1
|
de Voogd LD, Hashemi MM, Zhang W, Kaldewaij R, Koch SBJ, van Ast VA, Klumpers F, Roelofs K. Amygdala Hyperactivity in Posttraumatic Stress Disorder: Disentangling Predisposing From Consequential Factors Using a Prospective Longitudinal Design. Biol Psychiatry 2025:S0006-3223(25)00993-X. [PMID: 40024495 DOI: 10.1016/j.biopsych.2025.02.894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/31/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Substantial interindividual differences exist in the vulnerability to develop posttraumatic stress disorder (PTSD) symptoms following trauma exposure. Identification of neurocognitive risk markers for PTSD symptoms could aid early assessment and identification of preventive intervention targets for PTSD, particularly in high-risk professionals. Therefore, large prospective longitudinal studies with pretrauma measurements are essential to disentangle whether previously observed neurobiological alterations in PTSD are a cause or consequence of trauma exposure or PTSD symptoms. METHODS In police recruits (n = 221) without current trauma symptoms but at high risk for trauma exposure, we used functional magnetic resonance imaging to disentangle predictive and acquired neural markers of posttraumatic stress symptoms. Using an experimental paradigm, we investigated anticipatory threat responses and the switch into defensive action. RESULTS Recruits who showed relatively heightened dorsal amygdala responses and heightened amygdala-precuneus coupling during threat anticipation demonstrated relatively stronger increase in PTSD symptoms after trauma exposure. The experience of traumatic events, independent of PTSD symptoms, was associated with increased lateral amygdala activation in response to an aversive stimulus (i.e., receiving an electrical shock). CONCLUSIONS This prospective longitudinal study shows a predictive role for dorsal amygdala responsivity during threat anticipation for the development of trauma symptoms, while lateral amygdala responding to aversive events after trauma may reflect a failure to regulate. Our findings not only inform neurobiological theories of PTSD risk and vulnerability but also provide a starting point for prediction and intervention studies.
Collapse
Affiliation(s)
- Lycia D de Voogd
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands; Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands.
| | - Mahur M Hashemi
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Wei Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Reinoud Kaldewaij
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Saskia B J Koch
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Vanessa A van Ast
- Department of Clinical Psychology, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| | - Floris Klumpers
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Karin Roelofs
- Donders Institute, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands; Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Lawrence S, Scofield RH. Post traumatic stress disorder associated hypothalamic-pituitary-adrenal axis dysregulation and physical illness. Brain Behav Immun Health 2024; 41:100849. [PMID: 39280087 PMCID: PMC11401111 DOI: 10.1016/j.bbih.2024.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/11/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024] Open
Abstract
Conventional human stress responses are mediated by the sympathetic adrenal medullar (SAM) axis and the hypothalamic pituitary adrenal (HPA) axis. The SAM axis mediates the immediate response to stress through norepinephrine and epinephrine while the HPA axis mediates the slow response through corticosteroids, primarily cortisol, to effect systemic changes. Post Traumatic Stress Disorder (PTSD), a psychiatric disorder that develops in a small subset of people exposed to a traumatic event, may dysregulate these systems and result in increased risk of various clinical conditions. These conditions include but are not limited to cardiovascular disease, metabolic conditions, autoimmune diseases, neurocognitive disorders, and women's health complications such as preterm birth, polycystic ovarian syndrome, and endometriosis to name a few. This review focuses on how PTSD dysregulates the HPA axis, and further, how these alterations affect the immune system and physical health outcomes.
Collapse
Affiliation(s)
- Stephanie Lawrence
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - R Hal Scofield
- Department of Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
- University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| |
Collapse
|
3
|
Blalock ZN, Wu GWY, Lindqvist D, Trumpff C, Flory JD, Lin J, Reus VI, Rampersaud R, Hammamieh R, Gautam A, Doyle FJ, Marmar CR, Jett M, Yehuda R, Wolkowitz OM, Mellon SH. Circulating cell-free mitochondrial DNA levels and glucocorticoid sensitivity in a cohort of male veterans with and without combat-related PTSD. Transl Psychiatry 2024; 14:22. [PMID: 38200001 PMCID: PMC10781666 DOI: 10.1038/s41398-023-02721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Circulating cell-free mitochondrial DNA (ccf-mtDNA) is a biomarker of cellular injury or cellular stress and is a potential novel biomarker of psychological stress and of various brain, somatic, and psychiatric disorders. No studies have yet analyzed ccf-mtDNA levels in post-traumatic stress disorder (PTSD), despite evidence of mitochondrial dysfunction in this condition. In the current study, we compared plasma ccf-mtDNA levels in combat trauma-exposed male veterans with PTSD (n = 111) with those who did not develop PTSD (n = 121) and also investigated the relationship between ccf mt-DNA levels and glucocorticoid sensitivity. In unadjusted analyses, ccf-mtDNA levels did not differ significantly between the PTSD and non-PTSD groups (t = 1.312, p = 0.191, Cohen's d = 0.172). In a sensitivity analysis excluding participants with diabetes and those using antidepressant medication and controlling for age, the PTSD group had lower ccf-mtDNA levels than did the non-PTSD group (F(1, 179) = 5.971, p = 0.016, partial η2 = 0.033). Across the entire sample, ccf-mtDNA levels were negatively correlated with post-dexamethasone adrenocorticotropic hormone (ACTH) decline (r = -0.171, p = 0.020) and cortisol decline (r = -0.149, p = 0.034) (viz., greater ACTH and cortisol suppression was associated with lower ccf-mtDNA levels) both with and without controlling for age, antidepressant status and diabetes status. Ccf-mtDNA levels were also significantly positively associated with IC50-DEX (the concentration of dexamethasone at which 50% of lysozyme activity is inhibited), a measure of lymphocyte glucocorticoid sensitivity, after controlling for age, antidepressant status, and diabetes status (β = 0.142, p = 0.038), suggesting that increased lymphocyte glucocorticoid sensitivity is associated with lower ccf-mtDNA levels. Although no overall group differences were found in unadjusted analyses, excluding subjects with diabetes and those taking antidepressants, which may affect ccf-mtDNA levels, as well as controlling for age, revealed decreased ccf-mtDNA levels in PTSD. In both adjusted and unadjusted analyses, low ccf-mtDNA levels were associated with relatively increased glucocorticoid sensitivity, often reported in PTSD, suggesting a link between mitochondrial and glucocorticoid-related abnormalities in PTSD.
Collapse
Affiliation(s)
- Zachary N Blalock
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Gwyneth W Y Wu
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| | - Daniel Lindqvist
- Unit for Biological and Precision Psychiatry, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Caroline Trumpff
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, USA
| | - Janine D Flory
- James J. Peters VA Medical Center, Bronx, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Victor I Reus
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Ryan Rampersaud
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Rasha Hammamieh
- Integrative Systems Biology, US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, Frederick, MD, USA
| | - Aarti Gautam
- Integrative Systems Biology, US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, Frederick, MD, USA
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Charles R Marmar
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Marti Jett
- Integrative Systems Biology, US Army Medical Research and Materiel Command, USACEHR, Fort Detrick, Frederick, MD, USA
| | - Rachel Yehuda
- James J. Peters VA Medical Center, Bronx, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Owen M Wolkowitz
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Synthia H Mellon
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
4
|
de Kloet ER, Joëls M. The cortisol switch between vulnerability and resilience. Mol Psychiatry 2024; 29:20-34. [PMID: 36599967 DOI: 10.1038/s41380-022-01934-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
In concert with neuropeptides and transmitters, the end products of the hypothalamus-pituitary-adrenal (HPA) axis, the glucocorticoid hormones cortisol and corticosterone (CORT), promote resilience: i.e., the ability to cope with threats, adversity, and trauma. To exert this protective action, CORT activates mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) that operate in a complementary manner -as an on/off switch- to coordinate circadian events, stress-coping, and adaptation. The evolutionary older limbic MR facilitates contextual memory retrieval and supports an on-switch in the selection of stress-coping styles at a low cost. The rise in circulating CORT concentration after stress subsequently activates a GR-mediated off-switch underlying recovery of homeostasis by providing the energy for restraining the primary stress reactions and promoting cognitive control over emotional reactivity. GR activation facilitates contextual memory storage of the experience to enable future stress-coping. Such complementary MR-GR-mediated actions involve rapid non-genomic and slower gene-mediated mechanisms; they are time-dependent, conditional, and sexually dimorphic, and depend on genetic background and prior experience. If coping fails, GR activation impairs cognitive control and promotes emotional arousal which eventually may compromise resilience. Such breakdown of resilience involves a transition to a chronic stress construct, where information processing is crashed; it leads to an imbalanced MR-GR switch and hence increased vulnerability. Novel MR-GR modulators are becoming available that may reset a dysregulated stress response system to reinstate the cognitive flexibility required for resilience.
Collapse
Affiliation(s)
- E Ronald de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, The Netherlands.
- Leiden/Amsterdam Center of Drug Research, Leiden University, Leiden, The Netherlands.
| | - Marian Joëls
- Dept. Translational Neuroscience, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|