1
|
Chen H, Li J, Wu Y, Li Y, Zheng S, Wu Y, Xuan R, Wu L, Miao J, Wang Y, Tan H, Zhou J, Huang J, Yan X. Structural characteristics of intestinal microbiota of domestic ducks with different body sizes. Poult Sci 2025; 104:104930. [PMID: 40056781 PMCID: PMC11930160 DOI: 10.1016/j.psj.2025.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/10/2025] Open
Abstract
Domestic ducks are economically important agricultural animals, and their body size is a crucial economic trait. The intestinal flora plays a pivotal role in influencing body metabolism, growth, and development. Currently, no literature is available on the potential effect of the intestinal flora of domestic ducks on body size. This study used 16S rRNA sequencing technology to investigate the fecal microbiota of 229 individuals reared under identical feeding conditions. The findings revealed that partridge ducks with large body sizes (LBS) exhibited a higher level of intestinal microbial diversity than ducks with small body sizes (SBS). Notably, the gut microbiota composition of SBS displayed significantly elevated proportions of Streptococcus, Rothia, and Psychrobacter compared to their counterparts with LBS. Conversely, Lactobacillus was significantly more abundant in LBS. Jeotgalibaca and Psychrobacter were identified as key biomarkers of SBS, whereas Lactobacillus and Bacteroides were predominant biomarkers of LBS. Functional predictions based on intestinal microbiota indicated discernible differences among different body types, particularly evident in non- partridge ducks. The present study investigated the correlation between the intestinal microbiota and body size of domestic ducks, aiming to provide practical insights for the production management of domestic duck farming.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jiawei Li
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yongfei Wu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yuhang Li
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Sumei Zheng
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yan Wu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Rui Xuan
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Liping Wu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Junjie Miao
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yanan Wang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Hongli Tan
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jing Zhou
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Jianhua Huang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| | - Xueming Yan
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
2
|
Cui Y, Chen S, Wang M, Zhang W, Yang Q, Ou X, Sun D, He Y, Tian B, Wu Z, Zhang S, Huang J, Wu Y, Zhao X, Zhu D, Chen S, Liu M, Jia R, Cheng A. Duck plague virus UL47 gene affects the release and cell-to-cell spread of the virus and its deletion strains can provide strong protection for ducks. Poult Sci 2025; 104:105092. [PMID: 40158279 PMCID: PMC11997319 DOI: 10.1016/j.psj.2025.105092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/15/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Duck plague (DP) is an acute, febrile, septicemic infectious disease caused by duck plague virus (DPV). pUL47, which is encoded by the DPV UL47 gene, is a relatively abundant late tegument protein in virions, and its effects on the life cycle and virulence of viruses remain unclear. Herein, we generated UL47-deficient DPVs through a two-step Red recombination system and examined the effects of UL47 on the viral life cycle, virulence, and immune protection of UL47-deficient strains. The results showed that the deletion of the DPV UL47 gene affected the release and cell-to-cell spread of the virus, thereby reducing the efficiency of mature virion generation and further affecting the proliferation of the virus. The absence of the DPV UL47 gene significantly reduced the virulence of the virus but maintained immunogenicity and immune efficacy, thereby inducing the production of DPV-specific antibodies to resist strong attack by DP. These findings offer valuable insights into the functional characterization of the UL47 gene and the development of an attenuated vaccine based on this gene. Furthermore, this study provides a novel approach for the prevention and control of duck plague.
Collapse
Affiliation(s)
- Yuxi Cui
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyu Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Zhang
- Sinopharm Yangzhou VAC Biological Engineering Co., Ltd., Yangzhou 225100, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; Research Center of Avian Disease, Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Cheng
- Institute of Veterinary Immunology and Green Drugs, Veterinary Department in College of Aminal Science, State Key Laboratory of Green Pesticide, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Abdulrahim Y, You Y, Wang L, Bi Z, Xie L, Chen S, Kaufer BB, Damiani AM, Huang K, Wang J. Evaluation of Tissue Tropism and Horizontal Transmission of a Duck Enteritis Virus Vectored Vaccine in One-Day-Old Chicken. Viruses 2024; 16:1681. [PMID: 39599796 PMCID: PMC11598839 DOI: 10.3390/v16111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Herpesvirus of turkey (HVT) recombinant vector vaccines are widely used in the poultry industry. However, due to limitations in loading multiple foreign antigens into a single HVT vector, other viral vectors are urgently needed. Since chickens lack maternal immunity to duck enteritis virus (DEV), vector vaccines using DEV as a backbone are currently under study. Even though a recently developed DEV vector vaccine expressing the influenza hemagglutinin H5 of highly pathogenic avian influenza (DEV-H5) induces highly detectable anti-HA antibodies, safety issues hamper further vaccine development. In this work, tissue affinity and horizontal transmission in 1-day-old chickens were systematically evaluated after DEV-H5 vector vaccine inoculation. Sixty percent of DEV-H5-inoculated chickens died between day 2 and day 7 post-inoculation. The displayed clinical signs consisted of lethargy, anorexia, and diarrhea, and virus was shed in feces. Gross and/or histological lesions were recorded in the kidney, heart, intestine, liver, lung, and spleen. Moreover, DEV-H5 replication in intestinal cells caused an increment in interferon-α expression, while occluding junction proteins and ZO-1 expression were significantly upregulated. As a control, birds inoculated with a commercial recombinant turkey herpesvirus expressing the VP2 protein of the infectious bursal disease virus (HVT-VP2) vector vaccine showed neither clinical signs nor mortality. Overall, while the HVT-VP2 vaccine demonstrated complete safety in 1-day-old chickens, our potential DEV-H5 vaccine requires further attenuation for consideration as a vector vaccine candidate in chickens.
Collapse
Affiliation(s)
- Yassin Abdulrahim
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.A.); (L.W.)
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.Y.); (Z.B.); (L.X.); (S.C.)
- College of Veterinary Sciences, Nyala University, Nyala P.O. Box 155, South Darfur, Sudan
| | - Yingying You
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.Y.); (Z.B.); (L.X.); (S.C.)
- College of Veterinary Medicine Shandong, Agricultural University, Taian 271018, China
| | - Linggou Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.A.); (L.W.)
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.Y.); (Z.B.); (L.X.); (S.C.)
| | - Zhixiang Bi
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.Y.); (Z.B.); (L.X.); (S.C.)
| | - Lihua Xie
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.Y.); (Z.B.); (L.X.); (S.C.)
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Saisai Chen
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.Y.); (Z.B.); (L.X.); (S.C.)
| | - Benedikt B. Kaufer
- Institute of Virology, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany;
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163 Berlin, Germany
| | - Armando Mario Damiani
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.Y.); (Z.B.); (L.X.); (S.C.)
- Laboratorio de Bioquímica e Inmunidad, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5502, Argentina
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (IMBECU-CONICET), Mendoza 5500, Argentina
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.A.); (L.W.)
| | - Jichun Wang
- Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.Y.); (Z.B.); (L.X.); (S.C.)
| |
Collapse
|
4
|
Tang W, Yuan M, Mao M, Cui Y, Wu Q, Wu B, He D, Wei F, Zhu Y, Diao Y, Hu J, Tang Y. Pathogenicity studies and molecular characterization of DPV infection in ducklings. Poult Sci 2024; 103:103919. [PMID: 38970847 PMCID: PMC11264171 DOI: 10.1016/j.psj.2024.103919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/28/2024] [Indexed: 07/08/2024] Open
Abstract
In the spring of 2023, 10 to 21-day-old chicks in a broiler duck farm in Shandong Province, China, developed swelling of the head and neck, moist eyes with mucous discharge, difficulty in walking, shrinking of the neck, and loose and disorganized coat. Anatomical observation revealed hemorrhages in the esophageal mucosa, myocardium, and liver, and severe hemorrhages in the trachea with copious inflammatory secretions. Soon after, similar symptoms appeared in a large number of ducks in the flock, which eventually led to the elimination of all the 20,000-odd newly introduced ducklings on the farm, resulting in huge economic losses. We detected duck plague virus in the tissues of liver, spleen and lungs of diseased and dead ducks, and successfully isolated the pathogenic strain, named SD423, by inoculating duck embryos and inoculating duck embryo fibroblasts. We successfully conducted animal regression experiments with the isolated strain, and the experimental animals in the 1 d of age group showed symptoms of swollen eyes and tearing, shrinking of the neck, crouching, and hemorrhage in organs such as the liver and intestines successively from the 3rd d. We sequenced the whole genome of the isolated duck plague strain, and by comparing the homology with the published duck plague virus whole sequences in Genbank, the virus strain obtained in this study had the highest homology with the Chinese virulent strain SD (MN518864.1), with nucleotide (nt) homology of about 99.90% and amino acid (aa) homology of about 99.75%, which indicated that the isolate is a virulent strain. Previously, it was reported that the natural infection of duck plague virus mainly occurs above 30 d of age, but the duck plague virus found in this study can naturally infect ducklings up to 20 d of age, and the mortality rate is as high as 100%. In this study, the pathogenicity test and whole genome sequence analysis of this isolate provided data support and theoretical basis for further research on pathogenicity and virulence-related gene analysis of duck plague virus.
Collapse
Affiliation(s)
- Wentao Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| | - Mengdi Yuan
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| | - Mingtian Mao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| | - Yitong Cui
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| | - Qiong Wu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| | - Bingrong Wu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| | - Dalin He
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| | - Feng Wei
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| | - Yudong Zhu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| | - Youxiang Diao
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| | - Jingdong Hu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China
| | - Yi Tang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong 271018, China.
| |
Collapse
|
5
|
Zhou T, Ruan P, Wang M, Cheng A, Zhang W, Tian B, Yang Q, Ou X, Sun D, He Y, Wu Z, Zhang S, Huang J, Wu Y, Zhao XX, Yu Y, Zhang L, Zhu D, Chen S, Liu M, Jia R. Duck plague virus Us3 regulates the expression of pUL48. Poult Sci 2024; 103:103498. [PMID: 38364609 PMCID: PMC10879799 DOI: 10.1016/j.psj.2024.103498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/06/2024] [Accepted: 01/21/2024] [Indexed: 02/18/2024] Open
Abstract
Duck plague (DP) is one of the contagious diseases caused by Duck plague virus (DPV), which is a serious threat to the development of duck farming. Us3 is a PKA-like protein kinase in alphaherpesvirus, which can regulate the biological functions of many viral proteins, but whether Us3 regulates pUL48 protein has not been reported. In this paper, Western Blot, qRT-PCR, dual luciferase reporter system and Co-IP were used to investigate the relationship between pUL48 and Us3. The results showed that: 1) pUL48 interacted with Us3 at 138-256aa through its DBD region. 2) Us3 enhanced the protein expression of pUL48 in a dose-dependent manner. 3) Us3 promoted the mRNA level of pUL48 by activating its promoter activity. 4) Us3 inhibited the transcriptional activation function of pUL48. The results can provide scientific data for perfecting and supplementing the function of alpha herpesvirus Us3 and pUL48.
Collapse
Affiliation(s)
- Tong Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Peilin Ruan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Wei Zhang
- Sinopharm Yangzhou VAC Biological Engineering Co., Ltd., Yangzhou City, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu He
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhen Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanling Yu
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Zhang
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China; Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
6
|
Wu Y, Liu L, Zhang M, Zhan H, Wang C, Wang M, Chen S, Jia R, Yang Q, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. A Recombinant Duck Plague Virus Containing the ICP27 Deletion Marker Provides Robust Protection in Ducks. Microbiol Spectr 2023; 11:e0098323. [PMID: 37404171 PMCID: PMC10434260 DOI: 10.1128/spectrum.00983-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Duck plague virus (DPV) is a member of Alphaherpesvirus genus and poses a major threat to waterfowl breeding. Genetic engineered vaccines that are capable of distinguishing naturally infected from vaccine-immunized animals are useful for eradicating duck plague. In this study, reverse genetics was used to develop an ICP27-deficient strain (CHv-ΔICP27), and its potential as a marker vaccination candidate was evaluated. The results showed that the CHv-ΔICP27 generated in this study exhibited good genetic stability in vitro and was highly attenuated both in vivo and in vitro. The level of neutralizing antibody generated by CHv-ΔICP27 was comparable to that induced by a commercial DPV vaccine, suggesting that it could protect ducks from virulent DPV attack. By using molecular identification techniques such as PCR, restriction fragment length polymorphism, immunofluorescence, Western blotting, and others, it is possible to differentiate the CHv-ΔICP27 from wild-type strains. Moreover, ICP27 can also be a potential target for the genetic engineering vaccine development of alphavirus or perhaps the entire herpesvirus family members due to the highly conservative of ICP27 protein in all herpesvirus family members. IMPORTANCE The development of distinguishable marker vaccines from natural infection is a key step toward eradicating duck plague. Here, we generated a recombinant DPV that carries an ICP27 deletion marker that could be easily distinguished from wild-type strain by molecular biological methods. It was highly attenuated in vitro and in vivo and could provide comparable protection to ducks after a single dose of immunizations, as commercial vaccines did. Our findings support the use of the ICP27-deficient virus as a marker vaccine for DPV control and future eradication.
Collapse
Affiliation(s)
- Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Lu Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Mengya Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Haichuan Zhan
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Chenjia Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Sai Mao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Qun Gao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, People’s Republic of China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People’s Republic of China
| |
Collapse
|