1
|
Denis É, Harlander A, Godbout S, Boulianne M. Alternative housing systems have mixed impacts on health and welfare of laying hens. Poult Sci 2025; 104:105235. [PMID: 40339239 DOI: 10.1016/j.psj.2025.105235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
As Canadian egg farmers are transitioning from conventional cages to alternative housing systems, it is important to evaluate the impact of these on the health and welfare of laying hens. A total of 11 commercial enriched colonies (EC) and 11 commercial aviaries (A) houses from Quebec, Canada, were visited monthly between 19 and 35 weeks of age then every 10 weeks until 65 weeks of age. Each visit, 12 birds were randomly selected to be individually examined and scored for health and welfare indicators either visually (footpad dermatitis (FPD), feather damage and feather cleanliness) or by palpation (keel bone deviation (KBD) keel bone fracture (KBF), wing fracture, laying status and body condition) to determine the impact of housing and age on these parameters. Hens housed in A had a significantly higher predicted probability of KBF (P = 0.038) and FPD (P = 0.016). Although no difference was observed in the predicted probabilities of overall feather damage between housing systems (P = 0.82), the predicted probabilities of feather damage in the cloacal region was higher for birds housed in EC (P = 0.017). Other measured parameters were not influenced by housing types when all ages were combined. Significant increases for predicted probability compared to the baseline age for keel deviation (P < 0.004), damaged feather coverage (P < 0.0001), feather uncleanliness (P < 0.003) and laying status (laying or not) (P < 0.0001) were observed for both systems. Surprisingly, no difference for KBF overtime was observed for either housing system (P > 0.03, non-significant after the alpha-level adjustment). Higher predicted probability in A for FPD compared to the baseline was observed for all-time points assessed (P < 0.0001). Overall, A negatively affected the predicted probabilities of KBF and FPD. Development overtime of most health and welfare indicators should be taken into consideration when extending the laying production cycle.
Collapse
Affiliation(s)
- Éloïse Denis
- Chaire en Recherche Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte street, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Alexandra Harlander
- Animal Biosciences, Campbell Center for the Study of Animal Welfare, University of Guelph, Guelph, ON, Canada
| | - Stéphane Godbout
- Research and Development Institute for the Agri-environment, Quebec, QC, Canada
| | - Martine Boulianne
- Chaire en Recherche Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Sicotte street, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
2
|
Lu Y, Xu H, Hu Z, Li D, Rustempasic A, Zhou Y, Deng Q, Pu J, Zhao X, Zhang Y, Liu Y, Wang Y. Probiotics improve eggshell quality via regulating microbial composition in the uterine and cecum. Poult Sci 2025; 104:104849. [PMID: 39874785 PMCID: PMC11810832 DOI: 10.1016/j.psj.2025.104849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
Probiotics benefit the health and production performance of chickens, but their impact on egg and eggshell quality, particularly in the later stage, remains unclear. Here, 1-day-old Tianfu green shell-laying hens were fed either non-probiotics feed (n = 180) or feed supplemented with 100 mg / kg probiotics (n = 180). 16S rDNA sequencing indicated that dietary probiotics decreased the distribution of uterine p_Firmicutes, g_Fusobacterium, and s_Fusobacterium_unclassified, while increased p_Proteobacteria, g_Ralstonia, and s_Ralstonia_unclassified. PICRUSt2 and Bug Base analysis revealed enrichment in fatty acid metabolism, thiamine metabolism, vitamin B6 metabolism pathways and increased relative abundance of Proteobacteria, Firmicutes, Bacteroidetes. With LDA > 4.5, 35 and 25 marker bacterial taxa were identified in the uterus and cecum, respectively. Probiotics significantly increased uterine villi length and width, and the expressions of ATP2B2,SLC26A9,TF,OC-17,OCX-32, and OVAL in the uterus at the early and peak laying stage. Meantime, probiotics improved egg quality, pore density of eggshell barrier layer, and levels of Ca2+, Na+, and Mg2+, whereas dropped levels of P3-, S2- and K+ in eggshell. In serum, Ca2+, K+, Na+ had a response to dietary probiotics at different laying stages, except Cl-. Furthermore, the changes of these phenotypes are closely related to the microbial structure of the uterus and cecum. Overall, the data suggest that dietary probiotics improved uterine and cecal microbiota, optimized egg quality, eggshell quality, uterus development, and regulated mineralization gene expression and ion content in serum and eggshell, thereby improving productivity of laying hens. These results provide reference for the application of probiotics in the laying industry.
Collapse
Affiliation(s)
- Yuxiang Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China
| | - Hengyong Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China
| | - Zhi Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China
| | - Dan Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China
| | - Alma Rustempasic
- Faculty of Agriculture and Food Science, University in Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Yuxin Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China
| | - Qingqing Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China
| | - Jiaxue Pu
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China
| | - Xiaoling Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural, University, Chengdu, 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Chengdu, 611130, China.
| |
Collapse
|
3
|
Noetzold TL, Obi EA, Fancher B, Silva M, Thomson A, Zuidhof MJ. Body weight optimization of broiler breeder hens. 1. Pullet growth, feed efficiency, carcass composition, and sexual maturation. Poult Sci 2024; 103:104414. [PMID: 39476613 PMCID: PMC11564938 DOI: 10.1016/j.psj.2024.104414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/18/2024] Open
Abstract
This study aimed to evaluate the effect of early growth (EG) and time of maximum pubertal growth peak (I2) on development, feed efficiency, carcass composition, and sexual maturation of broiler breeder females. Target BW trajectories were designed by changing coefficients of a 3-phase Gompertz model fit to the recommended BW target of Ross 308 breeders, [Formula: see text] . In each phase i, biologically relevant coefficients describe the amount of BW gain (gi), the rate of growth (bi), and the inflection point (Ii), which is the time when the growth rate for that phase is at its maximum rate. The study consisted of a 6 × 2 factorial arrangement, with six I2 levels (I from phase 2) and two EG levels. The I2 coefficients were 15, 17, 19, 21 (standard), 22, and 23 in wk. The EG treatments were: EG0, where g1 and g2 coefficients estimated from the standard from the breeder recommended BW were unchanged; and EG20, where 20% of the gain (g2) in phase 2 (pubertal phase) was shifted to phase 1 (g1; prepubertal phase). Two-hundred-eighty-eight Ross 308 pullets were randomly assigned to the twelve BW growth trajectories and fed using a precision feeding system from 0 to 28 wk of age. Body composition variables were submitted to three-way ANOVA, with EG, I2, and age as fixed sources of variation. Analysis of covariance was conducted on the remaining dependent variables with EG as fixed effect, I2 as a continuous fixed effect, and age as continuous random effect. Differences were reported at P ≤ 0.05. The BW of females followed their target BW, and ADFI differed depending on the amount of feed required to achieve their respective BW targets. Breast fleshing score was 0.2 greater in the EG20 compared to EG0. The number of juvenile primary wing feathers and age at first egg decreased by 0.4 and 0.9 d, respectively, per wk of earlier I2. Advancing I2 resulted in birds with increased carcass fat deposition from 16 to 28 wk of age. Carcass fat was 1.3- to 1.6-fold greater in the EG20 only from 4 to 16 wk of age. Early growth increased mostly pullet muscle and skeletal characteristics whereas advancing I2 advanced sexual maturity and increased carcass fat deposition around sexual maturation time.
Collapse
Affiliation(s)
- Thiago L Noetzold
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - Etseoghena A Obi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | | | | | | | - Martin J Zuidhof
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
4
|
Yang H, Ni A, Wu Y, Li Y, Yuan J, Ma H, Zong Y, Han X, Chen J, Sun Y. Research note: differential heterosis of spent laying hens' carcass characteristics and meat quality in reciprocal crosses between White Leghorn and Beijing-You chickens. Poult Sci 2024; 103:104198. [PMID: 39173216 PMCID: PMC11387230 DOI: 10.1016/j.psj.2024.104198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Hybridization is used extensively in commercial layer production. However, heterosis for carcass performance and meat quality of spent laying hens remains unclear, especially under the trend of extended laying cycles. In this study, indigenous Beijing-You chickens (Y) and elite White Leghorn layers (W) were selected to generate purebreds (WW and YY) and reciprocal crosses (WY and YW). Data on traits including carcass compositions, meat quality, and main nutrients for breast muscle were collected when chickens were fed to 100 wk of age. Results showed that body weight (BW) and dressed weight for WY and YW with positive heterosis were significantly higher than WW (P < 0.05). YW had the heaviest breast and thigh of 232.28 g and 278.48 g, respectively. The abdominal fat weight for WY and YW were greatly higher than that for WW (P > 0.05). The yields of carcass compositions, including the dressed yield, half eviscerated yield, eviscerated yield, breast yield and thigh yield, did not differ among the four genetic groups (P > 0.05), except for the yield of abdominal fat. The largest heterosis differences appeared in breast weight (12.26% in YW vs. -0.46% in WY) and abdominal fat yield (15.26% in YW vs. 24.55% in WY). Although BW for crossbreds were similar, the specific parts of the carcass between them were different. For meat quality, WY had negative heterosis (P < 0.05) with the lowest lightness and yellowness, whereas YW had the completely opposite trend. Neither pH1h nor pH24h values had differences among purebreds and reciprocal crossbreds (P > 0.05). The drip loss and cooking loss were 4.01%-4.77% and 15.59%-21.31% respectively among the four genetic groups. The main nutrients of breast, including moisture, crude protein, intramuscular fat and unsaturated fatty acid, did not differ for purebreds and crossbreds (P > 0.05), except for saturated fatty acid. In general, the crossbreds even at the later laying period still showed divergent heterosis on carcass performance and meat characteristics. In view of the heterosis, Beijing-You chickens can be used as the sire line in the crossbreeding to improve carcass compositions of spent hens.
Collapse
Affiliation(s)
- Hanhan Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Aixin Ni
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yan Wu
- Department of Poultry Science, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430000, China
| | - Yunlei Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingwei Yuan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunhe Zong
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xintong Han
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jilan Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Sun
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
Shanmugam S, Barbé F, Park JH, Chevaux E, Kim IH. Supplemental effect of Pediococcus acidilactici CNCM I-4622 probiotic on the laying characteristics and calcium and phosphorus metabolism in laying hens. Sci Rep 2024; 14:12489. [PMID: 38821966 PMCID: PMC11143341 DOI: 10.1038/s41598-024-62779-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
The close link between intestinal microbiota and bone health ('gut-bone' axis) has recently been revealed: the modulation of the amount and nature of bacteria present in the intestinal tract has an impact on bone health and calcium (Ca) metabolism. Probiotics are known to favorably impact the intestinal microbiota. The objective of this study was to investigate the effect of Pediococcus acidilactici CNCM I-4622 (PA) on laying performance, egg/eggshell quality, Ca metabolism and bone mineralization and resistance in relatively old layers (50 wks old at the beginning of the experiment) during 14 weeks. 480 Hy Line brown layers were divided into 2 groups (CON and PA: 3 layers/rep, 80 rep/group) and fed with a diet formulated to be suboptimal in calcium (Ca) and phosphorus (P) (- 10% of the requirements). The total egg weight was improved by 1.1% overall with PA, related to an improvement of the weight of marketable eggs (+ 0.9%). PA induced a decreased % of downgraded eggs, mainly broken eggs (- 0.4 pts) and FCR improvement (- 0.8% for all eggs, - 0.9% for marketable eggs). PA also led to higher Haugh units (HU: + 7.4%). PA tended to decrease crypt depth after the 14 weeks of supplementation period in the jejunum (- 25.2%) and ileum (- 17.6%). As a consequence, the VH/CD ratio appeared increased by PA at the end of the trial in the jejunum (+ 63.0%) and ileum (+ 48.0%). Ca and P retention were increased by 4 pts following PA supplementation, translating into increased bone hardness (+ 19%), bone cohesiveness (+ 43%) and bone Ca & P (+ 1 pt) for PA-supplemented layers. Blood Ca and P were respectively improved by 5% and 12% with PA. In addition, blood calcitriol and osteocalcin concentrations were respectively improved by + 83% and + 3% in PA group at the end of the trial, compared to CON group. There was no difference between the 2 groups for ALP (alkaline phosphatase) and PTH (parathyroid hormone). PA significantly decreased the expression of the following genes: occludin in the small intestine, calbindin 1 in the ovarian tissue and actin B in the bone. PA therefore improved zootechnical performance of these relatively old layers, and egg quality. The parallel increase in Ca and P in the blood and in the bone following PA supplementation suggests an improvement of the mineral supply for eggshell formation without impacting bone integrity, and even increasing bone resistance.
Collapse
Affiliation(s)
- Sureshkumar Shanmugam
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam, 31116, South Korea
| | - Florence Barbé
- Lallemand SAS, 19 rue des Briquetiers, 31702, Blagnac Cedex, France.
| | - Jae Hong Park
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam, 31116, South Korea
| | - Eric Chevaux
- Lallemand SAS, 19 rue des Briquetiers, 31702, Blagnac Cedex, France
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan-si, Chungnam, 31116, South Korea.
| |
Collapse
|
6
|
Fu Y, Zhou J, Schroyen M, Zhang H, Wu S, Qi G, Wang J. Decreased eggshell strength caused by impairment of uterine calcium transport coincide with higher bone minerals and quality in aged laying hens. J Anim Sci Biotechnol 2024; 15:37. [PMID: 38439110 PMCID: PMC10910863 DOI: 10.1186/s40104-023-00986-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/28/2023] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Deteriorations in eggshell and bone quality are major challenges in aged laying hens. This study compared the differences of eggshell quality, bone parameters and their correlations as well as uterine physiological characteristics and the bone remodeling processes of hens laying eggs of different eggshell breaking strength to explore the mechanism of eggshell and bone quality reduction and their interaction. A total of 240 74-week-old Hy-line Brown laying hens were selected and allocated to a high (HBS, 44.83 ± 1.31 N) or low (LBS, 24.43 ± 0.57 N) eggshell breaking strength group. RESULTS A decreased thickness, weight and weight ratio of eggshells were observed in the LBS, accompanied with ultrastructural deterioration and total Ca reduction. Bone quality was negatively correlated with eggshell quality, marked with enhanced structures and increased components in the LBS. In the LBS, the mammillary knobs and effective layer grew slowly. At the initiation stage of eggshell calcification, a total of 130 differentially expressed genes (DEGs, 122 upregulated and 8 downregulated) were identified in the uterus of hens in the LBS relative to those in the HBS. These DEGs were relevant to apoptosis due to the cellular Ca overload. Higher values of p62 protein level, caspase-8 activity, Bax protein expression and lower values of Bcl protein expression and Bcl/Bax ratio were seen in the LBS. TUNEL assay and hematoxylin-eosin staining showed a significant increase in TUNEL-positive cells and tissue damages in the uterus of the LBS. Although few DEGs were identified at the growth stage, similar uterine tissue damages were also observed in the LBS. The expressions of runt-related transcription factor 2 and osteocalcin were upregulated in humeri of the LBS. Enlarged diameter and more structural damages of endocortical bones and decreased ash were observed in femurs of the HBS. CONCLUSION The lower eggshell breaking strength may be attributed to a declined Ca transport due to uterine tissue damages, which could affect eggshell calcification and lead to a weak ultrastructure. Impaired uterine Ca transport may result in reduced femoral bone resorption and increased humeral bone formation to maintain a higher mineral and bone quality in the LBS.
Collapse
Affiliation(s)
- Yu Fu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Precision Livestock and Nutrition Laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, B-5030, Belgium
| | - Jianmin Zhou
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Martine Schroyen
- Precision Livestock and Nutrition Laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, B-5030, Belgium
| | - Haijun Zhang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shugeng Wu
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guanghai Qi
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
7
|
Sparling BA, Ng TT, Carlo-Allende A, McCarthy FM, Taylor RL, Drechsler Y. Immunoglobulin-like receptors in chickens: identification, functional characterization, and renaming to cluster homolog of immunoglobulin-like receptors. Poult Sci 2024; 103:103292. [PMID: 38100950 PMCID: PMC10764270 DOI: 10.1016/j.psj.2023.103292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
The cluster homolog of immunoglobulin-like receptors (CHIRs), previously known as the "chicken homolog of immunogloublin-like receptors," represents is a large group of transmembrane glycoproteins that direct the immune response. However, the full repertoire of putatively activating, inhibitory, or dual function CHIRA, CHIRB, and CHIRAB on chickens' immune responses is poorly understood. Herein, the study objective was to determine the genes encoding CHIR proteins and predict their function by searching canonical protein structure. A bioinformatics pipeline based on previous work was employed to search for the CHIRs from the newly updated broiler and layer genomes. The categorization into CHIRA, CHIRB, and CHIRAB types was assigned through motif searches, multiple sequence alignment, and phylogeny. In total, 150 protein-encoding genes on Chromosome 31 were identified as CHIRs. Gene members of each functional group (CHIRA, CHIRB, CHIRAB) were classified in accordance with previously recognized proteins. The genes were renamed to "cluster homolog of immunoglobulin-like receptors" (CHIRs) to allow for the naming of orthologous genes in other avian species. Additionally, expression analysis of the classified CHIRs across various reinforces their importance as immune regulators and activation in inflammatory tissues. Furthermore, over 1,000 diverse and rare CHIRs variants associated with differential Marek's disease response (P < 0.05) emphasize the impact of CHIRs on shaping avian immune responses in diverse contexts. The practical applications of these findings encompass advancing immunology, improving poultry health management, optimizing breeding programs for disease resistance, and enhancing overall animal health through a deeper understanding of the roles and functions of CHIRA, CHIRB, and CHIRAB types in avian immune responses.
Collapse
Affiliation(s)
- Brandi A Sparling
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Theros T Ng
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Anaid Carlo-Allende
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Fiona M McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Robert L Taylor
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Yvonne Drechsler
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA; Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
8
|
Kiarie EG, Cheng V, Tan Z, Chen W, Xu X, Peng Y, Liu H, Qin Z, Peng X. Comparative impact of bacitracin and select feed additives in the feeding program of Lohmann LSL-Lite pullets at the onset of lay through to 31 weeks of age. Transl Anim Sci 2024; 8:txae013. [PMID: 38371424 PMCID: PMC10872677 DOI: 10.1093/tas/txae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/24/2024] [Indexed: 02/20/2024] Open
Abstract
There are limited investigations on the role of feed additives in easing transition of pullets to egg production phase. We investigated the effects of supplementation of bacitracin methylene disalicylate (BMD) and select feed additives (myristic acid [MA], benzoic acid [BA], and Aspergillus niger probiotic [PRO]) in feeding program for pullets from the onset of lay through to 31 weeks of age (woa). Parameters measured included hen-day egg production (HDEP), feed intake (FI), feed conversion ratio (FCR), egg quality characteristics, ceca microbial activity, apparent retention of components, and plasma metabolites. A total of 1,200 Lohmann LSL Lite pullets were procured at 18 woa and placed in enriched cages (30 birds/cage) based on body weight (BW) and allocated to five diets. The diets were a basal diet formulated to meet specifications or basal mixed with either BMD, MA, BA, or PRO. Birds had free access to feed and water throughout the experiment. Between 18 and 20 woa, birds fed BMD ate a similar (P > 0.05) amount of feed to BA birds, but more (P = 0.0003) than birds fed basal, MA, or PRO diets. Basal birds had lower HDEP (P = 0.001) and lighter eggs (P < 0.0001) than birds fed any of the feed additives between 21 and 31 woa. The basal hens had a higher (P = 0.009) abundance of Escherichia coli than birds fed BMD, BA, and PRO diets. Consequently, BMD, BA, and PRO birds had a higher (P = 0.011) Lactobacilli: E. coli ratio (LER) than hens fed the basal diet. Specifically, relative to basal-fed hens, the LER of the BMD, MA, BA, and PRO hens was higher by 37%, 21%, 26%, and 45%, respectively. Moreover, birds fed PRO tended to have a higher concentration of ceca digesta acetic acid (P = 0.072) and a lower concentration of isobutyric acid (P = 0.096). In conclusion, supplementing pullet diets with broad-spectrum antibiotics or feed additives (MA, BA, and PRO) had a positive impact on FI, and egg production linked to modulation of indices of gut health. The results suggested supplementing feed additives in feeding programs for pullets at the onset of lay can bolster productivity outcomes.
Collapse
Affiliation(s)
- Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Veronica Cheng
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Zhigang Tan
- Guangzhou Insighter Biotechnology Co., Ltd., Huangpu District, Guangzhou, Guangdong 510700, China
| | - Wenzhen Chen
- Guangzhou Insighter Biotechnology Co., Ltd., Huangpu District, Guangzhou, Guangdong 510700, China
| | - Xiangyi Xu
- Guangzhou Insighter Biotechnology Co., Ltd., Huangpu District, Guangzhou, Guangdong 510700, China
| | - Yu Peng
- Guangzhou Insighter Biotechnology Co., Ltd., Huangpu District, Guangzhou, Guangdong 510700, China
| | - Haijun Liu
- Guangzhou Insighter Biotechnology Co., Ltd., Huangpu District, Guangzhou, Guangdong 510700, China
| | - Zonghua Qin
- Guangzhou Insighter Biotechnology Co., Ltd., Huangpu District, Guangzhou, Guangdong 510700, China
| | - Xianfeng Peng
- Guangzhou Insighter Biotechnology Co., Ltd., Huangpu District, Guangzhou, Guangdong 510700, China
| |
Collapse
|
9
|
Maina AN, Lewis E, Kiarie EG. Egg production, egg quality, and fatty acids profiles in eggs and tissues in Lohmann LSL lite hens fed algal oils rich in docosahexaenoic acid (DHA). Poult Sci 2023; 102:102921. [PMID: 37499609 PMCID: PMC10413189 DOI: 10.1016/j.psj.2023.102921] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Enriching eggs with omega-3 fatty acids (n-3 FA), such as docosahexaenoic acid (DHA), is a well-accepted practice that benefits the egg industry and consumers. However, issues around cost, sustainability, and product acceptance have necessitated the search for alternatives to feeding hens fish oil for DHA enrichment. The effects of feeding 2 algal oils on egg production and DHA enrichment in eggs and selected tissues were investigated. The algal oils were: 1) OmegaPro (OPAO) standardized algal oil for DHA content and 2) Crude algal oil (CAO). A total of 400, 46-wk-old Lohmann LSL lite hens were housed in enriched cages (10 birds/cage) and allocated 5 diets (n = 8) for a 12-wk trial. The iso-caloric and -nitrogenous diets were a standard corn and soybean meal diet, standard plus 0.25 or 0.76% OPAO and standard plus 0.23 or 0.69% CAO; algal oils diets supplied similar DHA at each level. Egg production indices (hen day egg production, feed intake, FCR, egg weight, egg mass, and eggshell quality) were monitored for 10 wk. Diet samples were analyzed for fatty acids (FA) on wk 1, 6, and 12 and eggs on wk 4, 5, 6, 9, and 12. At the end of the trial, one hen/cage was weighed and dissected for liver, breast and thigh for FA and long bones for ash content analyses. Concentration of omega-6 to omega-3 FA ratio was 12.9, 6.64, 3.48, 6.96, and 3.59 for standard, 0.23 and 0.76% OPAO, 0.25 and 0.69% CAO, respectively. Algal oils increased (P ≤ 0.046) eggshell thickness linearly. The concentration of DHA in the eggs from the birds fed the standard, 0.23 and 0.76% OPAO, 0.25 and 0.69% CAO was 84, 195, 286, 183, and 297 mg/100g egg, respectively, and algal oils enriched eggs with DHA linearly and quadratically (P ≤ 0.01). In conclusion, algal oils increased the concentration of DHA in eggs and had no adverse effects on egg production and eggshell quality.
Collapse
Affiliation(s)
- Anderson N Maina
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Eva Lewis
- Food Innovation, Humanativ, Netterville, Dowth, Co Meath, A92 ER22, Ireland
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
10
|
Lee J, Cheng V, Kiarie EG. Growth and response to Escherichia coli lipopolysaccharide challenge in Lohmann LSL-Lite pullets when fed a source of omega-3 fatty acids and yeast bioactives from hatch through to 16 wk of age. Poult Sci 2023; 102:102940. [PMID: 37562132 PMCID: PMC10432835 DOI: 10.1016/j.psj.2023.102940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/06/2023] [Accepted: 07/15/2023] [Indexed: 08/12/2023] Open
Abstract
Growth and response to Escherichia coli lipopolysaccharide (LPS) challenge in Lohmann LSL-Lite pullets when fed a source of omega-3 fatty acids (n-3 FA) and yeast bioactives (YB) from hatch through to 16 wk of age (woa) were investigated. Co-extruded full fat flaxseed and pulse mixture (FFF; 1:1 wt/wt) supplied n-3 FA and YB were yeast cell walls processed with β-1,3-glucan hydrolase. A total of 1,064-day-old pullets were placed in cages (19 birds/cage) and allocated to 7 diets (n = 8). The iso-caloric and iso-nitrogenous diets were control, control + 1, 3, or 5% FFF and + 0.025, 0.05, or 0.1% YB. The birds had ad libitum access to feed and water. Body weight (BW), feed intake, and lymphoid organs weight were recorded. At 15 woa, 2 pairs of pullets/cage received intravenous injection of either 1 mL of sterile saline without or with 8 mg LPS/kg BW. Injected pullets were bled, monitored for BW and cloaca temperature at time points within 168 h. Birds fed 1% FFF were heavier (P < 0.04) than birds fed other diets at 16 woa with FFF and YB exhibiting non-linear responses. Control birds had heavier (P = 0.02) thymus at 4 woa. Spleen weight increased quadratically (P < 0.05) in response to FFF at 8 and YB at 16 woa. The LPS increased cloaca temperature and altered concentration of several plasma metabolites (P < 0.05). The interaction (P < 0.05) between LPS and diet was such that control birds exhibited lower creatine kinase (CK) upon challenge with LPS relative to birds fed other diets. The LPS birds fed 1% FFF and 0.05% YB showed higher plasma albumin than non-LPS cohorts. Non-LPS birds fed control, 1 and 3% FFF had higher plasma K than LPS cohorts. In general, FFF and YB exhibited linear and quadratic effects (P < 0.05) on select plasma metabolites. In conclusion, dietary provision of n-3 FA and YB influenced pullet BW at sexual maturity, development of lymphoid organs and modulated some plasma metabolites in response to LPS.
Collapse
Affiliation(s)
- Junhyung Lee
- University of Guelph, Department of Animal Biosciences, Guelph, ON, Canada, N1G 2W1
| | - Veronica Cheng
- University of Guelph, Department of Animal Biosciences, Guelph, ON, Canada, N1G 2W1
| | - Elijah G Kiarie
- University of Guelph, Department of Animal Biosciences, Guelph, ON, Canada, N1G 2W1.
| |
Collapse
|
11
|
Korver DR. Review: Current challenges in poultry nutrition, health, and welfare. Animal 2023; 17 Suppl 2:100755. [PMID: 36966027 DOI: 10.1016/j.animal.2023.100755] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 03/08/2023] Open
Abstract
The poultry industry has benefited greatly from advances in genetics, nutrition, housing and management strategies. Geneticists have made welfare and health traits important components of selection programs, and in general, modern, high-producing poultry are healthier than 30 years ago. However, increased productivity means that the birds are closer to their physiological limits, and nutrition, environment and management have become increasingly important. The move away from in-feed antibiotic growth promotors has resulted in challenges in maintaining gut health and consequently, bird performance. However, as the industry adapts to production without the use of antibiotic growth promotors, long-term benefits may be realized due to a reduction in antimicrobial resistance. Intensive selection for meat yield and efficiency are associated with an increased risk of muscle myopathies that affect bird health and meat quality. As genetic selection increased broiler production traits, it became necessary to restrict parent stock nutrient intake in order to prevent excessive muscle and fat deposition, reduce metabolic disease, and maintain ovarian control. With continued selection for broiler production traits, the degree of restriction implemented has become a welfare issue. Additionally, recent research suggests that highly efficient broiler lines may have limited fat deposition and therefore energy reserves to support sexual maturation and egg production, especially if typical broiler breeder BW targets are maintained. A re-examination of broiler breeder feeding programs is necessary to maintain productivity and welfare. Modern laying hens are capable of laying cycles in excess of 100 weeks of age. This has reduced the use of stress-inducing forced molting programs and reduces the total number of hens needed to meet the demand for egg production. The important role of the skeletal system in eggshell deposition demands that skeletal development during rearing be carefully managed to avoid shell and skeletal problems at the end of the production cycle. As the production potential of modern poultry continues to increase through genetic and genomic selection, even greater care must be paid in order to maintain bird health and welfare. The poultry industry has successfully faced many challenges in the past and is likely to overcome the existing challenges as well.
Collapse
Affiliation(s)
- D R Korver
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 4-10 Agriculture Forestry Centre, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
12
|
Bahry MA, Hanlon C, Ziezold CJ, Schaus S, Bédécarrats GY. Impact of growth trajectory on sexual maturation in layer chickens. Front Physiol 2023; 14:1174238. [PMID: 37215169 PMCID: PMC10196195 DOI: 10.3389/fphys.2023.1174238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/23/2023] [Indexed: 05/24/2023] Open
Abstract
Recent studies showed that apart from photostimulation, metabolic triggers may independently activate sexual maturation and egg production in chickens. However, the origin, mode of action, and specific target(s) of this metabolic control remain unknown. Beyond body weight (BW), we hypothesize that body composition (BC) and associated specific metabolic signals are involved. Thus, this study was conducted to determine the BW and BC thresholds triggering spontaneous sexual maturation in layer pullets under different growth trajectories. Day-old Lohman LSL lite and Lohman brown lite chicks (n = 210 each) raised in brooding cages under ad libitum (AL) feeding until 8 weeks of age were randomly allocated into individual cages and assigned to one of 3 experimental growth profiles; AL, breeder's target (T), restricted 20% below target (R), (n = 70 birds/profile/strain). Birds had free access to water throughout the trial. All hens were maintained on 10 h of light (10 lux) throughout the rest of the study. Blood and tissue samples were collected throughout the study to measure plasma estradiol (E2) concentrations and organ weights, respectively. Furthermore, carcasses were subjected to Dual-energy X-ray absorptiometry (DEXA) analyses. All analyses were completed with SAS using the MIXED procedure. Results show that R treatment slowed (p < 0.001) growth, delayed age at first egg (FE) and egg production (p < 0.001) and resulted in lower BW at FE (p < 0.001), lower ovary weight and number of follicles (p < 0.001) compared to AL in both strains, whereas, the strain significantly impacted body weight (p < 0.0001), ovary weight (p < 0.001), BW at FE (p < 0.001), age at FE (p < 0.001), egg production (p < 0.0001), E2 (p < 0.0001) and body composition (p < 0.05). For DEXA, AL feeding (p < 0.001) increased fat deposition compared to R. Furthermore, there was a positive correlation between plasma E2 and bone mineral content (p < 0.01) and bone mineral density (p < 0.01). In conclusion, feed allocation impacted growth and BC in a strain dependent manner which resulted in differing age at sexual maturation and egg production. Furthermore, a body fat threshold between 10% to 15% appears to be required for the occurrence of spontaneously sexual maturation in laying hens.
Collapse
Affiliation(s)
- Mohammad A. Bahry
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Department of Poultry Science, College of Agriculture, Auburn University, Auburn, AL, United States
| | - Clara J. Ziezold
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Sierra Schaus
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
13
|
Lee J, Tompkins Y, Kim DH, Kim WK, Lee K. The effects of myostatin mutation on the tibia bone quality in female Japanese quail before and after sexual maturation. Poult Sci 2023; 102:102734. [PMID: 37156076 DOI: 10.1016/j.psj.2023.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
In the modern layer industry, improvement of bone quality is one of the prior tasks to solve from economic and welfare standpoints. In addition to nutritional and environmental factors, genetic factors have been considered major factors regulating bone quality in layers but are yet to be fully investigated due to limitations on available animal models. Initially, the myostatin (MSTN) gene was genetically edited in quail to investigate the effect of MSTN mutation on economic traits in meat producing poultry species. In the current study, the function of the MSTN gene on regulation of bone quality in layers was investigated using MSTN mutant female quail as an animal model. Tibia bones were collected from wild-type (WT) and MSTN mutant female quail at 5 wk old and 4 mo old, representing prelaying and actively laying stages, respectively. Left tibia bones were analyzed by microcomputed tomography scanning to evaluate the architectural characteristics, while bone breaking strength (BBS) was measured using right tibia bones. At 5 wk of age, MSTN mutant female quail showed higher BBS and values on parameters related to bone quality such as bone mineral contents (BMC), bone mineral density (BMD), bone volume (BV), and/or trabecular bone thickness in whole diaphysis, whole metaphysis, and metaphyseal trabecular bone, compared to WT female quail. Although BBS and BMD became similar between the 2 groups at 4 mo of age, higher TV and TS in whole metaphysis and higher BMC and TV in whole diaphysis of MSTN mutant group compared to those of WT group suggested that the improved tibia bone quality by MSTN mutation before sexual maturation lasted to a certain degree even after sexual maturation. The use of the MSTN mutant female model provided new insights into genetic regulation on female quail bone quality depending on physiological changes.
Collapse
Affiliation(s)
- Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yuguo Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
14
|
De Cloet CA, Maina AN, Schulze H, Bédécarrats GY, Kiarie EG. Egg production, egg quality, organ weight, bone ash, and plasma metabolites in 30-week-old Lohmann LSL lite hens fed corn and soybean meal-based diets supplemented with enzymatically treated yeast. Poult Sci 2023; 102:102527. [PMID: 36796245 PMCID: PMC9958482 DOI: 10.1016/j.psj.2023.102527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Highly prolific modern hens are susceptible to metabolic disorders that could be modulated by functional feedstuffs such as enzymatically treated yeast (ETY). Therefore, we assessed the dose-response of ETY on hen-day egg production (HDEP), egg quality attributes, organ weight, bone ash, and plasma metabolites in laying hens. A total of 160 thirty-week-old Lohmann LSL lite hens were placed in 40 enriched cages (4 birds/cage) based on body weight (BW) and allocated to 5 diets in a completely randomized design for a 12-wk trial. The diets were isocaloric and isonitrogenous corn and soybean meal based supplemented with 0.0, 0.025, 0.05, 0.1, or 0.2% ETY. Feed and water were provided ad libitum; HDEP and feed intake (FI) were monitored weekly, whereas egg components, eggshell breaking strength (ESBS), and thickness (EST) were monitored biweekly, and albumen IgA concentration was measured on wk 12. At the end of the trial, 2 birds/cage were bled for plasma and necropsied for liver, spleen, and bursa weight, ceca digesta for short chain fatty acids (SCFA) and tibia and femur for ash content. Supplemental ETY reduced HDEP quadratically (P = 0.03); the HDEP was 98, 98, 96, 95, and 94% for 0.0, 0.025, 0.05, 0.1, and 0.2% ETY, respectively. However, ETY linearly and quadratically (P = 0.01) increased egg weight (EW) and egg mass (EM). Specifically, EM was 57.9, 60.9, 59.9, 58.9, and 59.2 g/b for 0.0, 0.025, 0.05, 0.1, and 0.2% ETY, respectively. Egg albumen increased linearly (P = 0.01), and egg yolk decreased linearly (P = 0.03) in response to ETY. In response to ETY, the ESBS and plasma Ca increased linearly and quadratically (P ≤ 0.03). Plasma concentration of total protein and albumin increased quadratically (P ≤ 0.05) with ETY. Diets had no (P > 0.05) effects on FI, FCR, bone ash, SCFA, and IgA. In conclusion, 0.1% or higher ETY reduced egg production rate; however, linear improvement in EW and shell quality linked to larger albumen and higher plasma protein and Ca suggested modulation in protein and calcium metabolism.
Collapse
Affiliation(s)
- Colin A. De Cloet
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, USA
| | - Anderson N. Maina
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, USA
| | | | | | - Elijah G. Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, USA,Corresponding author:
| |
Collapse
|
15
|
Muszyński S, Kasperek K, Świątkiewicz S, Arczewska-Włosek A, Wiącek D, Donaldson J, Dobrowolski P, Arciszewski MB, Valverde Piedra JL, Krakowiak D, Kras K, Śliwa J, Schwarz T. Assessing Bone Health Status and Eggshell Quality of Laying Hens at the End of a Production Cycle in Response to Inclusion of a Hybrid Rye to a Wheat-Corn Diet. Vet Sci 2022; 9:683. [PMID: 36548844 PMCID: PMC9781671 DOI: 10.3390/vetsci9120683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to evaluate whether there are negative effects of the partial replacement of white corn with rye along with xylanase supplementation on overall bone quality, eggshell mineralization, and mechanical strength in laying hens. From the 26th week of life, ISA Brown laying hens were fed either a wheat-corn diet or a diet containing 25% rye, with or without xylanase. The experimental period lasted for 25 weeks, until birds reached their 50th week of age, after which bone and eggshell quality indices were assessed. Eggshell thickness and eggshell Ca content of eggs from rye-fed hens were improved by xylanase supplementation. No differences in the mechanical properties of the eggshells were observed between treatments, except for the diet-dependent changes in egg deformation. Rye inclusion had no effect on the mechanical properties of bone. Xylanase supplementation, irrespective of the diet, had a positive effect on bone strength and increased tibia Ca content, as well as the content of several microelements. Hence, hybrid rye combined with wheat can replace 25% of corn in layer diets without compromising shell quality or bone mineral content. Xylanase supplementation in these diets is recommended since its inclusion improves both bone strength and quality.
Collapse
Affiliation(s)
- Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Kornel Kasperek
- Institute of Biological Basis of Animal Production, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Sylwester Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Anna Arczewska-Włosek
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice, Poland
| | - Dariusz Wiącek
- Department of Physical Properties of Plant Materials, Bohdan Dobrzański Institute of Agrophysics of the Polish Academy of Sciences, 20-290 Lublin, Poland
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Jose Luis Valverde Piedra
- Department of Pharmacology, Toxicology and Environmental Protection, University of Life Sciences, 20-950 Lublin, Poland
| | - Dominika Krakowiak
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Katarzyna Kras
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Jadwiga Śliwa
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Tomasz Schwarz
- Department of Animal Genetics, Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Kraków, 30-059 Cracow, Poland
| |
Collapse
|
16
|
Muir WI, Akter Y, Bruerton K, Groves PJ. The role of hen body weight and diet nutrient density in an extended laying cycle. Poult Sci 2022; 102:102338. [PMID: 36521298 PMCID: PMC9758487 DOI: 10.1016/j.psj.2022.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
The egg production (EP), egg quality and health of heavier or lighter hens fed a diet of either higher nutrient density (HND) or lower nutrient density (LND) during early lay, was assessed at very late lay. Based on their body weight (BW) at 18 wk of age (WOA) ISA Brown pullets were allocated as either heavier weight (HW; average 1.65 kg) or lighter weight (LW: average 1.49 kg). Half of each BW group received the HND (2,901 kcal/kg; 17.6% crude protein (CP) or LND (2726 kcal/kg, 16.4% CP) diet from 18 to 24 WOA. From 25 to 90 WOA all birds received identical early, then mid and late-lay diets. Hen BW was measured after peak-lay (36 WOA) and at 90 WOA. At 89 WOA and across 18 to 36 and 18 to 89 WOA feed intake (FI), EP, egg mass (EM), and feed conversion ratio (FCR) were calculated. Eggshell quality, breast score, relative ovary weight and liver and bone health were evaluated in very late lay. Differences in BW continued to 90 WOA. At 36 WOA HW hens produced heavier eggs, and had higher 18 to 36 WOA cumulative FI, EM (P < 0.001) and FCR (P < 0.05). When 89 WOA HW birds consumed more feed (P < 0.001) but EP, EM and FCR did not differ from LW hens. Cumulatively, 18 to 89 WOA FI and EM were higher for HW hens (P < 0.05), but cumulative EP and FCR was not different. The early-lay HND diet improved very late lay eggshell thickness (P < 0.05) and shell breaking strength (P = 0.05). Lighter hens fed HND and HW hens fed LND diet produced heavier eggs, higher relative oviduct weight and lower liver lipid peroxidase in very late lay (P < 0.05). Bone strength did not differ, but LW hens had higher femoral manganese and zinc (P < 0.05), lowering their likelihood of osteoporosis. Overall LW hens sustained EP throughout a longer laying cycle with beneficial bone characteristics. The HND diet improved eggshell strength and, in LW hens reduced hepatic oxidation.
Collapse
Affiliation(s)
- Wendy Isabelle Muir
- School of Life and Environmental Sciences, Poultry Research Foundation, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia,Corresponding author:
| | - Yeasmin Akter
- School of Life and Environmental Sciences, Poultry Research Foundation, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | | | - Peter John Groves
- Sydney School of Veterinary Science, Poultry Research Foundation, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
17
|
Hanlon C, Ziezold CJ, Bédécarrats GY. The Diverse Roles of 17β-Estradiol in Non-Gonadal Tissues and Its Consequential Impact on Reproduction in Laying and Broiler Breeder Hens. Front Physiol 2022; 13:942790. [PMID: 35846017 PMCID: PMC9283702 DOI: 10.3389/fphys.2022.942790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Estradiol-17β (E2) has long been studied as the primary estrogen involved in sexual maturation of hens. Due to the oviparous nature of avian species, ovarian production of E2 has been indicated as the key steroid responsible for activating the formation of the eggshell and internal egg components in hens. This involves the integration and coordination between ovarian follicular development, liver metabolism and bone physiology to produce the follicle, yolk and albumen, and shell, respectively. However, the ability of E2 to be synthesized by non-gonadal tissues such as the skin, heart, muscle, liver, brain, adipose tissue, pancreas, and adrenal glands demonstrates the capability of this hormone to influence a variety of physiological processes. Thus, in this review, we intend to re-establish the role of E2 within these tissues and identify direct and indirect integration between the control of reproduction, metabolism, and bone physiology. Specifically, the sources of E2 and its activity in these tissues via the estrogen receptors (ERα, ERβ, GPR30) is described. This is followed by an update on the role of E2 during sexual differentiation of the embryo and maturation of the hen. We then also consider the implications of the recent discovery of additional E2 elevations during an extended laying cycle. Next, the specific roles of E2 in yolk formation and skeletal development are outlined. Finally, the consequences of altered E2 production in mature hens and the associated disorders are discussed. While these areas of study have been previously independently considered, this comprehensive review intends to highlight the critical roles played by E2 to alter and coordinate physiological processes in preparation for the laying cycle.
Collapse
|