1
|
Ben Youssef M, Omrani A, Sifaoui I, Hernández-Álvarez E, Chao-Pellicer J, Bazzocchi IL, Sebai H, Piñero JE, Jimenez IA, Lorenzo-Morales J. Amoebicidal thymol analogues against brain-eating amoeba, Naegleria fowleri. Bioorg Chem 2025; 159:108346. [PMID: 40107039 DOI: 10.1016/j.bioorg.2025.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Naegleria fowleri, known as the brain-eating amoeba, is the pathogen parasite that causes primary amoebic meningoencephalitis. None of the currently available therapies are fully effective, mainly due to the inefficacy of pharmacotherapy. In this regard, natural products and related compounds represent a promising strategy for amoebicidal drug discovery. Herein, a series of eight monoterpene phenol derivatives of thymol bearing ester, carbonate, or carbamate moieties were prepared, and screened as potential amoebicidal agents on N. fowleri. The cytotoxicity of these compounds on murine macrophages cell line J774 was also evaluated to assess their selectivity. Compounds 3, 4, 7 and 8 showed significant activity against the N. fowleri trophozoite. Moreover, 4-nitrophenyl thymyl carbonate 8 displayed the highest potency, showing IC50 values of 22.87 and 25.16 μM against N. fowleri trophozoite and cyst stages, respectively, coupled with low cytotoxicity on a mammal cell line. Furthermore, mechanism of action studies revealed that derivative 8 triggered programmed cell death via cytosolic calcium accumulation, mitochondrial alteration, membrane damage, chromatin condensation, and ROS accumulation. In addition, the in-silico ADME analysis indicated that derivative 8 exhibits exceptional drug-likeness meeting all the pharmacokinetic criteria. These results highlight derivative 8 as a promising amoebicidal agent to develop new drugs for the treatment of Naegleria infections.
Collapse
Affiliation(s)
- Meriam Ben Youssef
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 La Laguna, Tenerife, Spain; Laboratory of Functional Physiology and Valorization of Bio-Ressources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 382-9000, Tunisia; Instituto Universitario de Bio-Orgánica Antonio González, and Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Amani Omrani
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 La Laguna, Tenerife, Spain; Laboratory of Functional Physiology and Valorization of Bio-Ressources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 382-9000, Tunisia; Instituto Universitario de Bio-Orgánica Antonio González, and Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, C/ Sta. María Soledad s/n, 38200 La Laguna, Tenerife, Spain; Consorcio Centro de Investigación Biomédica en Red, Área de Enfermedades Infecciosas (CIBERINFECT), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Eduardo Hernández-Álvarez
- Instituto Universitario de Bio-Orgánica Antonio González, and Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Javier Chao-Pellicer
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, C/ Sta. María Soledad s/n, 38200 La Laguna, Tenerife, Spain; Consorcio Centro de Investigación Biomédica en Red, Área de Enfermedades Infecciosas (CIBERINFECT), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Isabel L Bazzocchi
- Instituto Universitario de Bio-Orgánica Antonio González, and Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-Ressources, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 382-9000, Tunisia
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, C/ Sta. María Soledad s/n, 38200 La Laguna, Tenerife, Spain; Consorcio Centro de Investigación Biomédica en Red, Área de Enfermedades Infecciosas (CIBERINFECT), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Ignacio A Jimenez
- Instituto Universitario de Bio-Orgánica Antonio González, and Departamento de Química Orgánica, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain.
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, C/ Sta. María Soledad s/n, 38200 La Laguna, Tenerife, Spain; Consorcio Centro de Investigación Biomédica en Red, Área de Enfermedades Infecciosas (CIBERINFECT), Instituto de Salud Carlos III, Av. Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| |
Collapse
|
2
|
Bethencourt-Estrella CJ, López-Arencibia A, Lorenzo-Morales J, Piñero JE. Repurposing COVID-19 Compounds (via MMV COVID Box): Almitrine and Bortezomib Induce Programmed Cell Death in Trypanosoma cruzi. Pathogens 2025; 14:127. [PMID: 40005505 PMCID: PMC11858128 DOI: 10.3390/pathogens14020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, affects millions globally, with limited treatment options available. Current therapies, such as benznidazole and nifurtimox, present challenges, including their toxicity, side effects, and inefficacy in the chronic phase. This study explores the potential of drug repurposing as a strategy to identify new treatments for T. cruzi, focusing on compounds from the Medicines for Malaria Venture (MMV) COVID Box. An initial screening of 160 compounds identified eight with trypanocidal activity, with almitrine and bortezomib showing the highest efficacy. Both compounds demonstrated significant activity against the epimastigote and amastigote stages of the parasite and showed no cytotoxicity in murine macrophage cells. Key features of programmed cell death (PCD), such as chromatin condensation, mitochondrial membrane potential disruption, and reactive oxygen species accumulation, were observed in T. cruzi treated with these compounds. The potential to induce controlled cell death of these two compounds in T. cruzi suggests they are promising candidates for further research. This study reinforces drug repurposing as a viable approach to discovering novel treatments for neglected tropical diseases like Chagas disease.
Collapse
Affiliation(s)
- Carlos J. Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain; (C.J.B.-E.); (J.L.-M.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain; (C.J.B.-E.); (J.L.-M.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain; (C.J.B.-E.); (J.L.-M.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Spain; (C.J.B.-E.); (J.L.-M.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 La Laguna, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| |
Collapse
|
3
|
Verçosa BLA, Muniz-Junqueira MI, Mineiro ALBB, Melo MN, Vasconcelos AC. Enhanced apoptosis and inflammation allied with autophagic and apoptotic Leishmania amastigotes in the seemingly undamaged ear skin of clinically affected dogs with canine visceral Leishmaniasis. Cell Immunol 2025; 408:104909. [PMID: 39701006 DOI: 10.1016/j.cellimm.2024.104909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Programmed cell death plays a relevant role in the pathogenesis of visceral Leishmaniasis. Apoptosis selects suitable parasites, regulating parasite density, whereas autophagy eliminates pathogens. This study aimed to assess the inflammation and apoptosis in inflammatory cells and presents a unique description of the presence of autophagic and apoptotic Leishmania amastigotes in naturally Leishmania-infected dogs. Fragments from seemingly undamaged ear skin of sixteen Leishmania-infected dogs and seven uninfected dogs were evaluated through histomorphometry, ultrastructural, immunohistochemical and transmission electron microscopy (TEM) analyses. Leishmania amastigotes were present on seemingly undamaged ear skin only in clinically affected dogs. Parasite load, morphometrical parameters of inflammation and apoptotic index of inflammatory cells were higher in clinically affected animals and were related to clinical manifestations. Apoptotic index and morphometric parameters of the inflammatory infiltrate in undamaged ear skin were positively correlated with parasite load. Apoptotic and non-apoptotic Leishmania amastigotes were observed within neutrophils and macrophages. Leishmania amastigotes were positive for Bax, a marker for apoptosis, by immunohistochemistry. Morphological characteristics of apoptosis and autophagy in Leishmania amastigotes were observed only in phagocytes of clinically affected dogs. Positive correlations were found between histomorphometry and clinical manifestations. Our results showed that apoptosis and autophagy in Leishmania amastigotes may be related to both the increase in parasite load and apoptotic index in inflammatory cells, and with the intensity of the inflammatory response in clinically affected dogs. Thus, our study suggests that apoptotic and autophagy Leishmania within phagocytes may have facilitate the survival of the parasite and it appears to play an important role in the process of Leishmania infection.
Collapse
Affiliation(s)
- Barbara Laurice Araújo Verçosa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Imunologia Celular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil; Faculdade de Ciências da Saúde Pitágoras, Campus Codó, Codó, Maranhão, Brazil.
| | | | - Ana Lys Bezerra Barradas Mineiro
- Departamento de Clínica e Cirurgia Veterinária, Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Maria Norma Melo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anilton Cesar Vasconcelos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
Patolsky RG, Laiolo J, Díaz-Pérez L, Luna Pizarro G, Mayol GF, Touz MC, Feliziani C, Rópolo AS. Analysis of the role of acetylation in Giardia lamblia and the giardicidal potential of garcinol. Front Microbiol 2025; 15:1513053. [PMID: 39831116 PMCID: PMC11738946 DOI: 10.3389/fmicb.2024.1513053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Post-translational modifications of proteins provide cellular physiology with a broad range of adaptability to the external environment flexibly and rapidly. In the case of the protozoan parasite Giardia lamblia, the study of these modifications has gained relevance in recent years, mainly focusing on methylation and deacetylation of proteins. This study investigates the significance of acetylation in this protozoan parasite. Methods This study explores the role of acetylation in G. lamblia through a combination of immunofluorescence assays, manipulation of acetyltransferase enzymes, and the use of garcinol, an acetylation inhibitor, during the growth phase. Results The acetylation of histone marks H3K9 and H3K27 occurs during growth and is followed by deacetylation during encystation. Transfections modifying acetyltransferase activity induced a latent cellular state, underscoring the importance of protein acetylation for parasite survival. Garcinol treatment during growth caused significant morphological changes, including plasma membrane blebbing and apoptotic-like bodies. Immunofluorescence revealed these bodies contained α-tubulin/acetylated α-tubulin and reactive oxygen species. Flow cytometry and Annexin V staining indicated early apoptosis within 24 hours of treatment. Additionally, garcinol led to the deacetylation of H3K9 and H3K27, with redistribution of tubulin and acetylated tubulin from microtubules to the cytosol. Significantly, garcinol prevented parasite recrudescence after treatment withdrawal. Discussion These results demonstrate that acetylation is essential for trophozoite survival and highlight the natural histone acetyltransferase inhibitor garcinol as a potential candidate for drug development against giardiasis, considering its giardicidal activity.
Collapse
Affiliation(s)
- Rocío G. Patolsky
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jerónimo Laiolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
- Universidad Católica de Córdoba, Córdoba, Argentina
| | - Luciano Díaz-Pérez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gabriel Luna Pizarro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gonzalo F. Mayol
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María C. Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea S. Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
5
|
Liu T, Zhang Y, Zhao H, Wu Q, Xin J, Pan Q. Mycoplasma hyopneumoniae inhibits the unfolded protein response to prevent host macrophage apoptosis and M2 polarization. Infect Immun 2024; 92:e0005124. [PMID: 39133018 PMCID: PMC11475852 DOI: 10.1128/iai.00051-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Enzootic pneumonia caused by Mycoplasma hyopneumoniae (M. hyopneumoniae) has inflicted substantial economic losses on the global pig industry. The progression of M. hyopneumoniae induced-pneumonia is associated with lung immune cell infiltration and extensive proinflammatory cytokine secretion. Our previous study established that M. hyopneumoniae disrupts the host unfolded protein response (UPR), a process vital for the survival and immune function of macrophages. In this study, we demonstrated that M. hyopneumoniae targets the UPR- and caspase-12-mediated endoplasmic reticulum (ER)-associated classical intrinsic apoptotic pathway to interfere with host cell apoptosis signaling, thereby preserving the survival of host tracheal epithelial cells (PTECs) and alveolar macrophages (PAMs) during the early stages of infection. Even in the presence of apoptosis inducers, host cells infected with M. hyopneumoniae exhibited an anti-apoptotic potential. Further analyses revealed that M. hyopneumoniae suppresses the three UPR branches and their induced apoptosis. Interestingly, while UPR activation typically drives host macrophages toward an M2 polarization phenotype, M. hyopneumoniae specifically obstructs this process to maintain a proinflammatory phenotype in the host macrophages. Overall, our findings propose that M. hyopneumoniae inhibits the host UPR to sustain macrophage survival and a proinflammatory phenotype, which may be implicated in its pathogenesis in inducing host pneumonia.
Collapse
Affiliation(s)
- Tong Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yujuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huanjun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qi Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiuqing Xin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiao Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
6
|
Bethencourt-Estrella CJ, Delgado-Hernández S, López-Arencibia A, San Nicolás-Hernández D, Salazar-Villatoro L, Omaña-Molina M, Tejedor D, García-Tellado F, Lorenzo-Morales J, Piñero JE. Acrylonitrile derivatives: In vitro activity and mechanism of cell death induction against Trypanosoma cruzi and Leishmania amazonensis. Int J Parasitol Drugs Drug Resist 2024; 24:100531. [PMID: 38484645 PMCID: PMC10950693 DOI: 10.1016/j.ijpddr.2024.100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Leishmaniasis and Chagas disease are parasitic infections that affect millions of people worldwide, producing thousands of deaths per year. The current treatments against these pathologies are not totally effective and produce some side effects in the patients. Acrylonitrile derivatives are a group of compounds that have shown activity against these two diseases. In this work, four novels synthetic acrylonitriles were evaluated against the intracellular form and extracellular forms of L. amazonensis and T. cruzi. The compounds 2 and 3 demonstrate to have good selectivity indexes against both parasites, specifically the compound 3 against the amastigote form (SI = 6 against L. amazonensis and SI = 7.4 against T. cruzi). In addition, the parasites treated with these two compounds demonstrate to produce a programmed cell death, since they were positive for the events studied related to this type of death, including chromatin condensation, accumulation of reactive oxygen species and alteration of the mitochondrial membrane potential. In conclusion, this work confirms that acrylonitriles is a source of possible new compounds against kinetoplastids, however, more studies are needed to corroborate this activity.
Collapse
Affiliation(s)
- Carlos J Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Islas Canarias, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Islas Canarias, Tenerife, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Samuel Delgado-Hernández
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, 38206 La Laguna, Islas Canarias, Tenerife, Spain
| | - Atteneri López-Arencibia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Islas Canarias, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Islas Canarias, Tenerife, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Desirée San Nicolás-Hernández
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Islas Canarias, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Islas Canarias, Tenerife, Spain
| | - Lizbeth Salazar-Villatoro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico
| | - Maritza Omaña-Molina
- Facultad de Estudios Superiores Iztacala, Medicina, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
| | - David Tejedor
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, 38206 La Laguna, Islas Canarias, Tenerife, Spain.
| | - Fernando García-Tellado
- Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Avda. Fco. Sánchez 3, 38206 La Laguna, Islas Canarias, Tenerife, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Islas Canarias, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Islas Canarias, Tenerife, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, S/N, 38203 La Laguna, Islas Canarias, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Islas Canarias, Tenerife, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
7
|
Zhao ZC, Jiang MY, Huang JH, Lin C, Guo WL, Zhong ZH, Huang QQ, Liu SL, Deng HW, Zhou YC. Honokiol induces apoptosis-like death in Cryptocaryon irritans Tomont. Parasit Vectors 2023; 16:287. [PMID: 37587480 PMCID: PMC10428556 DOI: 10.1186/s13071-023-05910-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Cryptocaryon irritans, a common parasite in tropical and subtropical marine teleost fish, has caused serious harm to the marine aquaculture industry. Honokiol was proven to induce C. irritans tomont cytoplasm shrinkage and death in our previous study, but the mechanism by which it works remains unknown. METHODS In this study, the changes of apoptotic morphology and apoptotic ratio were detected by microscopic observation and AnnexinV-FITC/PI staining. The effects of honokiol on intracellular calcium ([Ca2+]i) concentration, mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS), quantity of DNA fragmentations (QDF) and caspase activities were detected by Fluo-3 staining, JC-1 staining, DCFH-DA staining, Tunel method and caspase activity assay kit. The effects of honokiol on mRNA expression levels of 61 apoptosis-related genes in tomonts of C. irritans were detected by real-time PCR. RESULTS The results of the study on the effects of honokiol concentration on C. irritans tomont apoptosis-like death showed that the highest levels of prophase apoptosis-like death rate (PADR), [Ca2+]i concentration, ROS, the activities of caspase-3/9 and the lowest necrosis ratio (NER) were obtained at a concentration of 1 μg/ml, which was considered the most suitable for inducing C. irritans tomont apoptosis-like death. When C. irritans tomonts were treated with 1 μg/ml honokiol, the [Ca2+]i concentration began to increase significantly at 1 h. Following this, the ROS, QDF and activities of caspase-3/9 began to increase significantly, and the ΔΨm began to decrease significantly at 2 h; the highest PADR was obtained at 4 h. The mRNA expression of 14 genes was significantly upregulated during honokiol treatment. Of these genes, itpr2, capn1, mc, actg1, actb, parp2, traf2 and fos were enriched in the pathway related to apoptosis induced by endoplasmic reticulum (ER) stress. CONCLUSIONS This article shows that honokiol can induce C. irritans tomont apoptosis-like death. These results suggest that honokiol may disrupt [Ca2+]i homeostasis in ER and then induce C. irritans tomont apoptosis-like death by caspase cascade or mitochondrial pathway, which might represent a novel therapeutic intervention for C. irritans infection.
Collapse
Affiliation(s)
- Zi-Chen Zhao
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
- School of Life Sciences, Hainan University, Haikou, 570228, People's Republic of China
| | - Man-Yi Jiang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
| | - Ji-Hui Huang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
- Technology Center of Haikou Customs District, Haikou, 570105, People's Republic of China
| | - Chuan Lin
- Aquaculture Department, Hainan Agriculture School, Haikou, 571101, People's Republic of China
| | - Wei-Liang Guo
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China.
| | - Zhi-Hong Zhong
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
| | - Qing-Qin Huang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
| | - Shao-Long Liu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
| | - Heng-Wei Deng
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China
| | - Yong-Can Zhou
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, People's Republic of China.
| |
Collapse
|
8
|
Benchimol M, Gadelha AP, de Souza W. Ultrastructural Alterations of the Human Pathogen Giardia intestinalis after Drug Treatment. Pathogens 2023; 12:810. [PMID: 37375500 DOI: 10.3390/pathogens12060810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
This review presents the main cell characteristics altered after in vitro incubation of the parasite with commercial drugs used to treat the disease caused by Giardia intestinalis. This important intestinal parasite primarily causes diarrhea in children. Metronidazole and albendazole are the primary compounds used in therapy against Giardia intestinalis. However, they provoke significant side effects, and some strains have developed resistance to metronidazole. Benzimidazole carbamates, such as albendazole and mebendazole, have shown the best activity against Giardia. Despite their in vitro efficacy, clinical treatment with benzimidazoles has yielded conflicting results, demonstrating lower cure rates. Recently, nitazoxanide has been suggested as an alternative to these drugs. Therefore, to enhance the quality of chemotherapy against this parasite, it is important to invest in developing other compounds that can interfere with key steps of metabolic pathways or cell structures and organelles. For example, Giardia exhibits a unique cell structure called the ventral disc, which is crucial for host adhesion and pathogenicity. Thus, drugs that can disrupt the adhesion process hold promise for future therapy against Giardia. Additionally, this review discusses new drugs and strategies that can be employed, as well as suggestions for developing novel drugs to control the infection caused by this parasite.
Collapse
Affiliation(s)
- Marlene Benchimol
- BIOTRANS-CAXIAS, Universidade do Grande Rio. UNIGRANRIO, Rio de Janeiro 96200-000, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Ana Paula Gadelha
- Diretoria de Metrologia Científica, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro 25259-020, Brazil
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
9
|
Ebrahimi M, Montazeri M, Ahmadi A, Nami S, Hamishehkar H, Shahrivar F, Bakhtiar NM, Nissapatorn V, Spotin A, Ahmadpour E. Nanoliposomes increases Anti-Trichomonas vaginalis and apoptotic activities of metronidazole. Acta Trop 2021; 224:106156. [PMID: 34599888 DOI: 10.1016/j.actatropica.2021.106156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022]
Abstract
Trichomoniasis, caused by Trichomonas vaginalis (T. vaginalis), is the most common non-viral sexually transmitted disease worldwide. As current trichomoniasis chemotherapies have many side effects, we examined the Anti-Trichomonas effects of nano-liposomal metronidazole (NLMTZ) compared to metronidazole (MTZ) in vitro. Liposomes were produced using the thin film hydration-sonication technique with a slight modification coated with MTZ. The average hydrodynamic diameter of monodispersed NLMTZ was evaluated by DLS and the morphological measurements were performed by scanning electron microscopy (SEM). The effects of NLMTZ and MTZ (5, 10, 20 and 40 µg/mL) on T. vaginalis trophozoites (105 cells/mL) in trypticase-yeast extract-maltose (TYM) medium were evaluated in different exposure times. Then, cell viability, IC50, SEM analysis and the expression of the metacaspase gene were assessed by qRT-PCR. Growth inhibition of MTZ in a concentration of 40 μg/mL was 39.34% after 3 h, whereas NLMTZ caused 51% growth inhibition after 3 h and lysed Trichomonas completely after 12 h. The IC50 values were estimated at 31.51 and 15.90 μg/mL after a 6 h exposure for MTZ and NLMTZ, respectively. Moreover, both T. vaginalis treated with MTZ and NLMTZ had high levels of metacaspase mRNA expression relative to the control groups (P< 0.05). A significant difference was observed between the apoptotic intensities of T. vaginalis treated with MTZ and NLMTZ (P< 0.05). This study showed that nano-liposomal MTZ is a potentially excellent approach for the treatment of trichomoniasis in vitro, although further studies are needed before consideration of clinical trials.
Collapse
|
10
|
Ilaghi M, Sharifi I, Sharififar F, Sharifi F, Oliaee RT, Babaei Z, Meimamandi MS, Keyhani A, Bamorovat M. The potential role and apoptotic profile of three medicinal plant extracts on Leishmania tropica by MTT assay, macrophage model and flow cytometry analysis. Parasite Epidemiol Control 2021; 12:e00201. [PMID: 33511293 PMCID: PMC7817489 DOI: 10.1016/j.parepi.2021.e00201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/17/2020] [Accepted: 01/02/2021] [Indexed: 02/02/2023] Open
Abstract
Introduction Treatment of leishmaniasis with conventional synthetic drugs is a major global challenge. This study was designed to explore the leishmanicidal activity and apoptotic profile of three leaf extracts on Leishmania tropica stages. Methods The plants of Quercus velutina, Calotropis procera and Nicotiana tabacum were gathered from Anbarabbad county, in the southeastern part of Kerman province and extracted by maceration method using methanol alcohol. Various concentrations of the extracts (1, 10, 100 and 1000 μg/mL) were used against L. tropica stages to evaluate the inhibitory effect by colorimetric assay, macrophage model and flow cytometry. The MTT assay was conducted to determine the IC50 and CC50 values in promastigotes and J774-A1 macrophages, respectively. For intra-macrophage amastigotes, the leishmanicidal activity was evaluated by calculating the mean number of amastigotes in each macrophage and also IC50 values. The promastigote or amastigote stages with no drug and complete medium without organisms were considered as positive and negative controls, respectively. Meglumine antimoniate (Glucantime) was also used as standard drug. Also, annexin V was used to assess the apoptotic profile. All treatment settings were incubated for a standard time of 72 h in triplicates. Data were analyzed by t-test and ANOVA. Results The findings showed that all plant extracts inhibited the proliferation rate of promastigotes and amastigotes (P ˂ 0.001); especially, Q. velutina represented the lowest IC50 in both stages. Besides, Q. velutina showed the least number of amastigotes in each macrophage compared to the other groups (4.5 μg/mL). The percentage of parasitic apoptosis at 1000 μg/mL of Q. velutina, C. procera, N. tabacum and Glucantime® were 37.4, 18.6, 8.5 and 52.4, respectively. Amastigotes (clinical stage) were significantly more susceptible to extracts and also Glucantime® than promastigotes (P < 0.001). Conclusions This study revealed that all three extracts of Q. velutina, C. procera and N. tabacum exhibited an effective antileishmanial activity and induced apoptosis against the L. tropica promastigotes. Further investigations are essential to isolate and analyze the chemical compositions and their biological properties.
Collapse
Affiliation(s)
- Mozhde Ilaghi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Zahra Babaei
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Manzume Shamsi Meimamandi
- Physiology and Pharmacology Department, Kerman Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Leprêtre M, Almunia C, Armengaud J, Le Guernic A, Salvador A, Geffard A, Palos-Ladeiro M. Identification of immune-related proteins of Dreissena polymorpha hemocytes and plasma involved in host-microbe interactions by differential proteomics. Sci Rep 2020; 10:6226. [PMID: 32277127 PMCID: PMC7148315 DOI: 10.1038/s41598-020-63321-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/27/2020] [Indexed: 12/04/2022] Open
Abstract
Biological responses of zebra mussel Dreissena polymorpha are investigated to assess the impact of contaminants on aquatic organisms and ecosystems. In addition to concentrate chemical contaminants in their tissues, zebra mussels accumulate several microorganisms such as viruses, protozoa and bacteria. In order to understand the molecular mechanisms involved in the defence against microorganisms this study aims at identifying immune proteins from D. polymorpha hemolymph involved in defence against protozoa and viruses. For this purpose, hemolymph were exposed ex vivo to Cryptosporidium parvum and RNA poly I:C. Differential proteomics on both hemocytes and plasma revealed immune proteins modulated under exposures. Different patterns of response were observed after C. parvum and RNA poly I:C exposures. The number of modulated proteins per hemolymphatic compartments suggest that C. parvum is managed in cells while RNA poly I:C is managed in plasma after 4 h exposure. BLAST annotation and GO terms enrichment analysis revealed further characteristics of immune mechanisms. Results showed that many proteins involved in the recognition and destruction of microorganisms were modulated in both exposure conditions, while proteins related to phagocytosis and apoptosis were exclusively modulated by C. parvum. This differential proteomic analysis highlights in zebra mussels modulated proteins involved in the response to microorganisms, which reflect a broad range of immune mechanisms such as recognition, internalization and destruction of microorganisms. This study paves the way for the identification of new markers of immune processes that can be used to assess the impact of both chemical and biological contaminations on the health status of aquatic organisms.
Collapse
Affiliation(s)
- Maxime Leprêtre
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039, 51687, Reims, CEDEX, France
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, F-69100, Villeurbanne, France
| | - Christine Almunia
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Antoine Le Guernic
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039, 51687, Reims, CEDEX, France
| | - Arnaud Salvador
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, F-69100, Villeurbanne, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039, 51687, Reims, CEDEX, France
| | - Mélissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039, 51687, Reims, CEDEX, France.
| |
Collapse
|
12
|
Wanderley JLM, DaMatta RA, Barcinski MA. Apoptotic mimicry as a strategy for the establishment of parasitic infections: parasite- and host-derived phosphatidylserine as key molecule. Cell Commun Signal 2020; 18:10. [PMID: 31941500 PMCID: PMC6964003 DOI: 10.1186/s12964-019-0482-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
The establishment of parasitic infection is dependent on the development of efficient strategies to evade the host defense mechanisms. Phosphatidylserine (PS) molecules are pivotal for apoptotic cell recognition and clearance by professional phagocytes. Moreover, PS receptors are able to trigger anti-inflammatory and immunosuppressive responses by phagocytes, either by coupled enzymes or through the induction of regulatory cytokine secretion. These PS-dependent events are exploited by parasites in a mechanism called apoptotic mimicry. Generally, apoptotic mimicry refers to the effects of PS recognition for the initiation and maintenance of pathogenic infections. However, in this context, PS molecules can be recognized on the surface of the infectious agent or in the surface of apoptotic host debris, leading to the respective denomination of classical and non-classical apoptotic mimicry. In this review, we discuss the role of PS in the pathogenesis of several human infections caused by protozoan parasites. Video Abstract
Collapse
Affiliation(s)
- João Luiz Mendes Wanderley
- Laboratório de Imunoparasitologia, Campus UFRJ Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Renato Augusto DaMatta
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual Norte-Fluminense, Campos dos Goytacazes, RJ, Brazil
| | - Marcello André Barcinski
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Abstract
Leishmaniases still represent a global scourge and new therapeutic tools are necessary to replace the current expensive, difficult to administer treatments that induce numerous adverse effects and for which resistance is increasingly worrying. In this context, the particularly original organization of the Leishmania parasite in comparison to higher eukaryotes is a great advantage. It allows for the development of new, very specific, and thus non-cytotoxic treatments. Among these originalities, Leishmania cell death can be cited. Despite a classic pattern of apoptosis, key mammalian apoptotic proteins are not present in Leishmania, such as caspases, cell death receptors, and anti-apoptotic molecules. Recent studies have helped to develop a better understanding of parasite cell death, identifying new proteins or even new apoptotic pathways. This review provides an overview of the current knowledge on Leishmania cell death, describing its physiological roles and its phenotype, and discusses the involvement of various proteins: endonuclease G, metacaspase, aquaporin Li-BH3AQP, calpains, cysteine proteinase C, LmjHYD36 and Lmj.22.0600. From these data, potential apoptotic pathways are suggested. This review also offers tools to identify new Leishmania cell death effectors. Lastly, different approaches to use this knowledge for the development of new therapeutic tools are suggested: either inhibition of Leishmania cell death or activation of cell death for instance by treating cells with proteins or peptides involved in parasite death fused to a cell permeant peptide or encapsulated into a lipidic vector to target intra-macrophagic Leishmania cells.
Collapse
Affiliation(s)
- Louise Basmaciyan
- UMR PAM A, Valmis Team, 2 rue Angélique Ducoudray, BP 37013, 21070 Dijon Cedex, France
| | - Magali Casanova
- Aix-Marseille University, CNRS, LISM, Institut de Microbiologie de la Méditerranée, 13402 Marseille Cedex 09, France
| |
Collapse
|
14
|
Menna-Barreto RFS. Cell death pathways in pathogenic trypanosomatids: lessons of (over)kill. Cell Death Dis 2019; 10:93. [PMID: 30700697 PMCID: PMC6353990 DOI: 10.1038/s41419-019-1370-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022]
Abstract
Especially in tropical and developing countries, the clinically relevant protozoa Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (sleeping sickness) and Leishmania species (leishmaniasis) stand out and infect millions of people worldwide leading to critical social-economic implications. Low-income populations are mainly affected by these three illnesses that are neglected by the pharmaceutical industry. Current anti-trypanosomatid drugs present variable efficacy with remarkable side effects that almost lead to treatment discontinuation, justifying a continuous search for alternative compounds that interfere with essential and specific parasite pathways. In this scenario, the triggering of trypanosomatid cell death machinery emerges as a promising approach, although the exact mechanisms involved in unicellular eukaryotes are still unclear as well as the controversial biological importance of programmed cell death (PCD). In this review, the mechanisms of autophagy, apoptosis-like cell death and necrosis found in pathogenic trypanosomatids are discussed, as well as their roles in successful infection. Based on the published genomic and proteomic maps, the panel of trypanosomatid cell death molecules was constructed under different experimental conditions. The lack of PCD molecular regulators and executioners in these parasites up to now has led to cell death being classified as an unregulated process or incidental necrosis, despite all morphological evidence published. In this context, the participation of metacaspases in PCD was also not described, and these proteases play a crucial role in proliferation and differentiation processes. On the other hand, autophagic phenotype has been described in trypanosomatids under a great variety of stress conditions (drugs, starvation, among others) suggesting that this process is involved in the turnover of damaged structures in the protozoa and is not a cell death pathway. Death mechanisms of pathogenic trypanosomatids may be involved in pathogenesis, and the identification of parasite-specific regulators could represent a rational and attractive alternative target for drug development for these neglected diseases.
Collapse
|
15
|
Gadelha APR, Bravim B, Vidal J, Reignault LC, Cosme B, Huber K, Bracher F, de Souza W. Alterations on growth and cell organization of Giardia intestinalis trophozoites after treatment with KH-TFMDI, a novel class III histone deacetylase inhibitor. Int J Med Microbiol 2019; 309:130-142. [PMID: 30665874 DOI: 10.1016/j.ijmm.2019.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 12/30/2018] [Accepted: 01/14/2019] [Indexed: 12/14/2022] Open
Abstract
Giardia trophozoites have developed resistance mechanisms to currently available compounds, leading to treatment failures. In this context, the development of new additional agents is mandatory. Sirtuins, which are class III NAD+-dependent histone deacetylases, have been considered important targets for the development of new anti-parasitic drugs. Here, we evaluated the activity of KH-TFMDI, a novel 3-arylideneindolin-2-one-type sirtuin inhibitor, on G. intestinalis trophozoites. This compound decreased the trophozoite growth presenting an IC50 value lower than nicotinamide, a moderately active inhibitor of yeast and human sirtuins. Light and electron microscopy analysis showed the presence of multinucleated cell clusters suggesting that the cytokinesis could be compromised in treated trophozoites. Cell rounding, concomitantly with the folding of the ventro-lateral flange and flagella internalization, was also observed. These cells eventually died by a mechanism which lead to DNA/nuclear damage, formation of multi-lamellar bodies and annexin V binding on the parasite surface. Taken together, these data show that KH-TFMDI has significant effects against G. intestinalis trophozoites proliferation and structural organization and suggest that histone deacetylation pathway should be explored on this protozoon as target for chemotherapy.
Collapse
Affiliation(s)
- Ana Paula R Gadelha
- Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil
| | - Bárbara Bravim
- Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil
| | - Juliana Vidal
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lissa Catherine Reignault
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruno Cosme
- Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil
| | - Kilian Huber
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Munich, Germany; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Wanderley de Souza
- Diretoria de Metrologia Aplicada a Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Rio de Janeiro, RJ, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
16
|
Encephalitozoon cuniculi and Vittaforma corneae (Phylum Microsporidia) inhibit staurosporine-induced apoptosis in human THP-1 macrophages in vitro. Parasitology 2018; 146:569-579. [PMID: 30486909 DOI: 10.1017/s0031182018001968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Obligately intracellular microsporidia regulate their host cell life cycles, including apoptosis, but this has not been evaluated in phagocytic host cells such as macrophages that can facilitate infection but also can be activated to kill microsporidia. We examined two biologically dissimilar human-infecting microsporidia species, Encephalitozoon cuniculi and Vittaforma corneae, for their effects on staurosporine-induced apoptosis in the human macrophage-differentiated cell line, THP1. Apoptosis was measured after exposure of THP-1 cells to live and dead mature organisms via direct fluorometric measurement of Caspase 3, colorimetric and fluorometric TUNEL assays, and mRNA gene expression profiles using Apoptosis RT2 Profiler PCR Array. Both species of microsporidia modulated the intrinsic apoptosis pathway. In particular, live E. cuniculi spores inhibited staurosporine-induced apoptosis as well as suppressed pro-apoptosis genes and upregulated anti-apoptosis genes more broadly than V. corneae. Exposure to dead spores induced an opposite effect. Vittaforma corneae, however, also induced inflammasome activation via Caspases 1 and 4. Of the 84 apoptosis-related genes assayed, 42 (i.e. 23 pro-apoptosis, nine anti-apoptosis, and 10 regulatory) genes were more affected including those encoding members of the Bcl2 family, caspases and their regulators, and members of the tumour necrosis factor (TNF)/TNF receptor R superfamily.
Collapse
|
17
|
Díaz S, Rojas ME, Galleguillos M, Maturana C, Smith PI, Cifuentes F, Contreras I, Smith PA. Apoptosis inhibition of Atlantic salmon (Salmo salar) peritoneal macrophages by Piscirickettsia salmonis. JOURNAL OF FISH DISEASES 2017; 40:1895-1902. [PMID: 28699666 DOI: 10.1111/jfd.12660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/27/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
To improve the understanding of the piscirickettsiosis pathogenesis, the in vivo apoptosis modulation of peritoneal macrophages and lymphocytes was studied in juvenile Salmo salar intraperitoneally injected with Piscirickettsia salmonis. Five fish were sampled at post-exposure days 1, 5, 8 (preclinical), 20 (clinical) and 40 (post-clinical period of the disease), and the leucocytes of their coelomic washings were analysed by flow cytometry (using the JC-1 cationic dye), TUNEL and cytology to detect apoptotic cells. A selective and temporal pattern of apoptosis modulation by P. salmonis infection was observed. Apoptosis in lymphocytes was not affected, whereas it was inhibited in macrophages but only during the preclinical stage of the induced piscirickettsiosis. Hence, it is postulated that P. salmonis inhibits macrophage apoptosis at the beginning of the disease development to survive, multiply and probably be transported inside these phagocytes; once this process is complete, macrophage apoptosis is no longer inhibited, thus facilitating the exit of the bacteria from the infected cells for continuing their life cycle.
Collapse
Affiliation(s)
- S Díaz
- Facultad de Ciencias Veterinarias, Universidad de Chile, Santiago, Chile
| | - M E Rojas
- Facultad de Ciencias Veterinarias, Universidad de Chile, Santiago, Chile
| | - M Galleguillos
- Facultad de Ciencias Veterinarias, Universidad de Chile, Santiago, Chile
| | | | - P I Smith
- Universidad del Desarrollo, Santiago, Chile
| | - F Cifuentes
- Facultad de Ciencias Veterinarias, Universidad de Chile, Santiago, Chile
| | | | - P A Smith
- Facultad de Ciencias Veterinarias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Isopropyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives induce regulated necrosis-like cell death on Leishmania (Leishmania) mexicana. Parasitol Res 2017; 117:45-58. [PMID: 29159705 DOI: 10.1007/s00436-017-5635-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/25/2017] [Indexed: 02/03/2023]
Abstract
Leishmaniasis is a neglected tropical disease caused by the parasite of the genus Leishmania. About 13 million people are infected worldwide, and it is estimated that 350 million are at risk of infection. Clinical manifestations depend on the parasite species and factors related to the host such as the immune system, nutrition, housing, and financial resources. Available treatments have severe side effects; therefore, research currently focuses on finding more active and less toxic compounds. Quinoxalines have been described as promising alternatives. In this context, 17 isopropyl quinoxaline-7-carboxylate 1,4-di-N-oxide derivatives were evaluated as potential leishmanicidal agents. Their effect on the cell metabolism of Leishmania mexicana promastigotes and their cytotoxic effects on the J774.A1 cell line and on erythrocytes were evaluated, and their selectivity index was calculated. Compounds T-069 (IC50 = 1.49 μg/mL), T-070 (IC50 = 1.71 μg/mL), T-072 (IC50 = 6.62 μg/mL), T-073 (IC50 = 1.25 μg/mL), T-085 (IC50 = 0.74 μg/mL), and T-116 (IC50 = 0.88 μg/mL) were the most active against L. mexicana promastigotes and their mechanism of action was characterized by flow cytometry and microscopy. Compound T-073, the most selective quinoxaline derivative, induced cell membrane damage, phosphatidylserine exposition, reactive oxygen species production, disruption of the mitochondrion membrane potential, and DNA fragmentation, all in a dose-dependent manner, indicating the induction of regulated necrosis. Light and transmission electron microscopy showed the drastic morphological changes induced and the mitochondrion as the most sensitive organelle in response to T-073. This study describes the mechanism by which active isopropyl quinoxaline-7-carboxylate 1,4-di-N-oxide quinoxalines affect the parasite.
Collapse
|
19
|
Cárdenas-Zúñiga R, Silva-Olivares A, Villalba-Magdaleno JDA, Sánchez-Monroy V, Serrano-Luna J, Shibayama M. Amphotericin B induces apoptosis-like programmed cell death in Naegleria fowleri and Naegleria gruberi. MICROBIOLOGY-SGM 2017; 163:940-949. [PMID: 28721850 DOI: 10.1099/mic.0.000500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Naegleria fowleri and Naegleria gruberi belong to the free-living amoebae group. It is widely known that the non-pathogenic species N. gruberi is usually employed as a model to describe molecular pathways in this genus, mainly because its genome has been recently described. However, N. fowleri is an aetiological agent of primary amoebic meningoencephalitis, an acute and fatal disease. Currently, the most widely used drug for its treatment is amphotericin B (AmB). It was previously reported that AmB has an amoebicidal effect in both N. fowleri and N. gruberi trophozoites by inducing morphological changes that resemble programmed cell death (PCD). PCD is a mechanism that activates morphological, biochemical and genetic changes. However, PCD has not yet been characterized in the genus Naegleria. The aim of the present work was to evaluate the typical markers to describe PCD in both amoebae. These results showed that treated trophozoites displayed several parameters of apoptosis-like PCD in both species. We observed ultrastructural changes, an increase in reactive oxygen species, phosphatidylserine externalization and a decrease in intracellular potassium, while DNA degradation was evaluated using the TUNEL assay and agarose gels, and all of these parameters are related to PCD. Finally, we analysed the expression of apoptosis-related genes, such as sir2 and atg8, in N. gruberi. Taken together, our results showed that AmB induces the morphological, biochemical and genetic changes of apoptosis-like PCD in the genus Naegleria.
Collapse
Affiliation(s)
- Roberto Cárdenas-Zúñiga
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Angélica Silva-Olivares
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | | | - Virginia Sánchez-Monroy
- Laboratorio de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politénico Nacional, Calle Guillermo Massieu H. 239, Col. La Escalera, 07320, Mexico City, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| |
Collapse
|
20
|
Baig AM, Lalani S, Khan NA. Apoptosis in Acanthamoeba castellanii
belonging to the T4 genotype. J Basic Microbiol 2017; 57:574-579. [DOI: 10.1002/jobm.201700025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/02/2017] [Accepted: 04/02/2017] [Indexed: 01/27/2023]
Affiliation(s)
- Abdul M. Baig
- Department of Biological and Biomedical Sciences; Aga Khan University; Karachi Pakistan
| | - Salima Lalani
- Department of Biological and Biomedical Sciences; Aga Khan University; Karachi Pakistan
| | - Naveed A. Khan
- Faculty of Science and Technology, Department of Biological Sciences; Sunway University; Bandar Sunway Selangor Malaysia
| |
Collapse
|
21
|
Perifosine Mechanisms of Action in Leishmania Species. Antimicrob Agents Chemother 2017; 61:AAC.02127-16. [PMID: 28096161 DOI: 10.1128/aac.02127-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/08/2017] [Indexed: 12/22/2022] Open
Abstract
Here the mechanism by which perifosine induced cell death in Leishmania donovani and Leishmania amazonensis is described. The drug reduced Leishmania mitochondrial membrane potential and decreased cellular ATP levels while increasing phosphatidylserine externalization. Perifosine did not increase membrane permeabilization. We also found that the drug inhibited the phosphorylation of Akt in the parasites. These results highlight the potential use of perifosine as an alternative to miltefosine against Leishmania.
Collapse
|
22
|
Sow F, Bonnot G, Ahmed BR, Diagana SM, Kebe H, Koita M, Samba BM, Al-Mukhaini SK, Al-Zadjali M, Al-Abri SS, Ali OAM, Samy AM, Hamid MMA, Ali Albsheer MM, Simon B, Bienvenu AL, Petersen E, Picot S. Genetic diversity of Plasmodium vivax metacaspase 1 and Plasmodium vivax multi-drug resistance 1 genes of field isolates from Mauritania, Sudan and Oman. Malar J 2017; 16:61. [PMID: 28153009 PMCID: PMC5288979 DOI: 10.1186/s12936-017-1687-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/10/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Plasmodium vivax is the second most important human malaria parasite, widely spread across the world. This parasite is associated with important issues in the process toward malaria elimination, including potential for relapse and increased resistance to chloroquine. Plasmodium vivax multi-drug resistant (pvmdr1) is suspected to be a marker of resistance although definitive evidence is lacking. Progress has been made in knowledge of biological factors affecting parasite growth, including mechanisms of regulated cell death and the suspected role of metacaspase. Plasmodium vivax metacaspase1 (PvMCA1-cd) has been described with a catalytic domain composed of histidine (H372) and cysteine (C428) residues. The aim of this study was to test for a link between the conserved histidine and cysteine residues in PvMCA1-cd, and the polymorphism of the P. vivax multi-drug resistant gene (pvmdr1). RESULTS Thirty P. vivax isolates were collected from Mauritania, Sudan, and Oman. Among the 28 P. vivax isolates successfully sequenced, only 4 samples showed the conserved His (372)-Cys (428) residues in PvMCA1-cd. Single nucleotide polymorphisms observed were H372T (46.4%), H372D (39.3%), and C428R (85.7%). A new polymorphic catalytic domain was observed at His (282)-Cys (305) residues. Sequences alignment analysis of pvmdr1 showed SNP in the three codons 958, 976 and 1076. A single SNP was identified at the codon M958Y (60%), 2 SNPs were found at the position 976: Y976F (13%) and Y976V (57%), and 3 SNPs were identified at the position 1076: F1076L (40%), F1076T (53%) and F1076I (3%). Only one isolate was wildtype in all three codons (MYF), 27% were single MYL mutants, and 10% were double MFL mutants. Three new haplotypes were also identified: the triple mutant YVT was most prevalent (53.3%) distributed in the three countries, while triple YFL and YVI mutants (3%), were only found in samples from Sudan and Mauritania. CONCLUSIONS Triple or quadruple mutants for metacaspase genes and double or triple mutants for Pvmdr1 were observed in 24/28 and 19/28 samples. There was no difference in the frequency of mutations between PvMCA1-cd and Pvmdr1 (P > 0.2). Histidine and cysteine residues in PvMCA1-cd are highly polymorphic and linkage disequilibrium with SNPs of Pvmdr1 gene may be expected from these three areas with different patterns of P. vivax transmission.
Collapse
Affiliation(s)
- Fatimata Sow
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires ICBMS-UMR5246, CNRS-INSA-CPE, Malaria Research Unit, University Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918, Lyon, 69622, Villeurbane, France.
| | - Guillaume Bonnot
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires ICBMS-UMR5246, CNRS-INSA-CPE, Malaria Research Unit, University Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918, Lyon, 69622, Villeurbane, France
| | - Bilal Rabah Ahmed
- Laboratoire de Bactériologie et Parasitologie de l'Hôpital Cheikh Zayed, BP-5720, Nouakchott, Mauritania
| | - Sidi Mohamed Diagana
- Laboratoire de Bactériologie et Parasitologie de l'Hôpital Cheikh Zayed, BP-5720, Nouakchott, Mauritania
| | - Hachim Kebe
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier National de Nouakchott, BP-612, Nouakchott, Mauritania
| | - Mohamedou Koita
- Laboratoire de Parasitologie et de Mycologie Médicale Institut National de Recherches en Santé Publique (INRSP), Avenue Jemal AbdeNasser, BP-695, Nouakchott, Mauritania
| | - Ba Malado Samba
- Laboratoire Analyse de Biologie Médicale du Centre hospitalier de Rosso Mauritanie, BP-41, Rosso, Mauritania
| | - Said K Al-Mukhaini
- Department of Infectious Diseases, The Royal Hospital, Muscat, Oman.,Department of malaria, Ministry of Health, Muscat, Oman
| | - Majed Al-Zadjali
- Department of Infectious Diseases, The Royal Hospital, Muscat, Oman.,Department of malaria, Ministry of Health, Muscat, Oman
| | - Seif S Al-Abri
- Department of Infectious Diseases, The Royal Hospital, Muscat, Oman.,Department of malaria, Ministry of Health, Muscat, Oman
| | - Osama A M Ali
- Department of Infectious Diseases, The Royal Hospital, Muscat, Oman.,Department of malaria, Ministry of Health, Muscat, Oman
| | - Abdallah M Samy
- Entomology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt.,Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, USA
| | - Muzamil Mahdi Abdel Hamid
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, Medical Campus, University of Khartoum, Qassr Street, P.O. BOX 102, Khartoum, Sudan
| | - Musab M Ali Albsheer
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, Medical Campus, University of Khartoum, Qassr Street, P.O. BOX 102, Khartoum, Sudan
| | - Bruno Simon
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires ICBMS-UMR5246, CNRS-INSA-CPE, Malaria Research Unit, University Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918, Lyon, 69622, Villeurbane, France.,Institut of Parasitology and Medical Mycology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Anne-Lise Bienvenu
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires ICBMS-UMR5246, CNRS-INSA-CPE, Malaria Research Unit, University Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918, Lyon, 69622, Villeurbane, France.,Institut of Parasitology and Medical Mycology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Eskild Petersen
- Department of Infectious Diseases, The Royal Hospital, Muscat, Oman.,Department of malaria, Ministry of Health, Muscat, Oman.,Institute of Clinical Medicine, Faculty of Health Science, University of Aarhus, Aarhus, Denmark
| | - Stéphane Picot
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires ICBMS-UMR5246, CNRS-INSA-CPE, Malaria Research Unit, University Claude Bernard Lyon 1, 43 Boulevard du 11 novembre 1918, Lyon, 69622, Villeurbane, France.,Institut of Parasitology and Medical Mycology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
23
|
Martín-Hernández R, Higes M, Sagastume S, Juarranz Á, Dias-Almeida J, Budge GE, Meana A, Boonham N. Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis. PLoS One 2017; 12:e0170183. [PMID: 28152065 PMCID: PMC5289437 DOI: 10.1371/journal.pone.0170183] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2022] Open
Abstract
Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell.
Collapse
Affiliation(s)
- Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Albacete, Albacete, Spain
- * E-mail:
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Soledad Sagastume
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Ángeles Juarranz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Joyce Dias-Almeida
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Giles E. Budge
- Fera, Sand Hutton, York, United Kingdom
- Institute for Agri-Food Research and Innovation, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Aránzazu Meana
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Neil Boonham
- Fera, Sand Hutton, York, United Kingdom
- Institute for Agri-Food Research and Innovation, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
24
|
Kurze C, Dosselli R, Grassl J, Le Conte Y, Kryger P, Baer B, Moritz RFA. Differential proteomics reveals novel insights into Nosema-honey bee interactions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 79:42-49. [PMID: 27784614 DOI: 10.1016/j.ibmb.2016.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 06/06/2023]
Abstract
Host manipulation is a common strategy by parasites to reduce host defense responses, enhance development, host exploitation, reproduction and, ultimately, transmission success. As these parasitic modifications can reduce host fitness, increased selection pressure may result in reciprocal adaptations of the host. Whereas the majority of studies on host manipulation have explored resistance against parasites (i.e. ability to prevent or limit an infection), data describing tolerance mechanisms (i.e. ability to limit harm of an infection) are scarce. By comparing differential protein abundance, we provide evidence of host-parasite interactions in the midgut proteomes of N. ceranae-infected and uninfected honey bees from both Nosema-tolerant and Nosema-sensitive lineages. We identified 16 proteins out of 661 protein spots that were differentially abundant between experimental groups. In general, infections of Nosema resulted in an up-regulation of the bee's energy metabolism. Additionally, we identified 8 proteins that were differentially abundant between tolerant and sensitive honey bees regardless of the Nosema infection. Those proteins were linked to metabolism, response to oxidative stress and apoptosis. In addition to bee proteins, we also identified 3 Nosema ceranae proteins. Interestingly, abundance of two of these Nosema proteins were significantly higher in infected Nosema-sensitive honeybees relative to the infected Nosema-tolerant lineage. This may provide a novel candidate for studying the molecular interplay between N. ceranae and its honey bee host in more detail.
Collapse
Affiliation(s)
- Christoph Kurze
- Martin-Luther-Universität Halle-Wittenberg, Institute for Biology/Molecular Ecology, Hoher Weg 4, 06120 Halle (Saale), Germany; The University of Western Australia, Centre for Integrative Bee Research (CIBER) and ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), Crawley, Western Australia 6009, Australia; Pennsylvania State University, Center for Infectious Disease Dynamics, W249 Millennium Science Complex, University Park, PA 16802, United States.
| | - Ryan Dosselli
- The University of Western Australia, Centre for Integrative Bee Research (CIBER) and ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), Crawley, Western Australia 6009, Australia
| | - Julia Grassl
- The University of Western Australia, Centre for Integrative Bee Research (CIBER) and ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), Crawley, Western Australia 6009, Australia
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon Cedex 9, France
| | - Per Kryger
- Aarhus University, Department of Agroecology/Section of Entomology and Plant Pathology, Flakkebjerg, 4200, Slagelse, Denmark
| | - Boris Baer
- The University of Western Australia, Centre for Integrative Bee Research (CIBER) and ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), Crawley, Western Australia 6009, Australia
| | - Robin F A Moritz
- Martin-Luther-Universität Halle-Wittenberg, Institute for Biology/Molecular Ecology, Hoher Weg 4, 06120 Halle (Saale), Germany; German Institute for Integrative Biodiversity Research (iDiv), Bio City, 04103 Leipzig, Germany; University of Pretoria, Department of Zoology and Entomology, Pretoria, 0002, South Africa
| |
Collapse
|
25
|
Aguilar-Diaz H, Canizalez-Roman A, Nepomuceno-Mejia T, Gallardo-Vera F, Hornelas-Orozco Y, Nazmi K, Bolscher JGM, Carrero JC, Leon-Sicairos C, Leon-Sicairos N. Parasiticidal effect of synthetic bovine lactoferrin peptides on the enteric parasite Giardia intestinalis. Biochem Cell Biol 2016; 95:82-90. [PMID: 28165283 DOI: 10.1139/bcb-2016-0079] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Giardia intestinalis is the most common infectious protozoan parasite in children. Despite the effectiveness of some drugs, the disease remains a major worldwide problem. Consequently, the search for new treatments is important for disease eradication. Biological molecules with antimicrobial properties represent a promising alternative to combat pathogens. Bovine lactoferrin (bLF) is a key component of the innate host defense system, and its peptides have exhibited strong antimicrobial activity. Based on these properties, we evaluated the parasiticidal activity of these peptides on G. intestinalis. Trophozoites were incubated with different peptide concentrations for different periods of time, and the growth or viability was determined by carboxyfluorescein-succinimidyl-diacetate-ester (CFDA) and propidium iodide (PI) staining. Endocytosis of peptides was investigated by confocal microscopy, damage was analyzed by transmission and scanning electron microscopy, and the type of programmed cell death was analyzed by flow cytometry. Our results showed that the LF peptides had giardicidal activity. The LF peptides interacted with G. intestinalis and exposure to LF peptides correlated with an increase in the granularity and vacuolization of the cytoplasm. Additionally, the formation of pores, extensive membrane disruption, and programmed cell death was observed in trophozoites treated with LF peptides. Our results demonstrate that LF peptides exhibit potent in vitro antigiardial activity.
Collapse
Affiliation(s)
- Hugo Aguilar-Diaz
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa. Cedros y Sauces, Fracc. Fresnos Culiacán 80246, Sinaloa, México
| | - Adrian Canizalez-Roman
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa. Cedros y Sauces, Fracc. Fresnos Culiacán 80246, Sinaloa, México.,b Departamento de Investigación, Hospital de la Mujer, Boulevard Miguel Tamayo Espinoza de los Monteros S/N, Col. Desarrollo Urbano Tres Ríos, Culiacán 80020, Sinaloa, México
| | - Tomas Nepomuceno-Mejia
- c Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Calle 4a, Avenida Norte esquina con Calle 19 Pte S/N, Centro, Tapachula 30700, Chiapas, Mexico
| | - Francisco Gallardo-Vera
- d Laboratorio Inmunobiología, Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad Universitaria, México DF 04510, México
| | - Yolanda Hornelas-Orozco
- e Servicio Académico de Microscopía Electrónica de Barrido, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, México, D. F. 04510, México
| | - Kamran Nazmi
- f Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, 1081 LA, Amsterdam, the Netherlands
| | - Jan G M Bolscher
- f Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, 1081 LA, Amsterdam, the Netherlands
| | - Julio Cesar Carrero
- g Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, DF 04510, México
| | - Claudia Leon-Sicairos
- h Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Avenida de las Américas y Josefa Ortiz (Ciudad Universitaria), Culiacán 80030, Sinaloa, México
| | - Nidia Leon-Sicairos
- a CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa. Cedros y Sauces, Fracc. Fresnos Culiacán 80246, Sinaloa, México.,i Departamento de Investigación, Hospital Pediátrico de Sinaloa, Boulevard Constitución S/N, Col. Jorge Almada, Culiacan 80200, Sinaloa, México
| |
Collapse
|
26
|
Navrátilová A, Nešuta O, Vančatová I, Čížek A, Varela-M RE, López-Abán J, Villa-Pulgarin JA, Mollinedo F, Muro A, Žemličková H, Kadlecová D, Šmejkal K. C-Geranylated flavonoids from Paulownia tomentosa fruits with antimicrobial potential and synergistic activity with antibiotics. PHARMACEUTICAL BIOLOGY 2016; 54:1398-1407. [PMID: 26789098 DOI: 10.3109/13880209.2015.1103755] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context C-6-Geranylated flavonoids possess promising biological activities. These substances could be a source of lead compounds for the development of therapeutics. Objective The study was designed to evaluate their antibacterial and antileishmanial activity. Materials and methods C-6-Geranylated flavanones were tested in micromolar concentrations against promastigote forms of Leishmania brazilensis, L. donovani, L. infantum, and L. panamensis against methicillin-resistant Staphylococcus aureus (MRSA); and synergistic potential with antibiotics was analyzed. IC50 values (after 72 h) were calculated and compared with that of miltefosine. Flow cytometry and DNA fragmentation analysis were used the mechanism of the effect. Geranylated flavanones or epigallocatechin gallate were combined with oxacillin, tetracycline, and ciprofloxacin, and the effects of these two-component combinations were evaluated. Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) were established (after 24 h), the synergy was measured by the checkerboard titration technique, and the sums of the fractional inhibitory concentrations (∑FICs) were computed. Results 3'-O-Methyl-5'-O-methyldiplacone and 3'-O-methyldiplacone showed good antileishmanial activities (IC50 8-42 μM). 3'-O-Methyl-5'-hydroxydiplacone activates the apoptotic death at leishmanias, the effect of 3'-O-methyl-5'-O-methyldiplacone has another mechanism. The test of the antibacterial activity showed good effects of 3'-O-methyldiplacol and mimulone against MRSA (MIC 2-16 μg/mL), and in six cases, the results showed synergistic effects when combined with oxacillin. Synergistic effects were also found for the combination of epigallocatechin gallate with tetracycline or oxacillin. Conclusion This work demonstrates anti-MRSA and antileishmanial potential of geranylated flavanones and uncovers their promising synergistic activities with antibiotics. In addition, the mechanism of antileishmanial effect is proposed.
Collapse
Affiliation(s)
- Alice Navrátilová
- a Department of Natural Drugs , Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
| | - Ondřej Nešuta
- b Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Irena Vančatová
- a Department of Natural Drugs , Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
| | - Alois Čížek
- c Department of Infectious Diseases and Microbiology , University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
- d CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
| | - Ruben E Varela-M
- e Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca , Salamanca , Spain
| | - Julio López-Abán
- f Laboratorio de Immunología y Parasitología Molecular , CIETUS, Facultad de Farmacia, Universidad de Salamanca , Salamanca ; Spain
| | - Janny A Villa-Pulgarin
- e Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca , Salamanca , Spain
| | - Faustino Mollinedo
- e Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca , Salamanca , Spain
| | - Antonio Muro
- f Laboratorio de Immunología y Parasitología Molecular , CIETUS, Facultad de Farmacia, Universidad de Salamanca , Salamanca ; Spain
| | - Helena Žemličková
- g National Reference Laboratory for Antibiotics , National Institute of Public Health , Prague , Czech Republic
| | - Daniela Kadlecová
- a Department of Natural Drugs , Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
| | - Karel Šmejkal
- a Department of Natural Drugs , Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
- h Department of Molecular Biology and Pharmaceutical Biotechnology , Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
| |
Collapse
|
27
|
Júnior AMC, de Amorim Carvalho FA, de Oliveira Dantas W, Gomes LCL, da Silva ABS, de Sousa Cavalcante MMA, de Oliveira IM, de Deus Moura de Lima M, Rizzo MDS, de Carvalho Leite CM, Moura SMDS, de Deus Moura LDFA, da Silva BB. Does Leishmaniasis disease alter the parenchyma and protein expression in salivary glands? Exp Biol Med (Maywood) 2016; 241:359-66. [PMID: 26568331 PMCID: PMC4935414 DOI: 10.1177/1535370215614658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022] Open
Abstract
Leishmaniasis is considered a serious public health problem in several regions in Brazil and worldwide. This research aimed to perform a histopathological and proteomic study of parotid, submandibular and sublingual glands of BALB/c mice infected by Leishmania (L) infantum chagasi using histological, immunohistochemical and epifluorescence techniques. Twelve isogenic BALB/c male mice, around six- to eight-weeks old, were separated into two groups: the animals of the control group were injected with 0.15 ml of NaCl, while those in the experimental group were inoculated with 5 × 10(6) amastigote forms of Leishmania (L) infantum chagasi by the ip route. After 50 days, animals were euthanized and major salivary glands were collected to perform histological, immunohistochemical and epifluorescence techniques using anti-Caspase-2, anti-Ki-67 and anti-β-catenin antibodies, respectively. The histological and morphometric evaluation showed clusters of mononuclear inflammatory cells and a higher area and perimeter of the parotid gland. However, none of the salivary glands had morphophysiological impairment. There was no immunoreactivity to the anti-caspase-2 antibody and Ki67 expression in acinar and ductal cells in both groups. According to the immunofluorescence staining, the β-catenin antibodies did not show nuclear expression, suggesting no uncontrolled proliferation. The data obtained in this study showed population and morphological stability of major salivary glands after 50 days post-infection by Leishmania (L) infantum chagasi.
Collapse
Affiliation(s)
- Aírton M C Júnior
- Department of Morphology, Federal University of Piauí, Piauí, Teresina 64049550, Brasil
| | | | | | - Luana C L Gomes
- Department of Morphology, Federal University of Piauí, Piauí, Teresina 64049550, Brasil
| | - Andrezza B S da Silva
- Department of Morphology, Federal University of Piauí, Piauí, Teresina 64049550, Brasil
| | | | - Ingrid M de Oliveira
- Department of Morphology, Federal University of Piauí, Piauí, Teresina 64049550, Brasil
| | | | - Márcia Dos Santos Rizzo
- Department of Clinical and Veterinary Surgery, Federal University of Piauí, Piauí, Teresina 64049550, Brasil
| | | | | | | | - Benedito B da Silva
- Maternal Child Departament, Federal University of Piauí, Piauí, Teresina 64049550, Brasil
| |
Collapse
|
28
|
Li M, Wang H, Liu J, Hao P, Ma L, Liu Q. The Apoptotic Role of Metacaspase in Toxoplasma gondii. Front Microbiol 2016; 6:1560. [PMID: 26834715 PMCID: PMC4717298 DOI: 10.3389/fmicb.2015.01560] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/23/2015] [Indexed: 01/15/2023] Open
Abstract
Toxoplasma gondii is a major opportunistic pathogen that spreads in a range of animal species and human beings. Quite a few characterizations of apoptosis have been identified in T. gondii treated with apoptosis inducers, but the molecular mechanisms of the pathway are not clearly understood. Metacaspases are caspase-like cysteine proteases that can be found in plants, fungi, and protozoa in which caspases are absent. Metacaspases are multifunctional proteases involved in apoptosis-like cell death, insoluble protein aggregate clearance, and cell proliferation. To investigate whether T. gondii metacaspase (TgMCA) is involved in the apoptosis of the parasites, we generated TgMCA mutant strains. Western blot analysis indicated that the autoproteolytic processing of TgMCA was the same as that for metacaspases of some other species. Indirect immunofluorescence assay (IFA) showed that TgMCA was dispersed throughout the cytoplasm and relocated to the nucleus when the parasites were exposed to the extracellular environment, which indicated the execution of its function in the nucleus. The number of apoptosis parasites was significantly diminished in the TgMCA knockout strain and increased in the TgMCA overexpression strain after treatment with extracellular buffer, as determined by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The lack of TgMCA did not affect the parasite propagation in vitro and virulence in vivo, suggesting that it is probably redundant in parasite propagation. But overexpression of TgMCA reduced the intracellular parasites growth in vitro. The TgMCA knockout strain showed more viability in extracellular buffer compared to the parental and overexpression lines. In this study, we demonstrated that TgMCA contributes to the apoptosis of T. gondii.
Collapse
Affiliation(s)
- Muzi Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Hui Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Jing Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Pan Hao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Lei Ma
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| | - Qun Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University Beijing, China
| |
Collapse
|
29
|
Kurze C, Le Conte Y, Dussaubat C, Erler S, Kryger P, Lewkowski O, Müller T, Widder M, Moritz RFA. Nosema Tolerant Honeybees (Apis mellifera) Escape Parasitic Manipulation of Apoptosis. PLoS One 2015; 10:e0140174. [PMID: 26445372 PMCID: PMC4596554 DOI: 10.1371/journal.pone.0140174] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/21/2015] [Indexed: 11/18/2022] Open
Abstract
Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host’s apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera) and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap)-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion.
Collapse
Affiliation(s)
- Christoph Kurze
- Institute for Biology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Yves Le Conte
- UR 406 Abeilles et Environnement, INRA, Avignon, France
| | | | - Silvio Erler
- Institute for Biology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Per Kryger
- Department of Agroecology, Aarhus University, Flakkebjerg, Denmark
| | - Oleg Lewkowski
- Institute for Biology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas Müller
- Department of Internal Medicine IV, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Miriam Widder
- Department of Internal Medicine IV, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Robin F A Moritz
- Institute for Biology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany; German Institute for Integrative Biodiversity Research (iDiv), Leipzig, Germany; University of Pretoria, Department of Zoology and Entomology, Pretoria, South Africa
| |
Collapse
|
30
|
In vitro activities of hexaazatrinaphthylenes against Leishmania spp. Antimicrob Agents Chemother 2015; 59:2867-74. [PMID: 25753635 DOI: 10.1128/aac.00226-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/01/2015] [Indexed: 11/20/2022] Open
Abstract
The in vitro activity of a novel group of compounds, hexaazatrinaphthylene derivatives, against two species of Leishmania is described in this study. These compounds showed a significant dose-dependent inhibition effect on the proliferation of the parasites, with 50% inhibitory concentrations (IC(50)s) ranging from 1.23 to 25.05 μM against the promastigote stage and 0.5 to 0.7 μM against intracellular amastigotes. Also, a cytotoxicity assay was carried out to in order to evaluate the possible toxic effects of these compounds. Moreover, different assays were performed to determine the type of cell death induced after incubation with these compounds. The obtained results highlight the potential use of hexaazatrinaphthylene derivatives against Leishmania species, and further studies should be undertaken to establish them as novel leishmanicidal therapeutic agents.
Collapse
|
31
|
Stress management in cyst-forming free-living protists: programmed cell death and/or encystment. BIOMED RESEARCH INTERNATIONAL 2015; 2015:437534. [PMID: 25648302 PMCID: PMC4306356 DOI: 10.1155/2015/437534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/08/2014] [Accepted: 12/24/2014] [Indexed: 11/21/2022]
Abstract
In the face of harsh conditions and given a choice, a cell may (i) undergo programmed cell death, (ii) transform into a cancer cell, or (iii) enclose itself into a cyst form. In metazoans, the available evidence suggests that cellular machinery exists only to execute or avoid programmed cell death, while the ability to form a cyst was either lost or never developed. For cyst-forming free-living protists, here we pose the question whether the ability to encyst was gained at the expense of the programmed cell death or both functions coexist to counter unfavorable environmental conditions with mutually exclusive phenotypes.
Collapse
|
32
|
Ray JL, Haramaty L, Thyrhaug R, Fredricks HF, Van Mooy BAS, Larsen A, Bidle KD, Sandaa RA. Virus infection of Haptolina ericina and Phaeocystis pouchetii implicates evolutionary conservation of programmed cell death induction in marine haptophyte-virus interactions. JOURNAL OF PLANKTON RESEARCH 2014; 36:943-955. [PMID: 25013242 PMCID: PMC4090681 DOI: 10.1093/plankt/fbu029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/24/2014] [Indexed: 05/30/2023]
Abstract
The mechanisms by which phytoplankton cope with stressors in the marine environment are neither fully characterized nor understood. As viruses are the most abundant entities in the global ocean and represent a strong top-down regulator of phytoplankton abundance and diversity, we sought to characterize the cellular response of two marine haptophytes to virus infection in order to gain more knowledge about the nature and diversity of microalgal responses to this chronic biotic stressor. We infected laboratory cultures of the haptophytes Haptolina ericina and Phaeocystis pouchetii with CeV-01B or PpV-01B dsDNA viruses, respectively, and assessed the extent to which host cellular responses resemble programmed cell death (PCD) through the activation of diagnostic molecular and biochemical markers. Pronounced DNA fragmentation and activation of cysteine aspartate-specific proteases (caspases) were only detected in virus-infected cultures of these phytoplankton. Inhibition of host caspase activity by addition of the pan-caspase inhibitor z-VAD-fmk did not impair virus production in either host-virus system, differentiating it from the Emiliania huxleyi-Coccolithovirus model of haptophyte-virus interactions. Nonetheless, our findings point to a general conservation of PCD-like activation during virus infection in ecologically diverse haptophytes, with the subtle heterogeneity of cell death biochemical responses possibly exerting differential regulation on phytoplankton abundance and diversity.
Collapse
Affiliation(s)
- Jessica L. Ray
- Uni Research As, Thormøhlensgt 49B, N-5006 Bergen, Norway
- Department of Biology, University of Bergen, Thormøhlensgt 53A, N-5006 Bergen, Norway
| | - Liti Haramaty
- Institute of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ 08901, USA
| | - Runar Thyrhaug
- Department of Biology, University of Bergen, Thormøhlensgt 53A, N-5006 Bergen, Norway
| | - Helen F. Fredricks
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Benjamin A. S. Van Mooy
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Aud Larsen
- Uni Research As, Thormøhlensgt 49B, N-5006 Bergen, Norway
- Department of Biology, University of Bergen, Thormøhlensgt 53A, N-5006 Bergen, Norway
| | - Kay D. Bidle
- Institute of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ 08901, USA
| | - Ruth-Anne Sandaa
- Department of Biology, University of Bergen, Thormøhlensgt 53A, N-5006 Bergen, Norway
| |
Collapse
|
33
|
Trypanosoma cruzi cell death induced by the Morita-Baylis-Hillman adduct 3-Hydroxy-2-methylene-3-(4-nitrophenylpropanenitrile). PLoS One 2014; 9:e93936. [PMID: 24714638 PMCID: PMC3979736 DOI: 10.1371/journal.pone.0093936] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/09/2014] [Indexed: 01/06/2023] Open
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, remains a serious health concern due to the lack of effective vaccines or satisfactory treatment. In the search for new compounds against this neglected disease, we have previously demonstrated that the compound 3-Hydroxy-2-methylene-3-(4-nitrophenylpropanenitrile) (MBHA3), derived from the Morita-Baylis-Hillman reaction, effectively caused a loss of viability in both the epimastigote and trypomastigote forms. However, the mechanisms of parasite death elicited by MBHA3 remain unknown. The aim of this study was to better understand the morphophysiological changes and the mechanism of cell death induced by MBHA3 treatment on T. cruzi. To perform this analysis, we used confocal microscopy and flow cytometry to monitor the fluorescent probes such as annexin-V/propidium iodide (AV/PI), calcein-AM/ethidium homodimer (CA/EH), acridine orange (AO) and rhodamine 123 (Rho 123). Lower concentrations of MBHA3 led to alterations in the mitochondrial membrane potential and AO labeling, but did not decrease the viability of the epimastiogote forms, as determined by the CA/EH and AV/PI assays. Conversely, treatment with higher concentrations of MBHA3 led to extensive plasma membrane damage, loss of mitochondrion membrane potential, DNA fragmentation and acidification of the cytoplasm. Our findings suggest that at higher concentrations, MBHA3 induces T. cruzi epimastigote death by necrosis in a mitochondrion-dependent manner.
Collapse
|
34
|
Das S, Shah P, Baharia RK, Tandon R, Khare P, Sundar S, Sahasrabuddhe AA, Siddiqi MI, Dube A. Over-expression of 60s ribosomal L23a is associated with cellular proliferation in SAG resistant clinical isolates of Leishmania donovani. PLoS Negl Trop Dis 2013; 7:e2527. [PMID: 24340105 PMCID: PMC3855005 DOI: 10.1371/journal.pntd.0002527] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 09/30/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Sodium antimony gluconate (SAG) unresponsiveness of Leishmania donovani (Ld) had effectively compromised the chemotherapeutic potential of SAG. 60s ribosomal L23a (60sRL23a), identified as one of the over-expressed protein in different resistant strains of L.donovani as observed with differential proteomics studies indicates towards its possible involvement in SAG resistance in L.donovani. In the present study 60sRL23a has been characterized for its probable association with SAG resistance mechanism. METHODOLOGY AND PRINCIPAL FINDINGS The expression profile of 60s ribosomal L23a (60sRL23a) was checked in different SAG resistant as well as sensitive strains of L.donovani clinical isolates by real-time PCR and western blotting and was found to be up-regulated in resistant strains. Ld60sRL23a was cloned, expressed in E.coli system and purified for raising antibody in swiss mice and was observed to have cytosolic localization in L.donovani. 60sRL23a was further over-expressed in sensitive strain of L.donovani to check its sensitivity profile against SAG (Sb V and III) and was found to be altered towards the resistant mode. CONCLUSION/SIGNIFICANCE This study reports for the first time that the over expression of 60sRL23a in SAG sensitive parasite decreases the sensitivity of the parasite towards SAG, miltefosine and paramomycin. Growth curve of the tranfectants further indicated the proliferative potential of 60sRL23a assisting the parasite survival and reaffirming the extra ribosomal role of 60sRL23a. The study thus indicates towards the role of the protein in lowering and redistributing the drug pressure by increased proliferation of parasites and warrants further longitudinal study to understand the underlying mechanism.
Collapse
Affiliation(s)
- Sanchita Das
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Priyanka Shah
- Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajendra K. Baharia
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rati Tandon
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prashant Khare
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - M. I. Siddiqi
- Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Anuradha Dube
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
35
|
Ni Nyoman AD, Lüder CGK. Apoptosis-like cell death pathways in the unicellular parasite Toxoplasma gondii following treatment with apoptosis inducers and chemotherapeutic agents: a proof-of-concept study. Apoptosis 2013; 18:664-80. [PMID: 23468121 PMCID: PMC3634991 DOI: 10.1007/s10495-013-0832-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ancient pathways of an apoptosis-like cell death have been identified in unicellular eukaryotes including protozoan parasites. Here, we examined programmed cell death in the apicomplexan Toxoplasma gondii which is a common intracellular pathogen of humans and warm-blooded animals. Treatment of extracellular T. gondii with various pro-apoptotic stimuli significantly induced DNA strand breaks as revealed by TUNEL and flow cytometry. Using staurosporine or miltefosine as pro-apoptotic stimuli, parasites also presented a reduced cell size, i.e. pyknosis and externalized phosphatidylserine while the plasma membrane remained intact. Importantly, staurosporine also induced DNA strand breaks in intracellular T. gondii. Data mining of the Toxoplasma genome resource identified 17 putative cell death-associated genes encoding proteases, a nuclease and several apoptosis regulators. Staurosporine-treated parasites but not controls strongly up-regulated several of these genes in a time-dependent fashion with a putative PDCD2 protein being more than 100-fold up-regulated. However, the mitochondrial membrane potential (ΔΨm) remained intact and caspase-like activity increased only slightly during staurosporine-triggered cell death. As compared to staurosporine, the transcriptional response of parasites to miltefosine was more restricted but PDCD2 was again strongly induced. Furthermore, T. gondii lost their ΔΨm and rapidly presented strong caspase-like activity during miltefosine treatment. Consequently, protease inhibitors abrogated miltefosine-induced but not staurosporine-induced Toxoplasma cell death. Finally, toxoplasmacidal drugs triggered DNA strand breaks in extracellular T. gondii. Interestingly, clindamycin also induced markers of an apoptosis-like cell death in intracellular parasites. Together, the data indicate that T. gondii possesses ancient apoptosis-like cell death machinery which can be triggered by chemotherapeutic agents.
Collapse
Affiliation(s)
- Ayu Dewi Ni Nyoman
- Institute for Medical Microbiology, University Medical Center, Georg-August-University, Kreuzbergring 57, 37075, Göttingen, Germany
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Udayana University, Sudirman Denpasar, 80232 Bali, Indonesia
| | - Carsten G. K. Lüder
- Institute for Medical Microbiology, University Medical Center, Georg-August-University, Kreuzbergring 57, 37075, Göttingen, Germany
| |
Collapse
|
36
|
Zheng Y. Strategies of Echinococcus species responses to immune attacks: implications for therapeutic tool development. Int Immunopharmacol 2013; 17:495-501. [PMID: 23973651 DOI: 10.1016/j.intimp.2013.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 01/27/2023]
Abstract
Echinococcus species have been studied as a model to investigate parasite-host interactions. Echinococcus spp. can actively communicate dynamically with a host to facilitate infection, growth and proliferation partially via secretion of molecules, especially in terms of harmonization of host immune attacks. This review systematically outlines our current knowledge of how the Echinococcus species have evolved to adapt to their host's microenvironment. This understanding of parasite-host interplay has implications in profound appreciation of parasite plasticity and is informative in designing novel and effective tools including vaccines and drugs for the treatment of echinococcosis and other diseases.
Collapse
Affiliation(s)
- Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, Gansu, China; Key Lab of New Animal Drug Project, Gansu Province, Lanzhou Institute of Husbandry, Pharmaceutical Sciences, CAAS, Lanzhou, Gansu, China; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry, Pharmaceutical Sciences, CAAS, Lanzhou, Gansu, China.
| |
Collapse
|
37
|
Minguez L, Brulé N, Sohm B, Devin S, Giambérini L. Involvement of apoptosis in host-parasite interactions in the zebra mussel. PLoS One 2013; 8:e65822. [PMID: 23785455 PMCID: PMC3681881 DOI: 10.1371/journal.pone.0065822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/28/2013] [Indexed: 12/06/2022] Open
Abstract
The question of whether cell death by apoptosis plays a biological function during infection is key to understanding host-parasite interactions. We investigated the involvement of apoptosis in several host-parasite systems, using zebra mussels Dreissena polymorpha as test organisms and their micro- and macroparasites. As a stress response associated with parasitism, heat shock proteins (Hsp) can be induced. In this protein family, Hsp70 are known to be apoptosis inhibitors. Mussels were diagnosed for their respective infections by standard histological methods; apoptosis was detected using the TUNEL methods on paraffin sections and Hsp70 by immunohistochemistry on cryosections. Circulating hemocytes were the main cells observed in apoptosis whereas infected tissues displayed no or few apoptotic cells. Parasitism by intracellular bacteria Rickettsiales-like and the trematode Bucephalus polymorphus were associated with the inhibition of apoptosis whereas ciliates Ophryoglena spp. or the trematode Phyllodistomum folium did not involve significant differences in apoptosis. Even if some parasites were able to modulate apoptosis in zebra mussels, we did not see evidence of any involvement of Hsp70 on this mechanism.
Collapse
Affiliation(s)
- Laëtitia Minguez
- Université de Lorraine, Laboratoire des Interactions, Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Metz, France
- * E-mail: (LM); (LG)
| | - Nelly Brulé
- Université de Lorraine, Laboratoire des Interactions, Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Metz, France
| | - Bénédicte Sohm
- Université de Lorraine, Laboratoire des Interactions, Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Metz, France
| | - Simon Devin
- Université de Lorraine, Laboratoire des Interactions, Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Metz, France
| | - Laure Giambérini
- Université de Lorraine, Laboratoire des Interactions, Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Metz, France
- * E-mail: (LM); (LG)
| |
Collapse
|
38
|
Eickel N, Kaiser G, Prado M, Burda PC, Roelli M, Stanway RR, Heussler VT. Features of autophagic cell death in Plasmodium liver-stage parasites. Autophagy 2013; 9:568-80. [PMID: 23388496 DOI: 10.4161/auto.23689] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Analyzing molecular determinants of Plasmodium parasite cell death is a promising approach for exploring new avenues in the fight against malaria. Three major forms of cell death (apoptosis, necrosis and autophagic cell death) have been described in multicellular organisms but which cell death processes exist in protozoa is still a matter of debate. Here we suggest that all three types of cell death occur in Plasmodium liver-stage parasites. Whereas typical molecular markers for apoptosis and necrosis have not been found in the genome of Plasmodium parasites, we identified genes coding for putative autophagy-marker proteins and thus concentrated on autophagic cell death. We characterized the Plasmodium berghei homolog of the prominent autophagy marker protein Atg8/LC3 and found that it localized to the apicoplast. A relocalization of PbAtg8 to autophagosome-like vesicles or vacuoles that appear in dying parasites was not, however, observed. This strongly suggests that the function of this protein in liver-stage parasites is restricted to apicoplast biology.
Collapse
Affiliation(s)
- Nina Eickel
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
39
|
Kessler RL, Soares MJ, Probst CM, Krieger MA. Trypanosoma cruzi response to sterol biosynthesis inhibitors: morphophysiological alterations leading to cell death. PLoS One 2013; 8:e55497. [PMID: 23383204 PMCID: PMC3561218 DOI: 10.1371/journal.pone.0055497] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/23/2012] [Indexed: 12/22/2022] Open
Abstract
The protozoan parasite Trypanosoma cruzi displays similarities to fungi in terms of its sterol lipid biosynthesis, as ergosterol and other 24-alkylated sterols are its principal endogenous sterols. The sterol pathway is thus a potential drug target for the treatment of Chagas disease. We describe here a comparative study of the growth inhibition, ultrastructural and physiological changes leading to the death of T. cruzi cells following treatment with the sterol biosynthesis inhibitors (SBIs) ketoconazole and lovastatin. We first calculated the drug concentration inhibiting epimastigote growth by 50% (EC(50)/72 h) or killing all cells within 24 hours (EC(100)/24 h). Incubation with inhibitors at the EC(50)/72 h resulted in interesting morphological changes: intense proliferation of the inner mitochondrial membrane, which was corroborated by flow cytometry and confocal microscopy of the parasites stained with rhodamine 123, and strong swelling of the reservosomes, which was confirmed by acridine orange staining. These changes to the mitochondria and reservosomes may reflect the involvement of these organelles in ergosterol biosynthesis or the progressive autophagic process culminating in cell lysis after 6 to 7 days of treatment with SBIs at the EC(50)/72 h. By contrast, treatment with SBIs at the EC(100)/24 h resulted in rapid cell death with a necrotic phenotype: time-dependent cytosolic calcium overload, mitochondrial depolarization and reservosome membrane permeabilization (RMP), culminating in cell lysis after a few hours of drug exposure. We provide the first demonstration that RMP constitutes the "point of no return" in the cell death cascade, and propose a model for the necrotic cell death of T. cruzi. Thus, SBIs trigger cell death by different mechanisms, depending on the dose used, in T. cruzi. These findings shed new light on ergosterol biosynthesis and the mechanisms of programmed cell death in this ancient protozoan parasite.
Collapse
|
40
|
Pradeep ANR, Anitha J, Awasthi AK, Babu MA, Geetha MN, Arun HK, Chandrashekhar S, Rao GC, Vijayaprakash NB. Activation of autophagic programmed cell death and innate immune gene expression reveals immuno-competence of integumental epithelium in Bombyx mori infected by a dipteran parasitoid. Cell Tissue Res 2012; 352:371-85. [PMID: 23161099 DOI: 10.1007/s00441-012-1520-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/27/2012] [Indexed: 01/22/2023]
Abstract
In insects, the integument forms the primary barrier between the environment and internal milieu, but cellular and immune responses of the integumental epithelium to infection by micro- and macro-parasites are mostly unknown. We elucidated cellular and immune responses of the epithelium induced through infection by a dipteran endoparasitoid, Exorista bombycis in the economically important silkworm Bombyx mori. Degradative autophagic vacuoles, lamella-like bodies, a network of cytoplasmic channels with cellular cargo, and an RER network that opened to vacuoles were observed sequentially with increase in age after infection. This temporal sequence culminated in apoptosis, accompanied by the upregulation of the caspase gene and fragmentation of DNA. The infection significantly enhanced the tyrosine level and phenol oxidase activity in the integument. Proteomic analysis revealed enhanced expression of innate immunity components of toll and melanization pathways, cytokines, signaling molecules, chaperones, and proteolytic enzymes demonstrating diverse host responses. qPCR analysis revealed the upregulation of spatzle, BmToll, and NF kappa B transcription factors Dorsal and BmRel. NF kappa B inhibitor cactus showed diminished expression when Dorsal and BmRel were upregulated, revealing a negative correlation (R = (-)0.612). During melanization, prophenol oxidase 2 was expressed, a novel finding in integumental epithelium. The integument showed a low level of melanin metabolism and localized melanism in order to prevent the spreading of cytotoxic quinones. The gene-encoding proteolytic enzyme, beta-N-acetylglucosaminidase, was activated at 24 h post-infection, whereas chitinase, was activated at 96 h post-infection; however, most of the immune genes enhanced their expression in the early stages of infection. Thus the integument contributes to humoral immune responses that enhance resistance against macroparasite invasion.
Collapse
Affiliation(s)
- Appukuttan Nair R Pradeep
- Proteomics Division, Seribiotech Research Laboratory, CSB-Kodathi Campus, Bangalore, Karnataka, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bruges G, Betancourt M, March M, Sanchez E, Mijares A. Apoptotic-like activity of staurosporine in axenic cultures of Trypanosoma evansi. Rev Inst Med Trop Sao Paulo 2012; 54:103-8. [PMID: 22499424 DOI: 10.1590/s0036-46652012000200008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/20/2011] [Indexed: 05/26/2023] Open
Abstract
Trypanosoma evansi is a blood protozoan parasite of the genus Trypanosoma which is responsible for surra (Trypanosomosis) in domestic and wild animals. This study addressed apoptotic-like features in Trypanosoma evansi in vitro. The mechanism of parasite death was investigated using staurosporine as an inducing agent. We evaluated its effects through several cytoplasmic features of apoptosis, including cell shrinkage, phosphatidylserine exposure, maintenance of plasma membrane integrity, and mitochondrial trans-membrane potential. For access to these features we have used the flow cytometry and fluorescence microscopy with cultures in the stationary phase and adjusted to a density of 10(6) cells/mL. The apoptotic effect of staurosporine in T. evansi was evaluated at 20 nM final concentration. There was an increase of phosphatidylserine exposure, whereas mitochondrial potential was decreased. Moreover, no evidence of cell permeability increasing with staurosporine was observed in this study, suggesting the absence of a necrotic process. Additional studies are needed to elucidate the possible pathways associated with this form of cell death in this hemoparasite.
Collapse
Affiliation(s)
- Gustavo Bruges
- Laboratorio de Fisiología de Parásitos, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | | | | | | |
Collapse
|
42
|
Molecular and structural insight into plasmodium falciparum RIO2 kinase. J Mol Model 2012; 19:485-96. [PMID: 22949065 DOI: 10.1007/s00894-012-1572-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/14/2012] [Indexed: 01/31/2023]
Abstract
Among approximately 65 kinases of the malarial genome, RIO2 (right open reading frame) kinase belonging to the atypical class of kinase is unique because along with a kinase domain, it has a highly conserved N-terminal winged helix (wHTH) domain. The wHTH domain resembles the wing like domain found in DNA binding proteins and is situated near to the kinase domain. Ligand binding to this domain may reposition the kinase domain leading to inhibition of enzyme function and could be utilized as a novel allosteric site to design inhibitor. In the present study, we have generated a model of RIO2 kinase from Plasmodium falciparum utilizing multiple modeling, simulation approach. A novel putative DNA-binding site is identified for the first time in PfRIO2 kinase to understand the DNA binding events involving wHTH domain and flexible loop. Induced fit DNA docking followed by minimization, molecular dynamics simulation, energetic scoring and binding mode studies are used to reveal the structural basis of PfRIO2-ATP-DNA complex. Ser105 as a potential site of phosphorylation is revealed through the structural studies of ATP binding in PfRIO2. Overall the present study discloses the structural facets of unknown PfRIO2 complex and opens an avenue toward exploration of novel drug target.
Collapse
|
43
|
Apoptosis-like programmed cell death induces antisense ribosomal RNA (rRNA) fragmentation and rRNA degradation in Leishmania. Cell Death Differ 2012; 19:1972-82. [PMID: 22767185 PMCID: PMC3504711 DOI: 10.1038/cdd.2012.85] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Few natural antisense (as) RNAs have been reported as yet in the unicellular protozoan Leishmania. Here, we describe that Leishmania produces natural asRNAs complementary to all ribosomal RNA (rRNA) species. Interestingly, we show that drug-induced apoptosis-like programmed cell death triggers fragmentation of asRNA complementary to the large subunit gamma (LSU-γ) rRNA, one of the six 28S rRNA processed fragments in Leishmania. Heat and oxidative stress also induce fragmentation of asrRNA, but to a lesser extent. Extensive asrRNA cleavage correlates with rRNA breakdown and translation inhibition. Indeed, overexpression of asLSU-γ rRNA accelerates rRNA degradation upon induction of apoptosis. In addition, we provide mechanistic insight into the regulation of apoptosis-induced asrRNA fragmentation by a 67 kDa ATP-dependent RNA helicase of the DEAD-box subfamily. This helicase binds both sense (s)LSU-γ and asLSU-γ rRNAs, and appears to have a key role in protecting rRNA from degradation by preventing asrRNA cleavage and thus cell death. Remarkably, the asrRNA fragmentation process operates not only in trypanosomatid protozoa but also in mammals. Our findings uncover a novel mechanism of regulation involving asrRNA fragmentation and rRNA breakdown, that is triggered by apoptosis and conditions of reduced translation under stress, and seems to be evolutionary conserved.
Collapse
|
44
|
Abstract
SUMMARYProgrammed cell death (PCD) has been observed in many unicellular eukaryotes; however, in very few cases have the pathways been described. Recently the early divergent amitochondrial eukaryote Giardia has been included in this group. In this paper we investigate the processes of PCD in Giardia. We performed a bioinformatics survey of Giardia genomes to identify genes associated with PCD alongside traditional methods for studying apoptosis and autophagy. Analysis of Giardia genomes failed to highlight any genes involved in apoptotic-like PCD; however, we were able to induce apoptotic-like morphological changes in response to oxidative stress (H2O2) and drugs (metronidazole). In addition we did not detect caspase activity in induced cells. Interestingly, we did observe changes resembling autophagy when cells were starved (staining with MDC) and genome analysis revealed some key genes associated with autophagy such as TOR, ATG1 and ATG 16. In organisms such as Trichomonas vaginalis, Entamoeba histolytica and Blastocystis similar observations have been made but no genes have been identified. We propose that Giardia possess a pathway of autophagy and a form of apoptosis very different from the classical known mechanism; this may represent an early form of programmed cell death.
Collapse
|
45
|
On Programmed Cell Death in Plasmodium falciparum: Status Quo. J Trop Med 2012; 2012:646534. [PMID: 22287973 PMCID: PMC3263642 DOI: 10.1155/2012/646534] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 09/16/2011] [Indexed: 11/25/2022] Open
Abstract
Conflicting arguments and results exist regarding the occurrence and phenotype of programmed cell death (PCD) in the malaria parasite Plasmodium falciparum. Inconsistencies relate mainly to the number and type of PCD markers assessed and the different methodologies used in the studies. In this paper, we provide a comprehensive overview of the current state of knowledge and empirical evidence for PCD in the intraerythrocytic stages of P. falciparum. We consider possible reasons for discrepancies in the data and offer suggestions towards more standardised investigation methods in this field. Furthermore, we present genomic evidence for PCD machinery in P. falciparum. We discuss the potential adaptive or nonadaptive role of PCD in the parasite life cycle and its possible exploitation in the development of novel drug targets. Lastly, we pose pertinent unanswered questions concerning the PCD phenomenon in P. falciparum to provide future direction.
Collapse
|
46
|
Reece SE, Pollitt LC, Colegrave N, Gardner A. The meaning of death: evolution and ecology of apoptosis in protozoan parasites. PLoS Pathog 2011; 7:e1002320. [PMID: 22174671 PMCID: PMC3234211 DOI: 10.1371/journal.ppat.1002320] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The discovery that an apoptosis-like, programmed cell death (PCD) occurs in a broad range of protozoan parasites offers novel therapeutic tools to treat some of the most serious infectious diseases of humans, companion animals, wildlife, and livestock. Whilst apoptosis is an essential part of normal development, maintenance, and defence in multicellular organisms, its occurrence in unicellular parasites appears counter-intuitive and has proved highly controversial: according to the Darwinian notion of “survival of the fittest”, parasites are expected to evolve strategies to maximise their proliferation, not death. The prevailing, and untested, opinion in the literature is that parasites employ apoptosis to “altruistically” self-regulate the intensity of infection in the host/vector. However, evolutionary theory tells us that at most, this can only be part of the explanation, and other non-mutually exclusive hypotheses must also be tested. Here, we explain the evolutionary concepts that can explain apoptosis in unicellular parasites, highlight the key questions, and outline the approaches required to resolve the controversy over whether parasites “commit suicide”. We highlight the need for integration of proximate and functional approaches into an evolutionary framework to understand apoptosis in unicellular parasites. Understanding how, when, and why parasites employ apoptosis is central to targeting this process with interventions that are sustainable in the face of parasite evolution.
Collapse
Affiliation(s)
- Sarah E Reece
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | |
Collapse
|
47
|
A proteomics view of programmed cell death mechanisms during host–parasite interactions. J Proteomics 2011; 75:246-56. [DOI: 10.1016/j.jprot.2011.07.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 07/21/2011] [Accepted: 07/27/2011] [Indexed: 01/17/2023]
|
48
|
Anti-amoebic properties of a Malaysian marine sponge Aaptos sp. on Acanthamoeba castellanii. World J Microbiol Biotechnol 2011; 28:1237-44. [PMID: 22805843 DOI: 10.1007/s11274-011-0927-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 09/29/2011] [Indexed: 11/27/2022]
Abstract
Crude methanol extracts of a marine sponge, Aaptos aaptos, collected from three different localities namely Kapas, Perhentian and Redang Islands, Terengganu, Malaysia, were tested in vitro on a pathogenic Acanthamoeba castellanii (IMR isolate) to examine their anti-amoebic potential. The examination of anti-Acanthamoebic activity of the extracts was conducted in 24 well plates for 72 h at 30 °C. All extracts possessed anti-amoebic activity with their IC(50) values ranging from 0.615 to 0.876 mg/mL. The effect of the methanol extracts on the surface morphology of A. castellanii was analysed under scanning electron microscopy. The ability of the extracts to disrupt the amoeba cell membrane was indicated by extensive cell's blebbing, changes in the surface morphology, reduced in cell size and with cystic appearance of extract-treated Acanthamoeba. Number of acanthapodia and food cup was also reduced in this Acanthamoeba. Morphological criteria of apoptosis in Acanthamoeba following treatment with the sponge's extracts was determined by acridine orange-propidium iodide staining and observed by fluorescence microscopy. By this technique, apoptotic and necrotic cells can be visualized and quantified. The genotoxic potential of the methanol extracts was performed by the alkaline comet assay. All methanol extracts used were significantly induced DNA damage compared to untreated Acanthamoeba by having high percentage of scores 1, 2, and 3 of the DNA damage. Results from cytotoxicity and genotoxicity studies carried out in the present study suggest that all methanol extracts of A. aaptos have anti-amoebic properties against A. castellanii.
Collapse
|
49
|
Mohapatra AD, Kumar S, Satapathy AK, Ravindran B. Caspase dependent programmed cell death in developing embryos: a potential target for therapeutic intervention against pathogenic nematodes. PLoS Negl Trop Dis 2011; 5:e1306. [PMID: 21931872 PMCID: PMC3172199 DOI: 10.1371/journal.pntd.0001306] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 07/21/2011] [Indexed: 12/19/2022] Open
Abstract
Background Successful embryogenesis is a critical rate limiting step for the survival and transmission of parasitic worms as well as pathology mediated by them. Hence, blockage of this important process through therapeutic induction of apoptosis in their embryonic stages offers promise for developing effective anti-parasitic measures against these extra cellular parasites. However, unlike in the case of protozoan parasites, induction of apoptosis as a therapeutic approach is yet to be explored against metazoan helminth parasites. Methodology/Principal Findings For the first time, here we developed and evaluated flow cytometry based assays to assess several conserved features of apoptosis in developing embryos of a pathogenic filarial nematode Setaria digitata, in-vitro as well as ex-vivo. We validated programmed cell death in developing embryos by using immuno-fluorescence microscopy and scoring expression profile of nematode specific proteins related to apoptosis [e.g. CED-3, CED-4 and CED-9]. Mechanistically, apoptotic death of embryonic stages was found to be a caspase dependent phenomenon mediated primarily through induction of intracellular ROS. The apoptogenicity of some pharmacological compounds viz. DEC, Chloroquine, Primaquine and Curcumin were also evaluated. Curcumin was found to be the most effective pharmacological agent followed by Primaquine while Chloroquine displayed minimal effect and DEC had no demonstrable effect. Further, demonstration of induction of apoptosis in embryonic stages by lipid peroxidation products [molecules commonly associated with inflammatory responses in filarial disease] and demonstration of in-situ apoptosis of developing embryos in adult parasites in a natural bovine model of filariasis have offered a framework to understand anti-fecundity host immunity operational against parasitic helminths. Conclusions/Significance Our observations have revealed for the first time, that induction of apoptosis in developing embryos can be a potential approach for therapeutic intervention against pathogenic nematodes and flow cytometry can be used to address different issues of biological importance during embryogenesis of parasitic worms. Pathogenic nematodes currently infect billions of people around the world and pose serious challenges to the economic welfare and public health in most developing countries. At present, limitations of existing therapies warrant identification of new anti-parasitic drugs/drug targets to effectively treat and control neglected tropical diseases [NTD] caused by nematode pathogens. The current gold standard for measuring/screening drug effectiveness against most helminth parasites is in-vitro assessment of motility of parasites/larvae and larval development assays which fails to provide any conclusive idea about the precise mechanism of death of parasitic worms or their larval stages. Given the huge load of parasites or their larval stages in an infected host, a compound which shows promise in in-vitro/motility screening assays but induces necrotic death in parasites/larvae will be of limited use, as it may elicit severe inflammatory response in infected hosts. In this context, the present study, which demonstrates induction of apoptotic death in developing embryos of a pathogenic nematode as a potential drug target for the first time, and provides scope for high throughput screening of pharmacological agents for their apoptogenicity against nematode embryos, is a step forward to develop novel anti-parasitic measures to challenge NTD caused by nematode pathogens.
Collapse
Affiliation(s)
- Alok Das Mohapatra
- Department of Infectious Disease Biology, Institute of Life Sciences, DBT, Ministry of Science and Technology, Government of India, Bhubaneswar, India
| | - Sunil Kumar
- Department of Infectious Disease Biology, Institute of Life Sciences, DBT, Ministry of Science and Technology, Government of India, Bhubaneswar, India
| | - Ashok Kumar Satapathy
- Department of Applied Immunology, Regional Medical Research Centre, Indian Council of Medical Research, Government of India, Bhubaneswar, India
| | - Balachandran Ravindran
- Department of Infectious Disease Biology, Institute of Life Sciences, DBT, Ministry of Science and Technology, Government of India, Bhubaneswar, India
- * E-mail:
| |
Collapse
|
50
|
Foster B, Grewal S, Graves O, Hughes FM, Sokolova IM. Copper exposure affects hemocyte apoptosis and Perkinsus marinus infection in eastern oysters Crassostrea virginica (Gmelin). FISH & SHELLFISH IMMUNOLOGY 2011; 31:341-349. [PMID: 21658453 DOI: 10.1016/j.fsi.2011.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 05/23/2011] [Accepted: 05/24/2011] [Indexed: 05/30/2023]
Abstract
Dermo disease in the eastern oyster (Crassostrea virginica) is caused by an intracellular protistan parasite Perkinsus marinus. The progression and outcome of this disease is determined by a complex interplay between the host's immunity and parasite's escape mechanisms, both of which can be influenced by environmental pollutants including heavy metals such as copper (Cu). The goal of the present study was to determine the effects of Cu on the levels of apoptosis (which can serve as an important host defense mechanism) in oyster immune cells (hemocytes) in vitro and in vivo as well as on the establishment of P. marinus infections in vivo. Surprisingly, Cu exerted opposing effects on apoptosis levels of hemocytes in vitro and in vivo, stimulating apoptosis in isolated hemocytes but suppressing it during Cu exposure of whole oysters. The mechanisms of this effect are presently unknown and may be related to the different bioavailability of the metal in vitro and in vivo. As expected, Cu accumulated in oyster soft tissues during in vitro exposure. Unexpectedly, this metal also strongly accumulated in hemolymph plasma which is classically considered isoionic with the surrounding seawater, likely reflecting the presence of soluble Cu-binding proteins in oyster plasma. Cu reduced growth of P. marinus in vitro and greatly reduced infection levels of hemocytes in vivo, presumably by direct toxic effects on the parasite. As a possible parasitic counterbalance, Cu accumulation in the hemocytes was reduced by P. marinus infection, although this reduction was not sufficient to prevent the parasiticidal effects of the heavy metal in vivo. This effect of Cu may be useful as a potential therapeutic against Dermo disease in aquaculture conditions. Overall, this study provides important new insights into the potential role of environmental metals in host-parasite relationships and disease dynamics in C. virginica.
Collapse
Affiliation(s)
- Brent Foster
- Department of Biology, University of North Carolina at Charlotte, 9210 University City Blvd., Charlotte, NC 28223, USA
| | | | | | | | | |
Collapse
|