1
|
Cecilia H, Althouse BM, Azar SR, Moehn BA, Yun R, Rossi SL, Vasilakis N, Hanley KA. Aedes albopictus is not an arbovirus aficionado when feeding on cynomolgus macaques or squirrel monkeys. iScience 2024; 27:111198. [PMID: 39555418 PMCID: PMC11563999 DOI: 10.1016/j.isci.2024.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Viruses transmitted by Aedes mosquitoes (e.g., dengue [DENV], Zika [ZIKV]) have demonstrated high potential to spill over from their ancestral, sylvatic cycles in non-human primates to establish transmission in humans. Epidemiological models require accurate knowledge of the contact structure between hosts and vectors, which is highly sensitive to any impacts of virus infection in mosquitoes or hosts on mosquito feeding behavior. Current evidence for whether these viruses affect vector behavior is mixed. Here we leveraged a study on sylvatic DENV-2 and ZIKV transmission between two species of monkey and Aedes albopictus to determine whether virus infection of either host or vector alters vector feeding behavior. Engorgement rates varied from 0% to 100%, but this was not driven by vector nor host infection, but rather by the individual host, host species, and host body temperature. This study highlights the importance of incorporating individual-level heterogeneity of vector biting in arbovirus transmission models.
Collapse
Affiliation(s)
- Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Benjamin M. Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
- Information School, University of Washington, Seattle, WA 98105, USA
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Brett A. Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, Unviersity of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
2
|
Bourne ME, Lucas-Barbosa D, Verhulst NO. Host location by arthropod vectors: are microorganisms in control? CURRENT OPINION IN INSECT SCIENCE 2024; 65:101239. [PMID: 39067510 DOI: 10.1016/j.cois.2024.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Vector-borne microorganisms are dependent on their arthropod vector for their transmission to and from vertebrates. The 'parasite manipulation hypothesis' states that microorganisms are likely to evolve manipulations of such interactions for their own selective benefit. Recent breakthroughs uncovered novel ecological interactions initiated by vector-borne microorganisms, which are linked to different stages of the host location by their arthropod vectors. Therefore, we give an actualised overview of the various means through which vector-borne microorganisms impact their vertebrate and arthropod hosts to ultimately benefit their own transmission. Harnessing the directionality and underlying mechanisms of these interactions driven by vector-borne microorganisms may provide tools to reduce the spread of pathogenic vector-borne microorganisms.
Collapse
Affiliation(s)
- Mitchel E Bourne
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Winterthurerstrasse 266A, 8057 Zürich, Switzerland.
| | - Dani Lucas-Barbosa
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Winterthurerstrasse 266A, 8057 Zürich, Switzerland; Research Institute of Organic Agriculture FiBL, Ackerstrasse 113, 5070 Frick, Switzerland
| | - Niels O Verhulst
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Winterthurerstrasse 266A, 8057 Zürich, Switzerland.
| |
Collapse
|
3
|
Valdebenito JO, Jones W, Székely T. Evolutionary drivers of sex-specific parasite prevalence in wild birds. Proc Biol Sci 2024; 291:20241013. [PMID: 39106952 PMCID: PMC11303024 DOI: 10.1098/rspb.2024.1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/24/2024] [Indexed: 08/09/2024] Open
Abstract
Males and females often differ in ecology, behaviour and lifestyle, and these differences are expected to lead to sex differences in parasite susceptibility. However, neither the sex differences in parasite prevalence, nor their ecological and evolutionary drivers have been investigated across a broad range of taxa using phylogenetically corrected analyses. Using the most extensive dataset yet that includes 755 prevalence estimates from 151 wild bird species in a meta-analytic framework, here we compare sex differences in blood and gastrointestinal parasites. We show that despite sex differences in parasite infection being frequently reported in the literature, only Haemoproteus infections were more prevalent in females than in males. Notably, only seasonality was strongly associated with the sex-specific parasite prevalence of both Leucocytozoon and Haemoproteus, where birds showed greater female bias in prevalence during breeding periods compared to the non-breeding period. No other ecological or sexual selection variables were associated with sex-specific prevalence of parasite prevalence. We suggest that much of the variation in sex-biased prevalence could be idiosyncratic, and driven by local ecology and behavioural differences of the parasite and the host. Therefore, breeding ecology and sexual selection may only have a modest influence on sex-different parasite prevalence across wild birds.
Collapse
Affiliation(s)
- José O. Valdebenito
- Debrecen Biodiversity Research Centre, University of Debrecen, Debrecen, Hungary
- Bird Ecology Lab, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Los Ríos, Chile
- Centro de Humedales Río Cruces (CEHUM), Universidad Austral de Chile, Valdivia, Los Ríos, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Chile
| | - William Jones
- Debrecen Biodiversity Research Centre, University of Debrecen, Debrecen, Hungary
| | - Tamás Székely
- Debrecen Biodiversity Research Centre, University of Debrecen, Debrecen, Hungary
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
4
|
da Rocha Silva FB, Miguel DC, Minori K, Grazzia N, Machado VE, de Oliveira CM, Tosta CD, Pinto MC. Attractiveness of Golden Hamster infected with Leishmania amazonensis (Kinetoplastida: Trypanosomatidae) to laboratory-reared Lutzomyia longipalpis (Diptera: Psychodidae). Acta Trop 2024; 255:107238. [PMID: 38710262 DOI: 10.1016/j.actatropica.2024.107238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Lutzomyia longipalpis is the primary vector of Leishmania infantum in the Americas and a permissive vector for Leishmania amazonensis. Previous studies showed that Leishmania infantum-infected hosts can release different volatile organic compounds (VOCs) compared with uninfected hosts, presenting a higher attractiveness to vectors. In this study, we aimed to evaluate a possible effect of L. amazonensis infection of golden hamsters in three parameters: attractiveness to Lu. longipalpis females; blood volume ingested by sand fly females; and VOCs released by the animals.. Attractiveness was measured indirectly by the number of Lu. longipalpis females that blood fed in each L. amazonensis-infected and uninfected animal. For VOCs extraction, solid phase micro extraction fibers were used, which were analyzed by gas chromatography-mass spectrometry. Behavioral trials did not show any effect of L. amazonensis infection on the attraction of sand flies nor difference on blood meal rates of Lu. longipalpis fed in both goups of hamsters. Additionally, there was no difference between the VOCs profiles of L. amazonensis-infected or uninfected hamsters.
Collapse
Affiliation(s)
- Flávia Benini da Rocha Silva
- Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Araraquara, São Paulo, Brasil.
| | - Danilo Ciccone Miguel
- Departamento de Biologia Animal, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brasil
| | - Karen Minori
- Departamento de Biologia Animal, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brasil
| | - Nathália Grazzia
- Departamento de Biologia Animal, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brasil
| | - Vicente Estevam Machado
- Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Araraquara, São Paulo, Brasil
| | - Cíntia Marcelo de Oliveira
- Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Araraquara, São Paulo, Brasil
| | - Christiann Davis Tosta
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Câmpus Matão, Matão, São Paulo, Brasil
| | - Mara Cristina Pinto
- Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Araraquara, São Paulo, Brasil
| |
Collapse
|
5
|
Bezerra-Santos MA, Benelli G, Germinara GS, Volf P, Otranto D. Smelly interactions: host-borne volatile organic compounds triggering behavioural responses in mosquitoes, sand flies, and ticks. Parasit Vectors 2024; 17:227. [PMID: 38755646 PMCID: PMC11100076 DOI: 10.1186/s13071-024-06299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
Volatile organic compounds (VOCs) are chemicals emitted as products of cell metabolism, which reflects the physiological and pathological conditions of any living organisms. These compounds play a key role as olfactory cues for arthropod vectors such as mosquitoes, sand flies, and ticks, which act in the transmission of pathogens to many animal species, including humans. Some VOCs may influence arthropod behaviour, e.g., host preference and oviposition site selection for gravid females. Furthermore, deadly vector-borne pathogens such as Plasmodium falciparum and Leishmania infantum are suggested to manipulate the VOCs profile of the host to make them more attractive to mosquitoes and sand fly vectors, respectively. Under the above circumstances, studies on these compounds have demonstrated their potential usefulness for investigating the behavioural response of mosquitoes, sand flies, and ticks toward their vertebrate hosts, as well as potential tools for diagnosis of vector-borne diseases (VBDs). Herein, we provide an account for scientific data available on VOCs to study the host seeking behaviour of arthropod vectors, and their usefulness as attractants, repellents, or tools for an early diagnosis of VBDs.
Collapse
Affiliation(s)
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Bari, Italy.
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Cecilia H, Althouse BM, Azar SR, Moehn BA, Yun R, Rossi SL, Vasilakis N, Hanley KA. Aedes albopictus is not an arbovirus aficionado - Impacts of sylvatic flavivirus infection in vectors and hosts on mosquito engorgement on non-human primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.580944. [PMID: 38559148 PMCID: PMC10979881 DOI: 10.1101/2024.02.19.580944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The contact structure between vertebrate hosts and arthropod vectors plays a key role in the spread of arthropod-borne viruses (arboviruses); thus, it is important to determine whether arbovirus infection of either host or vector alters vector feeding behavior. Here we leveraged a study of the replication dynamics of two arboviruses isolated from their ancestral cycles in paleotropical forests, sylvatic dengue-2 (DENV-2) and Zika (ZIKV), in one non-human primate (NHP) species from the paleotropics (cynomolgus macaques, Macaca fascicularis) and one from the neotropics (squirrel monkeys, Saimiri boliviensis) to test the effect of both vector and host infection with each virus on completion of blood feeding (engorgement) of the mosquito Aedes albopictus. Although mosquitoes were starved and given no choice of hosts, engorgement rates varied dramatically, from 0% to 100%. While neither vector nor host infection systematically affected engorgement, NHP species and body temperature at the time of feeding did. We also interrogated the effect of repeated mosquito bites on cytokine expression and found that epidermal growth factor (EGF) and macrophage migration inhibitory factor (MIF) concentrations were dynamically associated with exposure to mosquito bites. This study highlights the importance of incorporating individual-level heterogeneity of vector biting in arbovirus transmission models.
Collapse
Affiliation(s)
- Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Benjamin M. Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
- Information School, University of Washington, Seattle, WA, 98105
| | - Sasha R. Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030 USA
| | - Brett A. Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Department of Microbiology and Immunology, Unviersity of Texas Medical Branch, Galveston, TX 77555 USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555 USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555 USA
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003 USA
| |
Collapse
|
7
|
Manipulation by Plasmodium Parasites of Anopheles Mosquito Behavior and Human Odors. Acta Parasitol 2022; 67:1463-1470. [PMID: 36260195 DOI: 10.1007/s11686-022-00621-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/20/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE The phenomenon of parasites manipulating host phenotypes is well documented; the best-known examples are manipulations of host behavior. More recently, there has been interest in whether parasites can manipulate host odor phenotypes to enhance their attractiveness to vectors. We review here evidence that Plasmodium-infected mosquitoes have enhanced attraction to human hosts, especially when the parasite is sufficiently developed to be transmissible. We also review evidence suggesting that malaria-infected host odors elicit greater mosquito attraction compared to uninfected controls. METHODS We reviewed and summarized the relevant literature. RESULTS Though evidence is mounting that supports both premises we reviewed, there are several confounds that complicate interpretation. These include differences in Plasmodium and mosquito species studied, stage of infection tested, age of human participants in trials, and methods used to quantify volatiles. In addition, a key requirement to support the hypothesis of manipulation by parasites is that costs of manipulation be identified, and ideally, quantified. CONCLUSIONS Substantial progress has been made to unlock the importance of odor for enhancing transmission of Plasmodium. However, there needs to be more replication using similar methods to better define the odor parameters involved in this enhancement.
Collapse
|
8
|
Cozzarolo CS, Pigeault R, Isaïa J, Wassef J, Baur M, Glaizot O, Christe P. Experiment in semi-natural conditions did not confirm the influence of malaria infection on bird attractiveness to mosquitoes. Parasit Vectors 2022; 15:187. [PMID: 35655262 PMCID: PMC9164852 DOI: 10.1186/s13071-022-05292-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
Background Changes in host phenotype following parasite infection are often considered as host manipulation when they seem advantageous for the parasite. However, putative cases of host manipulation by parasites are rarely tested in field-realistic conditions. Infection-induced phenotypic change cannot be conclusively considered as host manipulation if no evidence shows that this trait is adaptive for the parasite in the wild. Plasmodium sp., the parasites causing malaria in vertebrates, are hypothesized to “manipulate” their host by making their odour more attractive to mosquitoes, their vector and final host. While this is fairly well supported by studies on mice and humans, studies focusing on avian malaria give contradictory results. Methods In the present study, genotyped birds at different stages (uninfected, acute and chronic) of Plasmodium relictum infection were exposed, in a large outdoor aviary, to their natural vector, the mosquito Culex pipiens. Results After genotyping the blood meals of more than 650 mosquitoes, we found that mosquitoes did not bite infected birds more than they bit them before infection, nor more than they bit uninfected hosts. Conclusions Our study highlights the importance of testing ecological behaviours under natural conditions and suggests that different processes might be at play in mammals and birds regarding potential manipulation of attractiveness by malaria parasites. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05292-w.
Collapse
Affiliation(s)
- Camille-Sophie Cozzarolo
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland. .,Biogéosciences, UMR 6282, CNRS, Université Bourgogne Franche-Comté, 6 boulevard Gabriel, 21000, Dijon, France.
| | - Romain Pigeault
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland.,Laboratoire EBI, Equipe EES, UMR CNRS 7267, University of Poitiers, Poitiers, 86000, France
| | - Julie Isaïa
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland
| | - Jérôme Wassef
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland
| | - Molly Baur
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland
| | - Olivier Glaizot
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland.,Musée Cantonal de Zoologie, Lausanne, 1014, Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
9
|
Marzal A, Magallanes S, Garcia-Longoria L. Stimuli Followed by Avian Malaria Vectors in Host-Seeking Behaviour. BIOLOGY 2022; 11:726. [PMID: 35625454 PMCID: PMC9138572 DOI: 10.3390/biology11050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Vector-borne infectious diseases (e.g., malaria, dengue fever, and yellow fever) result from a parasite transmitted to humans and other animals by blood-feeding arthropods. They are major contributors to the global disease burden, as they account for nearly a fifth of all infectious diseases worldwide. The interaction between vectors and their hosts plays a key role driving vector-borne disease transmission. Therefore, identifying factors governing host selection by blood-feeding insects is essential to understand the transmission dynamics of vector-borne diseases. Here, we review published information on the physical and chemical stimuli (acoustic, visual, olfactory, moisture and thermal cues) used by mosquitoes and other haemosporidian vectors to detect their vertebrate hosts. We mainly focus on studies on avian malaria and related haemosporidian parasites since this animal model has historically provided important advances in our understanding on ecological and evolutionary process ruling vector-borne disease dynamics and transmission. We also present relevant studies analysing the capacity of feather and skin symbiotic bacteria in the production of volatile compounds with vector attractant properties. Furthermore, we review the role of uropygial secretions and symbiotic bacteria in bird-insect vector interactions. In addition, we present investigations examining the alterations induced by haemosporidian parasites on their arthropod vector and vertebrate host to enhance parasite transmission. Finally, we propose future lines of research for designing successful vector control strategies and for infectious disease management.
Collapse
Affiliation(s)
- Alfonso Marzal
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain;
- Grupo de Investigación y Sostenibilidad Ambiental, Universidad Nacional Federico Villarreal, Lima 15007, Peru
| | - Sergio Magallanes
- Department of Wetland Ecology, Biological Station (EBD-CSIC), Avda, Américo Vespucio 26, 41092 Sevilla, Spain;
| | - Luz Garcia-Longoria
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain;
| |
Collapse
|
10
|
The Potential Use of Volatile Biomarkers for Malaria Diagnosis. Diagnostics (Basel) 2021; 11:diagnostics11122244. [PMID: 34943481 PMCID: PMC8700171 DOI: 10.3390/diagnostics11122244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
Pathogens may change the odor and odor-related biting behavior of the vector and host to enhance pathogen transmission. In recent years, volatile biomarker investigations have emerged to identify odors that are differentially and specifically released by pathogens and plants, or the pathogen-infected or even cancer patients. Several studies have reported odors or volatile biomarkers specifically detected from the breath and skin of malaria-infected individuals. This review will discuss the potential use of these odors or volatile biomarkers for the diagnosis of malaria. This approach not only allows for the non-invasive mean of sample collection but also opens up the opportunity to develop a biosensor for malaria diagnosis in low-resource settings.
Collapse
|
11
|
Stromsky VE, Hajkazemian M, Vaisbourd E, Mozūraitis R, Noushin Emami S. Plasmodium metabolite HMBPP stimulates feeding of main mosquito vectors on blood and artificial toxic sources. Commun Biol 2021; 4:1161. [PMID: 34620990 PMCID: PMC8497504 DOI: 10.1038/s42003-021-02689-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Recent data show that parasites manipulate the physiology of mosquitoes and human hosts to increase the probability of transmission. Here, we investigate phagostimulant activity of Plasmodium-metabolite, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), in the primary vectors of multiple human diseases, Anopheles coluzzii, An. arabiensis, An. gambiae s.s., Aedes aegypti, and Culex pipiens/Culex torrentium complex species. The addition of 10 µM HMBPP to blood meals significantly increased feeding in all the species investigated. Moreover, HMBPP also exhibited a phagostimulant property in plant-based-artificial-feeding-solution made of beetroot juice adjusted to neutral pH similar to that of blood. The addition of AlbuMAXTM as a lipid/protein source significantly improved the feeding rate of An. gambiae s.l. females providing optimised plant-based-artificial-feeding-solution for delivery toxins to control vector populations. Among natural and synthetic toxins tested, only fipronil sulfone did not reduce feeding. Overall, the toxic-plant-based-artificial-feeding-solution showed potential as an effector in environmentally friendly vector-control strategies.
Collapse
Affiliation(s)
- Viktoria E Stromsky
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Melika Hajkazemian
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Elizabeth Vaisbourd
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Raimondas Mozūraitis
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - S Noushin Emami
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
- Molecular Attraction AB, Elektravägen 10, 126 30 Hägersten, Stockholm, Sweden.
- Natural Resources Institute, FES, University of Greenwich, London, UK.
| |
Collapse
|
12
|
Lutz HL, Gilbert JA, Dick CW. Associations between Afrotropical bats, eukaryotic parasites, and microbial symbionts. Mol Ecol 2021; 31:1939-1950. [PMID: 34181795 PMCID: PMC9546020 DOI: 10.1111/mec.16044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/06/2021] [Accepted: 06/16/2021] [Indexed: 01/06/2023]
Abstract
Skin is the largest mammalian organ and the first defensive barrier against the external environment. The skin and fur of mammals can host a wide variety of ectoparasites, many of which are phylogenetically diverse, specialized, and specifically adapted to their hosts. Among hematophagous dipteran parasites, volatile organic compounds (VOCs) are known to serve as important attractants, leading parasites to compatible sources of blood meals. VOCs have been hypothesized to be mediated by host‐associated bacteria, which may thereby indirectly influence parasitism. Host‐associated bacteria may also influence parasitism directly, as has been observed in interactions between animal gut microbiota and malarial parasites. Hypotheses relating bacterial symbionts and eukaryotic parasitism have rarely been tested among humans and domestic animals, and to our knowledge have not been tested in wild vertebrates. In this study, we used Afrotropical bats, hematophagous ectoparasitic bat flies, and haemosporidian (malarial) parasites vectored by bat flies as a model to test the hypothesis that the vertebrate host microbiome is linked to parasitism in a wild system. We identified significant correlations between bacterial community composition of the skin and dipteran ectoparasite prevalence across four major bat lineages, as well as striking differences in skin microbial network characteristics between ectoparasitized and nonectoparasitized bats. We also identified links between the oral microbiome and presence of malarial parasites among miniopterid bats. Our results support the hypothesis that microbial symbionts may serve as indirect mediators of parasitism among eukaryotic hosts and parasites. see also the Perspective by Kelly A. Speer
Collapse
Affiliation(s)
- Holly L Lutz
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.,Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Jack A Gilbert
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.,Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Carl W Dick
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA.,Department of Biology, Western Kentucky University, Bowling Green, KY, USA
| |
Collapse
|
13
|
Konopka JK, Task D, Afify A, Raji J, Deibel K, Maguire S, Lawrence R, Potter CJ. Olfaction in Anopheles mosquitoes. Chem Senses 2021; 46:6246230. [PMID: 33885760 DOI: 10.1093/chemse/bjab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As vectors of disease, mosquitoes are a global threat to human health. The Anopheles mosquito is the deadliest mosquito species as the insect vector of the malaria-causing parasite, which kills hundreds of thousands every year. These mosquitoes are reliant on their sense of smell (olfaction) to guide most of their behaviors, and a better understanding of Anopheles olfaction identifies opportunities for reducing the spread of malaria. This review takes a detailed look at Anopheles olfaction. We explore a range of topics from chemosensory receptors, olfactory neurons, and sensory appendages to behaviors guided by olfaction (including host-seeking, foraging, oviposition, and mating), to vector management strategies that target mosquito olfaction. We identify many research areas that remain to be addressed.
Collapse
Affiliation(s)
- Joanna K Konopka
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Darya Task
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Ali Afify
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Joshua Raji
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Katelynn Deibel
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Sarah Maguire
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Randy Lawrence
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, 21205 MD, USA
| |
Collapse
|
14
|
Plasmodium's journey through the Anopheles mosquito: A comprehensive review. Biochimie 2020; 181:176-190. [PMID: 33346039 DOI: 10.1016/j.biochi.2020.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
The malaria parasite has an extraordinary ability to evade the immune system due to which the development of a malaria vaccine is a challenging task. Extensive research on malarial infection in the human host particularly during the liver stage has resulted in the discovery of potential candidate vaccines including RTS,S/AS01 and R21. However, complete elimination of malaria would require a holistic multi-component approach. In line with this, under the World Health Organization's PATH Malaria Vaccine Initiative (MVI), the research focus has shifted towards the sexual stages of malaria in the mosquito host. Last two decades of scientific research obtained seminal information regarding the sexual/mosquito stages of the malaria. This updated and comprehensive review would provide the basis for consolidated understanding of cellular, biochemical, molecular and immunological aspects of parasite transmission right from the sexual stage commitment in the human host to the sporozoite delivery back into subsequent vertebrate host by the female Anopheles mosquito.
Collapse
|
15
|
Arnal A, Roche B, Gouagna LC, Dujon A, Ujvari B, Corbel V, Remoue F, Poinsignon A, Pompon J, Giraudeau M, Simard F, Missé D, Lefèvre T, Thomas F. Cancer and mosquitoes - An unsuspected close connection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140631. [PMID: 32758822 DOI: 10.1016/j.scitotenv.2020.140631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Cancer is a major public health issue and represents a significant burden in countries with different levels of economic wealth. In parallel, mosquito-borne infectious diseases represent a growing problem causing significant morbidity and mortality worldwide. Acknowledging that these two concerns are both globally distributed, it is essential to investigate whether they have a reciprocal connection that can fuel their respective burdens. Unfortunately, very few studies have examined the link between these two threats. This review provides an overview of the possible links between mosquitoes, mosquito-borne infectious diseases and cancer. We first focus on the impact of mosquitoes on carcinogenesis in humans including the transmission of oncogenic pathogens through mosquitoes, the immune reactions following mosquito bites, the presence of non-oncogenic mosquito-borne pathogens, and the direct transmission of cancer cells. The second part of this review deals with the direct or indirect consequences of cancer in humans on mosquito behaviour. Thirdly, we discuss the potential impacts that natural cancers in mosquitoes can have on their life history traits and therefore on their vector capacity. Finally, we discuss the most promising research avenues on this topic and the integrative public health strategies that could be envisioned in this context.
Collapse
Affiliation(s)
- Audrey Arnal
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France.
| | - Benjamin Roche
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France; IRD, Sorbonne Université, UMMISCO, F-93143 Bondy, France; Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico; Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | | | - Antoine Dujon
- Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France; School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, VIC, Australia
| | - Beata Ujvari
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, VIC, Australia
| | - Vincent Corbel
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Franck Remoue
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | | | - Julien Pompon
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Mathieu Giraudeau
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France; Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | - Frédéric Simard
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France
| | - Thierry Lefèvre
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France; Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
| | - Frédéric Thomas
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France; Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France; Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| |
Collapse
|
16
|
Cozzarolo CS, Glaizot O, Christe P, Pigeault R. Enhanced Attraction of Arthropod Vectors to Infected Vertebrates: A Review of Empirical Evidence. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.568140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
17
|
Graumans W, Jacobs E, Bousema T, Sinnis P. When Is a Plasmodium-Infected Mosquito an Infectious Mosquito? Trends Parasitol 2020; 36:705-716. [PMID: 32620501 DOI: 10.1016/j.pt.2020.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022]
Abstract
Plasmodium parasites experience significant bottlenecks as they transit through the mosquito and are transmitted to their mammalian host. Oocyst prevalence on mosquito midguts and sporozoite prevalence in salivary glands are nevertheless commonly used to confirm successful malaria transmission, assuming that these are reliable indicators of the mosquito's capacity to give rise to secondary infections. Here we discuss recent insights in sporogonic development and transmission bottlenecks for Plasmodium. We highlight critical gaps in our knowledge and frame their importance in understanding the human and mosquito reservoirs of infection. A better understanding of the events that lead to successful inoculation of infectious sporozoites by mosquitoes is critical to designing effective interventions to shrink the malaria map.
Collapse
Affiliation(s)
- Wouter Graumans
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Ella Jacobs
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Teun Bousema
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Medical Microbiology, Nijmegen, The Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
18
|
Emami SN, Hajkazemian M, Mozūraitis R. Can Plasmodium's tricks for enhancing its transmission be turned against the parasite? New hopes for vector control. Pathog Glob Health 2020; 113:325-335. [PMID: 31910740 PMCID: PMC7008238 DOI: 10.1080/20477724.2019.1703398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Approximately 120 years ago the link between mosquito and the malaria transmission was discovered. However, even today it remains an open question whether the parasite is able to direct the blood-seeking and feeding behavior of its mosquito vector to maximize the probability of transmission. If the parasite has this ability, could it occur only through the alteration of the vertebrate host's volatile organic compounds (VOCs) and/or the parasite alteration of the behavior of the infected vector in a manner that favors its transmission? Although some recent empirical evidence supports the hypothesis regarding the parasite ability in alteration of the vertebrate host's VOCs, the role of parasite alteration and behavioral differences between infected and uninfected female mosquitoes toward infected and uninfected hosts has not yet been considered in the implementation of control measures. This review will discuss the current evidence, which shows 1. Plasmodium can direct uninfected mosquito blood-seeking and feeding behavior via alteration of vertebrate-host odor profiles and production of phagostimulants and 2. Plasmodium also manipulates its vector during the sporogony cycle to increase transmission. Briefly, we also consider the next generation of methods for moving the empirical laboratory evidence to potential application in future integrated malaria control programs.
Collapse
Affiliation(s)
- S Noushin Emami
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Melika Hajkazemian
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Raimondas Mozūraitis
- Department of Zoology, Stockholm University, Stockholm, Sweden.,Laboratory of Chemical and Behavioral Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| |
Collapse
|
19
|
Malaria. HIGHLY INFECTIOUS DISEASES IN CRITICAL CARE 2020. [PMCID: PMC7120402 DOI: 10.1007/978-3-030-33803-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Malaria is a significant cause of morbidity and mortality throughout the world, and environmental changes are likely to increase its importance in the coming years. Diagnosing this disease is difficult and requires a high index of suspicion, especially in non-endemic countries. Critical care providers play a major role in treating severe malaria and its complications, which has management particularities that might not be readily apparent. Fluid resuscitation should be carefully tailored to avoid complications, and dysperfusion seems more related to degree of parasitemia than hypovolemia. Antimalarial agents are effective, but resistance is growing. Complications can be found in nearly every organ, including cerebral malaria, acute respiratory distress syndrome, and acute kidney injury. As such, a critical care unit is frequently required for organ support when they appear. Superimposed infections are not infrequent. Despite all of this, mortality is encouragingly low with a timely diagnosis and access to appropriate treatment.
Collapse
|
20
|
Cambau E, Poljak M. Sniffing animals as a diagnostic tool in infectious diseases. Clin Microbiol Infect 2019; 26:431-435. [PMID: 31734357 DOI: 10.1016/j.cmi.2019.10.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Scents and odours characterize some microbes when grown in the laboratory, and experienced clinicians can diagnose patients with some infectious diseases based on their smell. Animal sniffing is an innate behaviour, and animals' olfactory acuity is used for detecting people, weapons, bombs, narcotics and food. OBJECTIVES We briefly summarized current knowledge regarding the use of sniffing animals to diagnose some infectious diseases and the potential use of scent-based diagnostic instruments in microbiology. SOURCES Information was sought through PubMed and extracted from peer-reviewed literature published between January 2000 and September 2019 and from reliable online news. The search terms 'odour', 'scent', 'bacteria', 'diagnostics', 'tuberculosis', 'malaria' and 'volatile compounds' were used. CONTENT Four major areas of using sniffing animals are summarized. Dogs have been used to reliably detect stool associated with toxigenic Clostridioides difficile and for surveillance. Dogs showed high sensitivity and moderate specificity for detecting urinary tract infections in comparison to culture, especially for Escherichia coli. African giant pouched rats showed superiority for diagnosing tuberculosis over microscopy, but inferiority to culture/molecular methods. Several approaches for detecting malaria by analysing host skin odour or exhaled breath have been explored successfully. Some microbial infections produce specific volatile organic compounds (VOCs), which can be analysed by spectrometry, metabolomics or other analytical approaches to replace animal sniffing. IMPLICATIONS The results of sniffing animal studies are fascinating, and animal sniffing can provide intermediate diagnostic solutions for some infectious diseases. Lack of reproducibility, and cost of animal training and housing are major drawbacks for wider implementation of sniffing animals. The ultimate goal is to understand the biological background of this animal ability and to characterize the specific VOCs that animals are recognizing. VOC identification, improvement of odour sampling methods and development of point-of-care instruments could allow implementation of scent-based tests for major human pathogens.
Collapse
Affiliation(s)
- E Cambau
- AP-HP, Groupe hospitalier Lariboisière - Fernand-Widal, Service de Bactériologie, Paris, France; Université de Paris, INSERM, IAME UMR1137, Paris, France.
| | - M Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
21
|
da Rocha Silva FB, Miguel DC, Machado VE, Oliveira WHC, Goulart TM, Tosta CD, Pinheiro HP, Pinto MC. Influence of Leishmania (Viannia) braziliensis infection on the attractiveness of BALB/c mice to Nyssomyia neivai (Diptera: Psychodidae). PLoS One 2019; 14:e0214574. [PMID: 30934013 PMCID: PMC6443145 DOI: 10.1371/journal.pone.0214574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 03/16/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Phlebotomine sand flies are vectors for several pathogens, with Leishmania being the most important. In Brazil, the main aetiological agent of American cutaneous leishmaniasis (ACL) is Leishmania (Viannia) braziliensis, and Nyssomyia neivai is one of its main vectors in São Paulo state and other areas of South America. Similar to other haematophagous insects, sand flies use volatile compounds called kairomones to locate their hosts for blood meals. A possible increase in the attractiveness of hosts infected with Leishmania infantum to their vectors has been demonstrated. In the present study, we aimed to investigate whether L. braziliensis-infected hosts present higher attractiveness to Ny. neivai and to identify differences in the volatile compounds released by infected and uninfected mice. RESULTS Behavioural experiments in which sand fly females directly fed on infected or uninfected mice showed no significant differences in the attractiveness of the mice or the blood volume ingested. Y-tube olfactometer bioassays also revealed no significant differences in the attractiveness of these hosts to Ny. neivai. No differences were observed in the profiles of the volatile compounds released by the two groups of mice. However, PCA and cluster analysis were able to classify the 31 identified compounds into three clusters according to their abundances. This classification showed a possible role for individual variation in the absence of differences in volatile profiles and attractiveness between infected and uninfected mice. CONCLUSION In this first cross-sectional study with an aetiological agent of ACL, there were no statistically significant differences in the attractiveness of infected hosts to their vector.
Collapse
Affiliation(s)
- Flávia Benini da Rocha Silva
- Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Araraquara, São Paulo, Brasil
| | - Danilo Ciccone Miguel
- Departamento de Biologia Animal, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brasil
| | - Vicente Estevam Machado
- Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Araraquara, São Paulo, Brasil
| | - Wanderson Henrique Cruz Oliveira
- Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Araraquara, São Paulo, Brasil
| | - Thais Marchi Goulart
- Departamento de Biologia Animal, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brasil
| | - Christiann Davis Tosta
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Campus Matão, Matão, São Paulo, Brasil
| | - Hildete Prisco Pinheiro
- Departamento de Estatística, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brasil
| | - Mara Cristina Pinto
- Departamento de Ciências Biológicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas, Câmpus Araraquara, Araraquara, São Paulo, Brasil
| |
Collapse
|
22
|
Species-specific alterations in Anopheles mosquito olfactory responses caused by Plasmodium infection. Sci Rep 2019; 9:3396. [PMID: 30833618 PMCID: PMC6399344 DOI: 10.1038/s41598-019-40074-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/07/2019] [Indexed: 12/20/2022] Open
Abstract
Mosquitoes infected with malaria parasites have demonstrated altered behaviour that may increase the probability of parasite transmission. Here, we examine the responses of the olfactory system in Plasmodium falciparum infected Anopheles gambiae, Plasmodium berghei infected Anopheles stephensi, and P. berghei infected An. gambiae. Infected and uninfected mosquitoes showed differential responses to compounds in human odour using electroantennography coupled with gas chromatography (GC-EAG), with 16 peaks triggering responses only in malaria-infected mosquitoes (at oocyst, sporozoite or both stages). A selection of key compounds were examined with EAG, and responses showed differences in the detection thresholds of infected and uninfected mosquitoes to compounds including lactic acid, tetradecanoic acid and benzothiazole, suggesting that the changes in sensitivity may be the reason for differential attraction and biting at the oocyst and sporozoite stages. Importantly, the different cross-species comparisons showed varying sensitivities to compounds, with P. falciparum infected An. gambiae differing from P. berghei infected An. stephensi, and P. berghei infected An. gambiae more similar to the P. berghei infected An. stephensi. These differences in sensitivity may reflect long-standing evolutionary relationships between specific Plasmodium and Anopheles species combinations. This highlights the importance of examining different species interactions in depth to fully understand the impact of malaria infection on mosquito olfactory behaviour.
Collapse
|
23
|
Smith ML, Styczynski MP. Systems Biology-Based Investigation of Host-Plasmodium Interactions. Trends Parasitol 2018; 34:617-632. [PMID: 29779985 DOI: 10.1016/j.pt.2018.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 12/20/2022]
Abstract
Malaria is a serious, complex disease caused by parasites of the genus Plasmodium. Plasmodium parasites affect multiple tissues as they evade immune responses, replicate, sexually reproduce, and transmit between vertebrate and invertebrate hosts. The explosion of omics technologies has enabled large-scale collection of Plasmodium infection data, revealing systems-scale patterns, mechanisms of pathogenesis, and the ways that host and pathogen affect each other. Here, we provide an overview of recent efforts using systems biology approaches to study host-Plasmodium interactions and the biological themes that have emerged from these efforts. We discuss some of the challenges in using systems biology for this goal, key research efforts needed to address those issues, and promising future malaria applications of systems biology.
Collapse
Affiliation(s)
- Maren L Smith
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Malaria Host-Pathogen Interaction Center, Emory University, Atlanta, GA 30322, USA
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Malaria Host-Pathogen Interaction Center, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
24
|
Fidock DA. A Breathprint for Malaria: New Opportunities for Noninterventional Diagnostics and Mosquito Traps? J Infect Dis 2018; 217:1512-1514. [DOI: 10.1093/infdis/jiy073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- David A Fidock
- Department of Microbiology and Immunology, and Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York
| |
Collapse
|