatoxin or contaminated diet have been used to investigate the ameliorative effects of phytochemicals against aflatoxin toxicity. Electronic databases such as PubMed, Science Direct, and Google Scholar were used to identify relevant data sources. The retrieved information reported on the link between aflatoxin B1-included cytotoxicity and the ameliorative potential/role of phytochemicals in chickens. Importantly, retrieved data showed that phytochemicals may potentially protect against aflatoxin B1-induced cytotoxicity by ameliorating oxidative stress and enhancing intracellular antioxidants. Preclinical data indicate that activation of nuclear factor erythroid 2-related factor 2 (Nrf2), together with its downstream antioxidant genes, may be a potential therapeutic mechanism by which phytochemicals neutralize oxidative stress. This highlights the need for more research to determine whether phytochemicals can be considered a useful therapeutic intervention in controlling mycotoxins to improve broiler health and productivity.
Collapse
Affiliation(s)
- Martha Cebile Jobe
- Department of Animal Science, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
- Food Security and Safety Focus Area, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| | - Doctor M N Mthiyane
- Department of Animal Science, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
- Food Security and Safety Focus Area, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | | | - Damian C Onwudiwe
- Department of Chemistry, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| | - Mulunda Mwanza
- Food Security and Safety Focus Area, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
- Department of Animal Health, Mahikeng Campus, North-West University, Mmabatho 2735, South Africa
| |
Collapse
|
10
|
Nadalin P, Kim YG, Park SU. Recent studies on berberine and its biological and pharmacological activities. EXCLI JOURNAL 2023; 22:315-328. [PMID: 37223077 PMCID: PMC10201012 DOI: 10.17179/excli2022-5898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 05/25/2023]
Affiliation(s)
- Priscilla Nadalin
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Yong-Goo Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| |
Collapse
|
11
|
The Efficacy of Additives for the Mitigation of Aflatoxins in Animal Feed: A Systematic Review and Network Meta-Analysis. Toxins (Basel) 2022; 14:toxins14100707. [PMID: 36287975 PMCID: PMC9607122 DOI: 10.3390/toxins14100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
The contamination of animal feed with aflatoxins is an ongoing and growing serious issue, particularly for livestock farmers in tropical and subtropical regions. Exposure of animals to an aflatoxin-contaminated diet impairs feed efficiency and increases susceptibility to diseases, resulting in mortality, feed waste, and increased production costs. They can also be excreted in milk and thus pose a significant human health risk. This systematic review and network meta-analysis aim to compare and identify the most effective intervention to alleviate the negative impact of aflatoxins on the important livestock sector, poultry production. Eligible studies on the efficacy of feed additives to mitigate the toxic effect of aflatoxins in poultry were retrieved from different databases. Additives were classified into three categories based on their mode of action and composition: organic binder, inorganic binder, and antioxidant. Moreover, alanine transaminase (ALT), a liver enzyme, was the primary indicator. Supplementing aflatoxin-contaminated feeds with different categories of additives significantly reduces serum ALT levels (p < 0.001) compared with birds fed only a contaminated diet. Inorganic binder (P-score 0.8615) was ranked to be the most efficient in terms of counteracting the toxic effect of aflatoxins, followed by antioxidant (P-score 0.6159) and organic binder (P-score 0.5018). These findings will have significant importance for farmers, veterinarians, and animal nutrition companies when deciding which type of additives to use for mitigating exposure to aflatoxins, thus improving food security and the livelihoods of smallholder farmers in developing countries.
Collapse
|
12
|
Ghavipanje N, Fathi Nasri MH, Vargas-Bello-Pérez E. An insight into the potential of berberine in animal nutrition: Current knowledge and future perspectives. J Anim Physiol Anim Nutr (Berl) 2022; 107:808-829. [PMID: 36031857 DOI: 10.1111/jpn.13769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/10/2022] [Accepted: 08/06/2022] [Indexed: 11/30/2022]
Abstract
In animal nutrition, the interest for novel feed additives has expanded with elevating industry standards and consumer awareness besides the demand for healthy animal-derived food products. Consumer and animal health are leading concerns dictating the importance of novel animal feed additives. Berberine (BBR) is a natural pentacyclic isoquinoline alkaloid that has exhibited diverse pharmacological properties, including metabolism-regulating, hepatoprotective, and inflammatory alleviative in addition to its antioxidant activity. Despite detailed information on cellular mechanisms associated with BBR therapeutics, and strong clinical evidence, only a few studies have focused on BBR applied to animal nutrition. However, great pieces of evidence have shown that dietary BBR supplementation could result in improved growth performance, enhanced oxido-inflammatory markers, and mitigated metabolic dysfunctions in both monogastric and ruminant animals. The data discussed in the present review may set the basis for further research on BBR in animal diets for developing novel strategies aiming to improve animal health as well as products with beneficial properties for humans.
Collapse
Affiliation(s)
- Navid Ghavipanje
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | | | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| |
Collapse
|
13
|
Al Shap NF, El-Sherbeny EME, El Masry DMA. The efficacy of metal nanocomposite (Fe 3O 4/CuO/ZnO) to ameliorate the toxic effects of ochratoxin in broilers. BMC Vet Res 2022; 18:312. [PMID: 35971170 PMCID: PMC9377104 DOI: 10.1186/s12917-022-03400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The study aimed to investigate the effectiveness of different doses of metal nanocomposite (MNc) (Fe3O4/CuO/ZnO) lower than its cytotoxic level in order to overcome or minimize the ochratoxin (OTA) adverse effects in broilers fed on contaminated ration. The study conducted on 120 one-day old chicks which were divided into equal 6 groups; G1: negative control, G2: positive control (fed on OTA 17 ppb), G3& G4 (fed MNc only with low and high doses respectively). The rest two groups G5 & G6 (treatment groups) were fed on OTA, post induced ochratoxification, treated with low and high doses respectively. RESULTS Body weight gain and heamatocellular elements in both treated groups increased significantly than control. Serum phagocytic nitric oxide levels were increased significantly in both treated groups than control groups. Prothrombin time (PT), Alanine aminotransferase (ALT) and gamma-glutamyltransferase (GGT) activities decreased significantly (P < 0.05) in both treated groups than intoxicated control group (G2) but still higher than non-intoxicated control group (G1). Total protein, albumin, globulin, calcium and phosphorus increased significantly in both treated groups than intoxicated control group. Kidney function tests showed significant improvement in both treated groups than intoxicated control group. Antioxidant study revealed that malondialdehyde (MDA) decreased significantly in treated groups than intoxicated control group. Ochratoxin residue decreased significantly in treated groups. Metal residues in tested liver and muscle of treated groups showed no-significant difference with non-intoxicated control group (G1) at the experiment's end. In conclusion, feeding either low or high doses of MNc to broilers were significantly counteracting the negative impacts of OTA or its residue and increase their body weight.
Collapse
Affiliation(s)
- Nagla F Al Shap
- Toxicology Unit Animal Health Research Institute, Tanta lab.Agricultural Research Center (ARC), Giza, Egypt
| | - Eman M El El-Sherbeny
- Pharmacology Unit Animal Health Research Institute, Tanta lab. Agricultural Research Center (ARC), Giza, Egypt
| | - Dalia M A El Masry
- Nanomaterials Research and Synthesis Unit, Animal Health Research Institute, Agricultural Research Center (ARC), Giza, 264, Egypt.
| |
Collapse
|
14
|
Mesgar A, Aghdam Shahryar H, Bailey CA, Ebrahimnezhad Y, Mohan A. Effect of Dietary L-Threonine and Toxin Binder on Performance, Blood Parameters, and Immune Response of Broilers Exposed to Aflatoxin B 1. Toxins (Basel) 2022; 14:toxins14030192. [PMID: 35324689 PMCID: PMC8951136 DOI: 10.3390/toxins14030192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 01/14/2023] Open
Abstract
To evaluate the effect of L-Threonine (L-Thr) and Mycofix® Plus (MP) on aflatoxicosis, an experiment with a 3-way ANOVA model was carried out with 8 replicates and 640 birds. Treatments included two levels of L-Thr (100% and 125% of the requirements, Cobb 500, Cobb-Vantress), Aflatoxin B1 (AFB1) (0, 500 ppb), and MP (0, 1 g/kg). As the main effects showed, AFB1 decreased breast meat yield and carcass percentage (p < 0.001), serum urea, antibody titer against infectious bronchitis virus (IBV), and bone density (p < 0.05), while it increased the plasma concentrations of glucose and alkaline phosphatase (ALP) (p < 0.05). Mycofix Plus improved the grower feed intake (FI), tibia fresh weight, and body weight (BW) to bone weight (p < 0.05). L-Threonine increased the grower FI, breast meat yield, serum aspartate transaminase (AST), and glutathione peroxidase (GPX) (p < 0.05). There were positive interactions with breast meat yield, cholesterol, lactate dehydrogenase (LDH), and IBV titer. Of the treatments used, the combination of L-Thr and MP without AFB1 improved breast meat and carcass percentage. L-Threonine and MP significantly improved IBV titer in birds challenged with AFB1 (p < 0.001). In conclusion, L-Thr and MP were beneficial to improve immunity.
Collapse
Affiliation(s)
- Aydin Mesgar
- Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar 5381637181, Iran; (A.M.); (H.A.S.); (Y.E.)
| | - Habib Aghdam Shahryar
- Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar 5381637181, Iran; (A.M.); (H.A.S.); (Y.E.)
| | - Christopher Anthony Bailey
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
- Correspondence: (C.A.B.); (A.M.)
| | - Yahya Ebrahimnezhad
- Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar 5381637181, Iran; (A.M.); (H.A.S.); (Y.E.)
| | - Anand Mohan
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
- Correspondence: (C.A.B.); (A.M.)
| |
Collapse
|
15
|
Ghavipanje N, Fathi Nasri MH, Farhangfar SH, Ghiasi SE, Vargas-Bello-Pérez E. The Impact of Dietary Berberine Supplementation during the Transition Period on Blood Parameters, Antioxidant Indicators and Fatty Acids Profile in Colostrum and Milk of Dairy Goats. Vet Sci 2022; 9:76. [PMID: 35202329 PMCID: PMC8874883 DOI: 10.3390/vetsci9020076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to investigate the effect of berberine (BBR) supplementation on productivity, antioxidant markers, and the fatty acid (FA) profile in the colostrum and milk of goats. Twenty-four primiparous Saanen goats were supplemented with 0, 1, 2, and 4 g/d (per goat) of BBR in control (CON), BBR1, BBR2, and BBR4 groups (n = 6 per group), respectively, from 21 days before expected kidding to 21 days after parturition. Blood sampling was carried out at -21, -14, -7, 0, 7, 14, and 21 d relative to delivery. Colostrum was collected within the first and second milking (d 1 of lactation), and milk was harvested weekly after kidding. Both BBR2 and BBR4 increased dry matter intake (DMI) (p ≤ 0.05) and energy balance (EB) as well as colostrum and milk production. Both BBR2 and BBR4 decreased (p ≤ 0.05) plasma levels of cholesterol, haptoglobin, and ceruloplasmin, while elevating the plasma albumin and paraoxonase (p ≤ 0.05), which may indicate that BBR mitigates inflammation during the transition period. BBR reduced (p ≤ 0.05) malondialdehyde (MDA) and increased (p ≤ 0.05) total antioxidant capacity (TAC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in blood, colostrum, and milk. Concentrations of de novo fatty acid in colostrum and milk were increased (p ≤ 0.05) with both BBR2 and BBR4. Free fatty acid (FFA) concentration in colostrum and milk fat were lower (p ≤ 0.05) in BBR2 and BBR4 compared to CON. The concentration of saturated fatty acids (SFAs) in colostrum and milk fat increased (p ≤ 0.05) with BBR2 and BBR4, while unsaturated fatty acids (USFAs) decreased (p ≤ 0.05) in milk. In summary, supplementation with at least 2 g/d BBR may enhance the EB and antioxidant status of dairy goats.
Collapse
Affiliation(s)
- Navid Ghavipanje
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand 97175-331, Iran; (M.H.F.N.); (S.H.F.); (S.E.G.)
| | - Mohammad Hasan Fathi Nasri
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand 97175-331, Iran; (M.H.F.N.); (S.H.F.); (S.E.G.)
| | - Seyyed Homayoun Farhangfar
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand 97175-331, Iran; (M.H.F.N.); (S.H.F.); (S.E.G.)
| | - Seyyed Ehsan Ghiasi
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand 97175-331, Iran; (M.H.F.N.); (S.H.F.); (S.E.G.)
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
16
|
The Effect of Silybum Marianum Seed, Thymus Vulgaris, and Rosmarinus Officinalis Powders in Alleviating the Risks of Aflatoxin B1 in Young Broiler Chicks. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2021-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
This investigation was aimed to evaluate the effects of Silybum marianum seed, Thymus vulgaris, and Rosmarinus officinalis powders and their combination in alleviating the risks of aflatoxin B1 (AFB1) in young broiler chicks. One-day-old Ross 308 male broiler chickens were allocated to 6 experimental groups from d 1 to 21. The experimental dietary groups included: Negative control (NC) received the basal diet, Positive control (PC) containing 2 mg AFB1/kg diet; Positive control + 10 g/kg diet of Silybum marianum seed (SMS); Positive control + 10 g/kg diet of Thymus vulgaris (TV); Positive control + 5 g/kg diet of Rosmarinus officinalis (RO); Positive control + 10 g/kg diet of SMS + 10 g/kg diet of TV + 5 g/kg diet of RO as a blend of herbs (BH). There was no difference between feed intake and body weight gain among the experimental groups (P>0.05). In contrast, the feed conversion rate (FCR) in NC and SMS groups was lower than in other groups (P<0.05). Calcium levels and high-density lipoprotein cholesterol (HDL) were lower in serum samples, but the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were higher in PC chickens (P<0.05). Increase in the thigh muscle malondialdehyde (MDA) in chickens fed AFB1 was significantly reduced in the NC, SMS, and BH chickens (P<0.05). Chickens of NC and SMS groups showed the highest response to respiratory burst of heterophil (NBT assay) and lymphocyte proliferation assays (MTT assay) (P<0.05). In conclusion, the addition of studied herbs, especially SMS, to the AFB1 contaminated diet could have a protective effect against aflatoxicosis in broiler chickens.
Collapse
|
17
|
Ghavipanje N, Fathi Nasri MH, Farhangfar SH, Ghiasi SE, Vargas-Bello-Pérez E. Pre- and Post-partum Berberine Supplementation in Dairy Goats as a Novel Strategy to Mitigate Oxidative Stress and Inflammation. Front Vet Sci 2021; 8:743455. [PMID: 34722705 PMCID: PMC8552069 DOI: 10.3389/fvets.2021.743455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
As in dairy cattle, goats during the transition period face risk factors, in particular negative energy balance (NEB), inflammation, and impairment of the antioxidant response. The current study determined the effects of pre- and post-partum berberine (BBR) supplementation on antioxidant status and inflammation response during the transition period in dairy goats. Twenty-four primiparous Saanen goats were randomly divided into four groups: control (CON, without BBR) and supplemented with 1 g/day BBR (BBR1), 2 g/day BBR (BBR2), or 4 g/day BBR (BBR4). The blood samples were collected weekly from 21 days pre-partum to 21 days post-partum. Compared with CON, supplementation with either BBR2 or BBR4 decreased (P ≤ 0.05) the levels of plasma non-esterified fatty acids (NEFA) at kidding and thereafter an increased (P ≤ 0.05) the plasma levels of glucose and insulin. Following BBR ingestion, blood antioxidant status elevated throughout the transition period, so that total antioxidant capacity (TAC), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase activity were increased (P ≤ 0.05) and plasma malondialdehyde (MDA) was decreased (P ≤ 0.05). Likewise, paraoxonase (PON) was reduced (P ≤ 0.05) in goats fed BBR2 and BBR4. The levels of haptoglobin, ceruloplasmin, and bilirubin were reduced (P ≤ 0.05) by BBR2 and BBR4 immediately before kidding and thereafter. The results demonstrated that supplementation of either 2 or 4 g/day BBR enhanced antioxidant capacity and immune function of transition goats and improved post-partum performance showing its beneficial effect to mitigate oxidative stress and inflammation during the transition period in dairy goats.
Collapse
Affiliation(s)
- Navid Ghavipanje
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | | | | | - Seyyed Ehsan Ghiasi
- Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
18
|
Akash MSH, Haq MEU, Qader A, Rehman K. Biochemical investigation of human exposure to aflatoxin M1 and its association with risk factors of diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62907-62918. [PMID: 34216342 DOI: 10.1007/s11356-021-14871-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Recently, aflatoxin M1 (AFM1) has emerged as a major health concern owing to its exposure to human being via consumption of milk, dairy products, and food commodities, and this has a strong association with risk factors that may lead to the onset of type 2 diabetes mellitus (T2DM) and various other associated metabolic disorders. This study was conducted to investigate the exposure to AFM1 and its association with sociodemographic features and risk factors of T2DM. Urine and blood samples from 672 participants were collected to investigate the concentration of AFM1 in urine and glucose, glycosylated hemoglobin (HbA1c), insulin, α-amylase, dipeptidyl peptidase-IV (DPP-IV), free fatty acids (FFAs), triglycerides (TGs), high-density lipoprotein cholesterol (HDL-chol), interleukine-6 (IL-6), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), creatinine, uric acid, blood urea nitrogen (BUN), aspartate aminotransferase (AST), and alanine transaminase (ALT) from the blood of study participants. Association of exposure to AFM1 with sociodemographic features and risk factors of T2DM was determined using person correlation coefficient (r), coefficient of determination (R2), and 95% confidence interval, and the level of significance (P<0.05) was measured by Student's unpaired t-test. Among the participants in which AFM1 was detected, 62.91% of participants were found to be diabetic and 37.09% of participants were found to be non-diabetic. Further to this, it was also found that concentration of AFM1 in the urine of diabetic participants was found to be higher (P<0.05) as compared to that in non-diabetic participants. Association of AFM1 exposure with risk factors of T2MD exhibits that exposure to AFM1 was responsible for the induction of inflammatory responses and oxidative stress that may lead to the onset of impaired insulin secretion and metabolism of carbohydrates and ultimately the onset of T2DM and associated metabolic disorders. Hence, it can be summarized that exposure to AFM1 is one of the causative factors that may lead to potentiate the several risk factors notably inflammatory responses and oxidative stress that ultimately induce the pathogenesis of T2DM and associated metabolic disorders. The key findings of this study suggest that human population who are at greater risk of AFM1 exposure can develop T2DM and other associated metabolic risk factors.
Collapse
Affiliation(s)
| | - Muhammad Ejaz Ul Haq
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Abdul Qader
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
19
|
Tsiouris V, Tassis P, Raj J, Mantzios T, Kiskinis K, Vasiljević M, Delić N, Petridou E, Brellou GD, Polizopoulou Z, Mittas N, Georgopoulou I. Investigation of a Novel Multicomponent Mycotoxin Detoxifying Agent in Amelioration of Mycotoxicosis Induced by Aflatoxin-B1 and Ochratoxin A in Broiler Chicks. Toxins (Basel) 2021; 13:toxins13060367. [PMID: 34064255 PMCID: PMC8224362 DOI: 10.3390/toxins13060367] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 01/11/2023] Open
Abstract
The present study was designed to determine the efficacy of a novel multicomponent mycotoxin detoxifying agent (MMDA) containing modified zeolite (Clinoptilolite), Bacillus subtilis, B. licheniformis, Saccharomyces cerevisiae cell walls and silymarin against the deleterious effects of Aflatoxin B1 (AFB1) and Ochratoxin A (OTA) in broiler chicks. A total of 160 one-day-old Ross 308® broiler chicks were randomly allocated in four treatment groups, with four replicates, according to the following experimental design for 42 days. Group A received a basal diet; Group B received a basal diet contaminated with AFB1 and OTA at 0.1 mg/kg and 1 mg/kg, respectively; Group C received a basal diet contaminated with AFB1 and OTA and MMDA at 1 g/kg feed, and Group D received a basal diet contaminated with AFB1 and OTA and MMDA at 3 g/kg feed. Results showed that ingested mycotoxins led to significant (p ≤ 0.05) reduction in body weight and feed conversion from 25 days of age, induced histopathological changes, increased the pH of the intestinal content, and altered the biochemical profile of birds with significantly (p ≤ 0.05) increased aspartate aminotransferase (AST) values (p ≤ 0.05). On the other hand, the supplementation of MMDA significantly (p ≤ 0.05) improved the feed conversion ratio (FCR) during the second part of the study, diminished biochemical alterations, reduced pH in jejunal and ileal content, and E. coli counts in the caeca of birds (p ≤ 0.05). It may be concluded that the dietary supplementation of the MMDA partially ameliorated the adverse effects of AFB1 and OTA in broilers and could be an efficient tool in a mycotoxin control program.
Collapse
Affiliation(s)
- Vasilios Tsiouris
- Unit of Avian Medicine, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (T.M.); (K.K.); (I.G.)
- Correspondence: ; Tel.: +30-2310994555
| | - Panagiotis Tassis
- Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece;
| | - Jog Raj
- Patent Co, DOO., Vlade Cetkovica IA, 24211 Misicevo, Serbia; (J.R.); (M.V.)
| | - Tilemachos Mantzios
- Unit of Avian Medicine, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (T.M.); (K.K.); (I.G.)
| | - Konstantinos Kiskinis
- Unit of Avian Medicine, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (T.M.); (K.K.); (I.G.)
| | - Marko Vasiljević
- Patent Co, DOO., Vlade Cetkovica IA, 24211 Misicevo, Serbia; (J.R.); (M.V.)
| | - Nikola Delić
- Institute for Animal Husbandry, Autoput 16, P. Box 23, 11080 Belgrade-Zemun, Serbia;
| | - Evanthia Petridou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Georgia D. Brellou
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece;
| | - Zoe Polizopoulou
- Diagnostic Laboratory, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece;
| | - Nikolaos Mittas
- Department of Chemistry, School of Science, International Hellenic University, 65404 Kavala, Greece;
| | - Ioanna Georgopoulou
- Unit of Avian Medicine, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54627 Thessaloniki, Greece; (T.M.); (K.K.); (I.G.)
| |
Collapse
|
20
|
Zhai S, Zhu Y, Feng P, Li M, Wang W, Yang L, Yang Y. Ochratoxin A: its impact on poultry gut health and microbiota, an overview. Poult Sci 2021; 100:101037. [PMID: 33752074 PMCID: PMC8005833 DOI: 10.1016/j.psj.2021.101037] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/24/2020] [Accepted: 01/02/2021] [Indexed: 12/25/2022] Open
Abstract
Ochratoxin A (OTA) is a widespread mycotoxin, that has strong thermal stability, and is difficult to remove from feed. OTA is nephrotoxic, hepatotoxic, teratogenic, immunotoxic, and enterotoxic to several species of animals. The gut is the first defense barrier against various types of mycotoxins present in feed that enter the body, and it is closely connected to other tissues through enterohepatic circulation. Compared with mammals, poultry is more sensitive to OTA and has a lower absorption rate. Therefore, the gut is an important target tissue for OTA in poultry. This review comprehensively discusses the role of OTA in gut health and the gut microbiota of poultry, focusing on the effect of OTA on digestive and absorptive processes, intestinal barrier integrity, intestinal histomorphology, gut immunity, and gut microbiota. According to the studies described to date, OTA can affect gut dysbiosis, including increasing gut permeability, immunity, and bacterial translocation, and can eventually lead to gut and other organ injury. Although there are many studies investigating the effects of OTA on the gut health of poultry, further studies are needed to better characterize the underlying mechanisms of action and develop preventative or therapeutic interventions for mycotoxicosis in poultry.
Collapse
Affiliation(s)
- Shuangshuang Zhai
- College of Animal Science, Yangtze University, Jingzhou 434000, China
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - Peishi Feng
- Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Macheng Li
- Research and Development department, Hunan Microorganism & Herb Biological Feed Technology Co., Ltd., Xiangtan 411100, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510000, China
| | - Ye Yang
- College of Animal Science, Yangtze University, Jingzhou 434000, China.
| |
Collapse
|