1
|
Munir DD, Shetty RA, Gatch MB, Sumien N, Hill RD, Priddy JA, Forster MJ. Locomotor and discriminative stimulus effects of NBOH hallucinogens in rodents. Behav Pharmacol 2025; 36:107-114. [PMID: 39642035 PMCID: PMC11884793 DOI: 10.1097/fbp.0000000000000802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/30/2024] [Indexed: 12/08/2024]
Abstract
Despite the efforts of the Drug Enforcement Administration to safeguard the public from hazardous analogs of synthetic hallucinogens, these compounds have increasingly been observed in the illicit drug market. Four novel compounds were found to be similar in structure to the previously described 25X-NBOMe synthetic hallucinogens. These four compounds, 25B-NBOH, 25C-NBOH, 25E-NBOH, and 25I-NBOH were evaluated for their ability to modify spontaneous locomotor activity in mice to obtain dose range and time-course information and were then tested for discriminative stimulus effects similar to the prototypical hallucinogen (-)-2,5-dimethoxy-4-methylamphetamine (DOM). All four test compounds decreased locomotor activity. The locomotor depressant effects were similar in magnitude and potency to DOM, but less potent than the 25X-NBOMe compounds in previous reports. 25B-NBOH, 25C-NBOH, and 25E-NBOH fully substituted (≥80%) in DOM-trained rats, whereas 25I-NBOH failed to fully substitute for DOM even at doses that suppressed responding. The discriminative stimulus effects were more potent than those of DOM and the 25X-NBOMe compounds. These findings suggest that three of the four test compounds are most likely to be used as recreational hallucinogens in a similar manner to DOM and the 25X-NBOMe compounds, whereas 25I-NBOH may be less liable to illicit use.
Collapse
Affiliation(s)
- Daaniyal D. Munir
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Ritu A. Shetty
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Michael B. Gatch
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Nathalie Sumien
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rebecca D. Hill
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Jeanne A. Priddy
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Michael J. Forster
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
2
|
Bilel S, Miliano C, Corli G, Bassi M, Trusel M, Tonini R, De Luca MA, Marti M. Acute Effects of the Psychedelic Phenethylamine 25I-NBOMe in C57BL/6J Male Mice. Int J Mol Sci 2025; 26:2815. [PMID: 40141457 PMCID: PMC11943083 DOI: 10.3390/ijms26062815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
25I-NBOMe (4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl) phenethylamine) is a synthetic psychedelic compound abused for its ambiguous legal state as a counterfeit lysergic acid diethylamide (LSD). 25I-NBOMe acts as a selective agonist of 5HT2A receptors leading to hallucinations, intoxications, and fatalities. Here, we assessed the rewarding properties of 25I-NBOMe and its behavioral and neurotoxic acute effects on the central nervous system of C57BL/6J mice. We evaluated the dopamine (DA) levels using in vivo microdialysis in the nucleus accumbens (NAc) shell after 25I-NBOMe (0.1-1 mg/kg i.p.) injection. We also investigated the effects of 25I-NBOMe (0.1-1 mg/kg i.p.) on locomotor activity, reaction time, and prepulse inhibition. Moreover, we assessed the acute 25I-NBOMe (1 µM) effects on synaptic transmission and plasticity in the medial prefrontal cortex (mPFC) by using ex vivo electrophysiology. Our findings suggest that 25I-NBOMe affects the DA transmission in NAc shell at the highest dose tested, increases the reaction time within 30 min after the administration, and disrupts the PPI. In slices, it prevents long-term synaptic potentiation (LTP) in the mPFC, an effect that could not be reverted by the co-administration of the selective 5HT2A antagonist (MDL100907). Overall, these findings provide valuable new insights into the effects of 25I-NBOMe and the associated risks of its use.
Collapse
Affiliation(s)
- Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.C.); (M.B.)
| | - Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy;
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.C.); (M.B.)
| | - Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.C.); (M.B.)
| | - Massimo Trusel
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy (R.T.)
| | - Raffaella Tonini
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy (R.T.)
| | | | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.C.); (M.B.)
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Roma, Italy
| |
Collapse
|
3
|
Marazziti D, Weiss F, Gurrieri R, Russomanno G, Gambini M, Magnesa A, Coccoglioniti A, Perugi G. Evaluating the value and risks of psychedelics for psychiatric medicine: a clinical perspective. Expert Rev Neurother 2025; 25:143-156. [PMID: 39699299 DOI: 10.1080/14737175.2024.2445016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/16/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION After a long period of obscurantism, a possible role of psychedelics in clinical practice has progressively become a tangible perspective during the last two decades. However, the resounding enthusiasm linked to such 'psychedelic renaissance' runs the risk to unduly minimize the possible hazards associated with these compounds, while expanding their alleged benefits to improbable panacea-like proportions. In order to avoid mystifying or demonizing the properties of 5-HT2a agonists on emotional grounds, this subject requires a strictly unprejudiced and cautious approach to the evidence. AREAS COVERED In this article, the authors attempted to comprehensively analyze the available literature to provide a balanced overview of the possible benefits of psychedelics in healthcare, taking into account their potential risks. EXPERT OPINION To date, psychedelics have shown a therapeutic potential in a wide range of conditions, with a seemingly limited risk of inducing adverse reactions, including abuse and dependence, when administered in a controlled environment by specialized personnel. In any case, although several questions remain unanswered before drawing firm conclusions, further studies are needed to establish which conditions and subjects could benefit from psychedelics and which patients bear the greater risk of adversities.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Francesco Weiss
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Riccardo Gurrieri
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Gerardo Russomanno
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Matteo Gambini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Anna Magnesa
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Andrea Coccoglioniti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| | - Giulio Perugi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Kim YJ, Kook WA, Ma SX, Lee BR, Ko YH, Kim SK, Lee Y, Lee JG, Lee S, Kim KM, Lee SY, Jang CG. The novel psychoactive substance 25E-NBOMe induces reward-related behaviors via dopamine D1 receptor signaling in male rodents. Arch Pharm Res 2024; 47:360-376. [PMID: 38551761 DOI: 10.1007/s12272-024-01491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Novel psychoactive substances (NPSs) are new psychotropic drugs designed to evade substance regulatory policies. 25E-NBOMe (2-(4-ethyl-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine) has recently been identified as an NPS, and its recreational misuse has been reported to be rapidly increasing. However, the psychopharmacological effects and mechanisms of 25E-NBOMe have not been studied. We examined the abuse potential of 25E-NBOMe using the conditioned place preference in male mice and self-administration paradigms in male rats. Additionally, immunoblot assay, enzyme-linked immunosorbent assay, and microdialysis were used to determine the molecular effects of 25E-NBOMe in the nucleus accumbens (NAc). Our data demonstrated that 25E-NBOMe induces conditioned place preference, and the dopaminergic signaling in the NAc mediates these. Following 25E-NBOMe administration, expression of dopamine transporter and dopamine D1 receptor (D1DR) were enhanced in the NAc of male mice, and NAc dopamine levels were reduced in both male mice and rats. Induction of intracellular dopaminergic pathways, DARPP32, and phosphorylation of CREB in the NAc of male mice was also observed. Significantly, pharmacological blockade of D1DR or chemogenetic inhibition of D1DR-expressing medium spiny neurons in the NAc attenuated 25E-NBOMe-induced conditioned place preference in male mice. We also examined the hallucinogenic properties of 25E-NBOMe using the head twitch response test in male mice and found that this behavior was mediated by serotonin 2A receptor activity. Our findings demonstrate that D1DR signaling may govern the addictive potential of 25E-NBOMe. Moreover, our study provides new insights into the potential mechanisms of substance use disorder and the improvement of controlled substance management.
Collapse
Affiliation(s)
- Young-Jung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Wun-A Kook
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Shi-Xun Ma
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Bo-Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seon-Kyung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Youyoung Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae-Gyeong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sooyeun Lee
- Analytical Toxicology Laboratory, College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Kyeong-Man Kim
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju, 81186, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Wojtas A, Herian M, Maćkowiak M, Solarz A, Wawrzczak-Bargiela A, Bysiek A, Noworyta K, Gołembiowska K. Hallucinogenic activity, neurotransmitters release, anxiolytic and neurotoxic effects in Rat's brain following repeated administration of novel psychoactive compound 25B-NBOMe. Neuropharmacology 2023; 240:109713. [PMID: 37689261 DOI: 10.1016/j.neuropharm.2023.109713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
2-(4-Bromo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)etanoamine (25B-NBOMe) is a highly selective 5-HT2A receptor agonist, exhibiting a potent hallucinogenic activity. In the present study, we investigated the effect of a 7-day treatment with 25B-NBOMe in a dose of 0.3 mg/kg on the following: the neurotransmitter release in vivo using microdialysis in freely moving animals, hallucinogenic activity measured in the Wet Dog Shake (WDS) test, anxiety level as measured in the light/dark box (LDB) and locomotor activity in the open field (OF) test, DNA damage with the comet assay, and on a number of neuronal and glial cells with immunohistochemistry. Repeated administration of 25B-NBOMe decreased the response to a challenge dose (0.3 mg/kg) on DA, 5-HT and glutamatergic neurons in the rats' frontal cortex, striatum, and nucleus accumbens. The WDS response dropped drastically after the second day of treatment, suggesting a rapid development of tolerance. LDB and OF tests showed that the effect of 25B-NBOMe on anxiety depends on the treatment and environmental settings. Results obtained with the comet assay indicate a genotoxic properties in the frontal cortex and hippocampus. An increase in immunopositive glial but not neuronal cells was observed in the cortical regions but not in the hippocampus. In conclusion, our study showed that a chronic administration of 25B-NBOMe produces the development of tolerance observed in the neurotransmitters release and hallucinogenic activity. The oxidative damage of cortical and hippocampal DNA implies the generation of free radicals by the drug, resulting in genotoxicity but rather not in neurotoxic tissue damage. Behavioral tests show that 25B-NBOMe exerts anxiogenic effect after single and repeated treatment.
Collapse
Affiliation(s)
- Adam Wojtas
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Monika Herian
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Marzena Maćkowiak
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, 31-343, Kraków, 12 Smętna, Poland
| | - Anna Solarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, 31-343, Kraków, 12 Smętna, Poland
| | - Agnieszka Wawrzczak-Bargiela
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, 31-343, Kraków, 12 Smętna, Poland
| | - Agnieszka Bysiek
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Karolina Noworyta
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Krystyna Gołembiowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland.
| |
Collapse
|
6
|
Cassiano LMG, Oliveira MDS, de Barros WA, de Fátima Â, Coimbra RS. Neurotoxic effects of hallucinogenic drugs 25H-NBOMe and 25H-NBOH in organotypic hippocampal cultures. Heliyon 2023; 9:e17720. [PMID: 37449113 PMCID: PMC10336585 DOI: 10.1016/j.heliyon.2023.e17720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/26/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction NBOMes and NBOHs are psychoactive drugs derived from phenethylamines and have hallucinogenic effects due to their strong agonism to serotonin 5-HT2A receptors. Although cases of toxicity associated with the recreational use of substituted phenethylamines are frequently reported, there is a lack of information on the possible neurotoxic effects of NBOMe and NBOH in the brain hippocampus, a major neurogenesis region. Objectives This study aimed at assessing the phenotypic and molecular effects of prolonged exposure of the hippocampus to the drugs 25H-NBOMe and 25H-NBOH. Methods The ex vivo organotypic culture model of hippocampal slices (OHC) was used to investigate, by immunofluorescence and confocal microscopy, and transcriptome analyses, the mechanisms associated with the neurotoxicity of 25H-NBOMe and 25H-NBOH. Results Reduction in the density of mature neurons in the OHCs occurred after two and seven days of exposure to 25H-NBOMe and 25H-NBOH, respectively. After the withdrawal of 25H-NBOMe, the density of mature neurons in the OHCs stabilized. In contrast, up to seven days after 25H-NBOH removal from the culture medium, progressive neuron loss was still observed in the OHCs. Interestingly, the exposure to 25H-NBOH induced progenitor cell differentiation, increasing the density of post-mitotic neurons in the OHCs. Corroborating these findings, the functional enrichment analysis of differentially expressed genes in the OHCs exposed to 25H-NBOH revealed the activation of WNT/Beta-catenin pathway components associated with neurogenesis. During and after the exposure to 25H-NBOMe or 25H-NBOH, gene expression patterns related to the activation of synaptic transmission and excitability of neurons were identified. Furthermore, activation of signaling pathways and biological processes related to addiction and oxidative stress and inhibition of the inflammatory response were observed after the period of drug exposure. Conclusion 25H-NBOMe and 25H-NBOH disrupt the balance between neurogenesis and neuronal death in the hippocampus and, although chemically similar, have distinct neurotoxicity mechanisms.
Collapse
Affiliation(s)
- Larissa Marcely Gomes Cassiano
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, 30190-002, Brazil
- Programa de Pós-Graduação em Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Marina da Silva Oliveira
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, 30190-002, Brazil
| | - Wellington Alves de Barros
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Roney Santos Coimbra
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, 30190-002, Brazil
| |
Collapse
|
7
|
Rodrigues CHP, Mariotto LS, Castro JS, Peruquetti PH, Silva-Junior NC, Bruni AT. Acute, chronic, and post-mortem toxicity: a review focused on three different classes of new psychoactive substances. Forensic Toxicol 2023; 41:187-212. [PMID: 36604359 DOI: 10.1007/s11419-022-00657-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE New psychoactive substances (NPS) are not controlled under the Single Convention on Narcotic Drugs of 1961 or the 1971 Convention, but they may pose a public health threat. Knowledge of the main properties and toxicological effects of these substances is lacking. According to the current Drugs Law (Law n. 11.343/2006), the Brazilian Surveillance Agency issues directives for forbidden substances in Brazil, and structural classes of synthetic cannabinoids, cathinones, and phenylethylamines are considered illicit drugs. Considering that data on these controlled substances are scattered, the main objective of this work was to collect and organize data to generate relevant information on the toxicological properties of NPS. METHODS We carried out a literature review collecting information on the acute, chronic, and post-mortem toxicity of these classes of NSP. We searched info in five scientific databases considering works from 2017 to 2021 and performed a statistical evaluation of the data. RESULTS Results have shown a general lack of studies in this field given that many NPS have not had their toxicity evaluated. We observed a significant difference in the volume of data concerning acute and chronic/post-mortem toxicity. Moreover, studies on the adverse effects of polydrug use are scarce. CONCLUSIONS More in-depth information about the main threats involving NPS use are needed.
Collapse
Affiliation(s)
- Caio H P Rodrigues
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
- INCT Forense - Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Lívia S Mariotto
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
- INCT Forense - Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Jade S Castro
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
- INCT Forense - Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Paulo H Peruquetti
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Newton C Silva-Junior
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
- INCT Forense - Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Aline T Bruni
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil.
- INCT Forense - Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil.
| |
Collapse
|
8
|
Blond BN, Schindler EAD. Case report: Psychedelic-induced seizures captured by intracranial electrocorticography. Front Neurol 2023; 14:1214969. [PMID: 37456653 PMCID: PMC10343433 DOI: 10.3389/fneur.2023.1214969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Classic psychedelics are currently re-emerging as therapeutic agents with unique clinical benefits; however, it is also important to recognize the adverse effects of this drug class. While the risk of seizures with this drug class is known, the literature is lacking in detail. We present a case of psychedelic mushroom-induced seizures in a person with refractory right temporal lobe epilepsy implanted with a responsive neurostimulation (RNS) system. A large increase in typical seizure frequency coincided with the ingestion of a large dose of the mushrooms. This is the first reported case of electrographically confirmed seizures associated with classic psychedelic drug use. With the surge of research and movements toward the clinical application of classic psychedelic compounds, the risk for drug-induced seizures should be considered, including factors such as a history of epilepsy and drug doses and regimens.
Collapse
Affiliation(s)
- Benjamin N. Blond
- Department of Neurology, Health Science Center, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Emmanuelle A. D. Schindler
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
- Neurology Service, VA Connecticut Healthcare System, West Haven, CT, United States
| |
Collapse
|
9
|
Lee HJ, Oh JE. Target and suspect screening of (new) psychoactive substances in South Korean wastewater by LC-HRMS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162613. [PMID: 36871726 DOI: 10.1016/j.scitotenv.2023.162613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
New psychoactive substances (NPS) are a type of abused drug designed to mimic the effects of the currently known illicit drugs, whose structures are constantly changing to escape surveillance. The quick identification of NPS use in the community therefore demands immediate action. This study aimed to develop a target and suspect screening method using LC-HRMS to identify NPS in wastewater samples. An in-house database of 95 traditional and NPS was built using the reference standards, and an analytical method was developed. Wastewater samples were collected from 29 wastewater treatment plants (WWTP) across South Korea, representing 50 % of the total population. The psychoactive substances in waste water samples were screened using in-house database and developed analytical methods. A total of 14 substances were detected in the target analysis, including three NPS (N-methyl-2-AI, 25E-NBOMe, and 25D-NBOMe) and 11 traditional psychoactive substances and their metabolites (zolpidem phenyl-4-COOH, ephedrine, ritalinic acid, tramadol, phenmetrazine, phendimetrazine, phentermine, methamphetamine, codeine, morphine, and ketamine). Out of these, N-methyl-2-AI, zolpidem phenyl-4-COOH, ephedrine, ritalinic acid, tramadol, phenmetrazine, and phendimetrazine were detected with a detection frequency of over 50 %. Primarily, N-methyl-2-Al was detected in all the wastewater samples. Additionally, four NPSs (amphetamine-N-propyl, benzydamine, isoethcathinone, methoxyphenamine) were tentatively identified at level 2b in a suspect screening analysis. This is the most comprehensive study to investigate NPS using target and suspect analysis methods at the national level. This study raises a need for continuous monitoring of NPS in South Korea.
Collapse
Affiliation(s)
- Heon-Jun Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan, Republic of Korea
| | - Jeong-Eun Oh
- Institute for Environmental and Energy, Pusan National University, Busan, Republic of Korea; Department of Civil and Environmental Engineering, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
10
|
Lesne E, Muñoz-Bartual M, Esteve-Turrillas FA. Determination of synthetic hallucinogens in oral fluids by microextraction by packed sorbent and liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2023:10.1007/s00216-023-04751-2. [PMID: 37219582 DOI: 10.1007/s00216-023-04751-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
A fast and simple procedure based on microextraction by packed sorbent (MEPS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed for the simultaneous quantification of 28 synthetic hallucinogens in oral fluids, including lysergic acid diethylamide and substances from NBOMe, NBOH, NBF, 2C, and substituted amphetamine categories. Extraction conditions such as type of sorbent, sample pH, number of charge/discharge cycles, and elution volume were studied. Hallucinogenic compounds were extracted from oral fluid samples using C18 MEPS, loading with 100 μL sample (adjusted to pH 7) in 3 cycles, washing with 100 μL deionized water, and eluting with 50 μL methanol in 1 cycle, giving quantitative recoveries and no significant matrix effects. Limits of detection from 0.09 to 1.22 μg L-1; recoveries from 80 to 129% performed in spiked oral fluid samples at 20, 50, and 100 μg L-1; and high precision with relative standard deviations lower than 9% were obtained. The proposed methodology was demonstrated to be appropriate for the simple and sensitive determination of NBOMe derivates and other synthetic hallucinogenic substances in oral fluid samples.
Collapse
Affiliation(s)
- Evan Lesne
- Department of Analytical Chemistry, University of Valencia, 50th Dr. Moliner St., 46100, Burjassot, Spain
| | - Miguel Muñoz-Bartual
- Department of Analytical Chemistry, University of Valencia, 50th Dr. Moliner St., 46100, Burjassot, Spain
| | | |
Collapse
|
11
|
Herian M, Świt P. 25X-NBOMe compounds - chemistry, pharmacology and toxicology. A comprehensive review. Crit Rev Toxicol 2023; 53:15-33. [PMID: 37115704 DOI: 10.1080/10408444.2023.2194907] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Recently, a growing number of reports have indicated a positive effect of hallucinogenic-based therapies in different neuropsychiatric disorders. However, hallucinogens belonging to the group of new psychoactive substances (NPS) may produce high toxicity. NPS, due to their multi-receptors affinity, are extremely dangerous for the human body and mental health. An example of hallucinogens that have been lately responsible for many severe intoxications and deaths are 25X-NBOMes - N-(2-methoxybenzyl)-2,5-dimethoxy-4-substituted phenethylamines, synthetic compounds with strong hallucinogenic properties. 25X-NBOMes exhibit a high binding affinity to serotonin receptors but also to dopamine, adrenergic and histamine receptors. Apart from their influence on perception, many case reports point out systemic and neurological poisoning with these compounds. In humans, the most frequent side effects are tachycardia, anxiety, hypertension and seizures. Moreover, preclinical studies confirm that 25X-NBOMes cause developmental impairments, cytotoxicity, cardiovascular toxicity and changes in behavior of animals. Metabolism of NBOMes seems to be very complex and involves many metabolic pathways. This fact may explain the observed high toxicity. In addition, many analytical methods have been applied in order to identify these compounds and their metabolites. The presented review summarized the current knowledge about 25X-NBOMes, especially in the context of toxicity.
Collapse
Affiliation(s)
- Monika Herian
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Paweł Świt
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Katowice, Poland
| |
Collapse
|
12
|
Oh HA, Yoo JH, Kim YJ, Han KS, Woo DH. 4-EA-NBOMe, an amphetamine derivative, alters glutamatergic synaptic transmission through 5-HT 1A receptors on cortical neurons from SpragueDawley rat and pyramidal neurons from C57BL/6 mouse. Neurotoxicology 2023; 95:144-154. [PMID: 36738894 DOI: 10.1016/j.neuro.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
New psychoactive substances (NPSs) are compounds designed to mimic illegal recreational drugs. In particular, there are difficulties in legal restrictions because there is no fast NPS detection method to suppress the initial spread of NPS with criminal records; thus, they expose the public to serious health threats, including toxicity and dependence. However, the effects of NPSs on the brain and the related cellular mechanisms are well unknown. One of the recently emerging drugs is 4-ethylamphetamine-NBOMe (4-EA-NBOMe), a member of the 2 C phenylalanine family with a similar structure to methamphetamine (methA). In this study, we tested the effect of methA analogs on the glutamatergic synaptic transmission on primary cultured cortical neurons of SpragueDawley (SD) rats and C57BL/6 mice, and also layer 2/3 pyramidal neurons of the medial prefrontal cortex (mPFC) of C57BL/6 mice. We found that acute treatment with 4-EA-NBOMe inhibits spontaneous excitatory postsynaptic currents (EPSCs) and that withdrawal after chronic inhibition by 4-EA-NBOMe augments glutamatergic synaptic transmission. These modifications of synaptic responses are mediated by 5-HT1A receptors. These findings suggest that 4-EA-NBOMe directly affects the central nervous system by changing the efficacy of glutamatergic synaptic transmission.
Collapse
Affiliation(s)
- Hyun-A Oh
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, South Korea
| | - Jae Hong Yoo
- Department of Biological Sciences, Chungnam National University, Daejeon 34134 South Korea
| | - Ye-Ji Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, South Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, South Korea
| | - Kyung-Seok Han
- Department of Biological Sciences, Chungnam National University, Daejeon 34134 South Korea.
| | - Dong Ho Woo
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, South Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, South Korea.
| |
Collapse
|
13
|
Zhai W, Qiao Z, Xiang P, Dang Y, Shi Y. A UPLC-MS/MS methodological approach for the analysis of 75 phenethylamines and their derivatives in hair. J Pharm Biomed Anal 2023; 229:115367. [PMID: 37018959 DOI: 10.1016/j.jpba.2023.115367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
A rapid ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the targeted analysis of 75 phenethylamines and their derivatives from the hair matrix. The monitored classes of phenethylamines included the 2C series, D series, N-benzyl derivatives, mescaline-derived compounds, MDMA analogs, and benzodifurans. Approximately 20 mg of hair was weighed and pulverized with 0.1% formic acid in methanol by cryogenic grinding. After ultrasonication, centrifugation, and filtration, the supernatant was analyzed by LC-MS/MS operating in the scheduled multiple reaction monitoring mode. Phenethylamines and their derivatives were separated in 13 min on a biphenyl column (2.6 µm, 100 Å, 100 × 3.0 mm) using a gradient eluting mobile phase composed of 0.1% formic acid in water and acetonitrile. The developed and validated method showed good selectivity, sensitivity (LOD: 0.5-10 pg/mg and LOQ: 1-20 pg/mg), linearity (R2 > 0.997), accuracy and precision (< 20%), and stability. The method also showed good recovery and acceptable matrix effects for most of the targeted compounds. This analytical approach was successfully applied for the identification and quantification of phenethylamines in hair from authentic forensic cases.
Collapse
Affiliation(s)
- Wenya Zhai
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China; College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zheng Qiao
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Ping Xiang
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China
| | - Yonghui Dang
- College of Medicine and Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yan Shi
- Department of Forensic Toxicology, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Academy of Forensic Science, Shanghai, China.
| |
Collapse
|
14
|
Deventer MH, Persson M, Laus A, Pottie E, Cannaert A, Tocco G, Gréen H, Stove CP. Off-target activity of NBOMes and NBOMe analogs at the µ opioid receptor. Arch Toxicol 2023; 97:1367-1384. [PMID: 36853332 DOI: 10.1007/s00204-023-03465-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
New psychoactive substances (NPS) are introduced on the illicit drug market at a rapid pace. Their molecular targets are often inadequately elucidated, which contributes to the delayed characterization of their pharmacological effects. Inspired by earlier findings, this study set out to investigate the µ opioid receptor (MOR) activation potential of a large set of psychedelics, substances which typically activate the serotonin (5-HT2A) receptor as their target receptor. We observed that some substances carrying the N-benzyl phenethylamine (NBOMe) structure activated MOR, as confirmed by both the NanoBiT® βarr2 recruitment assay and the G protein-based AequoScreen® Ca2+ release assay. The use of two orthogonal systems proved beneficial as some aspecific, receptor independent effects were found for various analogs when using the Ca2+ release assay. The specific 'off-target' effects at MOR could be blocked by the opioid antagonist naloxone, suggesting that these NBOMes occupy the same common opioid binding pocket as conventional opioids. This was corroborated by molecular docking, which revealed the plausibility of multiple interactions of 25I-NBOMe with MOR, similar to those observed for opioids. Additionally, structure-activity relationship findings seen in vitro were rationalized in silico for two 25I-NBOMe isomers. Overall, as MOR activity of these psychedelics was only noticed at high concentrations, we consider it unlikely that for the tested compounds there will be a relevant opioid toxicity in vivo at physiologically relevant concentrations. However, small modifications to the original NBOMe structure may result in a panel of more efficacious and potent MOR agonists, potentially exhibiting a dual MOR/5-HT2A activation potential.
Collapse
Affiliation(s)
- Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Mattias Persson
- Department of Forensic Genetic and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Antonio Laus
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Eline Pottie
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Graziella Tocco
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Henrik Gréen
- Department of Forensic Genetic and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden.,Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
15
|
Jo C, Joo H, Youn DH, Kim JM, Hong YK, Lim NY, Kim KS, Park SJ, Choi SO. Rewarding and Reinforcing Effects of 25H-NBOMe in Rodents. Brain Sci 2022; 12:1490. [PMID: 36358416 PMCID: PMC9688077 DOI: 10.3390/brainsci12111490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/12/2023] Open
Abstract
The drug 25H-NBOMe is a new psychoactive substance (NPS). The use of these substances is likely to pose a threat to public health because they elicit effects similar to those of known psychoactive substances with similar chemical structures. However, data regarding the abuse potential of 25H-NBOMe are lacking. Here, we evaluated the abuse liability of 25H-NBOMe in rodents. The rewarding and reinforcing effects were evaluated through conditioned place preference (CPP) and self-administration (SA) tests after administration of 25H-NBOMe. To investigate the effects of 25H-NBOMe on the central nervous system, we determined the changes in dopamine levels by in vivo microdialysis. In the locomotor activity test, 25H-NBOme significantly increased locomotor activity in mice. In the place conditioning test, the 25H-NBOMe (0.1 and 0.5 mg/kg) groups showed a significantly increase in CPP in mice. In the SA test, the 25H-NBOMe (0.01 mg/kg) administered group showed a significant increased number of infusions and active lever presses. In microdialysis, the 25H-NBOMe (10 mg/kg) administered group was significantly increased in rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sun Ok Choi
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Chungju 28159, Korea
| |
Collapse
|
16
|
Šíchová K, Syrová K, Kofroňová E, Pinterova‐Leca N, Vejmola Č, Nykodemová J, Palivec P, Olejníková L, Danda H, Jorratt P, Adam Š, Hiep BQ, Štefková‐Mazochová K, Končická M, Kuchař M, Páleníček T. Pharmacokinetics, systemic toxicity, thermoregulation and acute behavioural effects of 25CN‐NBOMe. Addict Biol 2022; 27:e13216. [DOI: 10.1111/adb.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Klára Šíchová
- Psychedelics Research Centre National Institute of Mental Health Klecany Czech Republic
| | - Kateřina Syrová
- Psychedelics Research Centre National Institute of Mental Health Klecany Czech Republic
- Third Faculty of Medicine Charles University Prague Czech Republic
| | - Edita Kofroňová
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds University of Chemistry and Technology Prague Czech Republic
| | - Nikola Pinterova‐Leca
- Psychedelics Research Centre National Institute of Mental Health Klecany Czech Republic
| | - Čestmír Vejmola
- Psychedelics Research Centre National Institute of Mental Health Klecany Czech Republic
- Third Faculty of Medicine Charles University Prague Czech Republic
| | - Jitka Nykodemová
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds University of Chemistry and Technology Prague Czech Republic
| | - Petr Palivec
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds University of Chemistry and Technology Prague Czech Republic
| | - Lucie Olejníková
- Psychedelics Research Centre National Institute of Mental Health Klecany Czech Republic
| | - Hynek Danda
- Psychedelics Research Centre National Institute of Mental Health Klecany Czech Republic
- Third Faculty of Medicine Charles University Prague Czech Republic
| | - Pascal Jorratt
- Psychedelics Research Centre National Institute of Mental Health Klecany Czech Republic
- Third Faculty of Medicine Charles University Prague Czech Republic
| | - Šafanda Adam
- First Faculty of Medicine, Institute of Pathology Charles University Prague Czech Republic
| | - Bui Quang Hiep
- First Faculty of Medicine, Institute of Pathology Charles University Prague Czech Republic
| | | | - Markéta Končická
- Psychedelics Research Centre National Institute of Mental Health Klecany Czech Republic
| | - Martin Kuchař
- Psychedelics Research Centre National Institute of Mental Health Klecany Czech Republic
- Forensic Laboratory of Biologically Active Compounds, Department of Chemistry of Natural Compounds University of Chemistry and Technology Prague Czech Republic
| | - Tomáš Páleníček
- Psychedelics Research Centre National Institute of Mental Health Klecany Czech Republic
- Third Faculty of Medicine Charles University Prague Czech Republic
| |
Collapse
|
17
|
Abstract
RATIONALE In recent years, psychedelic substances with serotonergic mechanisms have accumulated substantial evidence that they may provide therapeutic benefits for people suffering with psychiatric symptoms. Psychiatric disorders targeted by these psychedelic-assisted therapies are managed with serotonergic drugs like selective serotonin reuptake inhibitors (SSRIs) as the current standard of care, so it is important to evaluate the potential risks of drug-drug interactions and serotonin toxicity (ST) between these agents. OBJECTIVES A critical evaluation of the scientific literature is necessary to delineate the risks of ST when combining psychedelics with available serotonergic pharmacotherapy options. This review article describes signs and symptoms of ST, characterizes mechanisms of ST risk, summarizes what is known about serotonergic psychedelic drug interactions, and outlines potential management strategies. RESULTS True ST typically occurs with a serotonergic drug overdose or in combinations in which a drug that can increase intrasynaptic serotonin is combined with a monoamine oxidase inhibitor (MAOI). Serotonergic psychotropics that do not contain MAOIs are low risk in combination with psychedelics that also do not contain MAOIs. Signs and symptoms warranting immediate medical attention include myoclonus, extreme and fluctuating vital signs, agitation or comatose mental state, muscle rigidity, pronounced hyperthermia (fever), and/or seizure activity. CONCLUSIONS Serotonin-related adverse reactions exist along a spectrum with serotonin syndrome being the most severe manifestations of ST. Due to varying serotonergic mechanisms of psychedelics and psychotropics, with varying propensities to increase intrasynaptic serotonin, some combinations may present a significant risk for serotonin toxicity (ST) while others are likely benign.
Collapse
|
18
|
Johnson CS, Shadfar Z, Allison JR, Walsh KAJ, Partington HK. Controlling new psychoactive substances in New Zealand. AUST J FORENSIC SCI 2022. [DOI: 10.1080/00450618.2022.2067230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- CS Johnson
- Institute of Environmental Science and Research Ltd (ESR), Mt Albert Science Centre, Auckland, New Zealand
| | - Z Shadfar
- Institute of Environmental Science and Research Ltd (ESR), Mt Albert Science Centre, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - JR Allison
- Maurice Wilkins Centre for Molecular Biodiscovery and School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Digital Life Institute, University of Auckland, Auckland, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - KAJ Walsh
- Institute of Environmental Science and Research Ltd (ESR), Mt Albert Science Centre, Auckland, New Zealand
| | - HK Partington
- Institute of Environmental Science and Research Ltd (ESR), Mt Albert Science Centre, Auckland, New Zealand
| |
Collapse
|
19
|
Herian M, Wojtas A, Maćkowiak M, Wawrzczak-Bargiela A, Solarz A, Bysiek A, Madej K, Gołembiowska K. Neurotoxicological profile of the hallucinogenic compound 25I-NBOMe. Sci Rep 2022; 12:2939. [PMID: 35190675 PMCID: PMC8861095 DOI: 10.1038/s41598-022-07069-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25I-NBOMe) is a new psychoactive substance with strong hallucinogenic properties. Our previous data reported increased release of dopamine, serotonin, and glutamate after acute injections and a tolerance development in the neurotransmitters release and rats’ behavior after chronic treatment with 25I-NBOMe. The recreational use of 25I-NBOMe is associated with severe intoxication and deaths in humans. There is no data about 25I-NBOMe in vivo toxicity towards the brain tissue. In this article 25I-NBOMe-crossing through the blood–brain barrier (BBB), the impact on DNA damage, apoptosis induction, and changes in the number of cortical and hippocampal cells were studied. The presence of 25I-NBOMe in several brain regions shortly after the drug administration and its accumulation after multiple injections was found. The DNA damage was detected 72 h after the chronic treatment. On the contrary, at the same time point apoptotic signal was not identified. A decrease in the number of glial but not in neural cells in the frontal (FC) and medial prefrontal cortex (mPFC) was observed. The obtained data indicate that 25I-NBOMe passes easily across the BBB and accumulates in the brain tissue. Observed oxidative DNA damage may lead to the glial cells’ death.
Collapse
Affiliation(s)
- Monika Herian
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Adam Wojtas
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Marzena Maćkowiak
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Agnieszka Wawrzczak-Bargiela
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Anna Solarz
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Agnieszka Bysiek
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Katarzyna Madej
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa, 30-387, Kraków, Poland
| | - Krystyna Gołembiowska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland.
| |
Collapse
|
20
|
Yoon KS, Cha HJ, Choi SO, Lee JM. 2-((2-(4-Iodo-2,5-dimethoxyphenyl)ethylamino)methyl)phenol (25I-NBOH) and 2-(((2-(4-chloro-2,5-dimethoxyphenyl)ethyl)amino)methyl)phenol (25C-NBOH) induce adverse effects on the cardiovascular system. Toxicol Lett 2022; 355:160-169. [PMID: 34843874 DOI: 10.1016/j.toxlet.2021.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/30/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Two new psychoactive substances (NPSs) classified as phenethylamines, namely 2-((2-(4-Iodo-2,5-dimethoxyphenyl)ethylamino)methyl)phenol (25I-NBOH) and 2-(((2-(4-chloro-2,5-dimethoxyphenyl)ethyl)amino)methyl)phenol (25C-NBOH), are being abused by people seeking recreational hallucinogens. These NPSs may cause serious health problems as their adverse effects are not known in most cases. Therefore, in the present study, we evaluated the cardiotoxicity of 25I-NBOH and 25C-NBOH using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, rat electrocardiography (ECG), Langendorff test, and human ether-a-go-go-related gene (hERG) assay. Furthermore, we analyzed the expression levels of p21 CDC42/RAC1-activated kinase 1 (PAK1), which is known to play various roles in the cardiovascular system. In the MTT assay, treatment with 25I-NBOH or 25C-NBOH dramatically decreased viability of H9c2 cardiomyocytes. Meanwhile, these two compounds significantly increased QT intervals and RR intervals in the rat ECG measurement. 25I-NBOH down-regulated the PAK1 protein expression in rat primary cardiomyocytes as well as H9c2 cells. However, 25C-NBOH had no effect on the PAK1 expression in H9c2 cells. In an in-depth study, 25I-NBOH inhibited potassium channels in the hERG assay, but in ex vivo test, the substance did not affect the left ventricular developed pressure (LVDP) and heart rate of the isolated rat hearts. Taken together, these results suggest that both 25I-NBOH and 25C-NBOH may have adverse cardiovascular effect. Further investigation would be needed to determine which factors mainly influence the relationship between PAK1 expression and cardiotoxicity.
Collapse
Affiliation(s)
- Kyung Sik Yoon
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| | - Hye Jin Cha
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| | - Sun Ok Choi
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| | - Jin-Moo Lee
- National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| |
Collapse
|
21
|
Petranker R, Anderson T, Maier LJ, Barratt MJ, Ferris JA, Winstock AR. Microdosing psychedelics: Subjective benefits and challenges, substance testing behavior, and the relevance of intention. J Psychopharmacol 2022; 36:85-96. [PMID: 33591231 DOI: 10.1177/0269881120953994] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Microdosing psychedelics is the practice of taking small, sub-hallucinogenic doses of lysergic acid diethylamide or psilocybin-containing mushrooms. Despite its surging popularity, little is known about the specific intentions to start microdosing and the effects of this practice. AIMS First, we aimed to replicate previous findings regarding the subjective benefits and challenges reported for microdosing. Second, we assessed whether people who microdose test their substances before consumption. Third, we examined whether having an approach-intention to microdosing was predictive of more reported benefits. METHODS The Global Drug Survey runs the world's largest online drug survey. Participants who reported last year use of lysergic acid diethylamide or psilocybin in the Global Drug Survey 2019 were offered the opportunity to answer a sub-section on microdosing. RESULTS Data from 6753 people who reported microdosing at least once in the last 12 months were used for analyses. Our results suggest a partial replication of previously reported benefits and challenges among the present sample often reporting enhanced mood, creativity, focus and sociability. Counter to our prediction, the most common challenge participants associated with microdosing was 'None'. As predicted, most participants reported not testing their substances. Counter to our hypothesis, approach-intention - microdosing to approach a desired goal - predicted less rather than more benefits. We discuss alternate frameworks that may better capture the reasons people microdose. CONCLUSION Our results suggest the perceived benefits associated with microdosing greatly outweigh the challenges. Microdosing may have utility for a variety of uses while having minimal side effects. Double-blind, placebo-controlled experiments are required to substantiate these reports.
Collapse
Affiliation(s)
- Rotem Petranker
- Clinical Psychology, York University, Toronto, Canada.,Psychedelic Studies Research Program, University of Toronto Mississauga, Mississauga, Canada
| | - Thomas Anderson
- Psychedelic Studies Research Program, University of Toronto Mississauga, Mississauga, Canada.,Department of Psychology, University of Toronto, Toronto, Canada
| | - Larissa J Maier
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, United States of America.,Early Postdoc Mobility Grantee (P2ZHP1_17812), Swiss National Science Foundation, Bern, Switzerland
| | - Monica J Barratt
- Social and Global Studies Centre, RMIT University, Melbourne, Australia.,National Drug and Alcohol Research Centre, University of New South Wales, Sydney, Australia
| | - Jason A Ferris
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Adam R Winstock
- University College London, Gower Street, London, United Kingdom.,Global Drug Survey Ltd, London, United Kingdom
| |
Collapse
|
22
|
Tirri M, Bilel S, Arfè R, Corli G, Marchetti B, Bernardi T, Boccuto F, Serpelloni G, Botrè F, De-Giorgio F, Golembiowska K, Marti M. Effect of -NBOMe Compounds on Sensorimotor, Motor, and Prepulse Inhibition Responses in Mice in Comparison With the 2C Analogs and Lysergic Acid Diethylamide: From Preclinical Evidence to Forensic Implication in Driving Under the Influence of Drugs. Front Psychiatry 2022; 13:875722. [PMID: 35530025 PMCID: PMC9069068 DOI: 10.3389/fpsyt.2022.875722] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
In the last decade, the market for new psychoactive substances has been enriched by numerous psychedelic phenethylamines, which mimic the psychoactive effect of lysergic acid diethylamide (LSD). In particular, the -NBOMe series, which are more potent than their 2C compounds analogs, are considered worthy substitutes for LSD by users. The purpose of this study was to assess the effects of 25H-NBOMe and its halogenated derivatives (25I-NBOMe and 25B-NBOMe) in comparison to their 2C compounds analogs and LSD on the sensorimotor (visual, acoustic, and overall tactile), reaction time, spontaneous (total distance traveled) and stimulated (drag, accelerod test) motor activity, grip strength test, and prepulse inhibition (PPI) responses in mice. Systemic administration of -NBOMe, 2C compounds analogs, and LSD (0.001-10 mg/kg) differently impaired the sensorimotor, reaction time, motor, and PPI responses in mice. In particular, halogenated (25I and 25B)-NBOMe derivatives appear to be more effective than the entire class of 2C compounds analogs in altering visual and acoustic responses, affecting reaction time, and motor and sensory gating in PPI test. In fact, the specific rank order of compounds potency for nearly all of the experiments showed that (25I and 25B)-NBOMe were more potent than 2C compounds analogs and LSD. -NBOMe and 2C compounds analogs impaired not only the reception of incoming sensory stimuli (visual and acoustic), but their correct brain processing (PPI) in an equal and sometimes stronger way than LSD. This sensory impairment directly affected the spontaneous motor response and reaction time of mice, with no change in performance in stimulated motor activity tests. These aspects should be carefully considered to better understand the potential danger that psychedelic phenethylamines, in particular -NBOMe, may pose to public health, with particular reference to decreased performance in driving and hazardous works that require special sensorimotor skills.
Collapse
Affiliation(s)
- Micaela Tirri
- Section of Legal Medicine and Laboratory for Advanced Therapy Technologies (LTTA) Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Section of Legal Medicine and Laboratory for Advanced Therapy Technologies (LTTA) Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Raffaella Arfè
- Section of Legal Medicine and Laboratory for Advanced Therapy Technologies (LTTA) Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Section of Legal Medicine and Laboratory for Advanced Therapy Technologies (LTTA) Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Beatrice Marchetti
- Section of Legal Medicine and Laboratory for Advanced Therapy Technologies (LTTA) Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Tatiana Bernardi
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Federica Boccuto
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Serpelloni
- Neuroscience Clinical Center and Transcranial Magnetic Stimulation (TMS) Unit, Verona, Italy
| | - Francesco Botrè
- Institute of Sport Science University of Lausanne (ISSUL), Lausanne, Switzerland
| | - Fabio De-Giorgio
- Section of Legal Medicine, Department of Health Care Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Krystyna Golembiowska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakòw, Poland
| | - Matteo Marti
- Section of Legal Medicine and Laboratory for Advanced Therapy Technologies (LTTA) Centre, Department of Translational Medicine, University of Ferrara, Ferrara, Italy.,Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, Rome, Italy
| |
Collapse
|
23
|
Wadowski PP, Löffler-Stastka H, Koppensteiner R. Pathological Effects and Adverse Events Associated with the Phenylethylamine Derivative NBOMe. HANDBOOK OF SUBSTANCE MISUSE AND ADDICTIONS 2022:3015-3029. [DOI: 10.1007/978-3-030-92392-1_165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
da Cunha KF, Oliveira KD, Cardoso MS, Arantes ACF, Coser PHP, Lima LDN, Maluf ACS, Comis MADC, Huestis MA, Costa JL. Prevalence of new psychoactive substances (NPS) in Brazil based on oral fluid analysis of samples collected at electronic music festivals and parties. Drug Alcohol Depend 2021; 227:108962. [PMID: 34461412 DOI: 10.1016/j.drugalcdep.2021.108962] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/15/2021] [Accepted: 07/10/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND New psychoactive substances (NPS) use is a worldwide public health issue. Knowing the prevalence of NPS guides public health and legal policies to address the problem. The objective of this study was to identify NPS in Brazil through the analysis of oral fluid (OF) samples collected at parties and electronic music festivals. METHODS Anonymous questionnaires and oral fluid samples were collected from volunteers (≥18 years) who reported the consumption of at least one illicit psychoactive substance in the last 24 h. Oral fluid sample collections occurred at eleven parties and two electronic music festivals over 16 months (2018-2020). Questionnaire answers were matched to oral fluid toxicological results. RESULTS Of 462 oral fluid samples, 39.2 % were positive for at least one NPS by liquid chromatography‒tandem mass spectrometry (LC-MS/MS). The most prevalent NPS was ketamine (29.4 %), followed by methylone (6.1 %) and N-ethylpentylone (4.1 %); however, MDMA was the most commonly identified (88.5 %) illicit psychoactive substance. More than one drug was identified in 79.9 % of samples, with two (34.2 %) and three (23.4 %) substances most commonly observed. Only 5 % of volunteers reported recent NPS consumption. CONCLUSION MDMA is still the most common party and electronic music festival drug, although NPS were identified in more than one-third of oral fluid samples.
Collapse
Affiliation(s)
- Kelly Francisco da Cunha
- Campinas Poison Control Center, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil; Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil
| | - Karina Diniz Oliveira
- Campinas Poison Control Center, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil; Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil
| | - Marilia Santoro Cardoso
- Campinas Poison Control Center, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil; Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil
| | - Ana Carolina Furiozo Arantes
- Campinas Poison Control Center, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil; Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil
| | | | - Lucas de Noronha Lima
- Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil
| | - Ana Cristhina Sampaio Maluf
- Campinas Poison Control Center, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil; Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil; ResPire Harm Reduction Project, Centro de Convivência É de Lei, São Paulo, SP, 01019-020, Brazil
| | | | - Marilyn A Huestis
- Institute of Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jose Luiz Costa
- Campinas Poison Control Center, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil; Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083-859, Brazil.
| |
Collapse
|
25
|
Kleis J, Hess C, Germerott T, Roehrich J. Sensitive Screening of New Psychoactive Substances in Serum Using Liquid-Chromatography Quadrupole Time-of-Flight Mass Spectrometry. J Anal Toxicol 2021; 46:592-599. [PMID: 34125215 DOI: 10.1093/jat/bkab072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 01/18/2023] Open
Abstract
Analysis of new psychoactive substances (NPS) still pose a challenge for many institutions due to the number of available substances and the constantly changing drug market. Both new and well-known substances keep appearing and disappearing on the market, making it hard to adapt analytical methods in a timely manner. In this study we developed a qualitative screening approach for serum samples by means of liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Samples were measured in data-dependent auto-MS/MS mode and identified by fragment spectra comparison, retention time and accurate mass. Approximately 500 NPS, including 195 synthetic cannabinoids, 180 stimulants, 86 hallucinogens, 26 benzodiazepines and 7 others were investigated. Serum samples were fortified to 1 ng/mL and 10 ng/mL concentrations to estimate approximate limits of identification. Samples were extracted using solid-phase extraction with non-endcapped C18 material and elution in two consecutive steps. Benzodiazepines were eluted in the first step, while substances of other NPS subclasses were distributed among both extracts. To determine limits of identification, both extracts were combined. 96 % (470/492) of investigated NPS were detected in 10 ng/mL samples and 88 % (432/492) were detected in 1 ng/mL samples. Stimulants stood out with higher limits of identification, possibly due to instability of certain methcathinone derivatives. However, considering relevant blood concentrations, the method provided sufficient sensitivity for stimulants as well as other NPS subclasses. Data-dependent acquisition was proven to provide high sensitivity and reliability when combined with an information-dependent preferred list, without losing its untargeted operation principle. Summarizing, the developed method fulfilled its purpose as a sensitive untargeted screening for serum samples and allows uncomplicated expansion of the spectral library to include thousands of targets.
Collapse
Affiliation(s)
- J Kleis
- Institute of Forensic Medicine, Forensic Toxicology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - C Hess
- Institute of Forensic Medicine, Forensic Toxicology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - T Germerott
- Institute of Forensic Medicine, Forensic Toxicology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - J Roehrich
- Institute of Forensic Medicine, Forensic Toxicology, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
26
|
Pope JD, Black MJ, Drummer OH, Schneider HG. Urine toxicology screening by liquid chromatography time-of-flight mass spectrometry in a quaternary hospital setting. Clin Biochem 2021; 95:66-72. [PMID: 33989561 DOI: 10.1016/j.clinbiochem.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Validation of a non-targeted method for urine drug screening (UDS) by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF), and comparison to an established GC-MS method in a hospital setting. METHODS 217 UDS specimens sent to a quaternary hospital pathology department, were analysed by a CEDIA® immunoassay screen (six drug panels; amphetamines, barbiturates, benzodiazepines, cocaine metabolites, cannabinoids and opiates) on an Abbott Architect instrument. Specimens were subsequently analysed by an established non-targeted qualitative GC-MS method and results compared with a general unknown screening method by LC-QTOF that was under evaluation as a replacement method. RESULTS 42 selected drugs were evaluated; limits of identification ranged from 2 to 100 µg/L and most drugs (n = 39) were stabile for 24 h after preparation. Matrix effects greater than 25% were observed in seven of the selected drugs. 87% of the specimens tested positive to 1 or more drug panels in a CEDIA® screen. A total of 537 positive drug findings were identified by GC-MS compared to 1,267 positive findings by LC-QTOF. On average, each GC-MS screen identified 2.5 ± 1.8 drugs and the LC-QTOF screen identified 5.8 ± 3.2 drugs. No drugs were identified in 11.3% of the GC-MS screens, whereas drugs were detected in 99% of these by the LC-QTOF. In almost all instances, the LC-QTOF screen could provide mass spectrometric confirmatory results of positive immunoassay screens and was able to identify a wider range of additional drugs and drug metabolites. CONCLUSIONS The described general unknown screening (non-targeted, qualitative) LC-QTOF method can detect a larger range of drugs encountered in a hospital setting. The method has been shown to be suitable for comprehensive toxicology screening in a clinical toxicology laboratory.
Collapse
Affiliation(s)
- Jeffrey D Pope
- Clinical Biochemistry, Alfred Health, 55 Commercial Rd, Melbourne 3004, Australia; School of Public Health and Preventative Medicine, Commercial Rd, Melbourne 3004, Monash University, Australia.
| | - Marion J Black
- Clinical Biochemistry, Alfred Health, 55 Commercial Rd, Melbourne 3004, Australia
| | - Olaf H Drummer
- School of Public Health and Preventative Medicine, Commercial Rd, Melbourne 3004, Monash University, Australia; Victorian Institute of Forensic Medicine, 65 Kavanagh St, Southbank 3006, Australia
| | - Hans G Schneider
- Clinical Biochemistry, Alfred Health, 55 Commercial Rd, Melbourne 3004, Australia; School of Public Health and Preventative Medicine, Commercial Rd, Melbourne 3004, Monash University, Australia
| |
Collapse
|
27
|
Kamińska K, Świt P, Malek K. 2-(4-Iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOME): A Harmful Hallucinogen Review. J Anal Toxicol 2021; 44:947-956. [PMID: 32128596 DOI: 10.1093/jat/bkaa022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
NBOMes are N-benzylmethoxy derivatives of the 2C family compounds with N-2-methoxybenzyl moiety substituted by the methoxy group at the 2- and 5-position and the halogen group at the 4-position of the phenyl ring. These substances are a new class of potent serotonin 5-HT2A receptor agonist hallucinogens with potential harmful effects. The substitution with halogen of the already psychoactive phenethylamine produces a derivative (2C-I) with increased hallucinogenic effects. This class of hallucinogens has chemical structures very similar to natural hallucinogenic alkaloid mescaline and these are sold mainly via internet as a 'legal' alternative to other hallucinogenic drug-lysergic acid diethylamide (LSD). 25I-NBOMe is the first synthesized and one of the most common compound from NBOMes. Knowledge of pharmacological properties of 25I-NBOMe is very limited so far. There are only a few in vivo and in vitro so far published studies. The behavioral experiments are mainly related with the hallucinogenic effect of 25I-NBOMe while the in vitro studies concerning mainly the affinity for 5-HT2A receptors. The 25I-NBOMe Critical Review 2016 reported 51 non-fatal intoxications and 21 deaths associated with 25I-NBOMe across Europe. Case reports describe various toxic effects of 25I-NBOMe usage including tachycardia, hypertension, hallucinations, rhabdomyolysis, acute kidney injury and death. The growing number of fatal and non-fatal intoxication cases indicates that 25I-NBOMe should be considered as a serious danger to public health. This review aims to present the current state of knowledge on pharmacological effects and chemical properties of 25I-NBOMe and to describe reported clinical cases and analytical methods available for identification of this agent in biological material.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University in Krakow, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Paweł Świt
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University in Krakow, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, Krakow 30-387, Poland
| |
Collapse
|
28
|
Álvarez-Alarcón N, Osorio-Méndez JJ, Ayala-Fajardo A, Garzón-Méndez WF, Garavito-Aguilar ZV. Zebrafish and Artemia salina in vivo evaluation of the recreational 25C-NBOMe drug demonstrates its high toxicity. Toxicol Rep 2021; 8:315-323. [PMID: 33598409 PMCID: PMC7868744 DOI: 10.1016/j.toxrep.2021.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/15/2022] Open
Abstract
The NBOMe (N-2-methoxybenzyl-phenethylamines) family of compounds are synthetic hallucinogens derived from the 2C series. Although this family of compounds has been responsible for multiple cases of acute toxicity and several deaths around the world, to date there are few studies. These compounds act as potent 5-HT2A receptor agonists, including the hallucinogen 25C-NBOMe (2-(4-chloro-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine). In this study, we first evaluated the toxicity of 25C-NBOMe in two animal models: Artemia salina and zebrafish using the lethality test of Meyer et al. (1982) modified for Artemia salina and the Fish Embryo Toxicity test (FET) for zebrafish (Danio rerio). Subsequently, we determined the behavioral and morphological effects using different concentrations of the 25C-NBOMe. As a result, we found that this substance is highly toxic according to lethality tests in both animal models. We also observe that this hallucinogen induces alterations in swimming and motility patterns in Artemia salina. Similarly, there were alterations in the motor response to a stimulus, as well as abnormal development in the zebrafish. The developmental effects of zebrafish suggest a teratogenic potential for 25C-NBOMe. Therefore, these findings are correlated with side effects, such as motor response abnormalities and muscle deterioration, clinically reported for consumers of this recreational drug. Finally, although recent studies are addressing the neurotoxicity and cardiotoxicity of 25C-NBOMe in cell cultures, to the best of our knowledge, this is the first in vivo report for 25C-NBOMe related to toxicological parameters and their global effects on development. Therefore, it could represent an advance in the study of the substance that contributes to the understanding of the effects on behavior and development in humans.
Collapse
Affiliation(s)
- Natalie Álvarez-Alarcón
- Laboratory of Developmental Biology, Department of Biological Sciences, Universidad de los Andes, Cra. 1 # 18A-12, Bloque A, Oficina 308, Bogotá D.C, 111711, Colombia
- Grupo de Investigación de Bioquímica y Biología Molecular, Facultad de Ciencias y Educación, Licenciatura en Química, Universidad Distrital Francisco José de Caldas, Cra. 4 # 26B-54, 5th Floor, Bogotá D.C., Colombia
| | - Jhon Jairo Osorio-Méndez
- Laboratory of Developmental Biology, Department of Biological Sciences, Universidad de los Andes, Cra. 1 # 18A-12, Bloque A, Oficina 308, Bogotá D.C, 111711, Colombia
- Grupo de Investigación de Bioquímica y Biología Molecular, Facultad de Ciencias y Educación, Licenciatura en Química, Universidad Distrital Francisco José de Caldas, Cra. 4 # 26B-54, 5th Floor, Bogotá D.C., Colombia
| | - Adis Ayala-Fajardo
- Grupo de Investigación de Bioquímica y Biología Molecular, Facultad de Ciencias y Educación, Licenciatura en Química, Universidad Distrital Francisco José de Caldas, Cra. 4 # 26B-54, 5th Floor, Bogotá D.C., Colombia
| | - William F. Garzón-Méndez
- Chemistry Group, Central-Level, Fiscalía General de la Nación, Diagonal 22B # 52-01, Building L, 3rd Floor, Bogotá D.C., Colombia
| | - Zayra V. Garavito-Aguilar
- Laboratory of Developmental Biology, Department of Biological Sciences, Universidad de los Andes, Cra. 1 # 18A-12, Bloque A, Oficina 308, Bogotá D.C, 111711, Colombia
| |
Collapse
|
29
|
de Barros WA, Silva MDM, Dantas MDDA, Santos JCC, Figueiredo IM, Chaves OA, Sant’Anna CMR, de Fátima Â. Recreational drugs 25I-NBOH and 25I-NBOMe bind to both Sudlow's sites I and II of human serum albumin (HSA): biophysical and molecular modeling studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj00806d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
25I-NBOH and 25I-NBOMe simultaneously bind to sites I and II of HSA, which may affect their distribution and effects.
Collapse
Affiliation(s)
- Wellington Alves de Barros
- Departamento de Química
- Instituto de Ciências Exatas
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | | | | | | | | | - Otávio Augusto Chaves
- Departamento de Química Fundamental
- Instituto de Química
- Universidade Federal Rural do Rio de Janeiro
- Seropédica
- Brazil
| | - Carlos Mauricio R. Sant’Anna
- Departamento de Química Fundamental
- Instituto de Química
- Universidade Federal Rural do Rio de Janeiro
- Seropédica
- Brazil
| | - Ângelo de Fátima
- Departamento de Química
- Instituto de Ciências Exatas
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| |
Collapse
|
30
|
Fattore L, Marti M, Mostallino R, Castelli MP. Sex and Gender Differences in the Effects of Novel Psychoactive Substances. Brain Sci 2020; 10:brainsci10090606. [PMID: 32899299 PMCID: PMC7564810 DOI: 10.3390/brainsci10090606] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Sex and gender deeply affect the subjective effects and pharmaco-toxicological responses to drugs. Men are more likely than women to use almost all types of illicit drugs and to present to emergency departments for serious or fatal intoxications. However, women are just as likely as men to develop substance use disorders, and may be more susceptible to craving and relapse. Clinical and preclinical studies have shown important differences between males and females after administration of “classic” drugs of abuse (e.g., Δ9-tetrahydrocannabinol (THC), morphine, cocaine). This scenario has become enormously complicated in the last decade with the overbearing appearance of the new psychoactive substances (NPS) that have emerged as alternatives to regulated drugs. To date, more than 900 NPS have been identified, and can be catalogued in different pharmacological categories including synthetic cannabinoids, synthetic stimulants (cathinones and amphetamine-like), hallucinogenic phenethylamines, synthetic opioids (fentanyls and non-fentanyls), new benzodiazepines and dissociative anesthetics (i.e., methoxetamine and phencyclidine-derivatives). This work collects the little knowledge reached so far on the effects of NPS in male and female animal and human subjects, highlighting how much sex and gender differences in the effects of NPS has yet to be studied and understood.
Collapse
Affiliation(s)
- Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council (CNR), Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
- Correspondence:
| | - Matteo Marti
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy;
- Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, 00187 Rome, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy; (R.M.); (M.P.C.)
| | - Maria Paola Castelli
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy; (R.M.); (M.P.C.)
- National Institute of Neuroscience (INN), University of Cagliari, 09124 Cagliari, Italy
- Center of Excellence “Neurobiology of Addiction”, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
31
|
Anjos DBMD, Ricardi AST, Fernandes CFB, Prado CC, Capitani EMD, Bucaretchi F. SEVERE ACUTE TOXIC EXPOSURES IN CHILDREN AND ADOLESCENTS: CASE SERIES. REVISTA PAULISTA DE PEDIATRIA 2020; 39:e2019262. [PMID: 32638947 PMCID: PMC7333941 DOI: 10.1590/1984-0462/2021/39/2019262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/11/2019] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To describe a case series of severe acute toxic exposures (SATE) in individuals <20 years old followed-up by a regional Poison Control Center (PCC). METHODS Descriptive cross-sectional study. All patients who were <20yo and classified as score 3 (severe) and 4 (fatal) following Poisoning Severity Score were included for analysis. According to the outcome, patients were classified as PSS 3 when they developed intense clinical manifestations with risk of death or important sequelae; and as PSS 4 when death had resulted from direct cause or complication of the initial exposure. The data of patients were obtained from the Brazilian electronic database system (DATATOX). RESULTS During the biennium 2014-2015, Campinas PCC followed up 5,095 patients <20yo, with 30 being classified as SATE (PSS=3, n=24; PSS=4, n=6). The exposures circumstances were unintentional (15); intentional (14; suicide attempt = 11; street drugs consumption = 3); and not explained (1). The exposures were significantly more frequent in adolescents >14yo (n=17; p<0.01). The involved agents were venomous animals (8; scorpions=5); medicines (8; miscellaneous=6); chemicals (6); illegal rodenticides containing acetylcholinesterase inhibitors (chumbinho, 4); drugs of abuse (3); button battery (1). Three patients evolved with sequels (esophageal stricture post-corrosive ingestion). The median length of hospital stay was 6 days (IQR: 5-12 days); 26 patients were treated in intensive care units, and 22 of them needed mechanical ventilation; 12, inotropic/vasopressors; and 3, renal replacement therapy. CONCLUSIONS Scorpion stings and poisonings caused by medicines and chemicals were the main causes of SATE. The SATE were significantly more frequent in adolescents, due to deliberate self-poisoning.
Collapse
|
32
|
Pottie E, Cannaert A, Stove CP. In vitro structure-activity relationship determination of 30 psychedelic new psychoactive substances by means of β-arrestin 2 recruitment to the serotonin 2A receptor. Arch Toxicol 2020; 94:3449-3460. [PMID: 32627074 DOI: 10.1007/s00204-020-02836-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Serotonergic psychedelics, substances exerting their effects primarily through the serotonin 2A receptor (5-HT2AR), continue to comprise a substantial portion of reported new psychoactive substances (NPS). The exact mechanisms of action of psychedelics still remain to be elucidated further, and certain pathways remain largely unexplored on a molecular level for this group of compounds. A systematic comparison of substances belonging to different subclasses, monitoring the receptor-proximal β-arrestin 2 recruitment, is lacking. Based on a previously reported in vitro bioassay employing functional complementation of a split nanoluciferase to monitor β-arrestin 2 recruitment to the 5-HT2AR, we here report on the setup of a stable HEK 293 T cell-based bioassay. Following verification of the performance of this new stable cell system as compared to a system based on transient transfection, the stable expression system was deemed suitable for the pharmacological characterization of psychedelic NPS. Subsequently, it was applied for the in vitro assessment of the structure-activity relationship of a set of 30 substances, representing different subclasses of phenylalkylamine psychedelics, among which 12 phenethylamine derivatives (2C-X), 7 phenylisopropylamines (DOx) and 11 N-benzylderivatives (25X-NB). The resulting potency and efficacy values provide insights into the structure-activity relationship of the tested compounds, overall confirm findings observed with other reported in vitro assays, and even show a significant correlation with estimated common doses. This approach, in which a large series of psychedelic NPS belonging to different subclasses is comparatively tested, using a same assay setup, monitoring a receptor-proximal event, not only gives pharmacological insights, but may also allow prioritization of legal actions related to the most potent -and potentially dangerous- compounds.
Collapse
Affiliation(s)
- Eline Pottie
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Campus Heymans, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
33
|
Triple quadrupole–mass spectrometry protocols for the analysis of NBOMes and NBOHs in blotter papers. Forensic Sci Int 2020; 309:110184. [DOI: 10.1016/j.forsciint.2020.110184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/16/2020] [Accepted: 02/03/2020] [Indexed: 01/30/2023]
|
34
|
Zawilska JB, Kacela M, Adamowicz P. NBOMes-Highly Potent and Toxic Alternatives of LSD. Front Neurosci 2020; 14:78. [PMID: 32174803 PMCID: PMC7054380 DOI: 10.3389/fnins.2020.00078] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/20/2020] [Indexed: 12/29/2022] Open
Abstract
Recently, a new class of psychedelic compounds named NBOMe (or 25X-NBOMe) has appeared on the illegal drug market. NBOMes are analogs of the 2C family of phenethylamine drugs, originally synthesized by Alexander Shulgin, that contain a N-(2-methoxy)benzyl substituent. The most frequently reported drugs from this group are 25I-NBOMe, 25B-NBOMe, and 25C-NBOMe. NBOMe compounds are ultrapotent and highly efficacious agonists of serotonin 5-HT2A and 5-HT2C receptors (Ki values in low nanomolar range) with more than 1000-fold selectivity for 5-HT2A compared with 5-HT1A. They display higher affinity for 5-HT2A receptors than their 2C counterparts and have markedly lower affinity, potency, and efficacy at the 5-HT2B receptor compared to 5-HT2A or 5-HT2C. The drugs are sold as blotter papers, or in powder, liquid, or tablet form, and they are administered sublingually/buccally, intravenously, via nasal insufflations, or by smoking. Since their introduction in the early 2010s, numerous reports have been published on clinical intoxications and fatalities resulting from the consumption of NBOMe compounds. Commonly observed adverse effects include visual and auditory hallucinations, confusion, anxiety, panic and fear, agitation, uncontrollable violent behavior, seizures, excited delirium, and sympathomimetic signs such mydriasis, tachycardia, hypertension, hyperthermia, and diaphoresis. Rhabdomyolysis, disseminated intravascular coagulation, hypoglycemia, metabolic acidosis, and multiorgan failure were also reported. This survey provides an updated overview of the pharmacological properties, pattern of use, metabolism, and desired effects associated with NBOMe use. Special emphasis is given to cases of non-fatal and lethal intoxication involving these compounds. As the analysis of NBOMes in biological materials can be challenging even for laboratories applying modern sensitive techniques, this paper also presents the analytical methods most commonly used for detection and identification of NBOMes and their metabolites.
Collapse
Affiliation(s)
- Jolanta B Zawilska
- Department of Pharmacodynamics, Medical University of Łódź, Łódź, Poland
| | - Monika Kacela
- Department of Pharmacodynamics, Medical University of Łódź, Łódź, Poland
| | - Piotr Adamowicz
- Department of Forensic Toxicology, Institute of Forensic Research, Kraków, Poland
| |
Collapse
|
35
|
Costa G, De Luca MA, Piras G, Marongiu J, Fattore L, Simola N. Neuronal and peripheral damages induced by synthetic psychoactive substances: an update of recent findings from human and animal studies. Neural Regen Res 2020; 15:802-816. [PMID: 31719240 PMCID: PMC6990793 DOI: 10.4103/1673-5374.268895] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Preclinical and clinical studies indicate that synthetic psychoactive substances, in addition to having abuse potential, may elicit toxic effects of varying severity at the peripheral and central levels. Nowadays, toxicity induced by synthetic psychoactive substances poses a serious harm for health, since recreational use of these substances is on the rise among young and adult people. The present review summarizes recent findings on the peripheral and central toxicity elicited by “old” and “new” synthetic psychoactive substances in humans and experimental animals, focusing on amphetamine derivatives, hallucinogen and dissociative drugs and synthetic cannabinoids.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| | - Gessica Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Liana Fattore
- National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| |
Collapse
|
36
|
Palamar JJ, Acosta P. A qualitative descriptive analysis of effects of psychedelic phenethylamines and tryptamines. Hum Psychopharmacol 2020; 35:e2719. [PMID: 31909513 PMCID: PMC6995261 DOI: 10.1002/hup.2719] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The number of novel psychedelic phenethylamines and tryptamines has continued to increase, but little academic research has focused on the effects of these substances. We sought to determine and compare the subjective effects of various substances. METHODS We conducted in-depth interviews with 39 adults (75.4% male and 87.2% White) who reported experience using psychedelic phenethylamines and/or tryptamines. Participants described the effects of compounds they have used. We examined the subjective drug effects in a qualitative descriptive manner. RESULTS Participants reported on the use of 36 compounds. The majority (64.1%) reported the use of 2C series drugs, with 2C-B use being most prevalent; 38.5% reported the use of NBOMe, and 25.6% reported the use of DOx. With regard to tryptamines, 46.2% reported use, and 4-AcO-DMT was the most prevalent drug used in this class. 2C-B was often described as being more favorable than other 2C series compounds with the effects described as being comparable with MDMA and LSD. NBOMe effects were generally described in an unfavorable manner, and the effects of DOx were often described as lasting too long (12-36 hr). The effects of 4-AcO-DMT were often described as mimicking psilocybin. CONCLUSION Knowing the effects of various compounds can inform education, prevention, and harm reduction efforts regarding the use of these drugs.
Collapse
Affiliation(s)
- Joseph J. Palamar
- Department of Population HealthNew York University School of Medicine New York New York
| | - Patricia Acosta
- Department of Population HealthNew York University School of Medicine New York New York
| |
Collapse
|
37
|
Miliano C, Marti M, Pintori N, Castelli MP, Tirri M, Arfè R, De Luca MA. Neurochemical and Behavioral Profiling in Male and Female Rats of the Psychedelic Agent 25I-NBOMe. Front Pharmacol 2019; 10:1406. [PMID: 31915427 PMCID: PMC6921684 DOI: 10.3389/fphar.2019.01406] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/05/2019] [Indexed: 11/13/2022] Open
Abstract
4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25I-NBOMe), commonly called “N-Bomb,” is a synthetic phenethylamine with psychedelic and entactogenic effects; it was available on the Internet both as a legal alternative to lysergic acid diethylamide (LSD) and as a surrogate of 3,4-methylenedioxy-methamphetamine (MDMA), but now it has been scheduled among controlled substances. 25I-NBOMe acts as full agonist on serotonergic 5-HT2A receptors. Users are often unaware of ingesting fake LSD, and several cases of intoxication and fatalities have been reported. In humans, overdoses of “N-Bomb” can cause tachycardia, hypertension, seizures, and agitation. Preclinical studies have not yet widely investigated the rewarding properties and behavioral effects of this compound in both sexes. Therefore, by in vivo microdialysis, we evaluated the effects of 25I-NBOMe on dopaminergic (DA) and serotonergic (5-HT) transmissions in the nucleus accumbens (NAc) shell and core, and the medial prefrontal cortex (mPFC) of male and female rats. Moreover, we investigated the effect of 25I-NBOMe on sensorimotor modifications as well as body temperature, nociception, and startle/prepulse inhibition (PPI). We showed that administration of 25I-NBOMe affects DA transmission in the NAc shell in both sexes, although showing different patterns; moreover, this compound causes impaired visual responses in both sexes, whereas core temperature is heavily affected in females, and the highest dose tested exerts an analgesic effect prominent in male rats. Indeed, this drug is able to impair the startle amplitude with the same extent in both sexes and inhibits the PPI in male and female rats. Our study fills the gap of knowledge on the behavioral effects of 25I-NBOMe and the risks associated with its ingestion; it focuses the attention on sex differences that might be useful to understand the trend of consumption as well as to recognize and treat intoxication and overdose symptoms.
Collapse
Affiliation(s)
- Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Matteo Marti
- National Institute of Neuroscience (INN), Universirty of Cagliari, Cagliari, Italy.,Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy.,Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Rome, Italy
| | - Nicholas Pintori
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,National Institute of Neuroscience (INN), Universirty of Cagliari, Cagliari, Italy
| | - Micaela Tirri
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Raffaella Arfè
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy.,Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,National Institute of Neuroscience (INN), Universirty of Cagliari, Cagliari, Italy
| |
Collapse
|
38
|
Wadowski PP, Giurgea GA, Schlager O, Luf A, Gremmel T, Hobl EL, Unterhumer S, Löffler-Stastka H, Koppensteiner R. Acute Limb Ischemia after Intake of the Phenylethylamine Derivate NBOMe. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:5071. [PMID: 31842318 PMCID: PMC6950699 DOI: 10.3390/ijerph16245071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Objective: N-(2-methoxy) benzyl-phenethylamine (NBOMe) derivatives have a high affinity to the serotonin receptor 2A and emerged as new psychedelic agents. We report the case of a 30-year-old man admitted to the hospital because of acute ischemia of the left arm with clinical symptoms of pallor, pulselessness, paresthesia, and a motoric deficit. The patient had a history of schizophrenia and drug abuse and disclosed during the hospital stay the sublingual intake of a substance bought as 25I-NBOMe the night before the ischemic event. Methods: Routine clinical diagnostics including among others color-coded duplex sonography and computed tomography angiography (CTA) were performed. The remainder of the drugs was analyzed using high performance liquid chromatography. Results: Initial color-coded duplex sonography of the upper left limb showed pathological flow profiles of the axillary, brachial, ulnar, and radial artery with a reduced diameter of the ulnar (0.9 mm) and radial (1.1 mm) artery. In consequence, peripheral vasospasm, distal arterial thrombosis, or arterial embolization was anticipated. As therapeutic measures, the patient immediately received intravenous systemic vasodilators (alprostadil) and therapeutic anticoagulation with low molecular weight heparin. Instant symptom improvement was observed within the first day after therapy initiation. The subsequently performed CTA of the heart and left arm showed no signs of thrombotic material. Treatment was continued for five days and the patient was released thereafter having completely normalized perfusion in his left arm. Outpatient treatment was continued with calcium-channel blockers, as the patient had also displayed arterial hypertension. Drug analysis retrieved a composition of the isomers 25I-NBOMe, 25C-NBOMe, and 25H-NBOMe as well as traces of pentylon. Conclusion: NBOMe ingestion implicates the risk of peripheral vasospasms with severe, limb-threatening ischemia.
Collapse
Affiliation(s)
- Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, A-1090 Vienna, Austria; (P.P.W.); (G.-A.G.); (O.S.); (T.G.)
| | - Georgiana-Aura Giurgea
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, A-1090 Vienna, Austria; (P.P.W.); (G.-A.G.); (O.S.); (T.G.)
| | - Oliver Schlager
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, A-1090 Vienna, Austria; (P.P.W.); (G.-A.G.); (O.S.); (T.G.)
| | - Anton Luf
- Department of Laboratory Medicine, Medical University of Vienna, A-1090 Vienna, Austria;
| | - Thomas Gremmel
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, A-1090 Vienna, Austria; (P.P.W.); (G.-A.G.); (O.S.); (T.G.)
| | - Eva-Luise Hobl
- Department of Clinical Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria;
| | - Sylvia Unterhumer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, A-1090 Vienna, Austria;
| | - Henriette Löffler-Stastka
- Department of Psychoanalysis and Psychotherapy, Medical University of Vienna, A-1090 Vienna, Austria;
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, A-1090 Vienna, Austria; (P.P.W.); (G.-A.G.); (O.S.); (T.G.)
| |
Collapse
|
39
|
A novel designer drug, 25N-NBOMe, exhibits abuse potential via the dopaminergic system in rodents. Brain Res Bull 2019; 152:19-26. [DOI: 10.1016/j.brainresbull.2019.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022]
|
40
|
Antagonists for serotonin receptors ameliorate rhabdomyolysis induced by 25D-NBOMe, a psychoactive designer drug. Forensic Toxicol 2019. [DOI: 10.1007/s11419-019-00495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
41
|
Higgins K, O’Neill N, O’Hara L, Jordan JA, McCann M, O’Neill T, Clarke M, O’Neill T, Campbell A. Evidence for public health on novel psychoactive substance use: a mixed-methods study. PUBLIC HEALTH RESEARCH 2019. [DOI: 10.3310/phr07140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background
Novel psychoactive substances (NPSs) contribute to the public health impact of substance misuse. This report provides research evidence addressing 11 research questions related to NPSs, covering types, patterns and settings of use; supply sources; and implications for policy and practice.
Methods
The study used a conceptually linked three-phase mixed-methods design with a shared conceptual framework based on multiple-context risk and protective factors. Phase 1 was a quantitative phase involving secondary data analysis of the longitudinal Belfast Youth Development Study (BYDS), a latent class analysis using the 2039 BYDS participants. Phase 2 was an extensive qualitative analysis via narrative interviews with participants, sampled from BYDS, drug/alcohol services and prisons, to explore NPS use trajectories. Phase 3 was the final quantitative phase; generalisability of the shared risk factor part of the model was tested using the manual three-step approach to examine risk factors associated with latent class membership. The quantitative and qualitative analyses were integrated, thus allowing emerging findings to be further explored.
Results
The data suggest that NPSs have a place within a range of polydrug use trajectories. Models showed no distinctive NPS class, with no clear evidence of differential risks for NPS use compared with the use of other substances. From the qualitative analysis, a taxonomy of groups was derived that explored how and where NPSs featured in a range of trajectories. This taxonomy was used to structure the analysis of factors linked to use within a risk and protective framework. Drivers for use were considered alongside knowledge, perceptions and experience of harms. Suggestions about how interventions could best respond to the various patterns of use – with special consideration of synthetic cannabinoids (SCs), including how they relate to the use of heroin and the potential for NPSs to operate as a ‘snare’ to more problem use – were also presented.
Limitations
The study was conducted during 2016/17; generalisability beyond this sample and time point is limited. The level of missing data for some of the BYDS analysis was a limitation, as was the fact that the BYDS data were collected in 2011, so in a different context from the data collected during the narrative interviews. The Psychoactive Substances Act 2016 (Great Britain. Psychoactive Substances Act 2016. London: The Stationery Office; 2016) came into force during qualitative fieldwork and, although not particularly influential in this study, may be influential in future work. It is acknowledged that many of the data related to SCs and mephedrone. Although drug use was measured by self-report, the strength of rapport within interviews, reflective diaries and methodological acceptability checks helped to mitigate self-report bias.
Conclusions
NPSs continue to present significant challenges for legislation and monitoring, researching and developing interventions. Understanding of usage patterns remains poor, with most information based on populations and settings where problems have already occurred. This research contributes to the evidence base by providing much needed further empirical data on the lived experiences of NPS users across a range of settings. In the light of these data, implications for policy and practice are discussed.
Future work
Future research must generate improved epidemiological data on the extent, patterns and motivations for use longitudinally. The uniqueness of the information concerning SC use points to a specific set of findings not evidenced in other literature (e.g. intensity of SC withdrawal). Future research should focus on the symbiotic link between SC and heroin use.
Funding
The National Institute for Health Research Public Health Research programme.
Collapse
Affiliation(s)
- Kathryn Higgins
- Centre for Evidence and Social Innovation, Queen’s University Belfast, Belfast, UK
- School of Social Sciences, Education and Social Work, Queen’s University Belfast, Belfast, UK
| | - Nina O’Neill
- Centre for Evidence and Social Innovation, Queen’s University Belfast, Belfast, UK
- School of Social Sciences, Education and Social Work, Queen’s University Belfast, Belfast, UK
| | - Leeanne O’Hara
- Centre for Evidence and Social Innovation, Queen’s University Belfast, Belfast, UK
- School of Social Sciences, Education and Social Work, Queen’s University Belfast, Belfast, UK
| | - Julie-Ann Jordan
- Centre for Evidence and Social Innovation, Queen’s University Belfast, Belfast, UK
- School of Social Sciences, Education and Social Work, Queen’s University Belfast, Belfast, UK
| | - Mark McCann
- MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, UK
| | - Tara O’Neill
- Centre for Evidence and Social Innovation, Queen’s University Belfast, Belfast, UK
- School of Psychology, Queen’s University Belfast, Belfast, UK
| | - Mike Clarke
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
| | - Tony O’Neill
- Centre for Evidence and Social Innovation, Queen’s University Belfast, Belfast, UK
- School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
| | - Anne Campbell
- Centre for Evidence and Social Innovation, Queen’s University Belfast, Belfast, UK
- School of Social Sciences, Education and Social Work, Queen’s University Belfast, Belfast, UK
| |
Collapse
|
42
|
Human biodistribution and radiation dosimetry of the 5-HT 2A receptor agonist Cimbi-36 labeled with carbon-11 in two positions. EJNMMI Res 2019; 9:71. [PMID: 31367837 PMCID: PMC6669221 DOI: 10.1186/s13550-019-0527-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/20/2019] [Indexed: 12/17/2022] Open
Abstract
Background Cimbi-36 can be 11C-labeled to form an agonist radioligand used for positron emission tomography (PET) imaging of the 5-HT2A receptor in the brain. In its non-labeled form (25B-NBOMe), it is used as a recreational drug that can lead to severe adverse effects, in some cases, with fatal outcome. We investigated human biodistribution and radiation dosimetry of the radioligand with two different radiolabeling positions. Seven healthy volunteers underwent dynamic 120-min whole-body PET scans (injection of 581 ± 16 MBq, n = 5 for 11C-Cimbi-36; 593 ± 14 MBq, n = 2 for 11C-Cimbi-36_5). Time-integrated activity coefficients (TIACs) from time-activity curves (TACs) of selected organs were used as input into the OLINDA/EXM software to obtain dosimetry information for both 11C-labeling positions of Cimbi-36. Results The effective dose was only slightly higher for 11C-Cimbi-36 (5.5 μSv/MBq) than for 11C-Cimbi-36_5 (5.3 μSv/MBq). Standard uptake value (SUV) curves showed higher uptake of 11C-Cimbi-36 in the pancreas, small intestines, liver, kidney, gallbladder, and urinary bladder compared with 11C-Cimbi-36_5, reflecting differences in radiometabolism for the two radioligands. Variability in uptake in excretory organs for 11C-Cimbi-36 points to inter-individual differences with regard to metabolic rate and route. Surprisingly, moderate uptake was found in brown adipose tissue (BAT) in four subjects, possibly representing specific 5-HT2A/2C receptor binding. Conclusion The low effective dose of 5.5 μSv/MBq allows for the injection of up to 1.8 GBq for healthy volunteers per study (equivalent to 3 scans if injecting 600 MBq) and still stay below the international guidelines of 10 mSv, making 11C-Cimbi-36 eligible for studies involving a series of PET scans in a single subject. The biodistribution of Cimbi-36 (and its metabolites) may also help to shed light on the toxic effects of 25B-NBOMe when used in pharmacological doses in recreational settings. Electronic supplementary material The online version of this article (10.1186/s13550-019-0527-4) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Chan S, Wu J, Lee B. Fatalities related to new psychoactive substances in Singapore-A case series. Forensic Sci Int 2019; 304:109892. [PMID: 31395407 DOI: 10.1016/j.forsciint.2019.109892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/28/2019] [Accepted: 07/04/2019] [Indexed: 11/15/2022]
Abstract
The use of New Psychoactive Substances (NPS) has become a serious global issue with increasing number of reports of their toxicities and fatalities. Likewise, in Singapore, the number of exhibits containing NPS detected had increased 80% from 2011 to 2014. This is a case series of the first four autopsy cases of fatalities due to or related to the use of NPS in Singapore. In one case, we present the first reported case of death due directly to ADB-FUBINACA toxicity (post-mortem blood concentration of 56ng/ml). Another case was due to 25B-NBOMe toxicity (post-mortem blood concentration of 10ng/ml) while the last two cases were deaths related to 5-Fluoro ADB, where the metabolites of the drug were detected.
Collapse
Affiliation(s)
- Shijia Chan
- Forensic Medicine Division, Health Sciences Authority, 11 Outram Rd, Singapore 169078, Singapore.
| | - Jiahao Wu
- Forensic Medicine Division, Health Sciences Authority, 11 Outram Rd, Singapore 169078, Singapore.
| | - Belinda Lee
- Forensic Medicine Division, Health Sciences Authority, 11 Outram Rd, Singapore 169078, Singapore.
| |
Collapse
|
44
|
Barsegyan SS, Kiryushin AN, Eroshchenko NN, Tuaeva NO, Nosyrev AE, Kirilyuk AA. [The detection of the 25B-NBOMe derivative of phenylethylamine in the biological material]. Sud Med Ekspert 2019; 62:34-39. [PMID: 31213590 DOI: 10.17116/sudmed20196202134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article is focused on the conditions for the detection and identification of 2-[4-bromo-2.5-dimethoxyl]-N-[(2-methoxyphenyl)methyl] ethamine (25B-NBOMe) and its major metabolites by the combination of the HPLC/MS/MS techniques. The high-resolution mass spectra obtained with the use of a linear ion trap are described. The results of the study give evidence of the possibility for the detection of the analytes within 24 hours after drug consumption and within 3 months after the storage of the biological material of interest in a refrigerator at a temperature of 3-5 °C. The data obtained confirmed high stability of 2-(4-bromo-2.5-dimethoxyl]-N-[(2-methoxyphenyl)methyl] ethamine and its metabolites in the biological tissues.
Collapse
Affiliation(s)
- S S Barsegyan
- Bureau of Forensic Medical Expertise, Moscow Health Department, Moscow, Russia, 115516
| | - A N Kiryushin
- Central Chemical Toxicological Laboratory, I.M. Sechenov First Moscow State Medical University, Moscow, Russia, 119435; Analytical Toxicology V.P. Serbskiy Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia, 119002
| | - N N Eroshchenko
- Central Chemical Toxicological Laboratory, I.M. Sechenov First Moscow State Medical University, Moscow, Russia, 119435; Analytical Toxicology V.P. Serbskiy Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia, 119002
| | - N O Tuaeva
- Central Chemical Toxicological Laboratory, I.M. Sechenov First Moscow State Medical University, Moscow, Russia, 119435
| | - A E Nosyrev
- Central Chemical Toxicological Laboratory, I.M. Sechenov First Moscow State Medical University, Moscow, Russia, 119435; Analytical Toxicology V.P. Serbskiy Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia, 119002
| | - A A Kirilyuk
- Laboratory of Metrological Support of Biological and Information Technologies, All-Russian Research Institute of Metrological Services, Moscow, Russia, 119361
| |
Collapse
|
45
|
NBOMe compounds: An overview about analytical methodologies aiming their determination in biological matrices. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.02.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
New Psychoactive Substances (NPS), Psychedelic Experiences and Dissociation: Clinical and Clinical Pharmacological Issues. CURRENT ADDICTION REPORTS 2019. [DOI: 10.1007/s40429-019-00249-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Yu JS, Seo H, Kim GB, Hong J, Yoo HH. MS-Based Molecular Networking of Designer Drugs as an Approach for the Detection of Unknown Derivatives for Forensic and Doping Applications: A Case of NBOMe Derivatives. Anal Chem 2019; 91:5483-5488. [PMID: 30990678 DOI: 10.1021/acs.analchem.9b00294] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The NBOMe family is a group of new psychoactive substances (NPSs). In this study, the fragmentation patterns of NBOMe derivatives were analyzed using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS). The MS/MS spectral data was used to establish a molecular networking map for NBOMe derivatives. The fragmentation patterns of nine NBOMe derivatives were interpreted on the basis of their product ion spectral data. NBOMe derivatives generally showed similar product ion spectral patterns; among them, the halogen-substituted methoxybenzyl ethanamine type derivatives showed a characteristic product ion of a radical cation. Molecular network analysis of the MS/MS data revealed that all NBOMe derivatives formed one integrated networking cluster that discriminated them from other types of NPSs. NBOMe derivatives were spiked into human urine and identified by connection to the NBOMe database network. Furthermore, the NBOMe compounds that were not registered in the database were also recognized as an NBOMe-related substance by molecular networking. These results demonstrate the potential of using molecular networking-based screening methods for designer drugs, and the proposed method would be useful in forensic or doping analysis.
Collapse
Affiliation(s)
- Jun Sang Yu
- Institute of Pharmaceutical Science and Technology and College of Pharmacy , Hanyang University , Ansan , Gyeonggi-do 15588 , Republic of Korea
| | - Hyewon Seo
- Pharmacological Research Division, Toxicological and Research Department , National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Cheongju , North Chungcheong 28159 , Republic of Korea
| | - Gi Beom Kim
- Institute of Pharmaceutical Science and Technology and College of Pharmacy , Hanyang University , Ansan , Gyeonggi-do 15588 , Republic of Korea
| | - Jin Hong
- Pharmacological Research Division, Toxicological and Research Department , National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Cheongju , North Chungcheong 28159 , Republic of Korea.,College of Pharmacy , Ewha Womans University , 11-1 Daehyun-dong , Seodaemun-gu 120750 , Republic of Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy , Hanyang University , Ansan , Gyeonggi-do 15588 , Republic of Korea
| |
Collapse
|
48
|
Herian M, Wojtas A, Kamińska K, Świt P, Wach A, Gołembiowska K. Hallucinogen-Like Action of the Novel Designer Drug 25I-NBOMe and Its Effect on Cortical Neurotransmitters in Rats. Neurotox Res 2019; 36:91-100. [PMID: 30989482 PMCID: PMC6570696 DOI: 10.1007/s12640-019-00033-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 12/22/2022]
Abstract
NBOMes are N-benzylmethoxy derivatives of the 2C family hallucinogens. 4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25I-NBOMe) is one of the commonly used illicit drugs. It exhibits high binding affinity for 5-HT2A/C and 5-HT1A serotonin receptors. Activation of 5-HT2A receptor induces head-twitch response (HTR) in rodents, a behavioral marker of hallucinogen effect in humans. There is not much data on neurochemical properties of NBOMes. Therefore, we aimed to investigate the effect of 25I-NBOMe on extracellular level of dopamine (DA), serotonin (5-HT), and glutamate (GLU) in the rat frontal cortex, tissue contents of monoamines, and hallucinogenic activity in rats. The extracellular levels of DA, 5-HT, and GLU were studied using microdialysis in freely moving animals. The tissue contents of DA, 5-HT and their metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were determined in the rat frontal cortex. We also tested a drug-elicited HTR. 25I-NBOMe at doses 1, 3, and 10 mg/kg (sc) increased extracellular DA, 5-HT, and GLU levels, enhanced tissue content of 5-HT and 5-HIAA, but did not affect tissue level of DA and its metabolites. The compound exhibited an inverted U-shaped dose-response curve with respect to the effect on extracellular DA and 5-HT levels, but a U-shaped dose-response curve was observed for its effect on GLU release and HTR. The data from our study suggest that hallucinogenic activity of 25I-NBOMe seems to be related with the increase in extracellular GLU level-mediated via cortical 5-HT2A receptors. The influence of 25I-NBOMe on 5-HT2C and 5-HT1A receptors may modulate its effect on neurotransmitters and HTR.
Collapse
Affiliation(s)
- Monika Herian
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Adam Wojtas
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Katarzyna Kamińska
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Paweł Świt
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Anna Wach
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Krystyna Gołembiowska
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland.
| |
Collapse
|
49
|
25C-NBOMe, a Novel Designer Psychedelic, Induces Neurotoxicity 50 Times More Potent Than Methamphetamine In Vitro. Neurotox Res 2019; 35:993-998. [PMID: 30806983 DOI: 10.1007/s12640-019-0012-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/16/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
25C-NBOMe is a designer substituted phenethylamine and a high-potency psychedelic that acts on the 5-HT2A receptor. Although 25C-NBOMe overdoses have been related to several deaths in the USA and Europe, very limited data exists on the in vitro neurotoxicity of 25C-NBOMe. In this study, we found that 25C-NBOMe potently reduced cell viability of SH-SY5Y, PC12, and SN4741 cells, with IC50 values of 89, 78, and 62 μM, respectively. Methamphetamine decreased the cell viability of these cells with IC50 values at millimolar range in the same tests, indicating that 25C-NBOMe is > 50 times more potent than methamphetamine in its ability to reduce viability of SH-SY5Y cells. The neurotoxicity of 25C-NBOMe on SH-SY5Y cells was further confirmed by using fluorescein diacetate/propidium iodide double staining. 25C-NBOMe elevated the expression of phosphorylated extracellular signal-regulated kinase (pERK), but decreased the expression of phosphorylated Akt and phosphorylated Ser9- glycogen synthase kinase 3β (GSK3β) in time- and concentration-dependent manners. Interestingly, either specific GSK3β inhibitors or specific mitogen-activated protein kinase kinase (MEK) inhibitors significantly prevented 25C-NBOMe-induced neurotoxicity in SH-SY5Y cells. These results suggest that 25C-NBOMe unexpectedly produced more potent neurotoxicity than methamphetamine and that the inhibition of the Akt pathway and activation of the ERK cascade might be involved in 25C-NBOMe-induced neurotoxicity. Most importantly, these findings further inform the toxicity of 25C-NBOMe abuse to the central nervous system for public health.
Collapse
|
50
|
Jeon SY, Kim YH, Kim SJ, Suh SK, Cha HJ. Abuse potential of 2-(4-iodo-2, 5-dimethoxyphenyl)N-(2-methoxybenzyl)ethanamine (25INBOMe); in vivo and ex vivo approaches. Neurochem Int 2019; 125:74-81. [PMID: 30769030 DOI: 10.1016/j.neuint.2019.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/10/2019] [Accepted: 02/12/2019] [Indexed: 01/08/2023]
Abstract
25INBOMe ("25-I", "N-Bomb"), one of new psychoactive substances (NPSs), is being abused for recreational purpose. However, the liability for abuse or dependence has not been systematically studied yet. The objective of the present study was to evaluate rewarding and reinforcing effects of 25INBOMe using conditioned place preference (CPP) and self-administration (SA) paradigms. In addition, ultrasonic vocalizations (USVs) were measured to investigate relationships between USVs and emotional state regarding dependence on psychoactive substances. To understand molecular mechanism involved in its action, dopamine (DA) level changes were analyzed using synaptosomes extracted from the striatal region of the brain. Expression level changes of SGK1 (serum/glucocorticoid regulated kinase 1) and PER2 (period circadian protein homolog 2), two putative biomarkers for drug dependence, were also analyzed. Results showed that 25INBOMe increased both CPP (0.3 mg/kg) and SA (0.03 mg/kg/infusion) and produced higher frequencies in USVs analysis. It also increased DA levels in the striatal region and changed expression levels of SGK1 and PER2. Results of the present study suggest that 25INBOMe might produce rewarding and reinforcing effects, indicating its dependence liability. In addition, frequencies of USV might be associated with emotional state of mice induced by psychoactive substances regarding substance dependence. This is the first systemic preclinical report on the dependence liability of 25INBOMe and the first attempt to introduce a possible relationship between USVs and emotional state of mice regarding substance dependency. Further studies are needed to clarify the mechanism involved in 25INBOMe dependency and determine the usefulness of USV measurement as a method for evaluating dependence liability.
Collapse
Affiliation(s)
- Seo Young Jeon
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea
| | - Young-Hoon Kim
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea
| | - Sung Jin Kim
- Cosmetics Policy Division, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea
| | - Soo Kyung Suh
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea
| | - Hye Jin Cha
- National Institute of Drug and Safety Evaluation, Ministry of Food and Drug Safety, Osong, Cheongju, Republic of Korea.
| |
Collapse
|