1
|
Lu GF, Yang X, Xiao Z, Huang JZ, Jiang YH, Huang MQ, Geng F. Prefrontal TNRC6A mediates anxiety-like behaviour by regulating CRF through the maintenance of miR-21-3p stability. Neuropharmacology 2025; 262:110194. [PMID: 39424169 DOI: 10.1016/j.neuropharm.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Anxiety is an emotional response to a potential threat. It is characterized by worry, feelings of tension, and physical changes. Trinucleotide repeat containing adaptor 6A (TNRC6A) binds to argonaute (AGO) proteins and microRNAs to form the miRNA-induced silencing complex (miRISC), which mediates mRNA degradation, storage, and translational repression functions. However, whether TNRC6A is involved in anxiety regulation remains unknown. In this study, TNRC6A was downregulated in the prefrontal cortex (PFC) of mice exposed to acute restraint stress. Inhibition of TNRC6A in PFC induced anxious behaviour. RNA immunoprecipitation, RNA pull-down and real-time quantitative PCR revealed that TNRC6A directly binds to miR-21-3p and maintains its stability. Intriguingly, miR-21-3p was downregulated in the PFC of acute stress mice, whereas overexpression of miR-21-3p significantly reduced anxiety-like behaviour. Furthermore, miR-21-3p knockdown significantly increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) in the PFC pyramidal neurons. Dual luciferase assay and western blotting confirmed that miR-21-3p binds to the 3 'UTR region of corticotropin-releasing factor (CRF) mRNA and regulates CRF and cAMP-response element binding protein (CREB) expression. These results confirm that low levels of TNRC6A in the PFC decrease the stability of miR-21-3p which promotes the up-regulation of CRF, leading to the development of anxiety-like behaviours. This research provides insight into a novel molecular mechanism by which TNRC6A regulates anxiety behaviour through the miR-21-3p/CRF signalling axis.
Collapse
Affiliation(s)
- Gui-Feng Lu
- Department of Pathophysiology, Shantou University Medical College, Shantou, 515041, China
| | - Xin Yang
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi Xiao
- Department of Physiology, Zunyi Medical University, Zunyi, 563000, China
| | - Jia-Zhan Huang
- Department of Physiology, Shantou University Medical College, Shantou, 515041, China
| | - Yi-Han Jiang
- Department of Physiology, Shantou University Medical College, Shantou, 515041, China
| | - Meng-Qi Huang
- Department of Physiology, Shantou University Medical College, Shantou, 515041, China
| | - Fei Geng
- Department of Physiology, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
2
|
Ma J, Lin Y, Xiong W, Liu X, Pan M, Sun J, Sun Y, Li Y, Guo H, Pang G, Wang X, Ren F. The microRNA-29ab1/Zfp36/AR Axis in the Hypothalamus Regulates Male-Typical Behaviors in Mice. Int J Mol Sci 2024; 25:13089. [PMID: 39684798 DOI: 10.3390/ijms252313089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Male-typical behaviors such as aggression and mating, which reflect sexual libido in male mice, are regulated by the hypothalamus, a crucial part of the nervous system. Previous studies have demonstrated that microRNAs (miRNAs), especially miR-29, play a vital role in reproduction and the neural control of behaviors. However, it remains unclear whether miR-29 affects reproduction through the hypothalamus-mediated regulation of male-typical behaviors. Here, we constructed two mouse knockout models by ablating either the miR-29ab1 or miR-29b2c cluster. Compared to WT, the ablation of miR-29ab1 in male mice significantly reduced the incidence of aggression by 60% and the incidence of mating by 46.15%. Furthermore, the loss of miR-29ab1 in male mice led to the downregulation of androgen receptor (AR) in the ventromedial hypothalamus. Transcriptomic analysis of the hypothalamus of miR-29ab1-deficient mice revealed inflammatory activation and aberrant expression of genes associated with male-typical behaviors, including Ar, Pgr, Htr4, and Htr2c. Using bioinformatics analysis and dual-luciferase reporter assays, we identified zinc finger protein 36 (Zfp36) as a direct downstream target gene of miR-29ab1. We subsequently showed that ZFP36 colocalized with AR in GT1-7 cells. Furthermore, inhibition of Zfp36 or RelB in GT1-7 cells led to an increase in AR expression. Collectively, our results demonstrate that the miR-29ab1/Zfp36/AR axis in the hypothalamus plays a pivotal role in the regulation of aggression and mating in male mice, providing a potential therapeutic target for treating infertility caused by low libido.
Collapse
Affiliation(s)
- Jie Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Wei Xiong
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xiaoxue Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Minghui Pan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jiazeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Huiyuan Guo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Guofang Pang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Lee SE, Park SH, Aldrich JC, Fonken LK, Gaudet AD. Anxiety-Like Behaviors in Mice Unmasked: Revealing Sex Differences in Anxiety Using a Novel Light-Heat Conflict Test. J Neurosci Res 2024; 102:e70002. [PMID: 39654136 PMCID: PMC11637159 DOI: 10.1002/jnr.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 10/02/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Anxiety and chronic pain afflict hundreds of millions worldwide. Anxiety and pain are more prevalent in females compared to males. Unfortunately, robust sex differences in human anxiety are not recapitulated in rodent tests, and results from rodent pain studies frequently fail to translate clinically. Therefore, there is a need to develop tests that reflect the differential salience of anxiety or pain-related stimuli between the sexes. Accordingly, here we introduce the Thermal Increments Dark-Light (TIDAL) conflict test. The TIDAL test places an anxiety-relevant stimulus (dark vs. illuminated chamber) in conflict with a heat-related stimulus (incrementally heated vs. isothermic chamber); mice freely explore both apparatus chambers. Here, we aim to determine whether the TIDAL conflict test reveals in mice underappreciated sex differences in anxiety and/or heat sensitivity. We establish in four distinct experiments that females on the TIDAL conflict test persist substantially longer on the dark-heated plate, suggesting that female mice exhibit elevated anxiety-like behavior. Mice more strongly prefer the heated-dark plate on the TIDAL conflict test compared to control thermal place preference with both chambers illuminated. We also reveal that an anxiety-relieving drug, paroxetine, reduces mouse preference for the heating dark plate, supporting the validity of the TIDAL test. Therefore, our new TIDAL conflict test reliably unmasks the relative salience of anxiety (vs. heat sensitivity): mice that are female exhibit robust anxiety-like behaviors not consistently observed in classical tests. Future studies should incorporate TIDAL and other conflict tests to better understand rodent behavior and to identify mechanisms underlying anxiety and pain.
Collapse
Affiliation(s)
- Sydney E Lee
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, Austin, Texas, USA
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Sung-Hoon Park
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, Austin, Texas, USA
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - John C Aldrich
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, Austin, Texas, USA
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, Austin, Texas, USA
| | - Andrew D Gaudet
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, Austin, Texas, USA
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
4
|
Solich J, Kolasa M, Faron-Górecka A, Pabian P, Latocha K, Korlatowicz A, Dziedzicka-Wasylewska M. Modulating Stress Susceptibility and Resilience: Insights from miRNA Manipulation and Neural Mechanisms in Mice. Mol Neurobiol 2024; 61:6135-6147. [PMID: 38280111 DOI: 10.1007/s12035-024-03922-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
This study explored the impact of microRNAs, specifically mmu-miR-1a-3p and mmu-miR-155-5p, on stress susceptibility and resilience in mice of different strains. Previous research had established that C57BL/6J mice were stress-susceptible, while NET-KO and SWR/J mice displayed stress resilience. These strains also exhibited variations in the serum levels of mmu-miR-1a-3p and mmu-miR-155-5p. To investigate this further, we administered antagonistic sequences (Antagomirs) targeting these microRNAs to C57/BL/6J mice and their analogs (Agomirs) to NET-KO and SWR/J mice via intracerebroventricular (i.c.v) injection. The impact of this treatment was assessed using the forced swim test. The results showed that the stress-susceptible C57/BL/6J mice could be transformed into a stress-resilient phenotype through infusion of Antagomirs. Conversely, stress-resilient mice displayed altered behavior when treated with Ago-mmu-miR-1a-3p. The study also examined the expression of mmu-miR-1a-3p in various brain regions, revealing that changes in its expression in the cerebellum (CER) were associated with the stress response. In vitro experiments with the Neuro2a cell line indicated that the Antago/Ago-miR-1a-3p and Antago/Ago-miR-155-5p treatments affected mRNAs encoding genes related to cAMP and Ca2+ signaling, diacylglycerol kinases, and phosphodiesterases. The expression changes of genes such as Dgkq, Bdnf, Ntrk2, and Pde4b in the mouse cerebellum suggested a link between cerebellar function, synaptic plasticity, and the differential stress responses observed in susceptible and resilient mice. In summary, this research highlights the role of mmu-miR-1a-3p and mmu-miR-155-5p in regulating stress susceptibility and resilience in mice and suggests a connection between these microRNAs, cerebellar function, and synaptic plasticity in the context of stress response.
Collapse
Affiliation(s)
- J Solich
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland.
| | - M Kolasa
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - A Faron-Górecka
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - P Pabian
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - K Latocha
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - A Korlatowicz
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| | - M Dziedzicka-Wasylewska
- Maj Institute of Pharmacology Polish Academy of Sciences, Smętna Street 12, 31-343, Kraków, Poland
| |
Collapse
|
5
|
Jia C, Gill WD, Lovins C, Brown RW, Hagg T. Astrocyte focal adhesion kinase reduces passive stress coping by inhibiting ciliary neurotrophic factor only in female mice. Neurobiol Stress 2024; 30:100621. [PMID: 38516563 PMCID: PMC10955429 DOI: 10.1016/j.ynstr.2024.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Astrocytes have been implicated in stress responses and produce ciliary neurotrophic factor (CNTF), which we have shown in the mouse medial amygdala (MeA) to promote passive stress coping response only in females. Pharmacological inhibition of focal adhesion kinase (FAK) upregulates CNTF expression. Here, we found that inducible knockout of FAK in astrocytes or systemic treatment with an FAK inhibitor increased passive coping behavior, i.e., immobility, in an acute forced swim stress test in female, but not male, mice. Strikingly, four weeks of chronic unpredictable stress (CUS) did not further increase passive coping in female astrocytic FAK knockout mice, whereas it exacerbated it in female wildtype mice and male mice of both genotypes. These data suggest that astrocyte FAK inhibition is required for chronic stress-induced passive coping in females. Indeed, CUS reduced phospho-FAK and increased CNTF in the female MeA. Progesterone treatment after ovariectomy activated amygdala FAK and alleviated ovariectomy-induced passive coping in wildtype, but not astrocytic FAK knockout females. This suggests that progesterone-mediated activation of FAK in astrocytes reduces female stress responses. Finally, astrocytic FAK knockout or FAK inhibitor treatment increased CNTF expression in the MeA of both sexes, although not in the hippocampus. As mentioned, MeA CNTF promotes stress responses only in females, which may explain the female-specific role of astrocytic FAK inhibition. Together, this study reveals a novel female-specific progesterone-astrocytic FAK pathway that counteracts CNTF-mediated stress responses and points to opportunities for developing treatments for stress-related disorders in women.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - W. Drew Gill
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Chiharu Lovins
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | | | | |
Collapse
|
6
|
Gundacker A, Glat M, Wais J, Stoehrmann P, Pollak A, Pollak DD. Early-life iron deficiency persistently disrupts affective behaviour in mice. Ann Med 2023; 55:1265-1277. [PMID: 37096819 PMCID: PMC10132221 DOI: 10.1080/07853890.2023.2191003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/09/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND/OBJECTIVE Iron deficiency (ID) is the most common nutrient deficiency, affecting two billion people worldwide, including about 30% of pregnant women. During gestation, the brain is particularly vulnerable to environmental insults, which can irrevocably impair critical developmental processes. Consequently, detrimental consequences of early-life ID for offspring brain structure and function have been described. Although early life ID has been associated with an increased long-term risk for several neuropsychiatric disorders, the effect on depressive disorders has remained unresolved. MATERIALS AND METHODS A mouse model of moderate foetal and neonatal ID was established by keeping pregnant dams on an iron-deficient diet throughout gestation until postnatal day 10. The ensuing significant decrease of iron content in the offspring brain, as well as the impact on maternal behaviour and offspring vocalization was determined in the first postnatal week. The consequences of early-life ID for depression- and anxiety-like behaviour in adulthood were revealed employing dedicated behavioural assays. miRNA sequencing of hippocampal tissue of offspring revealed specific miRNAs signatures accompanying the behavioural deficits of foetal and neonatal ID in the adult brain. RESULTS Mothers receiving iron-deficient food during pregnancy and lactation exhibited significantly less licking and grooming behaviour, while active pup retrieval and pup ultrasonic vocalizations were unaltered. Adult offspring with a history of foetal and neonatal ID showed an increase in depression- and anxiety-like behaviour, paralleled by a deranged miRNA expression profile in the hippocampus, specifically levels of miR200a and miR200b. CONCLUSION ID during the foetal and neonatal periods has life-long consequences for affective behaviour in mice and leaves a specific and persistent mark on the expression of miRNAs in the brain. Foetal and neonatal ID needs to be further considered as risk factor for the development of depression and anxiety disorders later in life.Key MessagesMarginal reduction of gestational alimentary iron intake decreases brain iron content of the juvenile offspring.Early-life ID is associated with increased depression- and anxiety-like behaviour in adulthood.Reduction of maternal alimentary iron intake during pregnancy is reflected in an alteration of miRNA signatures in the adult offspring brain.
Collapse
Affiliation(s)
- Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Micaela Glat
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jonathan Wais
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Peter Stoehrmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Arnold Pollak
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Daniela D. Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Brasher MS, Mize TJ, Thomas AL, Hoeffer CA, Ehringer MA, Evans LM. Testing associations between human anxiety and genes previously implicated by mouse anxiety models. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12851. [PMID: 37259642 PMCID: PMC10733569 DOI: 10.1111/gbb.12851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Anxiety disorders are common and can be debilitating, with effective treatments remaining hampered by an incomplete understanding of the underlying genetic etiology. Improvements have been made in understanding the genetic influences on mouse behavioral models of anxiety, yet it is unclear the extent to which genes identified in these experimental systems contribute to genetic variation in human anxiety phenotypes. Leveraging new and existing large-scale human genome-wide association studies, we tested whether sets of genes previously identified in mouse anxiety-like behavior studies contribute to a range of human anxiety disorders. When tested as individual genes, 13 mouse-identified genes were associated with human anxiety phenotypes, suggesting an overlap of individual genes contributing to both mouse models of anxiety-like behaviors and human anxiety traits. When genes were tested as sets, we did identify 14 significant associations between mouse gene sets and human anxiety, but the majority of gene sets showed no significant association with human anxiety phenotypes. These few significant associations indicate a need to identify and develop more translatable mouse models by identifying sets of genes that "match" between model systems and specific human phenotypes of interest. We suggest that continuing to develop improved behavioral paradigms and finer-scale experimental data, for instance from individual neuronal subtypes or cell-type-specific expression data, is likely to improve our understanding of the genetic etiology and underlying functional changes in anxiety disorders.
Collapse
Affiliation(s)
- Maizy S. Brasher
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
- Institute for Behavioral GeneticsBoulderColoradoUSA
| | - Travis J. Mize
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
- Institute for Behavioral GeneticsBoulderColoradoUSA
| | | | - Charles A. Hoeffer
- Institute for Behavioral GeneticsBoulderColoradoUSA
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Marissa A. Ehringer
- Institute for Behavioral GeneticsBoulderColoradoUSA
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Luke M. Evans
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
- Institute for Behavioral GeneticsBoulderColoradoUSA
| |
Collapse
|
8
|
Azargoonjahromi A. The role of epigenetics in anxiety disorders. Mol Biol Rep 2023; 50:9625-9636. [PMID: 37804465 DOI: 10.1007/s11033-023-08787-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/30/2023] [Indexed: 10/09/2023]
Abstract
Anxiety disorders (ADs) are extremely common psychiatric conditions that frequently co-occur with other physical and mental disorders. The pathophysiology of ADs is multifaceted and involves intricate connections among biological elements, environmental stimuli, and psychological mechanisms. Recent discoveries have highlighted the significance of epigenetics in bridging the gap between multiple risk factors that contribute to ADs and expanding our understanding of the pathomechanisms underlying ADs. Epigenetics is the study of how changes in the environment and behavior can have an impact on gene function. Indeed, researchers have found that epigenetic mechanisms can affect how genes are activated or inactivated, as well as whether they are expressed. Such mechanisms may also affect how ADs form and are protected. That is, the bulk of pharmacological trials evaluating epigenetic treatments for the treatment of ADs have used histone deacetylase inhibitors (HDACi), yielding promising outcomes in both preclinical and clinical studies. This review will provide an outline of how epigenetic pathways can be used to treat ADs or lessen their risk. It will also present the findings from preclinical and clinical trials that are currently available on the use of epigenetic drugs to treat ADs.
Collapse
|
9
|
Amini J, Beyer C, Zendedel A, Sanadgol N. MAPK Is a Mutual Pathway Targeted by Anxiety-Related miRNAs, and E2F5 Is a Putative Target for Anxiolytic miRNAs. Biomolecules 2023; 13:biom13030544. [PMID: 36979479 PMCID: PMC10046777 DOI: 10.3390/biom13030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Anxiety-related disorders (ARDs) are chronic neuropsychological diseases and the sixth leading cause of disability in the world. As dysregulation of microRNAs (miRs) are observed in the pathological course of neuropsychiatric disorders, the present study aimed to introduce miRs that underlie anxiety processing in the brain. First, we collected the experimentally confirmed anxiety-related miRNAs (ARmiRs), predicted their target transcripts, and introduced critical cellular pathways with key commune hub genes. As a result, we have found nine anxiolytic and ten anxiogenic ARmiRs. The anxiolytic miRs frequently target the mRNA of Acyl-CoA synthetase long-chain family member 4 (Acsl4), AFF4-AF4/FMR2 family member 4 (Aff4), and Krüppel like transcription factor 4 (Klf4) genes, where miR-34b-5p and miR-34c-5p interact with all of them. Moreover, the anxiogenic miRs frequently target the mRNA of nine genes; among them, only two miR (miR-142-5p and miR-218-5p) have no interaction with the mRNA of trinucleotide repeat-containing adaptor 6B (Tnrc6b), and miR-124-3p interacts with all of them where MAPK is the main signaling pathway affected by both anxiolytic and anxiogenic miR. In addition, the anxiolytic miR commonly target E2F transcription factor 5 (E2F5) in the TGF-β signaling pathway, and the anxiogenic miR commonly target Ataxin 1 (Atxn1), WASP-like actin nucleation promoting factor (Wasl), and Solute Carrier Family 17 Member 6 (Slc17a6) genes in the notch signaling, adherence junction, and synaptic vesicle cycle pathways, respectively. Taken together, we conclude that the most important anxiolytic (miR-34c, Let-7d, and miR-17) and anxiogenic (miR-19b, miR-92a, and 218) miR, as hub epigenetic modulators, potentially influence the pathophysiology of anxiety, primarily via interaction with the MAPK signaling pathway. Moreover, the role of E2F5 as a novel putative target for anxiolytic miRNAs in ARDs disorders deserves further exploration.
Collapse
Affiliation(s)
- Javad Amini
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 94149-75516, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
10
|
Li Q, Zhang J, Gao Z, Zhang Y, Gu J. Gut microbiota-induced microRNA-206-3p increases anxiety-like behaviors by inhibiting expression of Cited2 and STK39. Microb Pathog 2023; 176:106008. [PMID: 36736544 DOI: 10.1016/j.micpath.2023.106008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Anxiety disorder is highly prevalent worldwide and represents a chronic and functionally disabling condition, with high levels of psychological stress characterized by cognitive and physiological symptoms. The purpose of this study is to evaluate the clinical significance of gut microbiota regulating microRNA (miR)-206-3p as a biomarker in the anxiety-like behaviors. METHODS Initially, bioinformatics analysis was performed to predict the related factors for gut microbiota affecting anxiety-like behaviors. Next, the anxiety-like behaviors in mice were measured by multiple experiments. Western blot analysis, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) were utilized to measure the levels of 5-hydroxytryptamine (5-HT), brain derived neurotrophic factor (BDNF), and neutrophil expressed (NE) in brain tissues and serum and cAMP responsive element binding protein 1 (CREB) phosphorylation in brain tissues of germ-free (GF) mice. Dual-luciferase reporter gene assay was employed to verify the relationship between miR-206-3p and Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 2 (Cited2)/serine/threonine kinase 39 (STK39). Ectopic expression and depletion experiments of miR-206-3p were conducted to determine the expression of miR-206-3p and mRNA and protein levels of Cited2, and STK39 in HT22 cells and brain tissues. Finally, transmission electron microscope (TEM) was used to observe the effects of miR-206-3p on hippocampal mitochondria and synapses. RESULTS Gut microbiota could elevate miR-206-3p expression in brain tissues to increase the anxiety-like behaviors. GF mice displayed the increased levels of 5-HT, BDNF, and NE in brain tissues and serum and CREB phosphorylation in brain tissues. Cited2/STK39 was identified as the target genes of miR-206-3p. Upregulated miR-206-3p increased anxiety-like behaviors by promoting degeneration of mitochondria and synapses in hippocampus via downregulation of Cited2 and STK39. CONCLUSIONS In conclusion, the key findings of the current study demonstrate that gut microbiota aggravated anxiety-like behaviors via the miR-206-3p/Cited2/STK39 axis.
Collapse
Affiliation(s)
- Qian Li
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
| | - Jie Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Zhitao Gao
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Yujuan Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jingyang Gu
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| |
Collapse
|
11
|
Larosa A, Wong TP. The hippocampus in stress susceptibility and resilience: Reviewing molecular and functional markers. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110601. [PMID: 35842073 DOI: 10.1016/j.pnpbp.2022.110601] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
Understanding the individual variability that comes with the likelihood of developing stress-related psychopathologies is of paramount importance when addressing mechanisms of their neurobiology. This article focuses on the hippocampus as a region that is highly influenced by chronic stress exposure and that has strong ties to the development of related disorders, such as depression and post-traumatic stress disorder. We first outline three commonly used animal models that have been used to separate animals into susceptible and resilient cohorts. Next, we review molecular and functional hippocampal markers of susceptibility and resilience. We propose that the hippocampus plays a crucial role in the differences in the processing and storage of stress-related information in animals with different stress susceptibilities. These hippocampal markers not only help us attain a more comprehensive understanding of the various facets of stress-related pathophysiology, but also could be targeted for the development of new treatments.
Collapse
Affiliation(s)
- Amanda Larosa
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Dept. of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Hu Y, Liu F, Peng W, Song S, Zhang C, Meng X. Overexpression of miR-99a in hippocampus leads to impairment of reversal learning in mice. Behav Brain Res 2022; 416:113542. [PMID: 34425183 DOI: 10.1016/j.bbr.2021.113542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 08/05/2021] [Accepted: 08/19/2021] [Indexed: 11/28/2022]
Abstract
As one of the most common human genetic disorders, Down syndrome (DS) is characterized by a mild-to-moderate cognitive disability, which mainly results from genes overexpression on chromosome 21. The expression of miR-99a, a gene harboring on chromosome 21, is increased by 50 folds in DS brain samples. This study aims to investigate the effect of miR-99a overexpression in the hippocampus on mouse behaviors and explore the underlying mechanisms. Lentivirus vectors were delivered into the hippocampus for focal miR-99a overexpression in mice. Then behaviors were observed by an open field, elevated plus maze, rotarod motor test, and Morris water maze. The genes affected by miR-99a were identified by RNA sequencing (RNA-seq) and confirmed by quantitative RT-PCR (qRT-PCR) in samples isolated from the hippocampus injected with lentivirus-GFP-miR-99a or lentivirus-GFP vectors. It was found that the expression of miR-99a with intrahippocampal delivery of lentivirus-GFP-miR-99a resulted in reversal learning impairment in mice although it had no influence on motor function and anxiety. Meanwhile, RNA-seq results showed that 92 genes including mRNAs and microRNAs were significantly regulated by miR-99a, consistent with qRT-PCR consequence. Moreover, dual-luciferase reporter assay showed that miR-99a could directly bind to the 3'-untranslated regions (3'UTR) of target genes (Clic6 and Kcnj13) with an inhibitory effect on their activity. Furthermore, we also found that miR-99a overexpression affected different biological processes by bioinformatic analyses. Our study showed that miR-99a overexpression in the hippocampus leads to cognitive impairment through regulating the expressions of various genes, which reveals a novel function of miR-99a and provides new insights into understanding the pathophysiologic process of DS.
Collapse
Affiliation(s)
- Yue Hu
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenpeng Peng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuxin Song
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianfang Meng
- Department of Neurobiology, Institute of Brain Research, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
13
|
Female-specific role of ciliary neurotrophic factor in the medial amygdala in promoting stress responses. Neurobiol Stress 2022; 17:100435. [PMID: 35146079 PMCID: PMC8819478 DOI: 10.1016/j.ynstr.2022.100435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) is produced by astrocytes which have been implicated in regulating stress responses. We found that CNTF in the medial amygdala (MeA) promotes despair or passive coping, i.e., immobility in an acute forced swim stress, in female mice, while having no effect in males. Neutralizing CNTF antibody injected into the MeA of wildtype females reduced activation of downstream STAT3 (Y705) 24 and 48 h later. In concert, the antibody reduced immobility in the swim test in females and only after MeA injection, but not when injected in the central or basolateral amygdala. Antibody injected into the male MeA did not affect immobility. These data reveal a unique role of CNTF in female MeA in promoting despair or passive coping behavior. Moreover, 4 weeks of chronic unpredictable stress (CUS) increased immobility in the swim test and reduced sucrose preference in wildtype CNTF+/+, but not CNTF−/− littermate, females. Following CUS, 10 min of restraint stress increased plasma corticosterone levels only in CNTF+/+ females. In males, the CUS effects were present in both genotypes. Further, CUS increased CNTF expression in the MeA of female, but not male, mice. CUS did not alter CNTF in the female hippocampus, hypothalamus and bed nucleus of stria terminalis. This suggests that MeA CNTF has a female-specific role in promoting CUS-induced despair or passive coping, behavioral anhedonia and neuroendocrine responses. Compared to CNTF+/+ mice, CNTF−/− mice did not show differences in CUS-induced anxiety-like behavior and sensorimotor gating function as measured by elevated T-Maze, open field and pre-pulse inhibition of the acoustic startle response. Together, this study reveals a novel CNTF-mediated female-specific mechanism in stress responses and points to opportunities for developing treatments for stress-related disorders in women. CNTF in the MeA promotes despair or passive coping behavior in female mice only. Chronic stress upregulates CNTF in female but not male MeA. CNTF contributes to chronic stress-induced despair or passive coping, anhedonia and neuroendocrine responses in females only. CNTF does not affect anxiety-like behavior and sensorimotor gating function. These data reveal a novel CNTF-mediated female-specific mechanism in stress responses.
Collapse
|
14
|
Ortega MA, Alvarez-Mon MA, García-Montero C, Fraile-Martinez O, Lahera G, Monserrat J, Muñoz-Merida L, Mora F, Rodríguez-Jiménez R, Fernandez-Rojo S, Quintero J, Álvarez-Mon M. MicroRNAs as Critical Biomarkers of Major Depressive Disorder: A Comprehensive Perspective. Biomedicines 2021; 9:biomedicines9111659. [PMID: 34829888 PMCID: PMC8615526 DOI: 10.3390/biomedicines9111659] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022] Open
Abstract
Major Depressive Disorder (MDD) represents a major global health concern, a body-mind malady of rising prevalence worldwide nowadays. The complex network of mechanisms involved in MDD pathophysiology is subjected to epigenetic changes modulated by microRNAs (miRNAs). Serum free or vesicles loaded miRNAs have starred numerous publications, denoting a key role in cell-cell communication, systematically and in brain structure and neuronal morphogenesis, activity and plasticity. Upregulated or downregulated expression of these signaling molecules may imply the impairment of genes implicated in pathways of MDD etiopathogenesis (neuroinflammation, brain-derived neurotrophic factor (BDNF), neurotransmitters, hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, circadian rhythms...). In addition, these miRNAs could serve as potential biomarkers with diagnostic, prognostic and predictive value, allowing to classify severity of the disease or to make decisions in clinical management. They have been considered as promising therapy targets as well and may interfere with available antidepressant treatments. As epigenetic malleable regulators, we also conclude emphasizing lifestyle interventions with physical activity, mindfulness and diet, opening the door to new clinical management considerations.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
- Correspondence:
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis Muñoz-Merida
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
| | - Fernando Mora
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
- Institute for Health Research Hospital 12 de Octubre (imas 12), CIBERSAM, 28041 Madrid, Spain
| | - Sonia Fernandez-Rojo
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Javier Quintero
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
15
|
Gaudet AD, Fonken LK, Ayala MT, Maier SF, Watkins LR. Aging and miR-155 in mice influence survival and neuropathic pain after spinal cord injury. Brain Behav Immun 2021; 97:365-370. [PMID: 34284114 PMCID: PMC8453092 DOI: 10.1016/j.bbi.2021.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/18/2021] [Accepted: 07/03/2021] [Indexed: 12/24/2022] Open
Abstract
Spinal cord injury (SCI) elicits chronic pain in 65% of individuals. In addition, SCI afflicts an increasing number of aged individuals, and those with SCI are predisposed to shorter lifespan. Our group previously identified that deletion of the microRNA miR-155 reduced neuroinflammation and locomotor deficits after SCI. Here, we hypothesized that aged mice would be more susceptible to pain symptoms and death soon after SCI, and that miR-155 deletion would reduce pain symptoms in adult and aged mice and improve survival. Adult (2 month-old) and aged (20 month-old) female wildtype (WT) and miR-155 knockout (KO) mice received T9 contusion SCI. Aged WT mice displayed reduced survival and increased autotomy - a symptom of spontaneous pain. In contrast, aged miR-155 KO mice after SCI were less susceptible to death or spontaneous pain. Evoked pain symptoms were tested using heat (Hargreaves test) and mechanical (von Frey) stimuli. At baseline, aged mice showed heightened heat sensitivity. After SCI, adult and aged WT and miR-155 KO mice all exhibited heat and mechanical hypersensitivity at all timepoints. miR-155 deletion in adult (but not aged) mice reduced mechanical hypersensitivity at 7 and 14 d post-SCI. Therefore, aging predisposes mice to SCI-elicited spontaneous pain and expedited mortality. miR-155 deletion in adult mice reduces evoked pain symptoms, and miR-155 deletion in aged mice reduces spontaneous pain and expedited mortality post-SCI. This study highlights the importance of studying geriatric models of SCI, and that inflammatory mediators such as miR-155 are promising targets after SCI for improving pain relief and longevity.
Collapse
Affiliation(s)
- Andrew D Gaudet
- Department of Psychology, College of Liberal Arts, University of Texas at Austin, Austin, TX 78712, USA; Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA; Center for Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA.
| | - Laura K Fonken
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA; Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA; Center for Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA.
| | - Monica T Ayala
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA; Center for Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA.
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA; Center for Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA.
| | - Linda R Watkins
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA; Center for Neuroscience, University of Colorado Boulder, 2860 Wilderness Place, UCB 603, Boulder, CO 80301, USA.
| |
Collapse
|
16
|
Evaluation of miRNA as Biomarkers of Emotional Valence in Pigs. Animals (Basel) 2021; 11:ani11072054. [PMID: 34359180 PMCID: PMC8300371 DOI: 10.3390/ani11072054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary It is widely recognized that the assessment of animal welfare should include measures of positive emotional (affective) state. Existing behavioral and physiological indicators of a positive affective state frequently lack sensitivity, objectivity or are unsuitable in a production environment. Therefore, there is a need to develop new approaches to accurately and objectively measure a positive emotional state in animals, including novel molecular markers such a miRNA. These biomarkers must be measurable in the peripheral circulation and provide an accurate account of the physiological and molecular activity in regions of the brain associated with emotional processing. Further, such markers require validation against established behavioral and physiological indices. Here we investigated the efficacy of circulating miRNA as biomarkers of emotional state in the pig. Abstract The ability to assess the welfare of animals is dependent on our ability to accurately determine their emotional (affective) state, with particular emphasis being placed on the identification of positive emotions. The challenge remains that current physiological and behavioral indices are either unable to distinguish between positive and negative emotional states, or they are simply not suitable for a production environment. Therefore, the development of novel measures of animal emotion is a necessity. Here we investigated the efficacy of microRNA (miRNA) in the brain and blood as biomarkers of emotional state in the pig. Female Large White × Landrace pigs (n = 24) were selected at weaning and trained to perform a judgment bias test (JBT), before being exposed for 5 weeks to either enriched (n = 12) or barren housing (n = 12) conditions. Pigs were tested on the JBT once prior to treatment, and immediately following treatment. MiRNA and neurotransmitters were analyzed in blood and brain tissue after euthanasia. Treatment had no effect on the outcomes of the JBT. There was also no effect of treatment on miRNA expression in blood or the brain (FDR p > 0.05). However, pigs exposed to enriched housing had elevated dopamine within the striatum compared to pigs in barren housing (p = 0.02). The results imply that either (a) miRNAs are not likely to be valid biomarkers of a positive affective state, at least under the type of conditions employed in this study, or (b) that the study design used to modify affective state was not able to create differential affective states, and therefore establish the validity of miRNA as biomarkers.
Collapse
|
17
|
Choi JE, Borkowski K, Newman JW, Park Y. N-3 PUFA improved post-menopausal depression induced by maternal separation and chronic mild stress through serotonergic pathway in rats-effect associated with lipid mediators. J Nutr Biochem 2021; 91:108599. [PMID: 33548474 DOI: 10.1016/j.jnutbio.2021.108599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/26/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022]
Abstract
Early life maternal separation (MS) increases the vulnerability to depression in rats with chronic mild stress (CMS). N-3 polyunsaturated fatty acids (PUFA) improved depressive behaviors in rats with acute stress; however, their effects on rats with MS+CMS were not apparent. The purpose of the present study was to investigate the hypothesis that lifetime n-3 PUFA supplementation improves post-menopausal depression through the serotonergic and glutamatergic pathways while modulating n-3 PUFA-derived metabolites. Female rats were fed diets of either 0% n-3 PUFA during lifetime or 1% energy n-3 PUFA during pre-weaning, post-weaning, or lifetime periods. Rats were allocated to non-MS or MS groups and underwent CMS after ovariectomy. N-3 PUFA increased brain n-3 PUFA-derived endocannabinoid/oxylipin levels, and reversed depressive behaviors. N-3 PUFA decreased blood levels of adrenocorticotropic hormone and corticosterone, and brain expressions of corticotropin-releasing factor and miRNA-218, which increased the expression of the glucocorticoid receptor. N-3 PUFA decreased the expression of tumor necrosis factor-α, interleukin (IL)-6, IL-1β, and prostaglandin E2, while increased the expression of miRNA-155. N-3 PUFA also increased brainstem serotonin levels and hippocampal expression of the serotonin-1A receptor, cAMP response element-binding protein (CREB), phospho-CREB, and brain-derived neurotrophic factor. However, n-3 PUFA did not affect brain expression of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subtype 1, N-methyl-D-aspartate receptor subtype 2B, or miRNA-132. Moreover, n-3 PUFA exposure during lifetime caused greater effects than pre- and post-weaning periods. The present study suggested that n-3 PUFA improved depressive behaviors through serotonergic pathway while modulating the metabolites of n-3 PUFA in post-menopausal depressed rats with chronic stress.
Collapse
Affiliation(s)
- Jeong-Eun Choi
- Department of Food and Nutrition, Hanyang University, Seoul, South Korea
| | - Kamil Borkowski
- UC Davis Genome Center, University of California - Davis, Davis, California 95616, USA
| | - John W Newman
- UC Davis Genome Center, University of California - Davis, Davis, California 95616, USA; Department of Nutrition, University of California - Davis, Davis, California 95616, USA; Western Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Davis, California, USA
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, Seoul, South Korea.
| |
Collapse
|
18
|
Bortolozzi A, Manashirov S, Chen A, Artigas F. Oligonucleotides as therapeutic tools for brain disorders: Focus on major depressive disorder and Parkinson's disease. Pharmacol Ther 2021; 227:107873. [PMID: 33915178 DOI: 10.1016/j.pharmthera.2021.107873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/05/2021] [Indexed: 12/25/2022]
Abstract
Remarkable advances in understanding the role of RNA in health and disease have expanded considerably in the last decade. RNA is becoming an increasingly important target for therapeutic intervention; therefore, it is critical to develop strategies for therapeutic modulation of RNA function. Oligonucleotides, including antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA mimic (miRNA), and anti-microRNA (antagomir) are perhaps the most direct therapeutic strategies for addressing RNA. Among other mechanisms, most oligonucleotide designs involve the formation of a hybrid with RNA that promotes its degradation by activation of endogenous enzymes such as RNase-H (e.g., ASO) or the RISC complex (e.g. RNA interference - RNAi for siRNA and miRNA). However, the use of oligonucleotides for the treatment of brain disorders is seriously compromised by two main limitations: i) how to deliver oligonucleotides to the brain compartment, avoiding the action of peripheral RNAses? and once there, ii) how to target specific neuronal populations? We review the main molecular pathways in major depressive disorder (MDD) and Parkinson's disease (PD), and discuss the challenges associated with the development of novel oligonucleotide therapeutics. We pay special attention to the use of conjugated ligand-oligonucleotide approach in which the oligonucleotide sequence is covalently bound to monoamine transporter inhibitors (e.g. sertraline, reboxetine, indatraline). This strategy allows their selective accumulation in the monoamine neurons of mice and monkeys after their intranasal or intracerebroventricular administration, evoking preclinical changes predictive of a clinical therapeutic action after knocking-down disease-related genes. In addition, recent advances in oligonucleotide therapeutic clinical trials are also reviewed.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain.
| | - Sharon Manashirov
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain; miCure Therapeutics LTD., Tel-Aviv, Israel; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Francesc Artigas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), 08036 Barcelona, Spain; Institut d'Investigacions August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| |
Collapse
|
19
|
Maciak K, Dziedzic A, Miller E, Saluk-Bijak J. miR-155 as an Important Regulator of Multiple Sclerosis Pathogenesis. A Review. Int J Mol Sci 2021; 22:ijms22094332. [PMID: 33919306 PMCID: PMC8122504 DOI: 10.3390/ijms22094332] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/05/2021] [Accepted: 04/17/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated disease and the leading cause of disability among young adults. MicroRNAs (miRNAs) are involved in the post-transcriptional regulation of gene expression. Of them, miR-155 is a crucial regulator of inflammation and plays a role in modulating the autoimmune response in MS. miR-155 is involved in blood–brain barrier (BBB) disruption via down-regulation of key junctional proteins under inflammatory conditions. It drives demyelination processes by contributing to, e.g., microglial activation, polarization of astrocytes, and down-regulation of CD47 protein and affecting crucial transcription factors. miR-155 has a huge impact on the development of neuropathic pain and indirectly influences a regulatory T (Treg) cell differentiation involved in the alleviation of pain hypersensitivity. This review also focused on neuropsychiatric symptoms appearing as a result of disease-associated stressors, brain atrophy, and pro-inflammatory factors. Recent studies revealed the role of miR-155 in regulating anxiety, stress, inflammation in the hippocampus, and treatment-resistant depression. Inhibition of miR-155 expression was demonstrated to be effective in preventing processes involved in the pathophysiology of MS. This review aimed to support the better understanding the great role of miR-155 dysregulation in various aspects of MS pathophysiology and highlight future perspectives for this molecule.
Collapse
Affiliation(s)
- Karina Maciak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (J.S.-B.)
| | - Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (J.S.-B.)
- Correspondence:
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (J.S.-B.)
| |
Collapse
|
20
|
Miao C, Chang J. The important roles of microRNAs in depression: new research progress and future prospects. J Mol Med (Berl) 2021; 99:619-636. [PMID: 33641067 DOI: 10.1007/s00109-021-02052-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/04/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are non-encoding, single-stranded RNA molecules of about 22 nucleotides in length encoded by endogenous genes involved in posttranscriptional gene expression regulation. Studies have shown that miRNAs participate in a series of important pathophysiological processes, including the pathogenesis of depression. This article systematically summarized the research results published in the field of miRNAs and depression, which mainly involved three topics: circulating miRNAs as markers for diagnosis and prognosis of depression, the regulatory roles of miRNAs in the pathogenesis of depression, and the roles of miRNAs in the mechanisms of depression treatment. By summarizing and analyzing the research literature in recent years, we found that some circulating miRNAs can be potential biomarkers for the diagnosis and prognostic evaluation of depression. miRNAs that disorderly expressed during the disease play important roles in the depression pathogenesis, and miRNAs also play roles in the mechanisms of psychotherapy and drug therapy for depression. Elucidating the important roles of miRNAs in depression will bring people's understanding of the pathogenesis of depression to a new level. In addition, these miRNAs may be developed as new biomarkers for diagnosing depression, or as drug targets, or these molecules may be used as new drugs, which may provide new means for the treatment of depression. KEY MESSAGES: • The research results of miRNAs and depression are reviewed. • Circulating miRNAs can be potential biomarkers for depression. • MiRNAs play important roles in the depression pathogenesis. • MiRNAs play important roles in drug therapy for depression.
Collapse
Affiliation(s)
- Chenggui Miao
- Department of Pharmacology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China. .,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China. .,Anhui Provincial Key Laboratory of Chinese Medicine Compound, Anhui University of Chinese Medicine, Hefei, 230012, China. .,Institute of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, 233100, China.
| | - Jun Chang
- Fourth Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
21
|
Cannabidiol as a Potential Treatment for Anxiety and Mood Disorders: Molecular Targets and Epigenetic Insights from Preclinical Research. Int J Mol Sci 2021; 22:ijms22041863. [PMID: 33668469 PMCID: PMC7917759 DOI: 10.3390/ijms22041863] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
Cannabidiol (CBD) is the most abundant non-psychoactive component of cannabis; it displays a very low affinity for cannabinoid receptors, facilitates endocannabinoid signaling by inhibiting the hydrolysis of anandamide, and stimulates both transient receptor potential vanilloid 1 and 2 and serotonin type 1A receptors. Since CBD interacts with a wide variety of molecular targets in the brain, its therapeutic potential has been investigated in a number of neuropsychiatric diseases, including anxiety and mood disorders. Specifically, CBD has received growing attention due to its anxiolytic and antidepressant properties. As a consequence, and given its safety profile, CBD is considered a promising new agent in the treatment of anxiety and mood disorders. However, the exact molecular mechanism of action of CBD still remains unknown. In the present preclinical review, we provide a summary of animal-based studies that support the use of CBD as an anxiolytic- and antidepressant-like compound. Next, we describe neuropharmacological evidence that links the molecular pharmacology of CBD to its behavioral effects. Finally, by taking into consideration the effects of CBD on DNA methylation, histone modifications, and microRNAs, we elaborate on the putative role of epigenetic mechanisms in mediating CBD’s therapeutic outcomes.
Collapse
|
22
|
Narayanan R, Schratt G. miRNA regulation of social and anxiety-related behaviour. Cell Mol Life Sci 2020; 77:4347-4364. [PMID: 32409861 PMCID: PMC11104968 DOI: 10.1007/s00018-020-03542-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
Neuropsychiatric disorders, including autism spectrum disorders (ASD) and anxiety disorders are characterized by a complex range of symptoms, including social behaviour and cognitive deficits, depression and repetitive behaviours. Although the mechanisms driving pathophysiology are complex and remain largely unknown, advances in the understanding of gene association and gene networks are providing significant clues to their aetiology. In recent years, small noncoding RNA molecules known as microRNA (miRNA) have emerged as a new gene regulatory layer in the pathophysiology of mental illness. These small RNAs can bind to the 3'-UTR of mRNA thereby negatively regulating gene expression at the post-transcriptional level. Their ability to regulate hundreds of target mRNAs simultaneously predestines them to control the activity of entire cellular pathways, with obvious implications for the regulation of complex processes such as animal behaviour. There is growing evidence to suggest that numerous miRNAs are dysregulated in pathophysiology of neuropsychiatric disorders, and there is strong genetic support for the association of miRNA genes and their targets with several of these conditions. This review attempts to cover the most relevant microRNAs for which an important contribution to the control of social and anxiety-related behaviour has been demonstrated by functional studies in animal models. In addition, it provides an overview of recent expression profiling and genetic association studies in human patient-derived samples in an attempt to highlight the most promising candidates for biomarker discovery and therapeutic intervention.
Collapse
Affiliation(s)
- Ramanathan Narayanan
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland.
| |
Collapse
|
23
|
Unique Interplay Between Molecular miR-181b/d Biomarkers and Health Related Quality of Life Score in the Predictive Glioma Models. Int J Mol Sci 2020; 21:ijms21207450. [PMID: 33050332 PMCID: PMC7589546 DOI: 10.3390/ijms21207450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
In the last decade, an increasing amount of research has been conducted analyzing microRNA expression changes in glioma tissue and its expressed exosomes, but there is still sparse information on microRNAs or other biomarkers and their association with patients’ functional/psychological outcomes. In this study, we performed a combinational analysis measuring miR-181b and miR-181d expression levels by quantitative polymerase chain reaction (qPCR), evaluating isocitrate dehydrogenase 1 (IDH1) single nucleotide polymorphism (SNP), and O-6-methylguanine methyltransferase (MGMT) promoter methylation status in 92 post-surgical glioma samples and 64 serum exosomes, including patients’ quality of life evaluation applying European Organization for Research and Treatment of Cancer (EORTC) questionnaire for cancer patients (QLQ-30), EORTC the Brain Cancer-Specific Quality of Life Questionnaire (QLQ-BN20), and the Karnofsky performance status (KPS). The tumoral expression of miR-181b was lower in grade III and glioblastoma, compared to grade II glioma patients (p < 0.05). Additionally, for the first time, we demonstrated the association between miR-181 expression levels and patients’ quality of life. A positive correlation was observed between tumoral miR-181d levels and glioma patients’ functional parameters (p < 0.05), whereas increased exosomal miR-181b levels indicated a worse functional outcome (p < 0.05). Moreover, elevated miR-181b exosomal expression can indicate a significantly shorter post-surgical survival time for glioblastoma multiforme (GBM) patients. In addition, both tumoral and exosomal miR-181 expression levels were related to patients’ functioning and tumor-related symptoms. Our study adds to previous findings by demonstrating the unique interplay between molecular miR-181b/d biomarkers and health related quality of life (HRQOL) score as both variables remained significant in the predictive glioma models.
Collapse
|
24
|
Choi JE, Kim EY, Park Y. N-3 PUFA improved pup separation-induced postpartum depression via serotonergic pathway regulated by miRNA. J Nutr Biochem 2020; 84:108417. [PMID: 32629237 DOI: 10.1016/j.jnutbio.2020.108417] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/31/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023]
Abstract
Stress and ovarian hormone fluctuation are risk factors for postpartum depression (PPD). Previous studies suggested antidepressant-like effects of n-3 polyunsaturated fatty acids (PUFA), but their effect on dam animal with additional stress were not clear. The purpose of the present study was to investigate the hypothesis that n-3 PUFA improved PPD through the serotonergic and glutamatergic pathways by modulating miRNA. Rats were fed n-3 PUFA or control diet from gestation, with pup separation (PS) on postpartum days 2-14 and non-PS controls. N-3 PUFA reversed PS-induced depressive behaviors, including increased immobility, latencies to contact first pup and retrieve all pups, and decreased sucrose preference. N-3 PUFA also modulated the hypothalamic-pituitary-adrenal (HPA) axis by decreasing circulating levels of adrenocorticotropic hormone and corticosterone and expression of hypothalamic corticotrophin releasing factor and hippocampal miRNA-218 but increasing the hippocampal expression of glucocorticoid receptor. N-3 PUFA inhibited neuroinflammation by decreasing circulating levels of prostaglandin E2 and hippocampal expression of tumor necrosis factor-α, interleukin-6, and miRNA-155. In addition, n-3 PUFA up-regulated the serotonergic pathway by increasing circulating levels of serotonin and hippocampal expression of serotonin-1A receptor, cAMP response element binding protein (CREB), pCREB, brain-derived neurotrophic factor, and miRNA-182 but did not affect the glutamatergic pathway according to the hippocampal expression of N-methyl-D-aspartate receptor-2B. The present study suggested that n-3 PUFA improved PPD through the serotonergic pathway by modifying the HPA axis, neuroinflammation, and related miRNAs.
Collapse
Affiliation(s)
- Jeong-Eun Choi
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Eun-Young Kim
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Yongsoon Park
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
25
|
Abstract
MicroRNAs as critical regulators of gene expression important for functions including neuronal development, synapse formation, and synaptic plasticity have been linked with the regulation of neurobiological systems that underlie anxiety processing in the brain. In this chapter, we give an update on associative evidence linking regulation of microRNAs with anxiety- and trauma-related disorders. Moving beyond correlative research, functional studies have emerged recently that explore causal relationships between microRNA expression and anxiety-like behavior. It has been demonstrated that experimental up- or downregulation of the candidate microRNAs in important nodes of the anxiety neurocircuitry can indeed modulate anxiety-related behavior in animal models. Improved methodologies for assessing microRNA-mediated modulation have aided such functional studies, revealing a number of anxiety-regulating microRNAs including miR-15a, miR-17-92, miR-34, miR-101, miR-124, miR-135, and miR-155. Important functional target genes of these identified microRNAs are associated with specific neurotransmitter/neuromodulator signaling, neurotrophin (e.g., BDNF) expression and other aspects of synaptic plasticity, as well as with stress-regulatory/hypothalamic-pituitary-axis function. Furthermore, microRNAs have been revealed that are regulated in distinct brain regions following various anxiety-attenuating strategies. These include pharmacological treatments such as antidepressants and other drugs, as well as non-pharmacological interventions such as fear extinction/exposure therapy or positive stimuli such as exposure to environmental enrichment. These are first indications for a role for microRNAs in the mechanism of action of anxiolytic treatments. As research continues, there is much hope that a deeper understanding of the microRNA-mediated mechanisms underlying anxiety-related disorders could open up possibilities for future novel biomarker and treatment strategies.
Collapse
|
26
|
Li C, Wang F, Miao P, Yan L, Liu S, Wang X, Jin Z, Gu Z. miR-138 Increases Depressive-Like Behaviors by Targeting SIRT1 in Hippocampus. Neuropsychiatr Dis Treat 2020; 16:949-957. [PMID: 32308399 PMCID: PMC7154038 DOI: 10.2147/ndt.s237558] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/22/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a serious and common mood disorder with unknown etiology. Emerging evidence has demonstrated the critical roles of SIRT1 and microRNAs (miRNAs) in the progression of MDD. However, the underlying molecular mechanisms remain to be fully understood. METHODS In the present study, the expression level of miR-138 and SIRT1 were analyzed by RT-PCR or Western blotting in a chronic unpredictable mild stress (CUMS) model. The depressive-like behaviors were analyzed by forced swimming test (FST) and sucrose preference test (SPT) in mice injected with miR-138 and SIRT1 overexpression lentivirus. The luciferase reporter assay was used to assess the direct regulation of miR-138 on SIRT1 expression. RESULTS The upregulation of miR-138 was found in the hippocampus of the CUMS mice and correlated with decreased SIRT1 expression. C57BL/6J mice treated with SIRT1- and miR-138-expressing (miR-138) lentivirus showed increased depressive-like behaviors. In contrast, SIRT1 or si-miR-138 lentivirus treated C57BL/6J mice showed decreased depressive-like behaviors. Moreover, the Sirt1/PGC-1α/FNDC5/BDNF pathway was downregulated following miR-138 overexpression and increased upon miR-138 knockdown in hippocampus in CUMS mice and cultured primary neuronal cells. Mechanistically, luciferase reporter assay demonstrated that SIRT1 gene was a downstream transcriptional target of miR-138. CONCLUSION Our data demonstrated the regulation role of miR-138 on SIRT1 gene expression, miR-138 increased depressive-like behaviors by regulating SIRT1 expression in hippocampus.
Collapse
Affiliation(s)
- Cuixia Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xian 710032, People's Republic of China
| | - Feng Wang
- Department of Stomatology, 546 Hospital of PLA, Malan City, Xinjiang Province 841200, People's Republic of China
| | - Pei Miao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xian 710032, People's Republic of China
| | - Libo Yan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xian 710032, People's Republic of China
| | - Silin Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xian 710032, People's Republic of China
| | - Xian Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xian 710032, People's Republic of China
| | - Zuolin Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xian 710032, People's Republic of China
| | - Zexu Gu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, the Fourth Military Medical University, Xian 710032, People's Republic of China
| |
Collapse
|
27
|
Liu N, Wang ZZ, Zhao M, Zhang Y, Chen NH. Role of non-coding RNA in the pathogenesis of depression. Gene 2019; 735:144276. [PMID: 31816363 DOI: 10.1016/j.gene.2019.144276] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
Depression is increasingly threatening human health as a serious psychological problem. However, it is remarkable that the precise mechanism underlying depression remains unelucidated. Recent studies have clarified that non-coding RNA, including but not limited to microRNA, long non-coding RNA, and circular RNA, plays an important role in the pathogenesis of depression. The research results cited in this paper reveal the origin, expression, distribution, function, and mechanism of microRNA in the nervous system. MicroRNA is involved in regulation of life activities, including growth, immune reaction, haematopoiesis, and metabolism, which are significant for maintaining normal physiological functions. Moreover, microRNA plays an important role in cell death and proliferation, development of cancer, and disease prognosis. Here, we also introduce the general research status of long non-coding RNA and circular RNA. Next, descriptive study methods, including fluorescence quantitative polymerase chain reaction, northern blot, microarray technology, RNA-seq, and fluorescent in situ hybridization are discussed. Functional study methods are also summarized and divided into gain- and loss-of-function studies. Moreover, the roles of non-coding RNA in the pathogenesis of depression, including neurogenesis, synaptic plasticity, brain-derived neurotrophic factor expression, HPA axis regulation, neurotransmission, neuropeptide expression, neuro-inflammation, and polyamine synthesis are discussed. Nevertheless, many unknown associations between non-coding RNA and depression remain to be clarified.
Collapse
Affiliation(s)
- Nuo Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Zhao
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
28
|
Lee CH, Giuliani F. The Role of Inflammation in Depression and Fatigue. Front Immunol 2019; 10:1696. [PMID: 31379879 PMCID: PMC6658985 DOI: 10.3389/fimmu.2019.01696] [Citation(s) in RCA: 367] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
Depression and fatigue are conditions responsible for heavy global societal burden, especially in patients already suffering from chronic diseases. These symptoms have been identified by those affected as some of the most disabling symptoms which affect the quality of life and productivity of the individual. While many factors play a role in the development of depression and fatigue, both have been associated with increased inflammatory activation of the immune system affecting both the periphery and the central nervous system (CNS). This is further supported by the well-described association between diseases that involve immune activation and these symptoms in autoimmune disorders, such as multiple sclerosis and immune system activation in response to infections, like sepsis. Treatments for depression also support this immunopsychiatric link. Antidepressants have been shown to decrease inflammation, while higher levels of baseline inflammation predict lower treatment efficacy for most treatments. Those patients with higher initial immune activation may on the other hand be more responsive to treatments targeting immune pathways, which have been found to be effective in treating depression and fatigue in some cases. These results show strong support for the hypothesis that depression and fatigue are associated with an increased activation of the immune system which may serve as a valid target for treatment. Further studies should focus on the pathways involved in these symptoms and the development of treatments that target those pathways will help us to better understand these conditions and devise more targeted treatments.
Collapse
Affiliation(s)
- Chieh-Hsin Lee
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Fabrizio Giuliani
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Galts CP, Bettio LE, Jewett DC, Yang CC, Brocardo PS, Rodrigues ALS, Thacker JS, Gil-Mohapel J. Depression in neurodegenerative diseases: Common mechanisms and current treatment options. Neurosci Biobehav Rev 2019; 102:56-84. [DOI: 10.1016/j.neubiorev.2019.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/22/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022]
|
30
|
Aberrant Expression of Intracellular let-7e, miR-146a, and miR-155 Correlates with Severity of Depression in Patients with Major Depressive Disorder and Is Ameliorated after Antidepressant Treatment. Cells 2019; 8:cells8070647. [PMID: 31252530 PMCID: PMC6678487 DOI: 10.3390/cells8070647] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammation and abnormalities in Toll-like receptor (TLR) signaling pathways are associated with major depressive disorder (MDD). Our previous work reported that impaired negative regulators for the TLR pathways are associated with MDD. This study aimed to assess the association between the severity of depression and the intracellular microRNAs that regulate TLR4 signaling in both peripheral blood mononuclear cells (PBMCs) and monocytes from MDD patients. The severity of MDD before and after antidepressant treatment was determined by the 17-item Hamilton Depression Rating Scale, and quantitative RT-PCR was used to measure the levels of intracellular regulatory microRNAs, including let-7e, miR-21-5p miR-145, miR-223, miR-146a, and miR-155, in PBMCs and monocytes isolated from 43 healthy controls and 84 patients with MDD before and after treatment with antidepressants. Assays of PBMCs showed that the levels of let-7e, miR-146a, and miR-155 were lower in MDD patients than in healthy controls and were significantly higher after than before treatment in the 69 patients who completed treatment with antidepressants for four weeks. Levels of miR-146a and miR-155 in monocytes were lower in MDD patients than in controls and were increased in the former after antidepressant treatment. Multiple linear regression analyses found that let-7e and miR-146a expression before treatment was inversely correlated with severity of depression, whereas miR-155 before treatment was directly correlated with severity of depression. These findings suggest that intracellular regulatory microRNAs which regulate TLR4 signaling are aberrantly expressed in patients with MDD and that these levels are ameliorated by antidepressant treatment.
Collapse
|
31
|
Jia C, Brown RW, Malone HM, Burgess KC, Gill DW, Keasey MP, Hagg T. Ciliary neurotrophic factor is a key sex-specific regulator of depressive-like behavior in mice. Psychoneuroendocrinology 2019; 100:96-105. [PMID: 30299260 PMCID: PMC6333501 DOI: 10.1016/j.psyneuen.2018.09.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/23/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is produced by astrocytes and promotes neurogenesis and neuroprotection. Little is known about the role of CNTF in affective behavior. We investigated whether CNTF affects depressive- and anxiety-like behavior in adult mice as tested in the forced swim, sucrose preference and elevated-T maze tests. Female wild type CNTF+/+ mice more readily developed behavioral despair with increased immobility time and decreased latency to immobility in the forced swim test than male CNTF+/+ littermates. The lack of CNTF in CNTF-/- mice had an opposite effect on depressive-like behavior in female mice (reduced immobility time and increased sucrose preference) vs. male mice (increased immobility time). Female wildtype mice expressed more CNTF in the amygdala than male mice. Ovariectomy increased CNTF expression, as well as immobility time, which was significantly reduced in CNTF-/- mice, suggesting that CNTF mediates overiectomy-induced immobility time, possibly in the amygdala. Progesterone but not 17-β estradiol inhibited CNTF expression in cultured C6 astroglioma cells. Progesterone treatment also reduced CNTF expression in the amygdala and decreased immobility time in female CNTF+/+ but not in CNTF-/- mice. Castration did not alter CNTF expression in males nor their behavior. Lastly, there were no effects of CNTF on the elevated T-maze, a behavioral test of anxiety, suggesting that a different mechanism may underlie anxiety-like behavior. This study reveals a novel CNTF-mediated mechanism in stress-induced depressive-like behavior and points to opportunities for sex-specific treatments for depression, e.g. progesterone in females and CNTF-stimulating drugs in males.
Collapse
Affiliation(s)
- Cuihong Jia
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Lackinger M, Sungur AÖ, Daswani R, Soutschek M, Bicker S, Stemmler L, Wüst T, Fiore R, Dieterich C, Schwarting RK, Wöhr M, Schratt G. A placental mammal-specific microRNA cluster acts as a natural brake for sociability in mice. EMBO Rep 2018; 20:embr.201846429. [PMID: 30552145 DOI: 10.15252/embr.201846429] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 01/12/2023] Open
Abstract
Aberrant synaptic function is thought to underlie social deficits in neurodevelopmental disorders such as autism and schizophrenia. Although microRNAs have been shown to regulate synapse development and plasticity, their potential involvement in the control of social behaviour in mammals remains unexplored. Here, we show that deletion of the placental mammal-specific miR379-410 cluster in mice leads to hypersocial behaviour, which is accompanied by increased excitatory synaptic transmission, and exaggerated expression of ionotropic glutamate receptor complexes in the hippocampus. Bioinformatic analyses further allowed us to identify five "hub" microRNAs whose deletion accounts largely for the upregulation of excitatory synaptic genes observed, including Cnih2, Dlgap3, Prr7 and Src. Thus, the miR379-410 cluster acts a natural brake for sociability, and interfering with specific members of this cluster could represent a therapeutic strategy for the treatment of social deficits in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Martin Lackinger
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - A Özge Sungur
- Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
| | - Reetu Daswani
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Michael Soutschek
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Silvia Bicker
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Lea Stemmler
- Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
| | - Tatjana Wüst
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Roberto Fiore
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Rainer Kw Schwarting
- Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
| | - Markus Wöhr
- Behavioural Neuroscience, Experimental and Biological Psychology, Philipps-University Marburg, Marburg, Germany
| | - Gerhard Schratt
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
33
|
Bahi A, Dreyer JL. Lentiviral-mediated let-7d microRNA overexpression induced anxiolytic- and anti-depressant-like behaviors and impaired dopamine D3 receptor expression. Eur Neuropsychopharmacol 2018; 28:1394-1404. [PMID: 30244920 DOI: 10.1016/j.euroneuro.2018.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/24/2018] [Accepted: 09/05/2018] [Indexed: 12/18/2022]
Abstract
Generalized anxiety and major depression disorders (MDD) are severe debilitating mood disorders whose etiology are not fully understood, but growing evidence indicates that microRNAs (miRNAs) might play a key role in their neuropathophysiological mechanisms. In the current study, we investigate the role of Lethal-7 (let-7d) miRNA, and its direct target dopamine D3 receptor (D3R) gain-of-function, in the hippocampus, in preclinical models of anxiety and depression in mice. For this purpose, we have constructed a lentiviral vector carrying let-7d miRNA and its anxiolytic effect was investigated by employing the open-field (OF) and the elevated plus maze (EPM) tests. The anti-depressant activity was evaluated using the tail suspension and the forced-swim tests (TST & FST). Our results show that let-7d overexpression significantly improved the measures of anxiety in the OF and EPM tests. In addition, let-7d increased the mobility time in the TST and FST. Interestingly, gene expression interaction analysis shows that the D3R mRNA negatively correlates with let-7d expression. In a different set of experiments, we used a tetracycline-inducible (tet-off) lentiviral vector to overexpress D3R to assess its gain-of-function in the hippocampus on anxiety- and depression-like behaviors. In line, we found that in the absence of doxycycline, D3R produced a significant anxiogenic and depressant-like response. Most importantly, these effects were abrogated when mice were fed doxycycline in drinking water. Our results provide the first evidence for an anxiolytic and anti-depressant-like action of let-7d through a potential D3R target-mediated mechanism which might open new avenues for anxiolytic and anti-depressant therapies.
Collapse
Affiliation(s)
- Amine Bahi
- Department of Anatomy, Tawam Medical Campus, United Arab Emirates University, Al Ain, UAE.
| | - Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
34
|
Surbhi, Borniger JC, Russart KLG, Zhang N, Magalang UJ, Nelson RJ. miR-155 deletion modulates lipopolysaccharide-induced sleep in female mice. Chronobiol Int 2018; 36:188-202. [PMID: 30299169 DOI: 10.1080/07420528.2018.1525617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immune signaling is known to regulate sleep. miR-155 is a microRNA that regulates immune responses. We hypothesized that miR-155 would alter sleep regulation. Thus, we investigated the potential effects of miR-155 deletion on sleep-wake behavior in adult female homozygous miR-155 knockout (miR-155KO) mice and littermate controls (WT). Mice were implanted with biotelemetry units and EEG/EMG biopotentials were recorded continuously for three baseline days. miR-155KO mice had decreased bouts of NREM and REM sleep compared with WT mice, but no differences were observed in the length of sleep bouts or total time spent in sleep-wake states. Locomotor activity and subcutaneous temperature did not differ between WT and miR-155KO mice. Following baseline recordings, mice were sleep-deprived during the first six hours of the rest phase (light phase; ZT 0-6) followed by an 18 h recovery period. There were no differences between groups in sleep rebound (% sleep and NREM δ power) after sleep deprivation. Following recovery from sleep deprivation, mice were challenged with a somnogen (viz., lipopolysaccharide (LPS)) one hour prior to the initiation of the dark (active) phase. Biopotentials were continuously recorded for the following 24 h, and miR-155KO mice displayed increased wakefulness and decreased NREM sleep during the dark phase following LPS injection. Additionally, miR-155KO mice had reduced EEG slow-wave responses (0.5-4 Hz) compared to WT mice. Together, our findings indicate that miR-155 deletion attenuates the somnogenic and EEG delta-enhancing effects of LPS. Abbreviations: ANOVA: analysis of variance; EEG: electroencephalogram; EMG: electromyogram; h: hour; IL-1: interleukin-1; IL-6: interleukin-6; IP: intra-peritoneal; LPS: lipopolysaccharide; miR/miRNA: microRNA; miR-155KO: miR-155 knockout; NREM: non-rapid eye movement; REM: rapid eye movement; TNF: tumor necrosis factor; SWS: slow-wave sleep; WT: wild-type.
Collapse
Affiliation(s)
- Surbhi
- a Department of Neuroscience , The Ohio State University Wexner Medical Center , Columbus , OH USA
| | - Jeremy C Borniger
- a Department of Neuroscience , The Ohio State University Wexner Medical Center , Columbus , OH USA
| | - Kathryn L G Russart
- a Department of Neuroscience , The Ohio State University Wexner Medical Center , Columbus , OH USA
| | - Ning Zhang
- a Department of Neuroscience , The Ohio State University Wexner Medical Center , Columbus , OH USA
| | - Ulysses J Magalang
- a Department of Neuroscience , The Ohio State University Wexner Medical Center , Columbus , OH USA.,b Department of Medicine , The Ohio State University Wexner Medical Center , Columbus , OH USA
| | - Randy J Nelson
- a Department of Neuroscience , The Ohio State University Wexner Medical Center , Columbus , OH USA
| |
Collapse
|
35
|
Deletion of asparagine endopeptidase reduces anxiety- and depressive-like behaviors and improves abilities of spatial cognition in mice. Brain Res Bull 2018; 142:147-155. [DOI: 10.1016/j.brainresbull.2018.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/21/2022]
|
36
|
Zhang WJ, Cao WY, Huang YQ, Cui YH, Tu BX, Wang LF, Zou GJ, Liu Y, Hu ZL, Hu R, Li CQ, Xing XW, Li F. The Role of miR-150 in Stress-Induced Anxiety-Like Behavior in Mice. Neurotox Res 2018; 35:160-172. [PMID: 30120712 DOI: 10.1007/s12640-018-9943-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
Abstract
Stress plays a crucial role in several psychiatric disorders, including anxiety. However, the underlying mechanisms remain poorly understood. Here, we used acute stress (AS) and chronic restraint stress (CRS) models to develop anxiety-like behavior and investigate the role of miR-150 in the hippocampi of mice. Corticosterone levels as well as glutamate receptors in the hippocampus were evaluated. We found that anxiety-like behavior was induced after either AS or CRS, as determined by the open-field test (OFT) and elevated plus-maze test (EPM). Increased corticosterone levels were observed in the blood of AS and CRS groups, while the expression of miR-150 mRNA in the hippocampus was significantly decreased. The expressions of GluN2A, GluR1, GluR2, and V-Glut2 in the hippocampus were decreased after either AS or CRS. Hippocampal GAD67 expression was increased by AS but not CRS, and GluN2B expression was decreased by CRS but not AS. Adult miR-150 knockout mice showed anxiety-like behavior, as assessed by the OFT and EPM. The expressions of GluN2A, GluN2B, GluR1, and GluR2 were also downregulated, but the expression of V-Glut2 was upregulated in the hippocampi of miR-150 knockout mice compared with wild-type mice. Interestingly, we found that the miR-150 knockout mice showed decreased dendrite lengths, dendrite branchings, and numbers of dendrite spines in the hippocampus compared with wild-type mice. These results suggest that miR-150 may influence the synaptic plasticity of the hippocampus and play a significant role in stress-induced anxiety-like behavior in adult mice.
Collapse
Affiliation(s)
- Wen-Juan Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Wen-Yu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Yan-Qing Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Bo-Xuan Tu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Lai-Fa Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Guang-Jing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Yu Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Zhao-Lan Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Rong Hu
- Department of Pain, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Xiao-Wei Xing
- Center for Medical Experiments, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China.
| |
Collapse
|
37
|
Abstract
Glial cell types were classified less than 100 years ago by del Rio-Hortega. For instance, he correctly surmised that microglia in pathologic central nervous system (CNS) were "voracious monsters" that helped clean the tissue. Although these historical predictions were remarkably accurate, innovative technologies have revealed novel molecular, cellular, and dynamic physiologic aspects of CNS glia. In this review, we integrate recent findings regarding the roles of glia and glial interactions in healthy and injured spinal cord. The three major glial cell types are considered in healthy CNS and after spinal cord injury (SCI). Astrocytes, which in the healthy CNS regulate neurotransmitter and neurovascular dynamics, respond to SCI by becoming reactive and forming a glial scar that limits pathology and plasticity. Microglia, which in the healthy CNS scan for infection/damage, respond to SCI by promoting axon growth and remyelination-but also with hyperactivation and cytotoxic effects. Oligodendrocytes and their precursors, which in healthy tissue speed axon conduction and support axonal function, respond to SCI by differentiating and producing myelin, but are susceptible to death. Thus, post-SCI responses of each glial cell can simultaneously stimulate and stifle repair. Interestingly, potential therapies could also target interactions between these cells. Astrocyte-microglia cross-talk creates a feed-forward loop, so shifting the response of either cell could amplify repair. Astrocytes, microglia, and oligodendrocytes/precursors also influence post-SCI cell survival, differentiation, and remyelination, as well as axon sparing. Therefore, optimizing post-SCI responses of glial cells-and interactions between these CNS cells-could benefit neuroprotection, axon plasticity, and functional recovery.
Collapse
Affiliation(s)
- Andrew D Gaudet
- Department of Psychology and Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO, 80309, USA.
- Center for Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO, 80309, USA.
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
38
|
Jiang YY, Zhang Y, Cui S, Liu FY, Yi M, Wan Y. Cholinergic neurons in medial septum maintain anxiety-like behaviors induced by chronic inflammatory pain. Neurosci Lett 2018; 671:7-12. [DOI: 10.1016/j.neulet.2018.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 11/29/2022]
|
39
|
Idda ML, Munk R, Abdelmohsen K, Gorospe M. Noncoding RNAs in Alzheimer's disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9. [PMID: 29327503 PMCID: PMC5847280 DOI: 10.1002/wrna.1463] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/24/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia among the elderly worldwide. Despite intense efforts to develop drugs for preventing and treating AD, no effective therapies are available as yet, posing a growing burden at the personal, medical, and socioeconomic levels. AD is characterized by the production and aggregation of amyloid β (Aβ) peptides derived from amyloid precursor protein (APP), the presence of hyperphosphorylated microtubule-associated protein Tau (MAPT), and chronic inflammation leading to neuronal loss. Aβ accumulation and hyperphosphorylated Tau are responsible for the main histopathological features of AD, Aβ plaques, and neurofibrillary tangles (NFTs), respectively. However, the full spectrum of molecular factors that contribute to AD pathogenesis is not known. Noncoding (nc)RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), regulate gene expression at the transcriptional and posttranscriptional levels in various diseases, serving as biomarkers and potential therapeutic targets. There is rising recognition that ncRNAs have been implicated in both the onset and pathogenesis of AD. Here, we review the ncRNAs implicated posttranscriptionally in the main AD pathways and discuss the growing interest in targeting regulatory ncRNAs therapeutically to combat AD pathology. WIREs RNA 2018, 9:e1463. doi: 10.1002/wrna.1463 This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- M Laura Idda
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
40
|
Gaudet AD, Fonken LK, Watkins LR, Nelson RJ, Popovich PG. MicroRNAs: Roles in Regulating Neuroinflammation. Neuroscientist 2017; 24:221-245. [PMID: 28737113 DOI: 10.1177/1073858417721150] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that broadly affect cellular and physiological function in all multicellular organisms. Here, the role of miRNAs in neuroinflammation is considered. miRNAs are 21- to 23-oligonucleotide RNAs that regulate translation of specific RNAs by binding to complementary regulatory RNA sequences, thereby causing mRNA degradation or sequestration. More than 5000 miRNAs likely exist in humans, and each miRNA binds an average of 200 RNAs. Specific immunomodulatory miRNAs can regulate a set of RNAs in a coordinated manner, suggesting that effective miRNA-based therapeutic manipulations for neuroinflammatory conditions may be revealed. For instance, miRNAs that preferentially inhibit translation of many cellular anti-inflammatory proteins could drive a pro-inflammatory response. Key pro-inflammatory ( miR-155, miR-27b, miR-326), anti-inflammatory ( miR-124, miR-146a, miR-21, miR-223), and mixed immunomodulatory ( let-7 family) miRNAs regulate neuroinflammation in various pathologies, including spinal cord injury, multiple sclerosis, ischemic stroke, and Alzheimer's disease. miRNAs represent a newly revealed layer of physiological complexity, the therapeutic benefits of which remain to be fully explored and exploited. In this review, we discuss the role of miRNAs in neuroinflammatory regulation and discuss how controlling miRNAs could alter cellular machinery to improve neuroinflammatory dynamics.
Collapse
Affiliation(s)
- Andrew D Gaudet
- 1 Center for Neuroscience, University of Colorado Boulder, CO, USA.,2 Department of Psychology and Neuroscience, University of Colorado Boulder, CO, USA
| | - Laura K Fonken
- 1 Center for Neuroscience, University of Colorado Boulder, CO, USA.,2 Department of Psychology and Neuroscience, University of Colorado Boulder, CO, USA
| | - Linda R Watkins
- 1 Center for Neuroscience, University of Colorado Boulder, CO, USA.,2 Department of Psychology and Neuroscience, University of Colorado Boulder, CO, USA
| | - Randy J Nelson
- 3 Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,4 Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Phillip G Popovich
- 3 Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,4 Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,5 Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
41
|
miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair. J Neurosci 2017; 36:8516-32. [PMID: 27511021 DOI: 10.1523/jneurosci.0735-16.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/08/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Axon regeneration after spinal cord injury (SCI) fails due to neuron-intrinsic mechanisms and extracellular barriers including inflammation. microRNA (miR)-155-5p is a small, noncoding RNA that negatively regulates mRNA translation. In macrophages, miR-155-5p is induced by inflammatory stimuli and elicits a response that could be toxic after SCI. miR-155 may also independently alter expression of genes that regulate axon growth in neurons. Here, we hypothesized that miR-155 deletion would simultaneously improve axon growth and reduce neuroinflammation after SCI by acting on both neurons and macrophages. New data show that miR-155 deletion attenuates inflammatory signaling in macrophages, reduces macrophage-mediated neuron toxicity, and increases macrophage-elicited axon growth by ∼40% relative to control conditions. In addition, miR-155 deletion increases spontaneous axon growth from neurons; adult miR-155 KO dorsal root ganglion (DRG) neurons extend 44% longer neurites than WT neurons. In vivo, miR-155 deletion augments conditioning lesion-induced intraneuronal expression of SPRR1A, a regeneration-associated gene; ∼50% more injured KO DRG neurons expressed SPRR1A versus WT neurons. After dorsal column SCI, miR-155 KO mouse spinal cord has reduced neuroinflammation and increased peripheral conditioning-lesion-enhanced axon regeneration beyond the epicenter. Finally, in a model of spinal contusion injury, miR-155 deletion improves locomotor function at postinjury times corresponding with the arrival and maximal appearance of activated intraspinal macrophages. In miR-155 KO mice, improved locomotor function is associated with smaller contusion lesions and decreased accumulation of inflammatory macrophages. Collectively, these data indicate that miR-155 is a novel therapeutic target capable of simultaneously overcoming neuron-intrinsic and neuron-extrinsic barriers to repair after SCI. SIGNIFICANCE STATEMENT Axon regeneration after spinal cord injury (SCI) fails due to neuron-intrinsic mechanisms and extracellular barriers, including inflammation. Here, new data show that deleting microRNA-155 (miR-155) affects both mechanisms and improves repair and functional recovery after SCI. Macrophages lacking miR-155 have altered inflammatory capacity, which enhances neuron survival and axon growth of cocultured neurons. In addition, independent of macrophages, adult miR-155 KO neurons show enhanced spontaneous axon growth. Using either spinal cord dorsal column crush or contusion injury models, miR-155 deletion improves indices of repair and recovery. Therefore, miR-155 has a dual role in regulating spinal cord repair and may be a novel therapeutic target for SCI and other CNS pathologies.
Collapse
|
42
|
Maldonado-Avilés JG, Guarnieri DJ, Zhu X, DiLeone RJ. Down-regulation of miRNAs in the brain and development of diet-induced obesity. Int J Dev Neurosci 2017; 64:2-7. [PMID: 28652200 DOI: 10.1016/j.ijdevneu.2017.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/11/2017] [Accepted: 06/22/2017] [Indexed: 01/01/2023] Open
Abstract
Novel therapeutic interventions for obesity and comorbid conditions require knowledge of the molecular elements playing a role in the development of obesity. Chronic low-grade inflammation has been consistently reported in obese individuals. In this study, we first determined whether key molecular modulators of inflammation, microRNA-155 (miR-155) and microRNA-146a (miR-146a), are regulated by an obesogenic diet within brain regions associated with reward, metabolism and energy balance. C57BL/6J mice were chronically exposed to a high-fat diet (HFD) or a standard chow (CTL). Significant reductions in the levels of miR-155 (82%) and miR-146a (41%) levels were observed within the nucleus accumbens of HFD mice compared to CTL. Further analysis of miR-155 regulation showed no significant changes in levels across peripheral tissue (white adipose, spleen, kidney or liver) between HFD and CTL mice. The effect of lower miR-155 on the development of obesity was determined by exposing wild-type (WT) and miR-155 knockout mice (miR-155 KO) to HFD. Male miR-155 KO gained significantly more weight than WT littermates. Metabolic analyses revealed that miR-155 KO significantly ate more HFD compared to WT, without differing in other metabolic measures including energy expenditure. Together, these data show that miR-155 is physiologically down-regulated after intake of an obesogenic diet, and that loss of miR-155 increases intake of an obesogenic diet. Moreover, these findings shed light on a potential miRNA-based mechanism contributing to the development of diet-induced obesity.
Collapse
Affiliation(s)
| | - Douglas J Guarnieri
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Biology, Saint Bonaventure University, Saint Bonaventure, NY, USA.
| | - Xianglong Zhu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ralph J DiLeone
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
43
|
Gaudet AD, Ayala MT, Schleicher WE, Smith EJ, Bateman EM, Maier SF, Watkins LR. Exploring acute-to-chronic neuropathic pain in rats after contusion spinal cord injury. Exp Neurol 2017; 295:46-54. [PMID: 28552717 DOI: 10.1016/j.expneurol.2017.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/25/2017] [Accepted: 05/25/2017] [Indexed: 01/25/2023]
Abstract
Spinal cord injury (SCI) causes chronic pain in 65% of individuals. Unfortunately, current pain management is inadequate for many SCI patients. Rodent models could help identify how SCI pain develops, explore new treatment strategies, and reveal whether acute post-SCI morphine worsens chronic pain. However, few studies explore or compare SCI-elicited neuropathic pain in rats. Here, we sought to determine how different clinically relevant contusion SCIs in male and female rats affect neuropathic pain, and whether acute morphine worsens later chronic SCI pain. First, female rats received sham surgery, or 150kDyn or 200kDyn midline T9 contusion SCI. These rats displayed modest mechanical allodynia and long-lasting thermal hyperalgesia. Next, a 150kDyn (1s dwell) midline contusion SCI was performed in male and female rats. Interestingly, males, but not females showed SCI-elicited mechanical allodynia; rats of both sexes had thermal hyperalgesia. In this model, acute morphine treatment had no significant effect on chronic neuropathic pain symptoms. Unilateral SCIs can also elicit neuropathic pain that could be exacerbated by morphine, so male rats received unilateral T13 contusion SCI (100kDyn). These rats exhibited significant, transient mechanical allodynia, but not thermal hyperalgesia. Acute morphine did not exacerbate chronic pain. Our data show that specific rat contusion SCI models cause neuropathic pain. Further, chronic neuropathic pain elicited by these contusion SCIs was not amplified by our course of early post-trauma morphine. Using clinically relevant rat models of SCI could help identify novel pain management strategies.
Collapse
Affiliation(s)
- Andrew D Gaudet
- Department of Psychology and Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO 80309, USA.
| | - Monica T Ayala
- Department of Psychology and Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO 80309, USA
| | - Wolfgang E Schleicher
- Department of Psychology and Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO 80309, USA
| | - Elana J Smith
- Department of Psychology and Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO 80309, USA
| | - Emily M Bateman
- Department of Psychology and Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO 80309, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO 80309, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Muenzinger D244 | 345 UCB, Boulder, CO 80309, USA
| |
Collapse
|
44
|
O'Connor RM, Gururajan A, Dinan TG, Kenny PJ, Cryan JF. All Roads Lead to the miRNome: miRNAs Have a Central Role in the Molecular Pathophysiology of Psychiatric Disorders. Trends Pharmacol Sci 2016; 37:1029-1044. [PMID: 27832923 DOI: 10.1016/j.tips.2016.10.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 12/14/2022]
Abstract
Current treatment strategies for psychiatric disorders remain inadequate. Impeding development of novel therapeutics is our incomplete knowledge of the molecular pathophysiology underlying these disorders. Changes to miRNA function and expression are increasingly being associated with pathological behavioral states. Furthermore, the prospect of using of miRNA expression profiles (the miRNome) as objective psychiatric diagnosis tools is gaining traction. In this review, we focus on recent findings surrounding the link between miRNA function and psychiatric disorders, and outline some of the key challenges that will need to be overcome if the therapeutic potential of these molecular effectors is to be fully realized.
Collapse
Affiliation(s)
- Richard M O'Connor
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai Hospital, NY, USA.
| | - Anand Gururajan
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - Paul J Kenny
- Department of Neuroscience, Icahn School of Medicine, Mount Sinai Hospital, NY, USA
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| |
Collapse
|
45
|
The significance of microRNAs in the course of rDD. Pharmacol Rep 2016; 69:206-212. [PMID: 28073061 DOI: 10.1016/j.pharep.2016.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND In recent years, special attention in genetic studies dedicated to the development of various diseases, including mental disorders, has been paid to micro ribonucleic acids (miRNA, microRNA). As an object of our analysis we have selected the miRNAs which - due to the profile of their activity - may be significant in the aetiology and course of recurrent depressive disorders, i.e. miRNA-370, miRNA-411, miRNA-433, miRNA-487b and miRNA-539. METHODS The examined population included 138 patients suffering from depression and 95 individuals from the control group (CG). The subjects suffering from depression were divided into two sub-groups: ED-I group (46 patients), rDD group (92 patients). RESULTS No significant statistical differences were observed between the ED-I and rDD group for all the variables included in the analysis. No significant interrelation was noticed between the number of depression episodes, the severity of depressive disorders and the expression of miRNA selected. Results of the analysis indicate statistically significant differences between the control subjects and the patients with symptoms of depression in terms of all the variables analysed. CONCLUSIONS 1. There is no significant difference in miRNAs expression between patients with recurrent depressive disorders and those in the first episode of depression. 2. The differences in terms of expression of the analysed variables between the subjects with symptoms of depression and healthy individuals were confirmed.
Collapse
|
46
|
Luoni A, Riva MA. MicroRNAs and psychiatric disorders: From aetiology to treatment. Pharmacol Ther 2016; 167:13-27. [PMID: 27452338 DOI: 10.1016/j.pharmthera.2016.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/14/2016] [Indexed: 01/09/2023]
Abstract
The emergence of psychiatric disorders relies on the interaction between genetic vulnerability and environmental adversities. Several studies have demonstrated a crucial role for epigenetics (e.g. DNA methylation, post-translational histone modifications and microRNA-mediated post-transcriptional regulation) in the translation of environmental cues into adult behavioural outcome, which can prove to be harmful thus increasing the risk to develop psychopathology. Within this frame, non-coding RNAs, especially microRNAs, came to light as pivotal regulators of many biological processes occurring in the Central Nervous System, both during the neuronal development as well as in the regulation of adult function, including learning, memory and neuronal plasticity. On these basis, in recent years it has been hypothesised a central role for microRNA modulation and expression regulation in many brain disorders, including neurodegenerative disorders and mental illnesses. Indeed, the aim of the present review is to present the most recent state of the art regarding microRNA involvement in psychiatric disorders. We will first describe the mechanisms that regulate microRNA biogenesis and we will report evidences of microRNA dysregulation in peripheral body fluids, in postmortem brain tissues from patients suffering from psychopathology as well as in animal models. Last, we will discuss the potential to consider microRNAs as putative target for pharmacological intervention, using common psychotropic drugs or more specific tools, with the aim to normalize functions that are disrupted in different psychiatric conditions.
Collapse
Affiliation(s)
- Alessia Luoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.
| |
Collapse
|
47
|
miR-155 Deletion in Female Mice Prevents Diet-Induced Obesity. Sci Rep 2016; 6:22862. [PMID: 26953132 PMCID: PMC4782173 DOI: 10.1038/srep22862] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/22/2016] [Indexed: 12/28/2022] Open
Abstract
Obesity is a growing epidemic in developed countries. Obese individuals are susceptible to comorbidities, including cardiovascular disease and metabolic disorder. Increasing the ability of adipose tissue to expend excess energy could improve protection from obesity. One promising target is microRNA (miR)-155-5p. We demonstrate that deletion of miR-155 (-5p and -3p) in female mice prevents diet-induced obesity. Body weight gain did not differ between wild-type (WT) and miR-155 knockout (KO) mice fed control diet (CD); however, miR-155 KO mice fed high-fat diet (HFD) gained 56% less body weight and 74% less gonadal white adipose tissue (WAT) than WT mice. Enhanced WAT thermogenic potential, brown adipose tissue differentiation, and/or insulin sensitivity might underlie this obesity resistance. Indeed, miR-155 KO mice on HFD had 21% higher heat release than WT HFD mice. Compared to WT adipocytes, miR-155 KO adipocytes upregulated brown (Ucp1, Cidea, Pparg) and white (Fabp4, Pnpla2, AdipoQ, Fasn) adipogenic genes, and glucose metabolism genes (Glut4, Irs1). miR-155 deletion abrogated HFD-induced adipocyte hypertrophy and WAT inflammation. Therefore, miR-155 deletion increases adipogenic, insulin sensitivity, and energy uncoupling machinery, while limiting inflammation in WAT, which together could restrict HFD-induced fat accumulation. Our results identify miR-155 as a novel candidate target for improving obesity resistance.
Collapse
|