1
|
Mnisi CM, Njeri FM, Maina AN, Waliaula PK, Cheng V, Kumalo I, Egbu CF, Kiarie EG. A review on the potential use of eubiotics in non-chicken poultry species. Trop Anim Health Prod 2025; 57:213. [PMID: 40335869 PMCID: PMC12058837 DOI: 10.1007/s11250-025-04466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 04/30/2025] [Indexed: 05/09/2025]
Abstract
As the demand for poultry products increases, safe nutritional measures should be implemented to ensure successful diversification of the poultry industry with non-chicken poultry (NCP) species such as quail, turkey, ostrich, waterfowls, and guinea fowls. Thus, this review focuses on the current and future utility of eubiotics in NCP species by outlining the challenges and potential benefits that are associated with their utilization. Eubiotics are a group of feed additives, including probiotics, prebiotics, synbiotics, organic acids, and essential oils, that are safe and exhibit antimicrobial and immunomodulatory activities, prudent in an era where multi-drug antimicrobial resistance poses a grave threat to human health. Using eubiotics, separately or in combination, in NCP diets could enhance gut health, immune responses, growth performance, and product quality. However, their mechanisms of action are not fully understood, and their synergistic effects are not clearly outlined especially for NCP species. Moreover, inconsistent results have been reported, possibly due to various sources, application methods, production systems, bird types, and variations in rearing sites (macro- and micro-climatic conditions). We postulate that their extensive adoption in diets of NCP species could, in the future, deliver safe, efficient, and sustainable poultry production systems. We conclude that correct application methods, optimal dosages, and understanding of their synergistic actions could ensure alternative poultry systems that would contribute significantly to global food safety and nutrition security.
Collapse
Affiliation(s)
- Caven M Mnisi
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, Private Bag x2046, Mmabatho, 2735, South Africa.
| | - Felix M Njeri
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2 W1, Canada
| | - Anderson N Maina
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, Private Bag x2046, Mmabatho, 2735, South Africa
| | - Paul K Waliaula
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2 W1, Canada
| | - Veronica Cheng
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2 W1, Canada
| | - Indibabale Kumalo
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, Private Bag x2046, Mmabatho, 2735, South Africa
| | - Chidozie F Egbu
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, Private Bag x2046, Mmabatho, 2735, South Africa
| | - Elijah G Kiarie
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Science, North-West University, Private Bag x2046, Mmabatho, 2735, South Africa
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2 W1, Canada
| |
Collapse
|
2
|
Li Z, Kim E, Ko K, Liu A, Lee Y, Zhang G. Integrating microbiome and metabolome analyses to unravel the role of inulin in enhancing the meat quality and bone health of ducks. Sci Rep 2025; 15:15194. [PMID: 40307492 PMCID: PMC12044026 DOI: 10.1038/s41598-025-99693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/22/2025] [Indexed: 05/02/2025] Open
Abstract
Inulin, a natural dietary fiber, has various health-promoting bioactivities. However, the impacts of dietary inulin on duck productivity and overall health remain unclear. This study investigated the effects of inulin supplementation on systemic health and its underlying mechanisms by integrating the microbiota and metabolome analyses. One hundred twenty 16-day-old male Cherry Valley ducks with similar initial body weight (BW) were randomly assigned to 20 cages, with two treatments (6 ducks/cage and 10 cages/treatment): a basal diet (CON group) or a basal diet supplemented with 25 g inulin/kg (INU group). The 18-d feeding trials demonstrated that ducks fed the inulin-supplemented diet presented significantly improved growth performance, bone health, and meat quality compared with those in the control group (P < 0.05). Additionally, inulin supplementation reshaped the intestinal microbiota, increasing diversity and the abundance of Alistipes, Ligilactobacillus, and Streptococcus (P < 0.05). Metabolome analysis revealed that inulin feeding significantly modulated 13 metabolites (P < 0.05), which were enriched primarily in health-related metabolic pathways such as taurine and hypotaurine metabolism, steroid hormone biosynthesis, and histidine metabolism. Correlation analysis revealed a positive relationship among the modulated microbes and metabolites and improved healthy parameters. Overall, inulin supplementation improved the bone and muscle health of ducks by specifically modulating key gut microbes, metabolites, and associated metabolic pathways. These findings suggest that inulin supplementation represents a feasible nutritional strategy for improving the meat quality and bone health of intensively raised ducks.
Collapse
Affiliation(s)
- Zemin Li
- Department of Animal Nutrition, Shandong Agricultural University, Taian City, 271018, China
- China-South Korea International Joint Laboratory of Functional Polysaccharides in Shandong Province, Taian City, 271018, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Taian City, 271018, China
| | - Eunyoung Kim
- Department of Food Science and Nutrition, Jeju National University, Jeju, 63243, South Korea
- China-South Korea International Joint Laboratory of Functional Polysaccharides in Shandong Province, Taian City, 271018, China
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, South Korea
| | - Kayeon Ko
- Department of Food Science and Nutrition, Jeju National University, Jeju, 63243, South Korea
- China-South Korea International Joint Laboratory of Functional Polysaccharides in Shandong Province, Taian City, 271018, China
| | - Anxin Liu
- Department of Animal Nutrition, Shandong Agricultural University, Taian City, 271018, China
- China-South Korea International Joint Laboratory of Functional Polysaccharides in Shandong Province, Taian City, 271018, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Taian City, 271018, China
| | - Yunkyoung Lee
- Department of Food Science and Nutrition, Jeju National University, Jeju, 63243, South Korea.
- China-South Korea International Joint Laboratory of Functional Polysaccharides in Shandong Province, Taian City, 271018, China.
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, South Korea.
| | - Guiguo Zhang
- Department of Animal Nutrition, Shandong Agricultural University, Taian City, 271018, China.
- China-South Korea International Joint Laboratory of Functional Polysaccharides in Shandong Province, Taian City, 271018, China.
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Taian City, 271018, China.
| |
Collapse
|
3
|
de Souza BMS, Guerra LHA, Varallo GR, Taboga SR, Penna ALB. The Impact in Intestines and Microbiota in BALB/c Mice Through Consumption of Milk Fermented by Potentially Probiotic Lacticaseibacillus casei SJRP38 and Limosilactobacillus fermentum SJRP43. Probiotics Antimicrob Proteins 2025; 17:462-478. [PMID: 37796426 DOI: 10.1007/s12602-023-10158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
The present study aimed to evaluate the effect of consumption of milk fermented by Lacticaseibacillus (Lc.) casei SJRP38 and Limosilactobacillus (Lm.) fermentum SJRP43 on bacterial translocation, stool analysis, and intestinal morphology of healthy BALB/c mice. Potentially probiotic lactic acid bacteria, Lc. casei SJRP38, and Lm. fermentum SJRP43 were evaluated and analyzed for translocation, fecal analysis, and intestinal morphology of four groups of mice: water control (WC), milk control (MC), milk fermented by Lc. casei SJRP38 (FMLC), and milk fermented by Lm. fermentum SJRP43 (FMLF), in co-culture with Streptococcus thermophilus ST080. The results of the animal assay indicate that the population of Lactobacilli and Bidobacterium sp. in the gastrointestinal tract of BALB/c mice was greater than 6.0 log10 CFU/g, and there was no evidence of bacteremia due to the low incidence of bacterial translocation. Ingesting fermented milk containing Lc. casei SJRP38 and Lm. fermentum SJRP43 was found to promote a healthier microbiota, as it led to a reduction in Clostridium sp. and an increase in Lactobacilli and Bifidobacterium sp. in feces. Furthermore, the dairy treatments (MC, FMLC, and FMLF) resulted in taller intestinal villi and an increase in the frequency of goblet cells in the intestines. Overall, the consumption of fermented milk containing Lc. casei SJRP38 and Lm. fermentum SJRP43 strains was deemed safe and demonstrated beneficial effects on the intestines of BALB/c mice.
Collapse
Affiliation(s)
- Bruna Maria Salotti de Souza
- Department of Technology and Inspection of Products of Animal Origin, UFMG - Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Luiz Henrique Alves Guerra
- Department of Biology, Institute of Biosciences, Languages and Exact Sciences, UNESP - Sao Paulo State University, São José do Rio Preto, SP, 15054-000, Brazil
| | | | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Languages and Exact Sciences, UNESP - Sao Paulo State University, São José do Rio Preto, SP, 15054-000, Brazil
| | - Ana Lúcia Barretto Penna
- Department of Food Engineering and Technology, Institute of Biosciences, Languages and Exact Sciences, UNESP - Sao Paulo State University, São José do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
4
|
Xiao X, Cui T, Qin S, Wang T, Liu J, Sa L, Wu Y, Zhong Y, Yang C. Beneficial effects of Lactobacillus plantarum on growth performance, immune status, antioxidant function and intestinal microbiota in broilers. Poult Sci 2024; 103:104280. [PMID: 39305612 PMCID: PMC11437764 DOI: 10.1016/j.psj.2024.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Lactobacillus plantarum (L. plantarum) has been globally regarded as antibiotic alternative in animal farming in the past few years. However, the potential function of L. plantarum in broilers has not been systemically explored. In this study, a total of 560 one-day-old yellow-feathered broilers were randomly divided into 3 groups, fed with basal diet and drank with L. plantarum HJZW08 (LP) at the concentration of 0 (CON), 1000 × 10^5 (LP1000), and 2000 × 10^5 CFU/L (LP2000) for 70 d. Results showed that the body weight (BW), average daily gain (ADG), average daily feed intake (ADFI), immunoglobulin A (IgA), IgY, and anti-inflammatory interleukin 10 (IL-10) were markedly improved (P < 0.05), while the levels of pro-inflammatory IL-2, IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) in serum were decreased (P < 0.05) in the LP2000 group comparing with the CON group. Besides, LP treatment groups prominently increased the levels and activities of antioxidant enzymes and decreased the content of malondialdehyde (MDA). Additionally, the levels of isobutyric acid in the LP1000 and LP2000 groups and isovaleric acid in the LP2000 group were significantly improved. More importantly, the α-diversity and microbial structure of intestinal microbiota were pronounced altered by LP supplementation. The results showed that only the relative abundance of Actinobacteriota was significantly increased in the LP2000 group, while 6 kinds of bacteria on genus level were significantly changed. For further validation, linear discriminant analysis with effect size (LEfSe) plots revealed that 8 amplicon sequence variants (ASVs) were predominant in the CON group, while Bacteroides and other beneficial species such as Lactimicrobium massiliense (ASV4 and ASV36), Intestinimonas butyriciproducens (ASV71), and Barnesiella viscericola (ASV152 and ASV571) were enriched in the LP groups. Taken together, dietary supplementation with LP obviously enhanced the immune status, antioxidant capacity, and stabilized the cecal microbiota and SCFAs, contributing to the improvement of growth performance of broilers. Our study laid good foundation for the application of probiotic Lactobacillus in animal industry in the future.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Vegamax Biotechnology Co. Ltd., Anji, 313300, Huzhou, China
| | - Tiantian Cui
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Songke Qin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Tao Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Jinsong Liu
- Zhejiang Vegamax Biotechnology Co. Ltd., Anji, 313300, Huzhou, China
| | - Lihan Sa
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Vegamax Biotechnology Co. Ltd., Anji, 313300, Huzhou, China
| | - Yifan Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China; China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, 311300, Hangzhou, China.
| |
Collapse
|
5
|
Hossain MT, Sardar D, Afsana S, Datta M, Habib MA. Comparative analysis between multi-strain probiotics and antibiotic as starter feed supplement of poultry on growth performance, serum metabolites and meat quality. Vet Anim Sci 2024; 24:100346. [PMID: 38895706 PMCID: PMC11184486 DOI: 10.1016/j.vas.2024.100346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
The unobstructed use of antibiotics in poultry production has emerged as a major driving force of antibiotic resistance and public health hazard, particularly in developing countries. This study aimed to determine the functional roles of lyophilized native probiotic based starter feed on performance, selective serum metabolites and meat quality of poultry. A total of 90 day-old birds (30 broilers, 30 layers and 30 ducks) were used as experimental birds which were divided into three treatment groups for each kind of bird. Isolated native probiotic strains from chicken intestine were used to prepare lyophilized probiotic samples. Growth performances were measured manually, serum biochemicals analysis were carried out using diagnostic kits, and meat quality was determined through Kjeldahl method and Soxhlet method. When compared to groups receiving antibiotics, the introduction of lyophilized probiotics in starter feed significantly (P<0.05) increased body weight gain, feed intake, and feed conversion ratio. The birds' serum calcium and protein levels likewise exhibited a similar pattern. Comparing the groups receiving antibiotics, the protein content of the meat revealed significant (P<0.05) variations. Significant (P<0.05) reduced level of serum total cholesterol, triglycerides and fat content in meat was observed when compared to antibiotic-fed group. It is possible to conclude that lyophilized probiotics have a significant positive impact on growth performance, serum metabolites and meat quality. The findings of the study could open up new avenues for the application and adoption of native probiotic-based poultry feeds as an alternative to antibiotic-based poultry feeds among stakeholders.
Collapse
Affiliation(s)
- Md Taslim Hossain
- Department of Animal Nutrition, Faculty of Veterinary, Animal and Biomedical Science, Khulna Agricultural University, Khulna 9200, Bangladesh
| | - Dipankar Sardar
- Department of Pathology and Laboratory Medicine, Doctor's Lab and Imaging, Khulna 9100, Bangladesh
| | - Sadia Afsana
- Department of Pathology and Laboratory Medicine, Doctor's Lab and Imaging, Khulna 9100, Bangladesh
| | - Meheta Datta
- Department of Pathology and Laboratory Medicine, Doctor's Lab and Imaging, Khulna 9100, Bangladesh
| | - Md. Ahsan Habib
- Department of Animal Science and Nutrition, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| |
Collapse
|
6
|
Wang M, Yi M, Wang L, Sun S, Ling Y, Zhang Z, Cao H. Multi-Omics Analysis Reveals the Regulatory Mechanism of Probiotics on the Growth Performance of Fattening Sheep. Animals (Basel) 2024; 14:1285. [PMID: 38731289 PMCID: PMC11083020 DOI: 10.3390/ani14091285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Probiotics have been proven to improve the growth performance of livestock and poultry. The aim of this experiment was to investigate the effects of probiotic supplementation on the growth performance; rumen and intestinal microbiota; rumen fluid, serum, and urine metabolism; and rumen epithelial cell transcriptomics of fattening meat sheep. Twelve Hu sheep were selected and randomly divided into two groups. They were fed a basal diet (CON) or a basal diet supplemented with 1.5 × 108 CFU/g probiotics (PRB). The results show that the average daily weight gain, and volatile fatty acid and serum antioxidant capacity concentrations of the PRB group were significantly higher than those of the CON group (p < 0.05). Compared to the CON group, the thickness of the rumen muscle layer in the PRB group was significantly decreased (p < 0.01); the thickness of the duodenal muscle layer in the fattening sheep was significantly reduced; and the length of the duodenal villi, the thickness of the cecal and rectal mucosal muscle layers, and the thickness of the cecal, colon, and rectal mucosal layers (p < 0.05) were significantly increased. At the genus level, the addition of probiotics altered the composition of the rumen and intestinal microbiota, significantly upregulating the relative abundance of Subdivision5_genera_incertae_sedis and Acinetobacter in the rumen microbiota, and significantly downregulating the relative abundance of Butyrivibrio, Saccharofermentans, and Fibrobacter. The relative abundance of faecalicoccus was significantly upregulated in the intestinal microbiota, while the relative abundance of Coprococcus, Porphyromonas, and Anaerobacterium were significantly downregulated (p < 0.05). There were significant differences in the rumen, serum, and urine metabolites between the PRB group and the CON group, with 188, 138, and 104 metabolites (p < 0.05), mainly affecting pathways such as vitamin B2, vitamin B3, vitamin B6, and a series of amino acid metabolisms. The differential genes in the transcriptome sequencing were mainly enriched in protein modification regulation (especially histone modification), immune function regulation, and energy metabolism. Therefore, adding probiotics improved the growth performance of fattening sheep by altering the rumen and intestinal microbiota; the rumen, serum, and urine metabolome; and the transcriptome.
Collapse
Affiliation(s)
- Mingyue Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.W.); (M.Y.); (L.W.); (S.S.); (Y.L.); (Z.Z.)
| | - Mingliang Yi
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.W.); (M.Y.); (L.W.); (S.S.); (Y.L.); (Z.Z.)
| | - Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.W.); (M.Y.); (L.W.); (S.S.); (Y.L.); (Z.Z.)
| | - Shixin Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.W.); (M.Y.); (L.W.); (S.S.); (Y.L.); (Z.Z.)
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.W.); (M.Y.); (L.W.); (S.S.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.W.); (M.Y.); (L.W.); (S.S.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Hongguo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (M.W.); (M.Y.); (L.W.); (S.S.); (Y.L.); (Z.Z.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
7
|
Liu A, Kim E, Cui J, Li J, Lee Y, Zhang G. Laminaria Japonica Polysaccharide Improved the Productivities and Systemic Health of Ducks by Mediating the Gut Microbiota and Metabolome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7382-7395. [PMID: 37150978 PMCID: PMC10197123 DOI: 10.1021/acs.jafc.2c08731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/09/2023]
Abstract
This study investigated the beneficial effects of a Laminaria japonica polysaccharide (LJPS) on the systemic health of ducks by modulating the gut microbiome and metabolome. Our findings demonstrated that the LJPS supplementation enhanced the overall growth performance and physiological immune and antioxidant index of ducks. In addition, the LJPS-fed group significantly increased abundances of intestinal Bacteroides and Prevotellaceae with decreased α-diversity than that in the control group. Among the total of 1840 intestinal metabolites, 186 metabolites were identified to be differentially regulated by LJPS feeding (upregulated 143 metabolites and downregulated 43 metabolites), which is closely associated with some of the growth-related metabolic pathways. Lastly, the correlation analysis recapitulates that the beneficial effects of LJPS underlie the alterations in intestinal microbiota and metabolites. Taken together, LJPS supplementation improved the physiological parameters and richness of some beneficial microbes and upregulated certain metabolic pathways, which facilitated better productivities and systemic health of ducks.
Collapse
Affiliation(s)
- Anxin Liu
- Department
of Nutrition, China−Korea Joint R&D Center on Plant-Derived
Functional Polysaccharide, Key Laboratory of Efficient Utilization
of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Eunyoung Kim
- Department
of Food Science and Nutrition, and Korea−China Joint R&D
Center on Plant-Derived Functional Polysaccharide, Jeju National University, Jeju 63243, South Korea
| | - Jiamei Cui
- Department
of Food Science and Nutrition, and Korea−China Joint R&D
Center on Plant-Derived Functional Polysaccharide, Jeju National University, Jeju 63243, South Korea
| | - Jing Li
- Department
of Nutrition, China−Korea Joint R&D Center on Plant-Derived
Functional Polysaccharide, Key Laboratory of Efficient Utilization
of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| | - Yunkyoung Lee
- Department
of Food Science and Nutrition, and Korea−China Joint R&D
Center on Plant-Derived Functional Polysaccharide, Jeju National University, Jeju 63243, South Korea
- Interdisciplinary
Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, South Korea
| | - Guiguo Zhang
- Department
of Nutrition, China−Korea Joint R&D Center on Plant-Derived
Functional Polysaccharide, Key Laboratory of Efficient Utilization
of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 61 Daizong Street, Taian 271018, China
| |
Collapse
|
8
|
El Basuini MF, Khattab AAA, Hafsa SHA, Teiba II, Elkassas NEM, El-Bilawy EH, Dawood MAO, Atia SES. Impacts of algae supplements (Arthrospira & Chlorella) on growth, nutrient variables, intestinal efficacy, and antioxidants in New Zealand white rabbits. Sci Rep 2023; 13:7891. [PMID: 37193743 PMCID: PMC10188536 DOI: 10.1038/s41598-023-34914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/09/2023] [Indexed: 05/18/2023] Open
Abstract
An 8-week trial to examine the impacts of Arthrospira platensis and Chlorella vulgaris on the growth, nutrient aspects, intestinal efficacy, and antioxidants of 75 New Zealand white male rabbits (initial body weight = 665.93 ± 15.18 g). Herein the study was designed in one-way ANOVA to compare the effects of the two algae species with two levels of supplementations in the feeds of New Zealand white rabbits. The rabbits were divided into five groups (n = 15/group), where the first group was allocated as the control group (Ctrl) while the second and third groups received A. platensis at 300 or 500 mg/kg diet (Ap300 or Ap500). The fourth and fifth groups fed C. vulgaris at 300 or 500 mg/kg diet (Ch300 or Ch500). The basal diet rabbits exhibited the lowest values of weight, lipase, protease, and the highest feed conversion ratio, which improved noticeably with algae addition, particularly with Ap500, Ch300, and Ch500. All tested groups showed normal intestinal structure. Amylase potency, hematological indicators, and serum biochemistry revealed non-significant variation except for a higher serum total protein and lower total cholesterol in algal groups. The best GPx existed in groups fed algal diets, while favorable SOD and CAT efficiency occurred at the higher level of Arthrospira and both levels of Chlorella. In conclusion, incorporating Arthrospira or Chlorella in the diet of New Zealand white rabbits improved performance, nutrient utilization, intestinal efficacy, and antioxidants. Arthrospira (Ap500) and Chlorella (Ch300 or Ch500) have almost the same beneficial effect on rabbit performance.
Collapse
Affiliation(s)
- Mohammed F El Basuini
- Faculty of Agriculture, Tanta University, Tanta, 31527, Egypt.
- King Salman International University, South Sinai, 46618, Egypt.
| | | | - Salma H Abu Hafsa
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, 21934, Alexandria, Egypt
| | - Islam I Teiba
- Faculty of Agriculture, Tanta University, Tanta, 31527, Egypt
| | - Nabila E M Elkassas
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | | | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
- The Center for Applied Research On the Environment and Sustainability, The American University in Cairo, Cairo, 11835, Egypt
| | | |
Collapse
|
9
|
El-Ratel IT, El Basuini MFM, Khattab AAA, Mekawy AI, Fouda SF. Ameliorative impacts of sodium humate on heat-stressed laying Japanese quail (Coturnix coturnix Japonica). J Anim Physiol Anim Nutr (Berl) 2023; 107:712-722. [PMID: 35864780 DOI: 10.1111/jpn.13751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022]
Abstract
A total of 300 laying Japanese quails (230.10 ± 20 g body weight) divided into four groups (15 birds in 5 replicates/group) were used to examine the impacts of dietary sodium humate (SH) supplementation at levels of 0% (control diet), 0.2%, 0.4% and 0.6% on egg variables and physiological merits of laying quails for 10 weeks under heat stress conditions (15 June and 23 August 2021). Results showed 0.4% SH increased (p < 0.05) weight (12.27 vs. 11.91 g), production (79.84% vs. 69.20%), mass (597.13 vs. 510.48 g) and brokenness (2.8% vs. 5.4%) of eggs as compared to control. Egg shape, shell thickness, shell strength and cholesterol content as well as feed conversion ratio were higher (80.2, 295.8 µm, 1.468 kg/cm,2 11.08 mg/g and 2.69, p < 0.05) in 0.4% SH than in control group (75.2, 279.0 µm, 1.304 kg/cm,2 14.94 mg/g and 2.76). Feed intake, percentages of eggs' shells, yolk, albumen and serum biochemistry (total protein, albumin, AST and HDL) were not altered with the dietary SH. Birds fed on SH diets showed higher levels of globulin, calcium and phosphorus, as well as lower contents of albumin/globulin ratio, triglycerides, cholesterol, corticosterone compared with the control. Regression analysis of antioxidants expected higher total antioxidant capacity (TAC), superoxide dismutase, glutathione peroxidase at 0.35%, and glutathione at 0.40% SH, while the lowest concentration of malondialdehyde was computed at 0.45%. Similarly, immunoglobulins (IgG and IgM) maximum values were determined at 0.35% and 0.40% levels. Moreover, the concentration of tumour necrosis factor-alpha increased (p < 0.05) in all SH levels as compared to the control group. It is conceivable to conclude that the dietary implementation of SH at a level of 0.4% improved egg variables and well-being aspects of laying quail exposed to heat stress conditions.
Collapse
Affiliation(s)
- Ibrahim T El-Ratel
- Department of Poultry Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Mohammed F M El Basuini
- Faculty of Desert Agriculture, King Salman International University, South Sinai, Egypt.,Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Ahmed A A Khattab
- Department of Animal Production, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Aml I Mekawy
- Department of Poultry Production, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Sara F Fouda
- Department of Poultry Production, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Qin D, Ma Y, Wang Y, Hou X, Yu L. Contribution of Lactobacilli on Intestinal Mucosal Barrier and Diseases: Perspectives and Challenges of Lactobacillus casei. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111910. [PMID: 36431045 PMCID: PMC9696601 DOI: 10.3390/life12111910] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
The intestine barrier, the front line of normal body defense, relies on its structural integrity, microbial composition and barrier immunity. The intestinal mucosal surface is continuously exposed to a complex and dynamic community of microorganisms. Although it occupies a relatively small proportion of the intestinal microbiota, Lactobacilli has been discovered to have a significant impact on the intestine tract in previous studies. It is undeniable that some Lactobacillus strains present probiotic properties through maintaining the micro-ecological balance via different mechanisms, such as mucosal barrier function and barrier immunity, to prevent infection and even to solve some neurology issues by microbiota-gut-brain/liver/lung axis communication. Notably, not only living cells but also Lactobacillus derivatives (postbiotics: soluble secreted products and para-probiotics: cell structural components) may exert antipathogenic effects and beneficial functions for the gut mucosal barrier. However, substantial research on specific effects, safety and action mechanisms in vivo should be done. In clinical application of humans and animals, there are still doubts about the precise evaluation of Lactobacilli's safety, therapeutic effect, dosage and other aspects. Therefore, we provide an overview of central issues on the impacts of Lactobacillus casei (L. casei) and their products on the intestinal mucosal barrier and some diseases and highlight the urgent need for further studies.
Collapse
Affiliation(s)
- Da Qin
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yixuan Ma
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yanhong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xilin Hou
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (X.H.); (L.Y.); Tel.: +86-4596-819-290 (X.H. & L.Y.); Fax: +86-4596-819-292 (X.H. & L.Y.)
| | - Liyun Yu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Colleges of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Correspondence: (X.H.); (L.Y.); Tel.: +86-4596-819-290 (X.H. & L.Y.); Fax: +86-4596-819-292 (X.H. & L.Y.)
| |
Collapse
|
11
|
Lokapirnasari WP, Agustono B, Al Arif MA, Maslachah L, Chandra EH, Yulianto AB. Effect of probiotic and Moringa oleifera extract on performance, carcass yield, and mortality of Peking duck. Vet World 2022; 15:694-700. [PMID: 35497955 PMCID: PMC9047131 DOI: 10.14202/vetworld.2022.694-700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Antibiotics have been used as growth promoters in poultry. However, continuous and long-term antibiotics can cause resistance, suppress the immune system, and accumulate toxic residue. To overcome these problems, feed additives that are safe for livestock and health for humans are needed, including probiotics. Therefore, the study aimed to determine the effect of probiotics (Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus lactis, and Bifidobacterium spp.) and Moringa oleifera extract on performance (body weight gain, body weight, feed intake, feed efficiency, and feed conversion ratio [FCR]), carcass yield (carcass weight and percentage of carcass) and mortality of Peking duck.
Materials and Methods: This study used 48 Peking ducks, divided into four treatments and six replications. Each replication consisted of two ducks. The treatments were as follows: T0=control, T1=4 mL containing 1.2×108 CFU/mL of probiotic in drinking water, T2=4 mL containing M. oleifera extract in drinking water, and T3=2 mL containing 1.2×108 CFU/mL of probiotic in drinking water+2 mL containing M. oleifera extract in drinking water. The probiotics consist of L. acidophilus, L. casei, L. lactis, and Bifidobacterium spp. The data were statistically analyzed through analysis of variance. For the follow-up test, a multiple range test was conducted.
Results: There was no significant difference (p>0.05) between body weight, feed intake, and mortality treatments. By contrast, control and treatment showed a significant difference (p<0.05) on feed efficiency, FCR, body weight gain, carcass weight, and percentage of carcass weight. Results of body weight gain statistics showed no significant difference (p>0.05) between T0 and T1, but T0 and T1 showed a significant difference with T2 and T3. The results of the feed efficiency statistic showed no significant difference (p>0.05) between T0, T1, and T2, but there was a significant difference between T0, T1, and T3. Feed efficiency at T2 showed no significant difference with T3, T1, and T0. The results of the FCR statistic showed no significant difference (p>0.05) between T0, T1, and T2, but there was a significant difference between T0, T1, and T3. FCR at T2 showed no significant difference with T3, T1, and T0. The carcass weight statistic showed no significant difference (p>0.05) between T0, T1, and T3, but there was a significant difference between T0 and T2. T2 showed no significant difference with T1 and T3. The carcass percentage statistic showed no significant difference (p>0.05) between T0 and T1, but T0 and T1 showed a significant difference (p<0.05) with T2 and T3.
Conclusion: Based on the study results, it can be concluded that the use of a combination of probiotics (L. acidophilus, L. casei, L. lactis, and Bifidobacterium spp.) and M. oleifera extract can increase the production performance of Peking ducks and is safe for ducks' health.
Collapse
Affiliation(s)
| | - Bodhi Agustono
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Indonesia
| | - Mohammad Anam Al Arif
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Indonesia
| | - Lilik Maslachah
- Division of Veterinary Basic Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Indonesia
| | - Evania Haris Chandra
- Master Study program of Veterinary Agribusiness, Faculty of Veterinary Medicine, Universitas Airlangga, Indonesia
| | - Andreas Berny Yulianto
- Department of Veterinary Basic Medicine, Faculty of Veterinary Medicine, Wijaya Kusuma Surabaya University, Indonesia
| |
Collapse
|