1
|
Lin M, Liu M, Huang C, Shen S, Chen Z, Lai K. Multiple Neural Networks Originating from the Lateral Parabrachial Nucleus Modulate Cough-like Behavior and Coordinate Cough with Pain. Am J Respir Cell Mol Biol 2025; 72:272-284. [PMID: 39417744 DOI: 10.1165/rcmb.2024-0084oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024] Open
Abstract
It has been reported that experimental pain can diminish cough sensitivity and that the lateral parabrachial nucleus (LPBN) coordinates pain with breathing, but whether the LPBN regulates cough-like behaviors and pain-induced changes in cough sensitivity remains elusive. We investigated the roles of LPBN γ-aminobutyric acidergic (GABAergic) and glutamatergic neurons in the regulation of cough sensitivity and its relationship with pain in mice via chemogenetic approaches. Adenovirus-associated virus tracing combined with chemogenetics was used to map the projections of LPBN GABAergic and glutamatergic neurons to the periaqueductal gray. LPBN neurons were activated by cough challenge, and nonspecific inhibition of LPBN neurons suppressed cough-like behavior. Chemogenetic suppression of LPBN GABAergic neurons reduced cough sensitivity in mice, whereas suppression of LPBN glutamatergic neurons counteracted the pain-driven decrease in cough sensitivity, and so did silencing LPBN glutamatergic neurons projecting to the periaqueductal gray. Our data suggest that GABAergic and glutamatergic neurons in the LPBN critically are involved in cough sensitivity and coordinate pain with cough through inhibitory or activating mechanisms at the midbrain level.
Collapse
Affiliation(s)
- Mingtong Lin
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Mingzhe Liu
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Chuqin Huang
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Shuirong Shen
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Zhe Chen
- Laboratory of Cough, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
| | - Kefang Lai
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| |
Collapse
|
2
|
Trupiano N, Young K, Echuri H, Maghfour J, Orenstein LAV, Hamzavi I. Exploring itch in hidradenitis suppurativa with lessons from atopic dermatitis and psoriasis. J Dermatol 2025; 52:239-246. [PMID: 39812242 DOI: 10.1111/1346-8138.17622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 12/09/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
Itch is a prominent symptom in many cutaneous disorders, including atopic dermatitis (AD), prurigo nodularis, and psoriasis. Itch is also a common but overlooked concern in patients with hidradenitis suppurativa (HS). Currently, the mechanisms underlying itch in HS remain unclear. To gain a better understanding, we reviewed the literature on pruritus in HS and other itch-predominant disorders, AD, and psoriasis. In HS, psoriasis, and AD, we found that itch often co-localized with pain and occurred more frequently at night. Furthermore, itch was found to negatively affect sleep and increase the risk for comorbid psychiatric disorders in HS, psoriasis, and AD. However, HS-, psoriasis-, and AD-related itch differ in temporality. Itch in AD is often described as chronic, while itch in HS and psoriasis is often described as episodic. HS-associated itch is likely multifactorial, and several mechanisms have been proposed including peripheral sensitization, central sensitization, and neuroinflammation. Prior studies in HS highlight enhanced IgE production and a dense infiltration of mast cells, along with a variety of cytokines and chemokines. Furthermore, alterations in the skin microbiome may contribute to itch in HS. To date, few therapies have been studied to treat itch in HS. Given the efficacy of several biologics and small molecules in treating itch in AD and psoriasis, similar agents may be explored in future HS studies. Alternative therapies to target neurological and psychiatric contributions to itch may include anticonvulsants, cannabinoids, and nonpharmacological treatments. In conclusion, pathomechanisms of itch in HS remain to be fully elucidated. However, we can draw on lessons from other pruritic disorders to begin addressing the symptom of it and identify important questions for future study.
Collapse
Affiliation(s)
- Nicole Trupiano
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kelly Young
- University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Harika Echuri
- Emory University Department of Dermatology, Atlanta, Georgia, USA
| | - Jalal Maghfour
- Henry Ford Health Department of Dermatology, Detroit, Michigan, USA
| | | | - Iltefat Hamzavi
- Henry Ford Health Department of Dermatology, Detroit, Michigan, USA
| |
Collapse
|
3
|
Zhu Y, Zhang T, Bai H, Li W, Wang S, Xu X, Yu L. PAR2 Participates in the Development of Cough Hypersensitivity in Guinea Pigs by Regulating TRPA1 Through PKC. Biomolecules 2025; 15:208. [PMID: 40001511 PMCID: PMC11853178 DOI: 10.3390/biom15020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
OBJECTIVE This study was conducted to validate the involvement of the PAR2-PKC-TRPA1 pathway in cough hypersensitivity (CHS) development. METHODS Guinea pigs were divided into a blank control, a citric acid-induced enhanced cough model, and drug intervention groups. The effects of the drugs on capsaicin-induced cough responsiveness in a cough model were observed. The effects of individual and combined treatments (including PAR2 agonists, TRPA1 agonists, PAR2 antagonists, TRPA1 antagonists, PKC agonists, and PKC antagonists) on PAR2, phospho-PKC (pPKC), and TRPA1 expression in bronchial tissues and the vagus ganglion (jugular and nodose) in the cough model and control groups were assessed. Additionally, whole-cell patch-clamp recordings were conducted to evaluate the effects of the drugs on vagus ganglion neuron electrophysiological activity. RESULTS ① Both PAR2 antagonists and TRPA1 antagonists significantly reduced cough frequency in guinea pigs with a cough, and the PAR2 antagonist inhibited coughing induced by the TRPA1 agonist. ② Western blotting and multiplex immunohistochemistry (mIHC) indicated that PAR2, pPKCα, PKCα, and TRPA1 expression in bronchial and vagus ganglion tissues was elevated in the cough model compared with the control, with TRPA1 expression being regulated by PAR2 and PKC being involved in this regulatory process. ③ Whole-cell patch-clamp recordings demonstrated that TRPA1 agonists induced an inward current in nodose ganglion neurons, which was further amplified by PAR2 agonists; this amplification effect was blocked by PKC antagonist. Additionally, PAR2 antagonists inhibited the inward current induced by TRPA1 agonists. ④ At various concentrations, including the optimal antitussive concentration, PAR2 antagonists did not significantly affect pulse amplitude, arterial oxygen saturation, heart rate, body temperature, or respiratory rate in guinea pigs. CONCLUSION PAR2 regulates TRPA1 through PKC in cough syndrome (CHS) pathogenesis, making targeting PAR2 a safe and effective therapeutic strategy for CHS.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianghuai Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Li Yu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| |
Collapse
|
4
|
Brooks SG, King J, Smith JA, Yosipovitch G. Cough and itch: Common mechanisms of irritation in the throat and skin. J Allergy Clin Immunol 2025; 155:36-52. [PMID: 39321991 DOI: 10.1016/j.jaci.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Cough and itch are protective mechanisms in the body. Cough occurs as a reflex motor response to foreign body inhalation, while itch is a sensation that similarly evokes a scratch response to remove irritants from the skin. Both cough and itch can last for sustained periods, leading to debilitating chronic disorders that negatively impact quality of life. Understanding the parallels and differences between chronic cough and chronic itch may be paramount to developing novel therapeutic approaches. In this article, we identify connections in the mechanisms contributing to the complex cough and scratch reflexes and summarize potential shared therapeutic targets. An online search was performed using various search engines, including PubMed, Web of Science, Google Scholar, and ClinicalTrials.gov from 1983 to 2024. Articles were assessed for quality, and those relevant to the objective were analyzed and summarized. The literature demonstrated similarities in the triggers, peripheral and central nervous system processing, feedback mechanisms, immunologic mediators, and receptors involved in the cough and itch responses, with the neuronal sensitization processes exhibiting the greatest parallels between cough and itch. Given the substantial impact on quality of life, novel therapies targeting similar neuroimmune pathways may apply to both itch and cough and provide new avenues for enhancing their management.
Collapse
Affiliation(s)
- Sarah G Brooks
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Fla
| | - Jenny King
- Division of Immunology, Immunity to Infection, and Respiratory Medicine, Wythenshawe Hospital, University of Manchester, Manchester, United Kingdom; North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Jaclyn Ann Smith
- Division of Immunology, Immunity to Infection, and Respiratory Medicine, Wythenshawe Hospital, University of Manchester, Manchester, United Kingdom; North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Gil Yosipovitch
- Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Fla.
| |
Collapse
|
5
|
Sharma D, Pulsinelli J, Correa da Rosa J, Wang Z, Kim B, Ungar B. Association of pruritus and chronic cough: an all of us database study. J DERMATOL TREAT 2024; 35:2355976. [PMID: 38797745 DOI: 10.1080/09546634.2024.2355976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE Based on a potential shared pathophysiology tied to mast cell activity and neurogenic inflammation that may link pruritus and chronic cough (CC), this study, leveraging the All of Us database, examines the association between the two conditions. MATERIALS AND METHODS A nested case-control comparison was used to examine the association, identifying cases with SNOMED codes 418363000 (pruritus) and 68154008 (CC). Matching was performed on a 1:4 ratio by age, sex, and ethnicity using the MatchIt package in R, followed by maximum likelihood method to estimate odds ratios (ORs) and 95% confidence intervals from 2x2 contingency tables. RESULTS CC patients (n = 2,388) were more than twice as likely to be diagnosed with pruritus (OR: 2.65) and pruritus patients (n = 22,496) were more than twice as likely to be diagnosed with CC (OR: 2.57), than respective matched controls. CONCLUSIONS These results highlight the potential bidirectional relationship between CC and pruritus, suggesting possible shared immune and neural pathways. Treatments like difelikefalin and nalbuphine that modulate these pathways, alongside P2X3 targeting agents, are emerging as potential therapeutic approaches for itch and chronic cough given the possible interconnected pathophysiology. This study's insights into the associations between pruritus and CC may pave the way for targeted therapeutic strategies that address their shared mechanisms.
Collapse
Affiliation(s)
- Divija Sharma
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juliana Pulsinelli
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joel Correa da Rosa
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhen Wang
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Kim
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Ungar
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Livshits G, Kalinkovich A. Resolution of Chronic Inflammation, Restoration of Epigenetic Disturbances and Correction of Dysbiosis as an Adjunctive Approach to the Treatment of Atopic Dermatitis. Cells 2024; 13:1899. [PMID: 39594647 PMCID: PMC11593003 DOI: 10.3390/cells13221899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with multifactorial and unclear pathogenesis. Its development is characterized by two key elements: epigenetic dysregulation of molecular pathways involved in AD pathogenesis and disrupted skin and gut microbiota (dysbiosis) that jointly trigger and maintain chronic inflammation, a core AD characteristic. Current data suggest that failed inflammation resolution is the main pathogenic mechanism underlying AD development. Inflammation resolution is provided by specialized pro-resolving mediators (SPMs) derived from dietary polyunsaturated fatty acids acting through cognate receptors. SPM levels are reduced in AD patients. Administration of SPMs or their stable, small-molecule mimetics and receptor agonists, as well as supplementation with probiotics/prebiotics, demonstrate beneficial effects in AD animal models. Epidrugs, compounds capable of restoring disrupted epigenetic mechanisms associated with the disease, improve impaired skin barrier function in AD models. Based on these findings, we propose a novel, multilevel AD treatment strategy aimed at resolving chronic inflammation by application of SPM mimetics and receptor agonists, probiotics/prebiotics, and epi-drugs. This approach can be used in conjunction with current AD therapy, resulting in AD alleviation.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv 6927846, Israel;
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv 6927846, Israel;
| |
Collapse
|
7
|
Hassan M, Shahzadi S, Yasir M, Chun W, Kloczkowski A. Therapeutic Implication of miRNAs as an Active Regulatory Player in the Management of Pain: A Review. Genes (Basel) 2024; 15:1003. [PMID: 39202362 PMCID: PMC11353898 DOI: 10.3390/genes15081003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic pain is frequently associated with neuropathy, inflammation, or the malfunctioning of nerves. Chronic pain is associated with a significant burden of morbidity due to opioid use, associated with addiction and tolerance, and disability. MicroRNAs (miRs) are emerging therapeutic targets to treat chronic pain through the regulation of genes associated with inflammation, neuronal excitability, survival, or de-differentiation. In this review, we discuss the possible involvement of miRs in pain-related molecular pathways. miRs are known to regulate high-conviction pain genes, supporting their potential as therapeutic targets.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.S.); (A.K.)
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.S.); (A.K.)
| | - Muhammad Yasir
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.S.); (A.K.)
- Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH 43205, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Kotewicz M, Krajewski PK, Jaworek AK, Szepietowski JC. Clinical Characteristics of Cutaneous Pain in Psoriasis. J Clin Med 2024; 13:3610. [PMID: 38930137 PMCID: PMC11204389 DOI: 10.3390/jcm13123610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Psoriasis is a common inflammatory disease that is often associated with itch and pain. This study aimed to evaluate the clinical characteristics of skin pain among patients with psoriasis. Materials: A total of 106 patients diagnosed with psoriasis were included in the study (34% female; mean age 42.1 ± 13.0 years). Disease severity was assessed using the Psoriasis Area and Severity Index (PASI). Itch severity was evaluated using the numeric rating scale (NRS) and 4-Item Itch Score (4IIS). The intensity of skin pain was measured through the NRS, short-form McGill pain questionnaire (SF-MPQ), visual analog scale (VAS), and Douleur Neuropathique-4 questionnaire (DN4). Results: In the past week, 84.9% of psoriasis patients reported itch, while 50% of them reported skin pain. The average NRS for itch was 4.52 ± 2.88 points, and the 4IIS yielded a mean score of 6.79 ± 4.37 points. In terms of the intensity of cutaneous pain, the mean NRS was 2.42 ± 2.96 points; the SF-MPQ score averaged 4.84 ± 7.51 points; and the VAS score was 1.92 ± 2.65 points. Furthermore, 17% of adult psoriasis patients reported neuropathic pain. In 84.9% of the participants, skin pain was concurrent with areas affected by itch, while 18.9% of patients exhibited cutaneous pain encompassing all itchy areas. The pain NRS demonstrated significant correlations with the SF-MPQ (r = 0.531, p < 0.001), VAS (r = 0.779, p < 0.001), itch NRS (r = 0.551, p < 0.001), and 4IIS (r = 0.569, p < 0.001). No association was found between the pain NRS and PASI or disease duration. Conclusions: Skin pain of mild intensity and itch of moderate intensity are prevalent symptoms in psoriasis patients. Strong correlations between skin pain and itch can be explained by the process of neurogenic inflammation.
Collapse
Affiliation(s)
- Magdalena Kotewicz
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland (P.K.K.)
| | - Piotr K. Krajewski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland (P.K.K.)
| | - Andrzej K. Jaworek
- Department of Dermatology, Jagiellonian University, 31-008 Kraków, Poland;
| | - Jacek C. Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland (P.K.K.)
| |
Collapse
|
9
|
Singleton H, Mahato P, Arden-Close E, Thomas S, Ersser S, Holley D, Yang X, Roberts A. Virtual reality used to distract children and young people with long-term conditions from pain or pruritus: A scoping review using PAGER. J Clin Nurs 2024; 33:469-480. [PMID: 37962251 DOI: 10.1111/jocn.16928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023]
Abstract
AIMS AND OBJECTIVES To map out the primary research studies relating to how virtual reality (VR) has been used to distract children and young people with long-term conditions from pain or pruritus. BACKGROUND Pharmacologic treatment of chronic pain and pruritus may have side effects; hence, non-invasive non-pharmacological treatments are being sought. DESIGN The scoping review followed the methodology recommended by the Joanna Briggs Institute, PAGER framework and PRISMA-ScR checklist. The protocol was registered with the Open Science Registration on 14 February 2022 https//doi.org/10.17605/OSF.IO/K2R93. METHODS Five databases (Medline, CINAHL, PsycINFO, Web of Science and Scopus) were searched. Data were extracted from primary research studies published between 2000 and 2022 involving children and adolescent populations (<21 years) with a long-term condition that had an element of enduring pruritus and/or pain. RESULTS Of 464 abstracts screened, 35 full-text papers were assessed with 5 studies meeting the eligibility criteria. Three main themes emerged from the included studies: (1) Improvements in pain and daily functioning; (2) positive perceptions of VR and (3) accessibility and feasibility of VR. No papers were found on the effect of VR on alleviating pruritus. CONCLUSION VR is feasible, acceptable, and safe for children and adolescents with chronic pain in a range of long-term conditions and offers promise as an adjunctive treatment for improving chronic pain and quality of life. No studies were identified that targeted pruritis or measured pruritis outcomes; thus, the effects of VR for pruritis are unknown. There is a need for rigorously designed, randomised controlled trials to test the clinical and cost-effectiveness of VR interventions for chronic pain and pruritis in children and adolescents. The use of the PAGER (Patterns, Advances, Gaps, Evidence for Practice and Research Recommendations) framework for scoping reviews helped to structure analysis and findings and identify research gaps. RELEVANCE TO CLINICAL PRACTICE VR interventions offer promise in improving chronic pain related to long-term conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amanda Roberts
- Nottingham Support for Carers of Children with Eczema, Nottingham, UK
| |
Collapse
|
10
|
Mahmoud O, Oladipo O, Mahmoud RH, Yosipovitch G. Itch: from the skin to the brain - peripheral and central neural sensitization in chronic itch. Front Mol Neurosci 2023; 16:1272230. [PMID: 37849619 PMCID: PMC10577434 DOI: 10.3389/fnmol.2023.1272230] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/05/2023] [Indexed: 10/19/2023] Open
Abstract
Similar to chronic pain, chronic itch is frequently linked to neural sensitization, a phenomenon wherein the nervous system becomes hypersensitive to stimuli. This process of neural sensitization of chronic itch is orchestrated by various signaling pathways and mediators in both the peripheral and central nervous systems. At the level of the peripheral nervous system, inflammation and neuroimmune interactions induce plastic changes to peripheral nerve fibers, thereby amplifying the transmission of itch signaling. Neural sensitization in the central nervous system occurs at both the spinal cord and brain levels. At the level of the spinal cord, it involves hyperactivity of itch-activating spinal pathways, dysfunction of spinal inhibitory circuits, and attenuation of descending supraspinal inhibitory pathways. In the brain, neural sensitization manifests as structural and functional changes to itch-associated brain areas and networks. Currently, we have a diverse array of neuroimmune-modulating therapies targeting itch neural sensitization mechanisms to help with providing relief to patients with chronic itch. Itch research is a dynamic and continually evolving field, and as we grow in our understanding of chronic itch mechanisms, so will our therapeutic toolbox. Further studies exploring the peripheral and central neural sensitization mechanisms in the context of chronic itch are needed.
Collapse
Affiliation(s)
| | | | | | - Gil Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
11
|
Lavorini F, Bernacchi G, Fumagalli C, Noale M, Maggi S, Mutolo D, Cinelli E, Fontana GA. Somatically evoked cough responses help to identify patients with difficult-to-treat chronic cough: a six-month observational cohort study. EClinicalMedicine 2023; 57:101869. [PMID: 36874394 PMCID: PMC9975680 DOI: 10.1016/j.eclinm.2023.101869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Recently we identified in patients with chronic cough a sensory dysregulation via which the urge-to-cough (UTC) or coughing are evoked mechanically from "somatic points for cough" (SPCs) in the neck and upper trunk. We investigated the prevalence and the clinical relevance of SPCs in an unselected population of patients with chronic cough. METHODS From 2018 to 2021, symptoms of 317 consecutive patients with chronic cough (233 females) were collected on four visits (V1-V4) 2 months apart at the Cough Clinic of the University Hospital in Florence (I). Participants rated the disturbance caused by the cough (0-9 modified Borg Scale). We attempted to evoke coughing and/or UTC using mechanical actions in all participants who were subsequently categorised as responsive (somatic point for cough positive, SPC+) or unresponsive (SPC-) to these actions. An association was established between chronic cough and its commonest causes; treatments were administered accordingly. FINDINGS 169 patients were SPC+ and had a higher baseline cough score (p < 0.01). In most of the patients, the treatments reduced (p < 0.01) cough-associated symptoms. All patients reported a decrease (p < 0.01) in cough score at V2 (from 5.70 ± 1.4 to 3.43 ± 1.9 and from 5.01 ± 1.5 to 2.74 ± 1.7 for SPC+ and SPC- patients respectively). However, whilst in SPC- patients the cough score continued to decrease indicating virtually complete cough disappearance at V4 (0.97 ± 0.8), in SPC+ patients this variable remained close to V2 values during the entire follow-up. INTERPRETATION Our study suggests that the assessment of SPCs may identify patients whose cough is unresponsive and are eligible for specific treatments. FUNDING This work was funded by an unrestricted grant from Merck (Italy).
Collapse
Affiliation(s)
- Federico Lavorini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Corresponding author. Department of Experimental and Clinical Medicine, Largo Brambilla 3, Florence 50134, Italy.
| | - Guja Bernacchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Carlo Fumagalli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marianna Noale
- Italian National Research Council (CNR), Neuroscience Institute, Aging Branch, Padua, Italy
| | - Stefania Maggi
- Italian National Research Council (CNR), Neuroscience Institute, Aging Branch, Padua, Italy
| | - Donatella Mutolo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eliana Cinelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giovanni A. Fontana
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Wang ZH, Feng Y, Hu Q, Wang XL, Zhang L, Liu TT, Zhang JT, Yang X, Fu QY, Fu DN, Hu J, Liu T. Keratinocyte TLR2 and TLR7 contribute to chronic itch through pruritic cytokines and chemokines in mice. J Cell Physiol 2023; 238:257-273. [PMID: 36436135 DOI: 10.1002/jcp.30923] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022]
Abstract
Although neuronal Toll-like receptors (TLRs) (e.g., TLR2, TLR3, and TLR7) have been implicated in itch sensation, the roles of keratinocyte TLRs in chronic itch are elusive. Herein, we evaluated the roles of keratinocyte TLR2 and TLR7 in chronic itch under dry skin and psoriasis conditions, which was induced by either acetone-ether-water treatment or 5% imiquimod cream in mice, respectively. We found that TLR2 and TLR7 signaling were significantly upregulated in dry skin and psoriatic skin in mice. Chronic itch and epidermal hyperplasia induced by dry skin or psoriasis were comparably reduced in TLR2 and TLR7 knockout mice. In the dry skin model, the enhanced messenger RNA (mRNA) expression levels of pruritic CXCL1/2, IL-31, IL-33, ST2, IL-6, IL-17A, TNF-α, and IFN-γ were inhibited in TLR2-/- mice, while CXCL2, IL-31, and IL-6 were inhibited in TLR7-/- mice. In psoriasis model, the enhanced mRNA expression levels of pruritic CXCL1/2, IL-31, IL-33, ST2, IL-6, and TNF-α were inhibited in TLR2-/- mice, while CXCL1/2, IL-31, IL-33, ST2, IL-6, IL-17A, and TNF-α were inhibited in TLR7-/- mice. Incubation with Staphylococcus aureus (S. aureus) peptidoglycan (PGN-SA) (a TLR2 agonist), imiquimod (a TLR7 agonist), and miR142-3p (a putative TLR7 agonist) were sufficient to upregulate the expression of pruritic cytokines or chemokines in cultured keratinocyte HaCaT cells. Finally, pharmacological blockade of C-X-C Motif Chemokine Receptor 1/2 and high mobility group box protein 1 dose-dependently attenuated acute and chronic itch in mice. Together, these results indicate that keratinocyte TLR2 and TLR7 signaling pathways are distinctly involved in the pathogenesis of chronic itch.
Collapse
Affiliation(s)
- Zhi-Hong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingfang Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xue-Long Wang
- Department of Thoracic Surgery, Capital Medical University Electric Power Teaching Hospital Beijing, Beijing, China
| | - Li Zhang
- Department of Anesthesiology, The First People's Hospital of Kunshan Affiliated with Jiangsu University, Kunshan, China
| | - Teng-Teng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jiang-Tao Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Xiaohua Yang
- The Affiliated Haian Hospital of Nantong University, Haian, China
| | - Qing-Yue Fu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Dan-Ni Fu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China.,College of Life Sciences, Yanan University, Yanan, China.,Suzhou Key Laboratory of Intelligent Medicine and Equipment, Soochow University, Suzhou, China
| |
Collapse
|
13
|
Ryu K, Heo Y, Lee Y, Jeon H, Namkung W. Berbamine Reduces Chloroquine-Induced Itch in Mice through Inhibition of MrgprX1. Int J Mol Sci 2022; 23:ijms232214321. [PMID: 36430803 PMCID: PMC9698483 DOI: 10.3390/ijms232214321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Chloroquine (CQ) is an antimalaria drug that has been widely used for decades. However, CQ-induced pruritus remains one of the major obstacles in CQ treatment for uncomplicated malaria. Recent studies have revealed that MrgprX1 plays an essential role in CQ-induced itch. To date, a few MrgprX1 antagonists have been discovered, but they are clinically unavailable or lack selectivity. Here, a cell-based high-throughput screening was performed to identify novel antagonists of MrgprX1, and the screening of 2543 compounds revealed two novel MrgprX1 inhibitors, berbamine and closantel. Notably, berbamine potently inhibited CQ-mediated MrgprX1 activation (IC50 = 1.6 μM) but did not alter the activity of other pruritogenic GPCRs. In addition, berbamine suppressed the CQ-mediated phosphorylation of ERK1/2. Interestingly, CQ-induced pruritus was significantly reduced by berbamine in a dose-dependent manner, but berbamine had no effect on histamine-induced, protease-activated receptors 2-activating peptide-induced, and deoxycholic acid-induced itch in mice. These results suggest that berbamine is a novel, potent, and selective antagonist of MrgprX1 and may be a potential drug candidate for the development of therapeutic agents to treat CQ-induced pruritus.
Collapse
|
14
|
Chen Y, Chen H, Li XC, Mi WL, Chu YX, Wang YQ, Mao-Ying QL. Neuronal toll like receptor 9 contributes to complete Freund’s adjuvant-induced inflammatory pain in mice. Front Mol Neurosci 2022; 15:1008203. [PMID: 36277489 PMCID: PMC9582929 DOI: 10.3389/fnmol.2022.1008203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Toll like receptor 9 (TLR9) is a critical sensor for danger-associated molecular patterns (DAMPs) and a crucial marker of non-sterile/sterile inflammation among all TLRs. However, the significance of TLR9 in inflammatory pain remains unclear. Here, we subcutaneously injected Complete Freund’s adjuvant (CFA) into the plantar surface of the hind paw, to established a mouse model of inflammatory pain, and we examined expression and distribution of TLR9 in this model. There was a significant increase of TLR9 mRNA and reduction of mechanical paw withdrawal threshold in mice intraplantar injected with CFA. By contrast, mechanical paw withdrawal threshold significantly increased in mice treated with TLR9 antagonist ODN2088. Furthermore, TLR9 is found predominantly distributed in the neurons by immunofluorescence experiment. Accordingly, neuronal TLR9 downregulation in the spinal cord prevented CFA-induced persistent hyperalgesia. Overall, these findings indicate that neuronal TLR9 in the spinal cord is closely related to CFA-induced inflammatory pain. It provides a potential treatment option for CFA-induced inflammatory pain by applying TLR9 antagonist.
Collapse
Affiliation(s)
- Yu Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Hui Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xiao-Chen Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
- *Correspondence: Qi-Liang Mao-Ying,
| |
Collapse
|
15
|
Fang XX, Wang H, Song HL, Wang J, Zhang ZJ. Neuroinflammation Involved in Diabetes-Related Pain and Itch. Front Pharmacol 2022; 13:921612. [PMID: 35795572 PMCID: PMC9251344 DOI: 10.3389/fphar.2022.921612] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus (DM) is a global epidemic with increasing incidence, which results in diverse complications, seriously affects the patient quality of life, and brings huge economic burdens to society. Diabetic neuropathy is the most common chronic complication of DM, resulting in neuropathic pain and chronic itch. The precise mechanisms of diabetic neuropathy have not been fully clarified, hindering the exploration of novel therapies for diabetic neuropathy and its terrible symptoms such as diabetic pain and itch. Accumulating evidence suggests that neuroinflammation plays a critical role in the pathophysiologic process of neuropathic pain and chronic itch. Indeed, researchers have currently made significant progress in knowing the role of glial cells and the pro-inflammatory mediators produced from glial cells in the modulation of chronic pain and itch signal processing. Here, we provide an overview of the current understanding of neuroinflammation in contributing to the sensitization of the peripheral nervous system (PNS) and central nervous system (CNS). In addition, we also summarize the inflammation mechanisms that contribute to the pathogenesis of diabetic itch, including activation of glial cells, oxidative stress, and pro-inflammatory factors. Targeting excessive neuroinflammation may provide potential and effective therapies for the treatment of chronic neuropathic pain and itch in DM.
Collapse
Affiliation(s)
- Xiao-Xia Fang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
- Department of Medical Functional Laboratory, School of Medicine, Nantong University, Nantong, China
| | - Heng Wang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Hao-Lin Song
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Juan Wang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Zhi-Jun Zhang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
16
|
Kwatra SG, Misery L, Clibborn C, Steinhoff M. Molecular and cellular mechanisms of itch and pain in atopic dermatitis and implications for novel therapeutics. Clin Transl Immunology 2022; 11:e1390. [PMID: 35582626 PMCID: PMC9082890 DOI: 10.1002/cti2.1390] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Atopic dermatitis is a chronic inflammatory skin disease. Patients with atopic dermatitis experience inflammatory lesions associated with intense itch and pain, which lead to sleep disturbance and poor mental health and quality of life. We review the molecular mechanisms underlying itch and pain symptoms in atopic dermatitis and discuss the current clinical development of treatments for moderate-to-severe atopic dermatitis. The molecular pathology of atopic dermatitis includes aberrant immune activation involving significant cross-talk among the skin and immune and neuronal cells. Exogenous and endogenous triggers modulate stimulation of mediators including cytokine/chemokine expression/release by the skin and immune cells, which causes inflammation, skin barrier disruption, activation and growth of sensory neurons, itch and pain. These complex interactions among cell types are mediated primarily by cytokines, but also involve chemokines, neurotransmitters, lipids, proteases, antimicrobial peptides, agonists of ion channels or various G protein-coupled receptors. Patients with atopic dermatitis have a cytokine profile characterised by abnormal levels of interleukins 4, 12, 13, 18, 22, 31 and 33; thymic stromal lymphopoietin; and interferon gamma. Cytokine receptors mainly signal through the Janus kinase/signal transducer and activator of transcription pathway. Among emerging novel therapeutics, several Janus kinase inhibitors are being developed for topical or systemic treatment of moderate-to-severe atopic dermatitis because of their potential to modulate cytokine expression and release. Janus kinase inhibitors lead to changes in gene expression that have favourable effects on local and systemic cytokine release, and probably other mediators, thus successfully modulating molecular mechanisms responsible for itch and pain in atopic dermatitis.
Collapse
Affiliation(s)
- Shawn G Kwatra
- Department of DermatologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Laurent Misery
- Department of DermatologyUniversity Hospital of BrestBrestFrance
| | | | - Martin Steinhoff
- Department of Dermatology and VenereologyHamad Medical CorporationDohaQatar
- Translational Research InstituteAcademic Health SystemHamad Medical CorporationDohaQatar
- Dermatology InstituteAcademic Health SystemHamad Medical CorporationDohaQatar
- Department of DermatologyWeill Cornell Medicine‐QatarDohaQatar
- Qatar University, College of MedicineDohaQatar
- Department of DermatologyWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
17
|
Al-Kandery ASA, Rao MS, El-Hashim AZ. Prostaglandin E 2 sensitizes the cough reflex centrally via EP3 receptor-dependent activation of NaV 1.8 channels. Respir Res 2021; 22:296. [PMID: 34794450 PMCID: PMC8603488 DOI: 10.1186/s12931-021-01889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Abstract
Background Cough hypersensitivity is a major characteristic feature associated with several types of cough, including chronic cough, but its underlying mechanisms remain to be fully understood. Inflammatory mediators, such as prostaglandin E2 (PGE2), have been implicated in both peripheral induction and sensitization of the cough reflex. In this study, using a conscious guinea pig model of cough, we investigated whether PGE2 can sensitize the cough reflex via central actions and, if so, via which mechanisms. Methods All drugs were administered by intracerebroventricular (i.c.v.) route and whole-body plethysmograph set-up was used for both induction, using aerosolized citric acid (0.2 M), and recording of cough. Immunohistochemistry was performed to confirm the expression of NaV 1.8 channels in the nucleus tractus solitarius (nTS). Results We show that both PGE2 and the non-selective EP1/EP3 agonist, sulprostone, dose-dependently enhanced the citric acid-induced cough (P ≤ 0.001, P ≤ 0.01, respectively). Pretreatment with the EP1 antagonist, ONO-8130, did not affect the sulprostone-induced cough sensitization, whilst the EP3 antagonist, L-798,106, dose-dependently inhibited this effect (P ≤ 0.05). Furthermore, treatment with either the EP2 agonist, butaprost or the EP4 agonist, L-902,688, had no effect on cough sensitization. Additionally, pretreatment with either the TRPV1 antagonist, JNJ-17203212 or the TRPA1 antagonist, HC-030031, alone or in combination, nor with the NaV 1.1, 1.2, 1.3, 1.4, 1.6 and 1.7 channel blocker, tetrodotoxin, had any effect on the cough. In contrast, pretreatment with the NaV 1.8 antagonist, A-803467, dose-dependently inhibited this effect (P ≤ 0.05). Furthermore, NaV 1.8 channels were shown to be expressed in the nTS. Conclusion Collectively, our findings show that PGE2 sensitizes the cough reflex centrally via EP3 receptor-dependent activation of NaV 1.8 but independently of TRPV1,TRPA1 and TTX-sensitive sodium channel activation. These results indicate that PGE2 plays an important role in central sensitization of the cough reflex and suggest that central EP3 receptors and/or NaVv 1.8 channels may represent novel antitussive molecular targets. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Al-Shaimaa A Al-Kandery
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Muddanna S Rao
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Ahmed Z El-Hashim
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait.
| |
Collapse
|
18
|
Huang SH, Wu KW, Lo JJ, Wu SH. Synergic Effect of Botulinum Toxin Type A and Triamcinolone Alleviates Scar Pruritus by Modulating Epidermal Hyperinnervation: A Preliminary Report. Aesthet Surg J 2021; 41:NP1721-NP1731. [PMID: 33662123 DOI: 10.1093/asj/sjab105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Patients often experience scar-related pruritus, which adversely affects quality of life. Triamcinolone acetonide (TAC) is widely used to treat pathologic scars, and botulinum toxin type A (BTX-A) reportedly improves scarring and associated discomfort. OBJECTIVES The aim of this study was to investigate the clinical efficacy of combining TAC and BTX-A to reduce scar itch; potential mechanisms were investigated via an animal model. METHODS For the clinical study, each scar on a patient was divided into 2 equal parts, with one part receiving TAC/BTX-A and the other TAC alone. Therapeutic interventions were administered over 3 sessions at 4-week intervals. Itch intensity was measured on a visual analog scale before each therapeutic intervention (V1, V2, V3) and 4 weeks after the last intervention (V4). For the animal model, rats were allocated into 5 groups: control, untreated burn, TAC, BTX-A, and TAC/BTX-A. We evaluated alloknesis in the right hind paw and analyzed possible molecular mechanisms. RESULTS In humans, TAC/BTX-A significantly reduced scar itch compared with TAC alone at V4 (P = 0.04). In rats, post-burn itch was mitigated at 4 weeks after treatment with TAC, BTX-A, and TAC/BTX-A (P = 0.03, P = 0.0054, and P = 0.0053, respectively). TAC/BTX-A significantly decreased the density of intraepidermal nerve fibers post-burn relative to the untreated burn (P = 0.0008). TAC/BTX-A downregulated the expressions of nerve growth factor and protein transient receptor potential vanilloid subtype 1. CONCLUSIONS TAC/BTX-A therapy exhibited enhanced and sustained clinical efficacy in relieving scar itch, possibly via modulating epidermal innervation and expression of transient receptor potential vanilloid subtype 1 . LEVEL OF EVIDENCE: 2
Collapse
Affiliation(s)
- Shu-Hung Huang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuo-Wei Wu
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jing-Jou Lo
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Hua Wu
- Department of Anesthesiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Lee JH, Kang SY, Yoo Y, An J, Park SY, Lee JH, Lee SE, Kim MH, Kanemitsu Y, Chang YS, Song WJ. Epidemiology of adult chronic cough: disease burden, regional issues, and recent findings. Asia Pac Allergy 2021; 11:e38. [PMID: 34786368 PMCID: PMC8563099 DOI: 10.5415/apallergy.2021.11.e38] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic cough is a common medical condition that has a significant impact on patients' quality of life. Although it was previously considered a symptom of other disorders, it is now regarded as a pathologic state that is characterized by a deviation from the intrinsic protective functions of the cough reflex, especially in adults. There are several factors that may underlie the cough reflex hypersensitivity and its persistence, such as age, sex, comorbidities, viral infection, exposure to irritants or environmental pollutants, and their interactions may determine the epidemiology of chronic cough in different countries. With a deeper understanding of disease pathophysiology and advanced research methodology, there are more attempts to investigate cough epidemiology using a large cohort of healthcare population data. This is a narrative overview of recent findings on the disease burden, risk factors, Asia-Pacific issues, and longitudinal outcomes in adults with chronic cough. This paper also discusses the approaches utilizing routinely collected data in cough research.
Collapse
Affiliation(s)
- Ji-Hyang Lee
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Yoon Kang
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Youngsang Yoo
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Gangneung Asan Hospital, Gangneung, Korea
| | - Jin An
- Department of Allergy, Pulmonary and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - So-Young Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Ji-Ho Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Seung-Eun Lee
- Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Min-Hye Kim
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Yoshihiro Kanemitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Misery L, Shourick J, Reychler G, Taieb C. Association between chronic idiopathic cough and sensitive skin syndromes is a new argument in favor of common neuropathic pathways: results from a survey on 4050 subjects. Sci Rep 2021; 11:16976. [PMID: 34417530 PMCID: PMC8379212 DOI: 10.1038/s41598-021-96608-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Sensitive skin syndrome has a neuropathic origin, which is why it is frequently associated with irritable bowel syndrome. We have looked for a possible association with chronic cough, which is commonly maintained by neurogenic mechanisms, whatever the initial cause(s). A survey was carried out on a representative sample of the population over 15 years of age using the quota method. The questionnaire included sociodemographic data and questions about sensitive skin, the presence of chronic cough, smoking and possible causes of chronic cough. Chronic cough was assessed by the Leicester Cough Questionnaire, and 4050 subjects responded (mean age: 45 years). Overall, 12.2% of subjects with a chronic cough were compared to the 87.8% without any cough. Among them, 72.5% had sensitive skin (vs. 47.8%, p < 0.001); additionally, 17.4% of the subjects with sensitive skin had a chronic cough (vs. 6.9% if no sensitive skin). These proportions were higher if very sensitive skin was reported. The risk of having chronic cough was twice as high if sensitive skin was reported [OR = 1.9 (1.5-2.4), p < 0.001]. The risk of having sensitive skin was also twice as high for chronic cough. Thus, chronic cough and sensitive skin are frequently associated. This association represents a new argument in favor of a neuropathic nature of sensitive skin. Sensitive skin and chronic cough are both modes of overreaction to environmental factors, which tend to be autonomized by neurogenic mechanisms. Dermatologists should ask their patients if they have a chronic cough, and pneumologists should ask about the presence of sensitive skin.
Collapse
Affiliation(s)
- Laurent Misery
- Laboratory of Neurosciences, University of Western Brittany, Brest, France.
- Department of Dermatology, University Hospital of Brest, Brest, France.
| | | | - Grégory Reychler
- Department of Pneumology, University Clinics Saint-Luc, Brussels, Belgium
| | | |
Collapse
|
21
|
Zhang Q, Henry G, Chen Y. Emerging Role of Transient Receptor Potential Vanilloid 4 (TRPV4) Ion Channel in Acute and Chronic Itch. Int J Mol Sci 2021; 22:7591. [PMID: 34299208 PMCID: PMC8307539 DOI: 10.3390/ijms22147591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022] Open
Abstract
Itch is a clinical problem that leaves many sufferers insufficiently treated, with over 20 million cases in the United States. This is due to incomplete understanding of its molecular, cellular, and cell-to-cell signaling mechanisms. Transient receptor potential (TRP) ion channels are involved in several sensory modalities including pain, vision, taste, olfaction, hearing, touch, and thermosensation, as well as itch. Relative to the extensive studies on TRPV1 and TRPA1 ion channels in itch modulation, TRPV4 has received relatively little research attention and its mechanisms have remained poorly understood until recently. TRPV4 is expressed in ganglion sensory neurons and a variety of skin cells. Growing evidence in the past few years strongly suggests that TRPV4 in these cells contributes to acute and chronic disease-associated itch. This review focuses on the current experimental evidence involving TRPV4 in itch under pathophysiological conditions and discusses its possible cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Qiaojuan Zhang
- Department of Neurology, Duke University, Durham, NC 27710, USA; (Q.Z.); (G.H.)
| | - Gwendolyn Henry
- Department of Neurology, Duke University, Durham, NC 27710, USA; (Q.Z.); (G.H.)
| | - Yong Chen
- Department of Neurology, Duke University, Durham, NC 27710, USA; (Q.Z.); (G.H.)
- Department of Anesthesiology, Duke University, Durham, NC 27710, USA
- Department of Pathology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
22
|
Common and discrete mechanisms underlying chronic pain and itch: peripheral and central sensitization. Pflugers Arch 2021; 473:1603-1615. [PMID: 34245379 DOI: 10.1007/s00424-021-02599-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/26/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022]
Abstract
Normally, an obvious antagonism exists between pain and itch. In normal conditions, painful stimuli suppress itch sensation, whereas pain killers often generate itch. Although pain and itch are mediated by separate pathways under normal conditions, most chemicals are not highly specific to one sensation in chronic pathologic conditions. Notably, in patients with neuropathic pain, histamine primarily induces pain rather than itch, while in patients with atopic dermatitis, bradykinin triggers itch rather than pain. Accordingly, repetitive scratching even enhances itch sensation in chronic itch conditions. Physicians often prescribe pain relievers to patients with chronic itch, suggesting common mechanisms underlying chronic pain and itch, especially peripheral and central sensitization. Rather than separating itch and pain, studies should investigate chronic itch and pain including neuropathic and inflammatory conditions. Here, we reviewed chronic sensitization leading to chronic pain and itch at both peripheral and central levels. Studies investigating the connection between pain and itch facilitate the development of new therapeutics against both chronic dysesthesias based on the underlying pathophysiology.
Collapse
|
23
|
Arinze JT, Verhamme KMC, Luik AI, Stricker B, van Meurs JBJ, Brusselle GG. The interrelatedness of chronic cough and chronic pain. Eur Respir J 2021; 57:13993003.02651-2020. [PMID: 33122337 DOI: 10.1183/13993003.02651-2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
Since chronic cough has common neurobiological mechanisms and pathophysiology with chronic pain, both clinical disorders might be interrelated. Hence, we examined the association between chronic cough and chronic pain in adult subjects in the Rotterdam Study, a large prospective population-based cohort study.Using a standardised questionnaire, chronic pain was defined as pain lasting up to 6 months and grouped into a frequency of weekly/monthly or daily pain. Chronic cough was described as daily coughing for at least 3 months duration. The longitudinal and cross-sectional associations were investigated bi-directionally.Of 7141 subjects in the study, 54% (n=3888) reported chronic pain at baseline. The co-prevalence of daily chronic pain and chronic cough was 4.4%. Chronic cough was more prevalent in subjects with daily and weekly/monthly chronic pain compared with those without chronic pain (13.8% and 10.3% versus 8.2%; p<0.001). After adjustment for potential confounders, prevalent chronic pain was significantly associated with incident chronic cough (OR 1.47, 95% CI 1.08-1.99). The association remained significant in subjects with daily chronic pain (OR 1.49, 95% CI 1.06-2.11) with a similar effect estimate, albeit non-significant in those with weekly/monthly chronic pain (OR 1.43, 95% CI 0.98-2.10). After adjustment for covariables, subjects with chronic cough had a significant risk of developing chronic pain (OR 1.63, 95% CI 1.02-2.62) compared with those without chronic cough.Chronic cough and chronic pain confer risk on each other among adult subjects, indicating that both conditions might share common risk factors and/or pathophysiologic mechanisms.
Collapse
Affiliation(s)
- Johnmary T Arinze
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.,Dept of Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Katia M C Verhamme
- Dept of Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands.,Dept of Bioanalysis, Ghent University, Ghent, Belgium
| | - Annemarie I Luik
- Dept of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bruno Stricker
- Dept of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joyce B J van Meurs
- Dept of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Guy G Brusselle
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.,Dept of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.,Dept of Respiratory Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Li HP, Wang XY, Chen C, Li JJ, Yu C, Lin LX, Yu ZE, Jin ZY, Zhu H, Xiang HC, Hu XF, Cao J, Jing XH, Li M. 100 Hz Electroacupuncture Alleviated Chronic Itch and GRPR Expression Through Activation of Kappa Opioid Receptors in Spinal Dorsal Horn. Front Neurosci 2021; 15:625471. [PMID: 33664646 PMCID: PMC7921323 DOI: 10.3389/fnins.2021.625471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/20/2021] [Indexed: 11/19/2022] Open
Abstract
Background Clinical studies have shown that electroacupuncture (EA) alleviates chronic itch. Gastrin-releasing peptide receptor (GRPR) and dynorphin (DYN) in the spinal dorsal horn positively or negatively regulate itch, respectively. However, which frequency of EA is effective on relieving chronic itch and reducing the expression of GRPR, whether DYN-A in the spinal cord is involved in the underlying mechanism of the antipruritus effect of EA remains unknown. Methods The mixture of acetone and diethyl ether (1:1) [designated as AEW (acetone/diethyl ether and water) treatment] was used to induce the dry skin model of chronic itch. EA was applied to Quchi (LI11) and Hegu (LI4). Western blot was used to detect the expression of GRPR and DYN-A. Immunofluorescence was used to detect the expression of DYN-A. Results The AEW administration induced remarkable spontaneous scratching, enhanced the expression of GRPR, and reduced the expression of DYN-A. Compared with the sham EA, 2 Hz EA, or 15 Hz EA group, 100 Hz EA was the most effective frequency for relieving chronic itch, reducing the expression of GRPR, and increasing the expression of DYN-A in the cervical dorsal horn. Furthermore, intraperitoneal injection of kappa opioid receptors (KORs) antagonist nor-Binaltorphimine dihydrochloride (nor-BNI) significantly reversed the effect of 100 Hz EA on the inhibition of both itching behavior and GRPR expression. Conclusion EA at 100 Hz is the most effective frequency that inhibits chronic itch and GRPR expression through activation of KORs in the spinal dorsal horn, which can effectively guide the clinical treatment and improve the antipruritic effect of acupuncture.
Collapse
Affiliation(s)
- Hong-Ping Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao Chen
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Jing Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Yu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Xue Lin
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zi-E Yu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Yuan Jin
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - He Zhu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Chun Xiang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Fei Hu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Hong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Li Y, Zhang W, Sun T, Liu B, Manyande A, Xu W, Xiang HB. The Role of Gut Microbiota in Chronic Itch-Evoked Novel Object Recognition-Related Cognitive Dysfunction in Mice. Front Med (Lausanne) 2021; 8:616489. [PMID: 33614682 PMCID: PMC7892771 DOI: 10.3389/fmed.2021.616489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023] Open
Abstract
The high incidence of patients with chronic itch highlights the importance of fundamental research. Recent advances in the interface of gut microbiota have shed new light into exploring this phenomenon. However, it is unknown whether gut microbiota plays a role in chronic itch in rodents with or without cognitive dysfunction. In this study, the role of gut microbiota in diphenylcyclopropenone (DCP)-evoked chronic itch was investigated in mice and hierarchical cluster analysis of novel object recognition test (ORT) results were used to classify DCP-evoked itch model in mice with or without cognitive dysfunction (CD)-like phenotype and 16S ribosomal RNA (rRNA) gene sequencing was used to compare gut bacterial composition between CD (Susceptible) and Non-CD phenotypes (Unsusceptible) in chronic itch mice. Results showed that the microbiota composition was significantly altered by DCP-evoked chronic itch and chronic itch induced novel object recognition-related CD. However, abnormal gut microbiota composition induced by chronic itch may not be correlated with novel object recognition-related CD.
Collapse
Affiliation(s)
- Yujuan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wencui Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tainning Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baowen Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, United Kingdom
| | - Weiguo Xu
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Bing Xiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Misery L. Pruriplastic Itch-A Novel Pathogenic Concept in Chronic Pruritus. Front Med (Lausanne) 2021; 7:615118. [PMID: 33553207 PMCID: PMC7854543 DOI: 10.3389/fmed.2020.615118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/22/2020] [Indexed: 11/24/2022] Open
Abstract
The International Association for the Study of Pain (IASP) defined three descriptors for pain: nociceptive pain is “pain that arises from actual or threatened damage to non neural tissue and is due to the activation of nociceptors”; neuropathic pain is “pain caused by a lesion or disease of the somatosensory nervous system”; and nociplastic pain is “pain that arises from altered nociception despite no clear evidence of actual or threatened tissue damage causing the activation of peripheral nociceptors or evidence for disease or lesion of the somatosensory system causing the pain.” Based on clinical and pathophysiological arguments, a similar definition of “pruriplastic pruritus” should be made. Pruriplastic pruritus would include psychogenic pruritus, as well as some cases of pruritus ani, vulvar pruritus, sensitive skin or other poorly understood cases of pruritus. This new descriptor of itch could serve as systematic screening for altered pruriceptive function in patients who suffer from chronic itch and it may also help in defining better tailored treatment by identifying patients who are likely to respond better to centrally rather than to peripherally targeted therapies.
Collapse
|
27
|
TLR8 in the Trigeminal Ganglion Contributes to the Maintenance of Trigeminal Neuropathic Pain in Mice. Neurosci Bull 2020; 37:550-562. [PMID: 33355900 PMCID: PMC8055805 DOI: 10.1007/s12264-020-00621-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
Trigeminal neuropathic pain (TNP) is a significant health problem but the involved mechanism has not been completely elucidated. Toll-like receptors (TLRs) have recently been demonstrated to be expressed in the dorsal root ganglion and involved in chronic pain. Here, we show that TLR8 was persistently increased in the trigeminal ganglion (TG) neurons in model of TNP induced by partial infraorbital nerve ligation (pIONL). In addition, deletion or knockdown of Tlr8 in the TG attenuated pIONL-induced mechanical allodynia, reduced the activation of ERK and p38-MAPK, and decreased the expression of pro-inflammatory cytokines in the TG. Furthermore, intra-TG injection of the TLR8 agonist VTX-2337 induced pain hypersensitivity. VTX-2337 also increased the intracellular Ca2+ concentration, induced the activation of ERK and p38, and increased the expression of pro-inflammatory cytokines in the TG. These data indicate that TLR8 contributes to the maintenance of TNP through increasing MAPK-mediated neuroinflammation. Targeting TLR8 signaling may be effective for the treatment of TNP.
Collapse
|
28
|
GRPR/Extracellular Signal-Regulated Kinase and NPRA/Extracellular Signal-Regulated Kinase Signaling Pathways Play a Critical Role in Spinal Transmission of Chronic Itch. J Invest Dermatol 2020; 141:863-873. [PMID: 33039402 DOI: 10.1016/j.jid.2020.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/26/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
Intractable or recurrent chronic itch greatly reduces the patients' QOL and impairs their daily activities. In this study, we investigated whether there are certain key signaling molecules downstream of the recently identified peptides mediating itch in the spinal cord. RNA sequencing analysis of mouse spinal cord in chronic itch models induced by squaric acid dibutylester and imiquimod showed that extracellular signal-regulated kinase (ERK) 1/2 cascade is the most significantly upregulated gene cluster in both models. In four different mouse models of chronic itch, sustained ERK phosphorylation was detected mainly in spinal neurons, and MAPK/ERK kinase inhibitors significantly inhibited chronic itch in these models. Phosphorylated ERK was observed in the interneurons expressing the receptors of different neuropeptides for itch, including gastrin-releasing peptide receptor, natriuretic peptide receptor A, neuromedin B receptor, and sst2A. Blocking gastrin-releasing peptide receptor and natriuretic peptide receptor A by genetic approaches or toxins in mice significantly attenuated or ablated spinal phosphorylated ERK. When human embryonic kidney 293T cells transfected with these receptors were exposed to their respective agonists, ERK was the most significantly activated intracellular signaling molecule. Together, our work showed that phosphorylated ERK is a unique marker for itch signal transmission in the spinal cord and an attractive target for the treatment of chronic itch.
Collapse
|
29
|
Meeuwis SH, van Middendorp H, Pacheco-Lopez G, Ninaber MK, Lavrijsen APM, van der Wee N, Veldhuijzen DS, Evers AWM. Antipruritic Placebo Effects by Conditioning H1-antihistamine. Psychosom Med 2020; 81:841-850. [PMID: 31490841 PMCID: PMC6844655 DOI: 10.1097/psy.0000000000000743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/15/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Allergic rhinitis symptoms can be reduced by behaviorally conditioning antihistamine. It is unclear whether these findings extend to histamine-induced itch or work when participants are informed about the conditioning procedure (open-label conditioning). The current study aims to investigate the efficacy of (open-label) antipruritic behavioral conditioning for histamine-induced itch. METHODS Healthy participants (n = 92; 84% female) were randomized to I) an open-label conditioned, II) closed-label conditioned, III) conditioned-not-evoked control, or IV) nonconditioned control group. A two-phase conditioning paradigm was used. During acquisition, a conditioned stimulus (CS; distinctively tasting beverage) was repeatedly paired with the H1-antihistamine levocetirizine (groups I-III). During evocation, the CS was paired with placebo (I, II), or instead of the CS, water was paired with placebo (III). The nonconditioned control group (IV) received CS with placebo in both phases. Itch after histamine iontophoresis and physiological data (i.e., spirometry, heart rate, skin conductance) were assessed. Combined conditioned and combined control groups were first compared, and analyses were repeated for separate groups. RESULTS Marginally lower itch was reported in the combined conditioned compared with the control groups (F(1,88) = 2.10, p = .076, ηpartial = 0.02); no differences between separate groups were found. No effects on physiological data were found, except for heart rate, which reduced significantly and consistently for control groups, and less consistently for conditioned groups (group by time interaction: F(7,80) = 2.35, p = .031, ηpartial = 0.17). CONCLUSION Limited support was found for the efficacy of antipruritic behavioral conditioning, regardless of whether participants were informed about the conditioning procedure. The application of open-label conditioning in patient populations should be further researched. TRIAL REGISTRATION www.trialregister.nl; ID NTR5544.
Collapse
Affiliation(s)
- Stefanie H Meeuwis
- From the Health, Medical and Neuropsychology Unit, Institute Psychology, Faculty of Social and Behavioural Sciences, (Meeuwis, van Middendorp, Pacheco-Lopez, Veldhuijzen, Evers), Leiden University; Leiden Institute for Brain and Cognition (Meeuwis, van Middendorp, Veldhuijzen, Evers), Leiden University Medical Center, Leiden, The Netherlands; Health Sciences Department, Campus Lerma (Pacheco-Lopez), Metropolitan Autonomous University, Lerma, Edo Mex, Mexico; and Departments of Pulmonology (Ninaber), Dermatology (Lavrijsen), and of Psychiatry (van der Wee, Evers), Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Spanevello A, Beghé B, Visca D, Fabbri LM, Papi A. Chronic cough in adults. Eur J Intern Med 2020; 78:8-16. [PMID: 32434660 DOI: 10.1016/j.ejim.2020.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022]
Abstract
Cough, a defense mechanism for clearing the airways of secretions, exudate, or foreign bodies, may become a troublesome symptom. Chronic cough, one of the most frequent symptoms requiring medical attention, is often not due to identifiable causes in adults. Chronic productive cough defines chronic bronchitis, and thus is present in 100% of these patients, and frequently in patients with bronchiectasis, cystic fibrosis, and chronic infectious respiratory diseases. However, chronic cough is most frequently dry. Thus, chronic cough in adults is a difficult syndrome requiring multidisciplinary approaches, particularly to diagnose and treat the most frequent identifiable causes, but also to decide which patients may benefit by treating the central cough hypersensitivity by neuromodulatory therapy and/or non-pharmacologic treatment (speech pathology therapy). Recent guidelines provide algorithms for diagnosis and assessment of cough severity; particularly chronic cough in adults. After excluding life-threatening diseases, chronic cough due to identifiable causes (triggers and/or diseases), particularly smoking and/or the most frequent diseases (asthma, chronic bronchitis, chronic obstructive pulmonary disease, eosinophilic bronchitis, and adverse reactions to drugs [angiotensin-converting enzyme inhibitors and sitagliptin]) should be treated by avoiding triggers and/or according to guidelines for each underlying disease. In patients with troublesome chronic cough due to unknown causes or persisting even after adequate avoidance of triggers, and/or treatment of the underlying disease(s), a symptomatic approach with neuromodulators and/or speech pathology therapy should be considered. Additional novel promising neuromodulatory agents in clinical development (e.g., P2X3 inhibitors) will hopefully become available in the near future.
Collapse
Affiliation(s)
- Antonio Spanevello
- Istituti Clinici Scientifici Maugeri IRCCS, Respiratory Rehabilitation of the Institute of Tradate, Tradate, Varese, Italy; Department of Medicine and Surgery, Respiratory Diseases, University of Insubria, Varese-Como, Italy
| | - Bianca Beghé
- Department of Medicine, Section of Respiratory Diseases, University of Modena and Reggio Emilia, Modena, Italy
| | - Dina Visca
- Istituti Clinici Scientifici Maugeri IRCCS, Respiratory Rehabilitation of the Institute of Tradate, Tradate, Varese, Italy; Department of Medicine and Surgery, Respiratory Diseases, University of Insubria, Varese-Como, Italy
| | - Leonardo M Fabbri
- Azienda Ospedaliera Universitaria, Department of Medical Sciences, Section of Cardiorespiratory and Internal Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Cona Ferrara, Italy.
| | - Alberto Papi
- Azienda Ospedaliera Universitaria, Department of Medical Sciences, Section of Cardiorespiratory and Internal Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Cona Ferrara, Italy
| |
Collapse
|
31
|
Jiang BC, Liu T, Gao YJ. Chemokines in chronic pain: cellular and molecular mechanisms and therapeutic potential. Pharmacol Ther 2020; 212:107581. [DOI: 10.1016/j.pharmthera.2020.107581] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
|
32
|
Ramon M, Yakov S, Kuperman P, Granot M. The role of itch and pain modulation in the prediction of phototherapy outcomes: a prospective cohort study. J DERMATOL TREAT 2020; 33:1037-1041. [PMID: 32700633 DOI: 10.1080/09546634.2020.1800572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Ability to predict which chronic itch patients will benefit from particular treatments is a challenge. Common features in itch and pain in respect to sensory elicitation, and mechanisms of processing including sensitization and inhibition at the peripheral and central levels, may serve to understand variability in treatment outcomes. As such this study aimed to explore whether phototherapy outcomes can be predicted by psychophysical parameters of pain and itch modulatory processing. METHODS Prospective cohort study on chronic-itch patients (n = 44) assessed before 20 treatments of NB UVB. Level of itch and pain reduction following painful stimulation (reflecting the 'pain inhibits pain' phenomenon) used to assess the top-down modulation response efficacy. Magnitude of Conditioned Pain Modulation (CPM) for itch (CPM-itch) and for pain (CPM-pain) (reflecting inhibition) and magnitude of temporal summation (TS) of pain (reflecting ascending facilitation pathways) assessed to predict treatment effect. RESULTS Higher improvement of itch symptoms following phototherapy was correlated with more efficient CPM-itch (r = 0.62, p < .001), but not magnitude of CPM-pain or level of temporal summation. DISCUSSION Findings emphasize the role of descending inhibition pathways in determining phototherapy efficacy in chronic itch patients. Such an evaluation-based approach may contribute to better patient selection for phototherapy improving patients' disease outcomes.
Collapse
Affiliation(s)
- Michal Ramon
- Department of Dermatology, Rambam Health Care Campus, Haifa, Israel
| | - Sarit Yakov
- Department of Dermatology, Rambam Health Care Campus, Haifa, Israel
| | - Pora Kuperman
- The Faculty of Social Welfare and Health Studies, University of Haifa, Haifa, Israel
| | - Michal Granot
- The Faculty of Social Welfare and Health Studies, University of Haifa, Haifa, Israel.,The Laboratory of Clinical Neurophysiology, the Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
33
|
Driessen AK, Devlin AC, Lundy FT, Martin SL, Sergeant GP, Mazzone SB, McGarvey LP. Perspectives on neuroinflammation contributing to chronic cough. Eur Respir J 2020; 56:13993003.00758-2020. [DOI: 10.1183/13993003.00758-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Chronic cough can be a troublesome clinical problem. Current thinking is that increased activity and/or enhanced sensitivity of the peripheral and central neural pathways mediates chronic cough via processes similar to those associated with the development of chronic pain. While inflammation is widely thought to be involved in the development of chronic cough, the true mechanisms causing altered neural activity and sensitisation remain largely unknown. In this back-to-basics perspective article we explore evidence that inflammation in chronic cough may, at least in part, involve neuroinflammation orchestrated by glial cells of the nervous system. We summarise the extensive evidence for the role of both peripheral and central glial cells in chronic pain, and hypothesise that the commonalities between pain and cough pathogenesis and clinical presentation warrant investigations into the neuroinflammatory mechanisms that contribute to chronic cough. We open the debate that glial cells may represent an underappreciated therapeutic target for controlling troublesome cough in disease.
Collapse
|
34
|
Toll-like receptor 7 contributes to neuropathic pain by activating NF-κB in primary sensory neurons. Brain Behav Immun 2020; 87:840-851. [PMID: 32205121 PMCID: PMC7316623 DOI: 10.1016/j.bbi.2020.03.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 01/01/2023] Open
Abstract
Toll like receptor 7 (TLR7) is expressed in neurons of the dorsal root ganglion (DRG), but whether it contributes to neuropathic pain is elusive. We found that peripheral nerve injury caused by ligation of the fourth lumbar (L4) spinal nerve (SNL) or chronic constriction injury of sciatic nerve led to a significant increase in the expression of TLR7 at mRNA and protein levels in mouse injured DRG. Blocking this increase through microinjection of the adeno-associated virus (AAV) 5 expressing TLR7 shRNA into the ipsilateral L4 DRG alleviated the SNL-induced mechanical, thermal and cold pain hypersensitivities in both male and female mice. This microinjection also attenuated the SNL-induced increases in the levels of phosphorylated extracellular signal-regulated kinase ½ (p-ERK1/2) and glial fibrillary acidic protein (GFAP) in L4 dorsal horn on the ipsilateral side during both development and maintenance periods. Conversely, mimicking this increase through microinjection of AAV5 expressing full-length TLR7 into unilateral L3/4 DRGs led to elevations in the amounts of p-ERK1/2 and GFAP in the dorsal horn, augmented responses to mechanical, thermal and cold stimuli, and induced the spontaneous pain on the ipsilateral side in the absence of SNL. Mechanistically, the increased TLR7 activated the NF-κB signaling pathway through promoting the translocation of p65 into the nucleus and phosphorylation of p65 in the nucleus from the injured DRG neurons. Our findings suggest that DRG TLR7 contributes to neuropathic pain by activating NF-κB in primary sensory neurons. TLR7 may be a potential target for therapeutic treatment of this disorder.
Collapse
|
35
|
Sawicki CM, Humeidan ML, Sheridan JF. Neuroimmune Interactions in Pain and Stress: An Interdisciplinary Approach. Neuroscientist 2020; 27:113-128. [PMID: 32441204 DOI: 10.1177/1073858420914747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mounting evidence indicates that disruptions in bidirectional communication pathways between the central nervous system (CNS) and peripheral immune system underlie the etiology of pathologic pain conditions. The purpose of this review is to focus on the cross-talk between these two systems in mediating nociceptive circuitry under various conditions, including nervous system disorders. Elevated and prolonged proinflammatory signaling in the CNS is argued to play a role in psychiatric illnesses and chronic pain states. Here we review current research on the dynamic interplay between altered nociceptive mechanisms, both peripheral and central, and physiological and behavioral changes associated with CNS disorders.
Collapse
Affiliation(s)
- Caroline M Sawicki
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Michelle L Humeidan
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - John F Sheridan
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA.,Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.,Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
36
|
Yosipovitch G, Berger T, Fassett MS. Neuroimmune interactions in chronic itch of atopic dermatitis. J Eur Acad Dermatol Venereol 2019; 34:239-250. [PMID: 31566796 PMCID: PMC7027518 DOI: 10.1111/jdv.15973] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/11/2019] [Indexed: 12/30/2022]
Abstract
Itch is a defining symptom of atopic dermatitis. Crosstalk between keratinocytes, the immune system and non‐histaminergic sensory nerves is responsible for the pathophysiology of chronic itch in atopic dermatitis. An expanding understanding of the contribution of the nervous system and its interaction with immune pathways in atopic itch are helping to identify new therapeutic strategies.
Collapse
Affiliation(s)
- G Yosipovitch
- Department of Dermatology and Cutaneous Surgery and Miami Itch Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - T Berger
- Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - M S Fassett
- Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
37
|
Anzelc M, Burkhart CG. Pain and Pruritus: a study of their similarities and differences. Int J Dermatol 2019; 59:159-164. [PMID: 31605395 DOI: 10.1111/ijd.14678] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 11/29/2022]
Abstract
Pruritus is one of the most common dermatologic complaints and, as the most common dermatologic symptom, is a major contributor to frequent dermatology visits. Chronic pruritus mirrors another major medical condition faced by millions of Americans each year - chronic pain. In older literature, pain and pruritus were thought to have been conveyed by the same C fiber, and the proportion contributing to pruritus was just a small subset of this general fiber. Overall, pain and pruritus share many integral similarities. Although these sensations both initiate the body's awareness to injury, pain and itch may have evolved for sensing different damages such as a burrowing parasite or a noxious stimulus, respectively. This seems to have been validated through analyses of their pathophysiology, acute and chronic conditions, and treatment modalities. However, their symptoms and intrinsic mechanisms vary considerably. It is important to view pruritus in more of an overall, whole body experience, rather than just the sensory aspect. Future studies should investigate the psychological treatment of chronic pruritus, considering the immense similarities with its chronic pain counterpart.
Collapse
Affiliation(s)
- Madison Anzelc
- Department of Medicine, Division of Dermatology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Craig G Burkhart
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.,Department of Medicine, Ohio University of Osteopathic Medicine, Athens, OH, USA
| |
Collapse
|
38
|
Management of Cough. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:1724-1729. [DOI: 10.1016/j.jaip.2019.03.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/09/2023]
|
39
|
Liu BW, Li ZX, He ZG, Wang Q, Liu C, Zhang XW, Yang H, Xiang HB. Altered expression of itch‑related mediators in the lower cervical spinal cord in mouse models of two types of chronic itch. Int J Mol Med 2019; 44:835-846. [PMID: 31257468 PMCID: PMC6657970 DOI: 10.3892/ijmm.2019.4253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023] Open
Abstract
In this study, we focused on several itch-related molecules and receptors in the spinal cord with the goal of clarifying the specific mediators that regulate itch sensation. We investigated the involvement of serotonin receptors, opioid receptors, glia cell markers and chemokines (ligands and receptors) in models of acetone/ether/water (AEW)- and diphenylcyclopropenone (DCP)-induced chronic itch. Using reverse transcription-quantitative polymerase chain reaction, we examined the expression profiles of these mediators in the lower cervical spinal cord (C5-8) of two models of chronic itch. We found that the gene expression levels of opioid receptor mu 1 (Oprm1), 5-hydroxytryptamine receptor 1A (Htr1a) and 5-hydroxytryptamine receptor 6 (Htr6) were upregulated. Among the chemokines, the expression levels of C-C motif chemokine ligand (Ccl)21, Cxcl3 and Cxcl16 and their receptors, Ccr7, Cxcr2 and Cxcr6, were simultaneously upregulated in the spinal cords of the mice in both models of chronic itch. By contrast, the expression levels of Ccl2, Ccl3, Ccl4 and Ccl22 were downregulated. These findings indicate that multiple mediators, such as chemokines in the spinal cord, are altered and may be central candidates in further research into the mechanisms involved in the development of chronic itch.
Collapse
Affiliation(s)
- Bao-Wen Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Gang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qian Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Cheng Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xian-Wei Zhang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hui Yang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
40
|
Rinaldi G. The Itch-Scratch Cycle: A Review of the Mechanisms. Dermatol Pract Concept 2019; 9:90-97. [PMID: 31106010 PMCID: PMC6502296 DOI: 10.5826/dpc.0902a03] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Despite being one of the most common presenting dermatological symptoms, itching continues to perplex health care professionals because it is notoriously difficult to control. OBJECTIVE This review gathers evidence to answer the 2-part question, "Why do we itch and scratch?" by exploring the history of itchy disease, the neurobiology of itch, and the 4 different clinical origins of itch: pruritogenic, neurological, neuropathic, and psychological. RESULTS The automated scratching reflex and its biological and psychological reasons for existence are complicated and poorly understood. Currently, there are a myriad of treatments available for individuals suffering from this condition; however, many remain symptomatic. CONCLUSIONS The itch-scratch cycle is a complex pain-like sensation with a reflex-like response. In the future, continued exploration into the mechanisms behind itch and scratch may open the doors for new therapeutic interventions.
Collapse
|
41
|
Martinez GQ, Gordon SE. Multimerization of Homo sapiens TRPA1 ion channel cytoplasmic domains. PLoS One 2019; 14:e0207835. [PMID: 30794546 PMCID: PMC6386368 DOI: 10.1371/journal.pone.0207835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/23/2019] [Indexed: 11/19/2022] Open
Abstract
The transient receptor potential Ankyrin-1 (TRPA1) ion channel is modulated by myriad noxious stimuli that interact with multiple regions of the channel, including cysteine-reactive natural extracts from onion and garlic which modify residues in the cytoplasmic domains. The way in which TRPA1 cytoplasmic domain modification is coupled to opening of the ion-conducting pore has yet to be elucidated. The cryo-EM structure of TRPA1 revealed a tetrameric C-terminal coiled-coil surrounded by N-terminal ankyrin repeat domains (ARDs), an architecture shared with the canonical transient receptor potential (TRPC) ion channel family. Similarly, structures of the TRP melastatin (TRPM) ion channel family also showed a C-terminal coiled-coil surrounded by N-terminal cytoplasmic domains. This conserved architecture may indicate a common gating mechanism by which modification of cytoplasmic domains can transduce conformational changes to open the ion-conducting pore. We developed an in vitro system in which N-terminal ARDs and C-terminal coiled-coil domains can be expressed in bacteria and maintain the ability to interact. We tested three gating regulators: temperature; the polyphosphate compound IP6; and the covalent modifier allyl isothiocyanate to determine whether they alter N- and C-terminal interactions. We found that none of the modifiers tested abolished ARD-coiled-coil interactions, though there was a significant reduction at 37˚C. We found that coiled-coils tetramerize in a concentration dependent manner, with monomers and trimers observed at lower concentrations. Our system provides a method for examining the mechanism of oligomerization of TRPA1 cytoplasmic domains as well as a system to study the transmission of conformational changes resulting from covalent modification.
Collapse
Affiliation(s)
- Gilbert Q. Martinez
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Sharona E. Gordon
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
42
|
Woller SA, Ocheltree C, Wong SY, Bui A, Fujita Y, Gonçalves Dos Santos G, Yaksh TL, Corr M. Neuraxial TNF and IFN-beta co-modulate persistent allodynia in arthritic mice. Brain Behav Immun 2019; 76:151-158. [PMID: 30465880 PMCID: PMC6396982 DOI: 10.1016/j.bbi.2018.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 11/03/2018] [Accepted: 11/18/2018] [Indexed: 02/06/2023] Open
Abstract
In rheumatoid arthritis, joint pain can persist despite resolution of swelling. Similarly, in the murine K/BxN serum transfer model, a persistent tactile allodynia is observed after the resolution of joint inflammation (post-inflammatory pain) in male mice. Here, we found female wild type (WT) mice show inflammatory, but reduced post-inflammatory tactile allodynia. The transition to the post-inflammatory phenotype is dependent on TLR4 signaling. At the spinal level, we found differences in TNF and IFNβ mRNA expression in WT and TLR4 deficient males. In wild type male and female mice, there is differential temporal spinal expression of TNF and IFNβ. In WT males, blockade of TNF or administration of IFNβ was insufficient to affect the persistent allodynia. However, co-administration of intrathecal (IT) IFNβ and anti-TNF antibodies in male WT mice permanently reversed tactile allodynia. IT IFNβ treatment induces expression of anti-inflammatory proteins, contributing to the beneficial effect. Together, these experiments illustrated differences in the transition to chronic tactile allodynia in male and female animals and the complexities of effective pharmacologic interventions.
Collapse
Affiliation(s)
- Sarah A Woller
- Departments of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Cody Ocheltree
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, USA
| | - Stephanie Y Wong
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Bui
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, USA
| | - Yuya Fujita
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, USA
| | | | - Tony L Yaksh
- Departments of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Maripat Corr
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
43
|
Mack MR, Kim BS. The Itch–Scratch Cycle: A Neuroimmune Perspective. Trends Immunol 2018; 39:980-991. [DOI: 10.1016/j.it.2018.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
|
44
|
Zhang ZJ, Guo JS, Li SS, Wu XB, Cao DL, Jiang BC, Jing PB, Bai XQ, Li CH, Wu ZH, Lu Y, Gao YJ. TLR8 and its endogenous ligand miR-21 contribute to neuropathic pain in murine DRG. J Exp Med 2018; 215:3019-3037. [PMID: 30455267 PMCID: PMC6279408 DOI: 10.1084/jem.20180800] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/10/2018] [Accepted: 10/17/2018] [Indexed: 01/20/2023] Open
Abstract
TLRs are known to be essential for innate and adaptive immunity. Zhang et al. show the involvement of TLR8 and its endogenous ligand miR-21 in neuropathic pain via inducing ERK-dependent proinflammatory mediators’ production and neuronal hyperexcitability in the DRG. Toll-like receptors (TLRs) are nucleic acid–sensing receptors and have been implicated in mediating pain and itch. Here we report that Tlr8−/− mice show normal itch behaviors, but have defects in neuropathic pain induced by spinal nerve ligation (SNL) in mice. SNL increased TLR8 expression in small-diameter IB4+ DRG neurons. Inhibition of TLR8 in the DRG attenuated SNL-induced pain hypersensitivity. Conversely, intrathecal or intradermal injection of TLR8 agonist, VTX-2337, induced TLR8-dependent pain hypersensitivity. Mechanistically, TLR8, localizing in the endosomes and lysosomes, mediated ERK activation, inflammatory mediators’ production, and neuronal hyperexcitability after SNL. Notably, miR-21 was increased in DRG neurons after SNL. Intrathecal injection of miR-21 showed the similar effects as VTX-2337 and inhibition of miR-21 in the DRG attenuated neuropathic pain. The present study reveals a previously unknown role of TLR8 in the maintenance of neuropathic pain, suggesting that miR-21–TLR8 signaling may be potential new targets for drug development against this type of chronic pain.
Collapse
Affiliation(s)
- Zhi-Jun Zhang
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China.,Department of Human Anatomy, School of Medicine, Nantong University, Jiangsu, China
| | - Jian-Shuang Guo
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China
| | - Si-Si Li
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China
| | - Xiao-Bo Wu
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China
| | - De-Li Cao
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China
| | - Bao-Chun Jiang
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China
| | - Peng-Bo Jing
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China
| | - Xue-Qiang Bai
- Department of Human Anatomy, School of Medicine, Nantong University, Jiangsu, China
| | - Chun-Hua Li
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China
| | - Zi-Han Wu
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China.,Department of Human Anatomy, School of Medicine, Nantong University, Jiangsu, China
| | - Ying Lu
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China.,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Jiangsu, China
| | - Yong-Jing Gao
- Pain Research Laboratory, Institute of Nautical Medicine, Nantong University, Jiangsu, China .,Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu, China
| |
Collapse
|
45
|
McGovern AE, Short KR, Kywe Moe AA, Mazzone SB. Translational review: Neuroimmune mechanisms in cough and emerging therapeutic targets. J Allergy Clin Immunol 2018; 142:1392-1402. [DOI: 10.1016/j.jaci.2018.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022]
|
46
|
Huang K, Hu DD, Bai D, Wu ZY, Chen YY, Zhang YJ, Lv X, Wang QX, Zhang L. Persistent Extracellular Signal-Regulated Kinase Activation by the Histamine H4 Receptor in Spinal Neurons Underlies Chronic Itch. J Invest Dermatol 2018; 138:1843-1850. [DOI: 10.1016/j.jid.2018.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 01/17/2023]
|
47
|
Affiliation(s)
- Michael S Benninger
- Chairman, Head and Neck Institute, The Cleveland Clinic, Cleveland, United States.
| | | |
Collapse
|
48
|
Bowen AJ, Nowacki AS, Contrera K, Trask D, Kaltenbach J, Milstein CF, Adessa M, Benninger MS, Taliercio R, Bryson PC. Short- and Long-term Effects of Neuromodulators for Unexplained Chronic Cough. Otolaryngol Head Neck Surg 2018; 159:508-515. [DOI: 10.1177/0194599818768517] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objective To evaluate the short- and long-term effects of tricyclic antidepressants (TCAs) and gabapentin in the treatment of unexplained chronic cough (UCC). Study Design Prospective cohort. Setting Tertiary care hospital. Subjects and Methods Patients seen between July 2016 and March 2017 were included following a formal workup and clinical evaluation indicative of UCC. Patients were placed on either a TCA (amitriptyline or nortriptyline) or gabapentin. Leicester Cough Questionnaire (LCQ) and percentage improvement scores were obtained prior to treatment initiation and at 2 and 6 months of neuromodulator treatment. A linear mixed model assessed the change in LCQ score between the 2 treatment time points and baseline scores. Results Twenty-eight patients completed a total of 37 neuromodulator trials. Gabapentin demonstrated statistically significant improvement in LCQ scores at 2 months (2.48 points, P≤ .01) and 6 months (5.40 points, P = .01) of treatment as compared with baseline. Patients taking TCAs demonstrated statistically significant improvement of LCQ scores at 2 months of treatment (3.46 points, P≤ .01). However, the majority of patients discontinued treatment, most commonly secondary to the development of tachyphylaxis after 2 months, precluding analysis at 6 months. Conclusion While both neuromodulator classes demonstrated short-term benefit, the majority of patients discontinue treatment prior to 6 months, with patients taking TCAs discontinuing more frequently than patients on gabapentin. Future investigations are warranted evaluating tachyphylaxis and the utility of dual treatment therapies designed to address peripheral and central sensory pathways involved in UCC.
Collapse
Affiliation(s)
- Andrew Jay Bowen
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Amy S. Nowacki
- Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Kevin Contrera
- Cleveland Clinic Head and Neck Institute, Cleveland, Ohio, USA
| | - Douglas Trask
- Cleveland Clinic Head and Neck Institute, Cleveland, Ohio, USA
| | - James Kaltenbach
- Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | | | - Michelle Adessa
- Cleveland Clinic Head and Neck Institute, Cleveland, Ohio, USA
| | | | | | - Paul C. Bryson
- Cleveland Clinic Head and Neck Institute, Cleveland, Ohio, USA
| |
Collapse
|
49
|
Jung WJ, Lee SY, Choi SI, Kim BK, Lee EJ, In KH, Lee MG. Toll-like receptor expression in pulmonary sensory neurons in the bleomycin-induced fibrosis model. PLoS One 2018. [PMID: 29518161 PMCID: PMC5843166 DOI: 10.1371/journal.pone.0193117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Airway sensory nerves are known to express several receptors and channels that are activated by exogenous and endogenous mediators that cause coughing. Toll-like receptor (TLR) s are expressed in nociceptive neurons and play an important role in neuroinflammation. However, there have been very few studies of TLR expression in lung-derived sensory neurons or their relevance to respiratory symptoms such as cough. We used the bleomycin-induced pulmonary fibrosis model to investigate the change in TLR expression in pulmonary neurons and the association of TLRs with transient receptor potential (TRP) channels in pulmonary neurons. After 2 weeks of bleomycin or saline administration, pulmonary fibrosis changes were confirmed using tissue staining and the SIRCOL collagen assay. TLRs (TLR 1-9) and TRP channel expression was analyzed using single cell reverse transcription polymerase chain reaction (RT-PCR) in isolated sensory neurons from the nodose/jugular ganglion and the dorsal root ganglion (DRG). Pulmonary sensory neurons expressed TLR2 and TLR5. In the bleomycin-induced pulmonary fibrosis model, TLR2 expression was detected in 29.5% (18/61) and 26.9% (21/78) of pulmonary nodose/jugular neurons and DRG neurons, respectively. TLR5 was also detected in 55.7% (34/61) and 42.3% (33/78) of pulmonary nodose/jugular neurons and DRG neurons, respectively, in the bleomycin-induced pulmonary fibrosis model. TLR5 was expressed in 63.4% of TRPV1 positive cells and 43.4% of TRPM8 positive cells. In conclusion, TLR2 and TLR5 expression is enhanced, especially in vagal neurons, in the bleomycin-induced fibrosis model group when compared to the saline treated control group. Co-expression of TLR5 and TRP channels in pulmonary sensory neurons was also observed. This work sheds new light on the role of TLRs in the control and manifestation of clinical symptoms, such as cough. To understand the role of TLRs in pulmonary sensory nerves, further study will be required.
Collapse
Affiliation(s)
- Won Jai Jung
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sang Yeub Lee
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- * E-mail:
| | - Sue In Choi
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Byung-Keun Kim
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Eun Joo Lee
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kwang Ho In
- Division of Pulmonology, Allergy and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Min-Goo Lee
- Department of Physiology, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
50
|
Saffari TM, Schüttenhelm BN, van Neck JW, Holstege JC. Nerve reinnervation and itch behavior in a rat burn wound model. Wound Repair Regen 2018; 26:16-26. [PMID: 29453855 DOI: 10.1111/wrr.12620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/05/2018] [Indexed: 11/28/2022]
Abstract
In this study, we investigated whether postburn itch in rats, after a full thickness burn, is correlated to the nervous reinnervation of the burn wound area. For this purpose, we determined scratching duration (expressed as second/hour) at 24 hours, 2, 4, 8, and 12 weeks postburn and combined this with immunohistochemistry for protein gene product 9.5 (PGP9.5) to identify all nerve fibers, calcitonin gene related peptide (CGRP) to identify peptidergic fibers, tyrosine hydroxylase (TH) for sympathetic fibers, and growth-associated protein 43 (GAP-43) for regrowing fibers. We found a modest, but highly significant, increase in scratching duration of all burn wound rats from 3 to 12 weeks postburn (maximally 63 ± 9.5 second/hour compared to sham 3.1 ± 1.4 second/hour at 9 weeks). At 24 hours postburn, all nerve fibers had disappeared from the burn area. Around 4 weeks postburn PGP 9.5- and CGRP-immunoreactive nerve fibers returned to control levels. TH- and GAP-43-IR nerve fibers, which we found to be almost completely colocalized, did not regrow. No correlation was found between scratching duration and nervous reinnervation of the skin. The present results suggest that in rat, like in human, burn wound healing will induce increased scratching, which is not correlated to the appearance of nervous reinnervation.
Collapse
Affiliation(s)
- Tiam M Saffari
- Department of Neuroscience, Reconstructive and Hand Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Barthold N Schüttenhelm
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Johan W van Neck
- Department of Plastic, Reconstructive and Hand Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Jan C Holstege
- Department of Neuroscience, Reconstructive and Hand Surgery, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|