1
|
Insawake K, Songserm T, Songserm O, Plaiboon A, Homwong N, Adeyemi KD, Rassmidatta K, Ruangpanit Y. Effects of isoquinoline alkaloids as an alternative to antibiotic on oxidative stress, inflammatory status, and cecal microbiome of broilers under high stocking density. Poult Sci 2025; 104:104671. [PMID: 39689480 PMCID: PMC11719387 DOI: 10.1016/j.psj.2024.104671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024] Open
Abstract
This study investigated the effect of isoquinoline alkaloids as an alternative to bacitracin on growth performance, oxidative stress, inflammatory status, and ceca microbiome of broilers raised under high stocking density (HSD). A total of 1,500 one-day-old male Ross 308 chicks were randomly assigned to five treatment groups, with 10 replicate pens per group and 30 birds per pen, for 37 days. The treatments included normal stocking density (NSD, 10 birds/m²), HSD (15 birds/m²), HSD with 50 ppm Bacitracin (BCT50), HSD with 80 ppm isoquinoline alkaloids (IQA80), and HSD with 100 ppm isoquinoline alkaloids (IQA100). From days 11 to 24, HSD birds had lower feed efficiency (P < 0.05) compared to those in other treatments. The heterophil-to-lymphocyte ratio and malondialdehyde levels were lower in NSD and IQA80 birds compared to HSD and BCT50 birds (P < 0.05). HSD birds had higher IL-6 and a lower villus height and villus height-to-crypt depth ratio compared to birds in other groups (P < 0.05). Serum TNF-α was lower in NSD and IQA80 birds compared to those in the HSD group. Alpha diversity was not affected by the treatments; however, beta diversity was lower in HSD birds compared to other treatments. HSD birds showed reduced microbial diversity, with a higher prevalence of Enterococcaceae and Peptostreptococcaceae. NSD enhanced the abundance of Lactobacillaceae, Clostridiaceae, and Rikenellaceae. BCT50 increased and decreased the abundance of Enterococcaceae and Rikenellaceae respectively. IQA80 and IQA100 increased the abundance of Lachnospiraceae, Leuconostocaceae, and Coriobacteriaceae. HSD altered metabolic pathways related to carbohydrate and lipid metabolism, and amino acid biosynthesis. BCT50 modulated microbial functions, particularly those related to cell wall synthesis, while isoquinoline alkaloids upregulated pathways involved in energy production, secondary metabolite biosynthesis, and antioxidant production. Both Bacitracin and isoquinoline alkaloids were effective in mitigating the negative effects of HSD on immunity, gut health and microbiota in broilers. Given the concerns about antimicrobial resistance, isoquinoline alkaloids are a potent alternative to bacitracin, with IQA80 being particularly recommended.
Collapse
Affiliation(s)
- Kittisak Insawake
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Thaweesak Songserm
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University10900, Thailand
| | - Ornprapun Songserm
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Atthawoot Plaiboon
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Nitipong Homwong
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Kazeem D Adeyemi
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB 1515, Ilorin, Kwara State, Nigeria
| | - Konkawat Rassmidatta
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Yuwares Ruangpanit
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand.
| |
Collapse
|
2
|
Khan U, Rahman SM, Khan S, Roy S, Hossain KM. Effects of probiotics on productive performances and serum lipid profile of broiler as substitute of antibiotics. Sci Prog 2024; 107:368504241276259. [PMID: 39223984 PMCID: PMC11375644 DOI: 10.1177/00368504241276259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
OBJECTIVES The present research was accomplished to characterize probiotics from broiler gastrointestinal tract (GIT) by profiling biochemical, antimicrobial, and antibiotic sensitivity properties. Eventually, probiotic potentiality was evaluated as a substitute for antibiotic supplements in broiler focusing growth performance, carcass characteristics, and serum lipid profile. METHODS Probiotic bacteria were characterized based on morphological, physiological, and several biochemical tests. Antibacterial activity against a broad spectrum of antibiotics and bacterial pathogens was detected. An in vivo trial was conducted on 40-day-old Ross 308 broiler strains during 21 days in an in vivo trial. The chicks were divided into total of five groups, a control group and four experimental groups (Antibiotic1, Antibiotic2, Probiotic1, and Probiotic2) in a completely randomized design. Probiotic was supplemented in broiler feed (2× 109 CFU/g feed) or by direct oral gavage (1× 109 CFU/chick). The variables of production performance like body weight (BW), average daily gain (ADG), feed intake (FI), and feed conversion ratio (FCR), carcass characteristics and serum lipid profile were measured. RESULTS 10 probiotic bacteria were presumptively identified as Lactobacillus sp. based on the morphological, physiological, and strong resistance properties in several biochemical tests. The mixture of Lactobacillus had favorable effects on productive performance of broilers regarding BW, ADG, and FCR (p < .05) compared with chickens that had no additive or had antibiotic during overall period of in vivo trial. Additionally, noteworthy efficacy on carcass characteristics and serum lipid profile were found (p < .05) in Lactobacillus mixture fed chicken groups of in vivo trial. CONCLUSION Mixed Lactobacillus sp. can be considered as a potential additive for broiler diet attributable to noteworthy efficacy on growth performance, carcass characteristics, and serum lipid profile. Accordingly, the research highlights the need for suitable alteration of antibiotics through probiotic characterization and proper inclusion in broiler diet.
Collapse
Affiliation(s)
- Umama Khan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | - Sm Mahbubur Rahman
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Salauddin Khan
- Statistics Discipline, Science, Engineering and Technology School, Khulna University, Khulna, Bangladesh
| | - Swarna Roy
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Khondoker Moazzem Hossain
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
3
|
Soltan MA, Shewita RS, Matroud OA, Alkeridis LA, Sayed S, Shukry M, El-Shobokshy SA. Lignocellulose and probiotic supplementation in broiler chicken diet: effect on growth performance, digestive health, litter quality, and genes expression. Poult Sci 2024; 103:103735. [PMID: 38652957 PMCID: PMC11063516 DOI: 10.1016/j.psj.2024.103735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Three hundred one-day-old Avian 48 broiler chicks were used to investigate the effect of lignocellulose (LC) and probiotic supplementation in broiler chicken diet on growth performance, digestive health, litter quality, and some gene expression. Experimental treatments consisted of 3 × 2 factorial arrangements with 3 levels of LC without or with probiotics to formulate 6 experimental groups. Groups 1, 2, and 3 were fed on the basal diet with dietary LC inclusion at 0, 0.5, and 1.0%, respectively, while groups 4, 5, and 6 were fed on the previously mentioned design with Bacillus subtilis at 100 gm/ton. The results revealed that Dietary LC inclusion nonsignificantly (P ≥ 0.05) reduced body weight (BW), body weight gain (BWG), and feed intake. Meanwhile, B. subtilis supplementation improved BW and BWG and enhanced the effect of LC on the broilers' weight. The group fed a 0.5% LC and B. subtilis-supplemented diet recorded the best (P ≥ 0.05) BW, BWG, FCR, PER, EEU, and PI. LC and or B. subtilis supplementation improved carcass traits of broiler (higher dressing% with lower abdominal fat% compared with a control group), intestinal health, and absorptive capacity. LC potentiates the effect of B. subtilis supplementation in broilers' diet in modulating intestinal microflora (lowered (P ≥ 0.05) cecal Coliform and increased Lactobacillus counts), the highest Coliform counts were recorded in group fed 0.5 or 1.0% LC plus B. subtilis. LC at 0.5 or 1.0% and or B. subtilis supplementation reduced (P ≥ 0.05) litter moisture% at the 2nd, 4th, and 6th wk compared to the control group. Dietary inclusion of LC and or B. subtilis supplementation significantly (P < 0.001) up-regulated hepatic growth-related genes (growth hormone receptor (GHR) and insulin growth factor1 (IGF-1)) and antioxidant-related genes (superoxide dismutase 1 (SOD1), glutathione peroxidase (GPX1) and uncoupling protein (UCP) and down-regulated (P < 0.001) splenic toll-like receptor 4 (TLRP) gene expression while had no significant effect on splenic interleukin 8 (IL8) and tumor necrosis factor (TNF) with the best-obtained results with 1.0% followed by 0.5% LC with B. subtilis supplementation. We concluded that dietary LC and/or B. subtilis supplementation positively affected the growth performance, feed efficiency, carcass quality, intestinal absorptive capacity and health, litter quality and growth, and antioxidant and immune-related gene expression.
Collapse
Affiliation(s)
- Mosaad A Soltan
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21944, Egypt
| | - Ramdan S Shewita
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21944, Egypt
| | - Omaima A Matroud
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21944, Egypt
| | - Lamya Ahmed Alkeridis
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Samy Sayed
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt; Department of Science and Technology, University College-Ranyah, Taif University, 21944 Taif, Saudi Arabia
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Set A El-Shobokshy
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Alexandria 21944, Egypt
| |
Collapse
|
4
|
Mekonnen YT, Savini F, Indio V, Seguino A, Giacometti F, Serraino A, Candela M, De Cesare A. Systematic review on microbiome-related nutritional interventions interfering with the colonization of foodborne pathogens in broiler gut to prevent contamination of poultry meat. Poult Sci 2024; 103:103607. [PMID: 38493536 PMCID: PMC10959702 DOI: 10.1016/j.psj.2024.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
This systematic review aimed to compile the available body of knowledge about microbiome-related nutritional interventions contributing to improve the chicken health and having an impact on the reduction of colonization by foodborne pathogens in the gut. Original research articles published between 2012 and 2022 were systematically searched in Scopus and PubMed. A total of 1,948 articles were retrieved and 140 fulfilled the inclusion criteria. Overall, 73 papers described 99 interventions against colonization by Escherichia coli and related organisms; 10 papers described 15 interventions against Campylobacter spp.; 36 papers described 54 interventions against Salmonella; 40 papers described 54 interventions against Clostridium perfringens. A total of 197 microbiome-related interventions were identified as effective against one or more of the listed pathogens and included probiotics (n = 80), prebiotics (n = 23), phytobiotics (n = 25), synbiotics (n = 12), organic acids (n = 12), enzymes (n = 4), essential oils (n = 14) and combination of these (n = 27). The identified interventions were mostly administered in the feed (173/197) or through oral gavage (11/197), in the drinking water (7/197), in ovo (2/197), intra amniotic (2/197), in fresh or reused litter (1/197) or both in the feed and water (1/197). The interventions enhanced the beneficial microbial communities in the broiler gut as Lactic acid bacteria, mostly Lactobacillus spp., or modulated multiple microbial populations. The mechanisms promoting the fighting against colonization by foodborne pathogens included competitive exclusion, production of short chain fatty acids, decrease of gut pH, restoration of the microbiome after dysbiosis events, promotion of a more stable microbial ecology, expression of genes improving the integrity of intestinal mucosa, enhancing of mucin production and improvement of host immune response. All the studies extracted from the literature described in vivo trials but performed on a limited number of animals under experimental settings. Moreover, they detailed the effect of the intervention on the chicken gut without details on further impact on poultry meat safety.
Collapse
Affiliation(s)
- Yitagele Terefe Mekonnen
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Federica Savini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Valentina Indio
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy.
| | - Alessandro Seguino
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alessandra De Cesare
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| |
Collapse
|
5
|
Fonseca A, Kenney S, Van Syoc E, Bierly S, Dini-Andreote F, Silverman J, Boney J, Ganda E. Investigating antibiotic free feed additives for growth promotion in poultry: effects on performance and microbiota. Poult Sci 2024; 103:103604. [PMID: 38484563 PMCID: PMC10951610 DOI: 10.1016/j.psj.2024.103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
The poultry industry is evolving towards antibiotic-free production to meet market demands and decelerate the increasing spread of the antimicrobial resistance. The growing need for antibiotic free products has challenged producers to decrease or completely stop using antimicrobials as feed supplements in broiler diet to improve feed efficiency, growth rate, and intestinal health. Natural feed additives (e.g., probiotics and phytobiotics) are promising alternatives to substitute antimicrobial growth promoters. The goal of our study was to characterize the effects of a Probiotic and an Essential Oils blend on broilers' performance and perform a time-series analysis to describe their excreta microbiome. A total of 320 Cobb 500 (1-day-old) chicks were raised for 21 d in 32 randomly allocated cages. Treatments consisted of 4 experimental diets: a basal diet, and a basal diet mixed with an Antibiotic (bacitracin methylene disalicylate), an essential oils blend (oregano oil, rosemary, and red pepper), or a Probiotic (Bacillus subtilis). Body weight (on 1, 10, and 21d), and feed intake (10d and 21d) were recorded and feed conversion ratio was calculated. Droppings were collected daily (1-21d) to characterize broilers' excreta microbiota by targeted sequencing of the bacterial 16S rRNA gene. The Probiotic significantly improved feed conversion ratio for starter phase 1 to 10d (P = 0.03), grower phase 10 to 21d (P = 0.05), and total period 1 to 21d (P = 0.01) compared to the Antibiotic. Feed supplements did not affect alpha diversity but did impact microbial beta diversity (P < 0.01). Age also impacted microbiome turnover as differences in alpha and beta diversity were detected. Furthermore, when compared to the basal diet, the probiotic and antibiotic significantly impacted relative abundance of Bifidobacterium (log2 fold change -1.44, P = 0.03), Intestinimonas (log2 fold change 0.560, P < 0.01) and Ligilactobacillus (log2 fold change -1.600, P < 0.01). Overall, Probiotic supplementation but not essential oils supplementation positively impacted broilers' growth performance by directly causing directional shifts in broilers' excreta microbiota structure.
Collapse
Affiliation(s)
- Ana Fonseca
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Sophia Kenney
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Emily Van Syoc
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Stephanie Bierly
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Francisco Dini-Andreote
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Justin Silverman
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, USA; Department of Statistics, The Pennsylvania State University, University Park, PA, USA; Department of Medicine, The Pennsylvania State University, University Park, PA, USA; Institute for Computational and Data Science, The Pennsylvania State University, University Park, PA, USA
| | - John Boney
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| | - Erika Ganda
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
6
|
Gelinas A, Sudan S, Patterson R, Li J, Huyben D, Barta JR, Kiarie EG. Growth performance, organs weight, intestinal histomorphology, and oocyst shedding in broiler chickens offered novel single strain Bacillus subtilis isolated from camel dung and challenged with Eimeria. Poult Sci 2024; 103:103519. [PMID: 38359772 PMCID: PMC10877951 DOI: 10.1016/j.psj.2024.103519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
We evaluated a single strain Bacillus subtilis BS-9 direct-fed microbial (BSDFM) isolated from camel dung in Eimeria challenged broiler chickens. Seven-hundred d-old Ross 708 male chicks were placed in pens (25 birds/pen) and allocated to 2 treatments (n = 14). From d 0 to 13, control pens received untreated water (-BSDFM), and 2 treated pens received water and 2 mL x 108 colony forming unit/bird/d (+BSDFM); daily water intake (WI) was recorded. On d 9, birds in half (+Eimeria) of pens per treatment received of 1 mL of Eimeria maxima and Eimeria acervulina oocysts orally, and the other half (-Eimeria) sterile saline solution. Birds had ad libitum access to feed and a water line from d 14. Feed intake (FI), body weight (BW) and mortality were recorded for calculating BW gain (BWG) and feed conversion ratio (FCR). On d 14 and 35, samples of birds were necropsied for organ weight and intestinal measurements. Excreta samples were collected from d 14 to 19 for oocyst count. There was no treatment effect (P > 0.05) on growth performance or WI on d 0 to 9. There were interactions between BSDFM and Eimeria on d 19 (P = 0.014) and 29 (P = 0.036) BW with unchallenged +BSDFM birds being heavier than birds in the other treatments. The main effects (P < 0.05) on d 10 to 35 FI, BW, and BWG were such that +BSDFM increased and Eimeria decreased (P < 0.01) these parameters. There was interaction (P = 0.022) between BSDFM and Eimeria on d 10 to 35 FCR such that the FCR of challenged -BSDFM birds was poor than that of unchallenged counterparts, but none differed with +BSDFM birds. There was an interaction (P = 0.039) between BSDFM and Eimeria on d 14 bursa weight with challenged birds exhibiting heavier bursa than unchallenged +BSDFM birds. Eimeria reduced (P = 0.01) and BSDFM (P = 0.002) increased the villi height to crypt depth ratio. Results showed that BSDFM supplementation via water can support the growth performance of broiler chickens challenged with Eimeria and may be a strategy to reduce adverse effects of coccidiosis.
Collapse
Affiliation(s)
- Alison Gelinas
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, USA
| | - Sudhanshu Sudan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, USA
| | | | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, USA
| | - David Huyben
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, USA
| | - John R Barta
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, USA
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, USA.
| |
Collapse
|
7
|
Mushtaq M, Ali B, Ali M, BiBi N, Raut R, Suliman GM, Swelum AA. Different levels of single-strain probiotic (Bacillus subtilis) with proteolytic enzyme (serratiopeptidase) can be used as an alternative to antibiotic growth promoters in broiler. Poult Sci 2024; 103:103400. [PMID: 38295498 PMCID: PMC10844863 DOI: 10.1016/j.psj.2023.103400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
In the current study, the proteolytic enzyme (serratiopeptidase) was used to enhance the efficacy of Bacillus subtilis (B. subtilis) probiotic as a growth promotor in broiler chicken. The effects of serratiopeptidase on the efficacy of different levels of B. subtilis as a growth promotor in broiler chicks were evaluated regarding growth performance traits, villus histomorphometric characterization, and intestinal microbiota count. Day-old broiler chicks (n = 120) were allocated into 4 groups having 3 replicates/group. In the control group (C), the basal diet was kept without supplementation. In treatment groups (P100, P150, and P200), the basal diet was supplemented with 100, 150, and 200 mg probiotics, respectively besides 30 mg proteolytic enzyme in the 3 treated groups for 4 wk. The performance parameters were significantly affected by the supplementation of serratiopeptidase to the B. subtilis treatment groups. Feed intake (FI), body weight gain (WG), feed conversion ratio (FCR), and dressing percent were significantly improved in the treatment groups as compared to the control group. Significantly, the lowest feed intake was recorded for the P200 group. The highest body weight gain and dressing percentage were recorded for the P200 group. An improved FCR was recorded in the P200 group (1.7) as compared to the control group. The different levels of B. subtilis supplemented with serratiopeptidase revealed significant improvements (P<0.05) in the morphology of the intestine by showing increases in villus height and width and crypt depth of the small intestine. The microbial count revealed that E. coli and salmonella colonies were significantly reduced in the P200 group as compared to the control and other treatment groups. In conclusion, the supplementation of B. subtilis with serratiopeptidase as a growth promoter in broiler chicks significantly improved the overall performance, and intestinal health and reduced microbial load contributing to optimizing the performance of broiler chickens. The greatest improvement was observed in the P200 group fed with B. subtilis as a probiotic and serratiopeptidase enzyme (200 mg:30 mg).
Collapse
Affiliation(s)
- Muhammad Mushtaq
- Faculty of Animal Husbandry and Veterinary Sciences, University of Agriculture, Peshawar, Pakistan
| | - Baseerat Ali
- Faculty of Animal Husbandry and Veterinary Sciences, University of Agriculture, Peshawar, Pakistan
| | - Majid Ali
- Faculty of Animal Husbandry and Veterinary Sciences, University of Agriculture, Peshawar, Pakistan
| | - Neelam BiBi
- Department of Zoology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Rabin Raut
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 3720 USA
| | - Gamaleldin M Suliman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
8
|
Fruci M, Kithama M, Kiarie EG, Shao S, Liu H, Topp E, Diarra MS. Effects of partial or complete replacement of soybean meal with commercial black soldier fly larvae (Hermetia illucens) meal on growth performance, cecal short chain fatty acids, and excreta metabolome of broiler chickens. Poult Sci 2023; 102:102463. [PMID: 36758368 PMCID: PMC9941379 DOI: 10.1016/j.psj.2022.102463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/25/2022] [Indexed: 01/08/2023] Open
Abstract
Black soldier fly larvae meal (BSFLM) is receiving great attention as a rich source of protein and antimicrobials for poultry. Therefore, we evaluated the effects of partially or completely replacing soybean meal (SBM) with commercial BSFLM on growth performance, tibia traits, cecal short chain fatty acid (SCFA) concentrations, and excreta metabolomes in broiler chickens (Gallus gallus domesticus). A total of 480 day-old male Ross × Ross 708 chicks were assigned to 6 diets (8 replicates/diet): a basal corn-SBM diet with in-feed bacitracin methylene disalicylate (BMD), a corn-SBM diet without BMD (0% BSFLM), and four diets in which the SBM was substituted with 12.5, 25, 50, and 100% BSFLM. Body weight (BW), feed intake (FI) and cumulative feed conversion ratio (cFCR) were monitored on days 14, 28, and 35. Cecal SCFA levels were determined on days 14, 28, and 35. Tibia traits and excreta metabolomes were determined on day (d) 35. On d14, birds fed 12.5 and 25% BSFLM had a similar BW, FI, and cFCR as birds fed BMD (P > 0.05). On d 35, birds fed 12.5% BSFLM had a similar BW, FI and cFCR as birds fed BMD or 0% BSFLM (P > 0.05). For each phase, birds fed 100% BSFLM had a lower BW, FI and higher cFCR than birds fed BMD or 0% BSFLM (P < 0.05). On d 35, BW decreased linearly, quadratically, and cubically with increasing levels of BSFLM (P < 0.01). Overall (d 0-35), BSFLM linearly, quadratically, and cubically decreased FI and quadratically and cubically increased cFCR (P < 0.01). Quadratic responses were observed for tibia fresh weight (P = 0.049) and ash content (P = 0.022). BSFLM did not impact cecal SCFAs levels. The excreta metabolome of birds fed 100% BSFLM clustered independently from all other groups and exhibited greater levels of putatively identified methionine, lysine, valine, glutamine, histidine and lower levels of arginine as compared to all diets. Taken together, substitution of SBM with ≤25% of BSFLM in the starter phase may be used as an alternative to BMD.
Collapse
Affiliation(s)
- Michael Fruci
- London Research and Development Centre, Agriculture and Agri-Food Canada, Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.
| | - Munene Kithama
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada; Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Suqin Shao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Huaizhi Liu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
9
|
Li Z, Zhang B, Zhu W, Lin Y, Chen J, Zhu F, Guo Y. Effects of nonantibiotic growth promoter combinations on growth performance, nutrient utilization, digestive enzymes, intestinal morphology, and cecal microflora of broilers. PLoS One 2023; 18:e0279950. [PMID: 36996144 PMCID: PMC10062635 DOI: 10.1371/journal.pone.0279950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Given the ban on antibiotic growth promoters, the effects of nonantibiotic alternative growth promoter combinations (NAGPCs) on the growth performance, nutrient utilization, digestive enzyme activity, intestinal morphology, and cecal microflora of broilers were evaluated. All birds were fed pellets of two basal diets-starter (0-21 d) and grower (22-42 d)-with either enramycin (ENR) or NAGPC supplemented. 1) control + ENR; 2) control diet (CON, basal diet); 3) control + mannose oligosaccharide (MOS) + mannanase (MAN) + sodium butyrate (SB) (MMS); 4) control + MOS + MAN + Bacillus subtilis (BS) (MMB); 5) control + MOS + fruit oligosaccharide (FOS) + SB (MFS); 6) control + FOS + BS (MFB); 7) control + MOS + FOS + MAN (MFM); 8) control + MOS + BS + phytase (PT) (MBP). ENR, MOS, FOS, SB, MAN, PT, and BS were added at 100, 2,000, 9,000, 1,500, 300, 37, and 500 mg/kg, respectively. The experiment used a completely random block design with six replicates per group: 2400 Ross 308 broilers in the starter phase and 768 in the grower phase. All NAGPCs significantly improved body weight gain (P < 0.01), utilization of dry matter, organic matter, and crude protein (P < 0.05), villus height and villus height/crypt depth in the jejunum and ileum (P < 0.01), and decreased the feed conversion ratio (P < 0.01) at d 21 and 42. MMS, MMB, MFB, and MFM duodenum trypsin, lipase, and amylase activities increased significantly (P < 0.05) at d 21 and 42. On d 21 and 42, MMS, MMB, and MBP increased the abundance of Firmicutes and Bacteroides whereas MMB, MFB, and MBP decreased the abundance of Proteobacteria, compared to ENR and CON. Overall, the NAGPCs were found to have some beneficial effects and may be used as effective antibiotic replacements in broilers.
Collapse
Affiliation(s)
- Zunyan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Weimin Zhu
- Qingdao Animal Husbandry and Veterinary Research Institute, Qingdao, People’s Republic of China
| | - Yingting Lin
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Jia Chen
- Rongcheng Lidao Animal Husbandry and Veterinary Station, Rongcheng, People’s Republic of China
| | - Fenghua Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Yixuan Guo
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| |
Collapse
|
10
|
Li C, Li S, Dang G, Jia R, Chen S, Deng X, Liu G, Beckers Y, Cai H. Screening and characterization of Bacillus velezensis LB-Y-1 toward selection as a potential probiotic for poultry with multi-enzyme production property. Front Microbiol 2023; 14:1143265. [PMID: 37138616 PMCID: PMC10149742 DOI: 10.3389/fmicb.2023.1143265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Bacillus spp. have gained increasing recognition as an option to use as antimicrobial growth promoters, which are characterized by producing various enzymes and antimicrobial compounds. The present study was undertaken to screen and evaluate a Bacillus strain with the multi-enzyme production property for poultry production. LB-Y-1, screened from the intestines of healthy animals, was revealed to be a Bacillus velezensis by the morphological, biochemical, and molecular characterization. The strain was screened out by a specific screening program, possessed excellent multi-enzyme production potential, including protease, cellulase, and phytase. Moreover, the strain also exhibited amylolytic and lipolytic activity in vitro. The dietary LB-Y-1 supplementation improved growth performance and tibia mineralization in chicken broilers, and increased serum albumin and serum total protein at 21 days of age (p < 0.05). Besides, LB-Y-1 enhanced the activity of serum alkaline phosphatase and digestive enzyme in broilers at 21 and 42 days of age (p < 0.05). Analysis of intestinal microbiota showed that a higher community richness (Chao1 index) and diversity (Shannon index) in the LB-Y-1 supplemented compared with the CON group. PCoA analysis showed that the community composition and structure were distinctly different between the CON and LB-Y-1 group. The beneficial genera such as Parasutterella and Rikenellaceae were abundant, while the opportunistic pathogen such as Escherichia-Shigella were reduced in the LB-Y-1 supplemented group (p < 0.05). Collectively, LB-Y-1 can be considered as a potential strain for further utilization in direct-fed microbial or starter culture for fermentation.
Collapse
Affiliation(s)
- Chong Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Shuzhen Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Guoqi Dang
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Rui Jia
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Si Chen
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Xuejuan Deng
- National Engineering Research Center of Biological Feed, Beijing, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Yves Beckers
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Huiyi Cai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing, China
- National Engineering Research Center of Biological Feed, Beijing, China
- *Correspondence: Huiyi Cai,
| |
Collapse
|
11
|
Zhang Q, Li J, Wang G, Wang L, Zhang Z, Fang Z, Lin Y, Xu S, Feng B, Zhuo Y, Hua L, Jiang X, Zhao X, Wu D, Che L. The replacement of bacitracin methylene disalicylate with Bacillus subtilis PB6 in the diet of male Cherry Valley Ducks reduces the feed conversion ratio by improving intestinal health and modulating gut microbiota. Poult Sci 2022; 101:102155. [PMID: 36155883 PMCID: PMC9519614 DOI: 10.1016/j.psj.2022.102155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/31/2022] [Accepted: 08/21/2022] [Indexed: 12/05/2022] Open
Abstract
In this study, we compared the impacts of Bacillus subtilis PB6 (BS) and bacitracin methylene disalicylate (BMD) on the growth performance, intestinal morphology, expression of tight connection protein, and cecal microbiota community of male ducks through a 42-d trial. Three-hundred and sixty male Cherry Valley meat-type ducklings (1-day-old) were distributed into 3 groups of 6 replicates: CON group (control, basal diet), BMD group (basal diet + 45 mg/kg BMD, active ingredient dose in the feed), and BS group (basal diet + 2 × 107 CFU/kg BS in the feed). Results showed that supplementing the diet with BS reduced the average daily feed intake (ADFI) during d 15 to 42 and d 1 to 42 compared with the CON group (P = 0.032). It also reduced feed conversion ratio (FCR) during d 15 to 42 and d 1 to 42 (P < 0.05) relative to the other groups. The ileal villus height (VH) and villus height /crypt depth ratio (V/C) were increased (P < 0.05) in both the BS and BMD groups, and the jejunal VH and V/C ratio were increased in the BS group (P < 0.05). Relative to the CON, BS supplementation was associated with numerical augmentation of goblet cells in the jejunal mucosa and upregulation of jejunal zonula occludens (ZO-1) and ileal mucin2 (P < 0.05) mRNA levels. Analysis showed a negative correlation between FCR (d 0-42) and VH, V/C, and the number of goblet cells in the jejunum (P < 0.05). Additionally, BMD or BS supplementation altered the alpha diversity of colonic microbiota (P < 0.05). Correlation analysis revealed that Butyricimonas, Enterobacteriaceae, Clostridiaceae, and Tannerellaceae were positively associated with the acetic acid and butyrate concentrations (P < 0.05). Taken together, the supplementation of BS in the diet of male ducks was conducive to reducing FCR by meliorating intestinal morphology, upregulating ZO-1 and mucin2 mRNA levels, regulating the abundance of microbiota, and metabolites, and having a greater effect than BMD supplementation.
Collapse
Affiliation(s)
- Qianqian Zhang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Guixiang Wang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Lizhi Wang
- Kemin (China) Technologies Co., Ltd., Zhuhai, China
| | | | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Lun Hua
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Xilun Zhao
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
12
|
Wang Q, Zhan X, Wang B, Wang F, Zhou Y, Xu S, Li X, Tang L, Jin Q, Li W, Gong L, Fu A. Modified Montmorillonite Improved Growth Performance of Broilers by Modulating Intestinal Microbiota and Enhancing Intestinal Barriers, Anti-Inflammatory Response, and Antioxidative Capacity. Antioxidants (Basel) 2022; 11:antiox11091799. [PMID: 36139873 PMCID: PMC9495330 DOI: 10.3390/antiox11091799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
This study aims to explore the effects of modified montmorillonite (MMT, copper loading) on the growth performance, gut microbiota, intestinal barrier, antioxidative capacity and immune function of broilers. Yellow-feathered broilers were randomly divided into control (CTR), modified montmorillonite (MMT), and antibiotic (ANTI) groups. Results revealed that MMT supplementation increased the BW and ADG and decreased the F/R during the 63-day experiment period. 16S rRNA sequencing showed that MMT modulated the cecal microbiota composition of broilers by increasing the relative abundance of two phyla (Firmicutes and Bacteroidetes) and two genera (Bacteroides and Faecalibacterium) and decreasing the abundance of genus Olsenella. MMT also improved the intestinal epithelial barrier indicated by the up-regulated mRNA expression of claudin-1, occludin, and ZO-1 and the increased length of microvilli in jejunum and the decreased levels of DAO and D-LA in serum. In addition, MMT enhanced the immune function indicated by the increased levels of immunoglobulins, the decreased levels of MPO and NO, the down-regulated mRNA expression of IL-1β, IL-6, and TNF-α, and the up-regulated mRNA expression of IL-4 and IL-10. Moreover, MMT down-regulated the expression of jejunal TLRs/MAPK/NF-κB signaling pathway-related genes (TLR2, TLR4, Myd88, TRAF6, NF-κB, and iNOS) and related proteins (TRAF6, p38, ERK, NF-κB, and iNOS). In addition, MMT increased the antioxidant enzyme activities and the expression of Nrf2/HO-1 signaling pathway-related genes and thereby decreased the apoptosis-related genes expression. Spearman’s correlation analysis revealed that Bacteroides, Faecalibacterium, and Olsenella were related to the inflammatory index (MPO and NO), oxidative stress (T-AOC, T-SOD, and CAT) and intestinal integrity (D-LA and DAO). Taken together, MMT supplementation improved the growth performance of broilers by modulating intestinal microbiota, enhancing the intestinal barrier function, and improving inflammatory response, which might be mediated by inhibiting the TLRs/MAPK/NF-κB signaling pathway, and antioxidative capacity mediated by the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoli Zhan
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Fenghong Biological Technology Co., Ltd., Huzhou 313000, China
| | - Baikui Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Yongyou Industry Park, Yazhou Bay Sci-Tech City, Sanya 572000, China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Tang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Gong
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
- Correspondence: (L.G.); (A.F.)
| | - Aikun Fu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: (L.G.); (A.F.)
| |
Collapse
|
13
|
Nam NH, Truong ND, Thanh DTH, Duan PN, Hai TM, Dao BTA, Sukon P. Bacillus subtilis QST 713 Supplementation during Late Gestation in Gilts Reduces Stillbirth and Increases Piglet Birth Weight. Vet Med Int 2022; 2022:2462241. [PMID: 35706906 PMCID: PMC9192274 DOI: 10.1155/2022/2462241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/23/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Recent studies have shown that probiotic supplementation during late gestation exerts some beneficial effects on reproductive performance of the sows. This study aimed to investigate effects of Bacillus subtilis QST 713 supplementation in gilts on different reproductive criteria. A total of 94 Camborough-48 gilts at day 85 of gestation were randomly allocated into 2 groups: (1) control diet; (2) control diet + 4 × 108 CFU Bacillus subtilis QST 713 per day. Gilts were supplemented until farrowing. At farrowing, litter size, number of piglets born alive, stillbirths, mummies, birth weight, farrowing duration, and birth interval were recorded. Within litter variation of piglet birth weight, depicted as SDBW and CVBW, was also calculated. Results showed that Bacillus subtilis QST 713 supplementation decreased stillbirth rate (1.26 vs. 4.37%, p=0.035) and increased birth weight of the piglets (1303.94 vs. 1234.09 g, p=0.007). Also, the litter size (11.85 vs. 10.67, p=0.03), number of piglets born alive (11.71 vs. 10.23, p=0.008), and litter weight (15473.06 vs. 13174.86 g, p=0.002) in the treatment group were higher than those in the control. Farrowing duration (174.39 vs. 160.81 minutes, p=0.162), birth interval (16.32 vs. 16.59 minutes, p=0.674), SDBW (85.07 vs. 94.65 g, p=0.343), and CVBW (6.42 vs. 7.85, p=0.12) were independent of the Bacillus subtilis QST 713 supplementation. Results of the present study indicate that supplementation of Bacillus subtilis QST 713 during late gestation in gilts reduces stillbirth and increases birth weight thereby improving their reproductive performance.
Collapse
Affiliation(s)
- Nguyen Hoai Nam
- Department of Animal Surgery and Theriogenology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Nguyen Duc Truong
- Department of Animal Surgery and Theriogenology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Dao Thi Ha Thanh
- Department of Parasitology, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Pham Ngoc Duan
- Department of Parasitology, Hanoi Medical University, Hanoi, Vietnam
| | - Tran Minh Hai
- Department of Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Bui Tran Anh Dao
- Department of Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Peerapol Sukon
- Division of Anatomy, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research Program on Toxic Substances, Microorganisms and Feed Additives in Livestock and Aquatic Animals for Food Safety, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
14
|
Mazanko MS, Popov IV, Prazdnova EV, Refeld AG, Bren AB, Zelenkova GA, Chistyakov VA, Algburi A, Weeks RM, Ermakov AM, Chikindas ML. Beneficial Effects of Spore-Forming Bacillus Probiotic Bacteria Isolated From Poultry Microbiota on Broilers' Health, Growth Performance, and Immune System. Front Vet Sci 2022; 9:877360. [PMID: 35711797 PMCID: PMC9194945 DOI: 10.3389/fvets.2022.877360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Probiotics are known for their beneficial effects on poultry health and wellbeing. One promising strategy for discovering Bacillus probiotics is selecting strains from the microbiota of healthy chickens and subsequent screening for potential biological activity. In this study, we focused on three probiotic strains isolated from the gastrointestinal tract of chickens bred in different housing types. In addition to the previously reported poultry probiotic Bacillus subtilis KATMIRA1933, three strains with antimutagenic and antioxidant properties Bacillus subtilis KB16, Bacillus subtilis KB41, and Bacillus amyloliquefaciens KB54, were investigated. Their potential effects on broiler health, growth performance, and the immune system were evaluated in vivo. Two hundred newly hatched Cobb500 broiler chickens were randomly divided into five groups (n = 40). Four groups received a standard diet supplemented with the studied bacilli for 42 days, and one group with no supplements was used as a control. Our data showed that all probiotics except Bacillus subtilis KATMIRA1933 colonized the intestines. Treatment with Bacillus subtilis KB54 showed a significant improvement in growth performance compared to other treated groups. When Bacillus subtilis KB41 and Bacillus amyloliquefaciens KB54 were applied, the most significant immune modulation was noticed through the promotion of IL-6 and IL-10. We concluded that Bacillus subtilis KB54 supplementation had the largest positive impact on broilers' health and growth performance.
Collapse
Affiliation(s)
- Maria S. Mazanko
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Igor V. Popov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- *Correspondence: Igor V. Popov
| | - Evgeniya V. Prazdnova
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Aleksandr G. Refeld
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
- ChemBio Cluster, ITMO University, Saint Petersburg, Russia
| | - Anzhelica B. Bren
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Galina A. Zelenkova
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Vladimir A. Chistyakov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Ammar Algburi
- Department of Biotechnology, College of Science, University of Diyala, Baqubah, Iraq
| | - Richard M. Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, Bridgeton, NJ, United States
| | - Alexey M. Ermakov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Michael L. Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, Bridgeton, NJ, United States
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
15
|
Gyawali I, Zeng Y, Zhou J, Li J, Wu T, Shu G, Jiang Q, Zhu C. Effect of Novel Lactobacillus paracaesi microcapsule on growth performance, gut health and microbiome community of broiler chickens. Poult Sci 2022; 101:101912. [PMID: 35689995 PMCID: PMC9190013 DOI: 10.1016/j.psj.2022.101912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/25/2022] [Accepted: 04/02/2022] [Indexed: 01/19/2023] Open
Abstract
The beneficial action of probiotics is questioned time and again due to the loss of their survivability under gastrointestinal conditions, particularly gastric acid. In this experiment, a probiotic species was encapsulated to improve its delivery to the distal parts, and its effects on production performance, gut health, and microbial profile in broilers were investigated. A total of 240 Arbor acres (AA) broilers were randomly allotted into 3 treatments with 8 replicate pens per treatment and 10 broilers in each pen for 42 d. Dietary treatments were 1) basal feed without any additives (CON), 2) CON+15 ppm Virginiamycin (ANT), and 3) CON+500 ppm encapsulated Lactobacillus paracaesi (ELP). The result showed that the addition of ELP to the feed did not affect growth performance and carcass characteristics significantly. However, ELP increased the ratio of villus height to crypt depth (P < 0.05) and mRNA expression of ZO-1 (P < 0.05) relative to the CON or ANT group. Similarly, qPCR showed that dietary supplementation of ELP raised gene expression of the anti-inflammatory cytokine and tended to decrease proinflammatory cytokines resulting improve in immunity. Moreover, chicks fed with ELP had lower malondialdehyde (MDA) (P < 0.05) than CON and lower reactive oxygen species (ROS) (P < 0.05) level than ANT in serum. In contrast, the total antioxidant capacity (TAOC) level was tended to increase. The ammonia level of ileum and cecum chyme was decreased (P < 0.05) in the ELP group than CON while the level of propionic acid of cecal content was increased (P < 0.05). 16S rRNA sequencing revealed the dietary treatment modulated the diversity and composition of cecal microflora. At the phylum level, Bacteroidetes was enriched, and Proteobacteria was depleted in the ELP group. At the genus level, ELP increased Bacteroides (P < 0.05) compared to control. The results indicate that oral delivery of probiotics via microcapsule could impart beneficial effects on birds and be used as an alternative to antibiotics.
Collapse
Affiliation(s)
- Ishwari Gyawali
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China
| | - Yuxian Zeng
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China
| | - Jingjing Zhou
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China
| | - Jincheng Li
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China
| | - Ting Wu
- Anhui maitebao Bioengineering Co., Ltd, Hefei, China
| | - Gang Shu
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China
| | - Qingyan Jiang
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China
| | - Canjun Zhu
- Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation, College of Animal Science, South China Agricultural University, Guangzhou China.
| |
Collapse
|
16
|
Zamojska D, Nowak A, Nowak I, Macierzyńska-Piotrowska E. Probiotics and Postbiotics as Substitutes of Antibiotics in Farm Animals: A Review. Animals (Basel) 2021; 11:ani11123431. [PMID: 34944208 PMCID: PMC8697875 DOI: 10.3390/ani11123431] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Breeders are searching for methods to protect farming animals against diseases caused by pathogenic bacteria. The easiest way to fight bacteria is to use antibiotics. Unfortunately, their abuse results in the presence of bacteria resistant to the most commonly used antibiotics in the environment. The restrictions on the use of antibiotics have forced the search for natural and safe ways to protect animals. It has been shown that the use of probiotics based on lactic acid bacteria may have a positive effect on the growth and use of feed by broilers, on the stabilization of the intestinal microbiota of chickens and pigs, and in the prevention of mastitis in dairy cows. The use of probiotics (live, nonpathogenic microorganisms) and postbiotics (inanimate bacteria, cell components or post-fermentation by-products) reduces the occurrence of pathogens in large-scale farms. Abstract Since 2006, the use of growth-promoting antibiotics has been banned throughout the European Union. To meet the expectations of livestock farmers, various studies have been carried out with the use of lactic acid bacteria. Scientists are trying to obtain the antimicrobial effect against the most common pathogens in large-scale farms. Supplementing the diet of broilers with probiotics (live, nonpathogenic microorganisms) stabilized the intestinal microbiota, which improved the results of body weight gain (BWG) and feed intake (FI). The positive effect of probiotics based on lactic acid bacteria has been shown to prevent the occurrence of diarrhea during piglet weaning. The antagonistic activity of postbiotics (inanimate bacteria, cell components, or post-fermentation by-products) from post-culture media after lactobacilli cultures has been proven on Staphylococcus aureus—the pathogen most often responsible for causing mastitis among dairy cows. The article aims to present the latest research examining the antagonistic effect of lactic acid bacteria on the most common pathogens in broilers, piglets, pigs, and cow farms.
Collapse
Affiliation(s)
- Daria Zamojska
- Polwet-Centrowet Sp. z o.o., M. Konopnickiej 21, 98-100 Lask, Poland;
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (D.Z.); (A.N.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (D.Z.); (A.N.)
| | - Ireneusz Nowak
- Faculty of Law and Administration, University of Lodz, Kopcinskiego 8/12, 90-232 Lodz, Poland;
| | | |
Collapse
|