1
|
Barkat MQ, Manzoor M, Xu C, Hussain N, Salawi A, Yang H, Hussain M. Severe asthma beyond bronchodilators: Emerging therapeutic approaches. Int Immunopharmacol 2025; 152:114360. [PMID: 40049087 DOI: 10.1016/j.intimp.2025.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/24/2025]
Abstract
Asthma is characterized by reversible airway inflammation, obstruction, and structural remodeling, which lead to the eosinophils and lymphocytes accumulation at inflammation sites and the release of inflammatory cells, like mast cells and dendritic cells, from lungs' epithelial and smooth muscle cells that trigger the activation and release of cytokines and chemokines, attracting more cells and contributing to asthma development. Available pharmacological interventions, like bronchodilators and anti-inflammatory agents, are considered generally safe and effective to treat asthma, but many affected individuals with severe asthma still struggle with symptom control. This review highlights recent innovative therapies, such as chemoattractant receptor-homologous molecule expressed on Th2 cell (CRTH2) antagonists, S-nitrosoglutathione reductase (GSNOR) and phosphodiesterase (PDE) inhibitors, and other novel biological agents, which offer potential new strategies for managing severe asthma and may alter the disease's course. Kew words. Inflammation; CRTH2; GSNOR; PDE; Interleukins; Biological agents.
Collapse
Affiliation(s)
| | - Majid Manzoor
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Chengyun Xu
- Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou City 310015, China
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates; AAU Health and Biomedical Research center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Musaddique Hussain
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
2
|
Bassi M, Puviani V, Santoro D, Biondaro S, Emirova A, Govoni M. Pharmacokinetics and absorption, distribution, metabolism and excretion profiling of tanimilast following an intravenous 14C-microtracer coadministered with an inhaled dose in healthy male individuals. Drug Metab Dispos 2025; 53:100009. [PMID: 39884821 DOI: 10.1124/dmd.124.001895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 07/31/2024] [Accepted: 10/18/2024] [Indexed: 01/22/2025] Open
Abstract
Tanimilast is an inhaled phosphodiesterase-4 inhibitor currently in phase III clinical development for treating chronic obstructive pulmonary disease and asthma. This trial aimed to characterize the pharmacokinetics, mass balance, and metabolite profiling of tanimilast. Eight healthy male volunteers received a single dose of nonradiolabeled tanimilast via powder inhaler (Chiesi NEXThaler [3200 μg]), followed by a concomitant intravenous infusion of a microtracer ([14C]-tanimilast: 18.5 μg and 500 nCi). Plasma, whole blood, urine, and feces samples were collected up to 240 hours after dose to quantify nonradiolabeled tanimilast, [14C]-tanimilast, and total-[14C]. The inhaled absolute bioavailability of tanimilast was found to be approximately 50%. Following intravenous administration of [14C]-tanimilast, plasma clearance was 22 L/h, the steady-state volume of distribution was 201 L, and the half-life was shorter compared to inhaled administration (14 vs 39 hours, respectively), suggesting that plasma elimination is limited by the absorption rate from the lungs. Seventy-nine percent (71% in feces; 8% in urine) of the intravenous dose was recovered in excreta as total-[14C]. [14C]-tanimilast was the major radioactive compound in plasma, whereas no recovery was observed in urine and only 0.3% was recovered in feces, indicating predominant elimination through metabolic route. Importantly, as far as no metabolites accounting for more than 10% of the circulating drug-related exposure in plasma or the administered dose in excreta were detected, no further qualification is required according to regulatory guidelines. This study design successfully characterized the absorption, distribution, and elimination of tanimilast, providing key pharmacokinetic parameters to support its clinical development and regulatory application. SIGNIFICANCE STATEMENT: This trial investigates pharmacokinetic and absorption, distribution, metabolism and excretion profile of tanimilast, an inhaled phosphodiesterase-4 inhibitor for chronic obstructive pulmonary disease and asthma. Eight male volunteers received a dose of nonradiolabeled tanimilast via Chiesi NEXThaler and a microtracer intravenous dose. Results show pivotal pharmacokinetic results for the characterization of tanimilast, excretion route and quantification of significant metabolites, facilitating streamlined clinical development and regulatory approval.
Collapse
Affiliation(s)
- Michele Bassi
- Global Clinical Development, Chiesi Farmaceutici SpA, Parma, Italy.
| | - Veronica Puviani
- Global Clinical Development, Chiesi Farmaceutici SpA, Parma, Italy
| | - Debora Santoro
- Global Clinical Development, Chiesi Farmaceutici SpA, Parma, Italy
| | - Sonia Biondaro
- Global Clinical Development, Chiesi Farmaceutici SpA, Parma, Italy
| | - Aida Emirova
- Global Clinical Development, Chiesi S.A.S., Bois Colombes, France
| | - Mirco Govoni
- Global Clinical Development, Chiesi Farmaceutici SpA, Parma, Italy
| |
Collapse
|
3
|
Saxena D, Murugesan N, Evbayiro UD, Ngassa MK, Adrish M. Inhalational Drug Devices: Revisiting the Linchpin of Asthma Management. J Pers Med 2024; 14:867. [PMID: 39202058 PMCID: PMC11355058 DOI: 10.3390/jpm14080867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Asthma remains a prevalent condition among all age groups globally. First-line treatment requires the delivery of medications into the distal respiratory tract via inhalers. Using appropriate inhaler techniques is a significant challenge in achieving disease control. A variety of inhalers are available for treating asthma, and selecting the appropriate inhaler type for any given patient is crucial to achieving and maintaining symptomatic control. This review will discuss the anatomy and physiology behind drug delivery via inhalers, the types of inhalers currently available for use, nebulizers, and future directions in the delivery of inhaled medications for asthma.
Collapse
Affiliation(s)
- Damini Saxena
- Baylor College of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, 1 Baylor Plz, Houston, TX 77030, USA; (N.M.); (M.A.)
| | - Neveda Murugesan
- Baylor College of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, 1 Baylor Plz, Houston, TX 77030, USA; (N.M.); (M.A.)
| | - Uyioghosa D. Evbayiro
- Baylor College of Medicine, Section of General Internal Medicine, 1 Baylor Plz, Houston, TX 77030, USA; (U.D.E.); (M.K.N.)
| | - Marina K. Ngassa
- Baylor College of Medicine, Section of General Internal Medicine, 1 Baylor Plz, Houston, TX 77030, USA; (U.D.E.); (M.K.N.)
| | - Muhammad Adrish
- Baylor College of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, 1 Baylor Plz, Houston, TX 77030, USA; (N.M.); (M.A.)
| |
Collapse
|
4
|
Latorre RV, Calicchia M, Bigliardi M, Conti J, Kleinfelder K, Melotti P, Sorio C. Functional rescue of CFTR in rectal organoids from patients carrying R334W variant by CFTR modulators and PDE4 inhibitor Roflumilast. Respir Investig 2024; 62:455-461. [PMID: 38547757 DOI: 10.1016/j.resinv.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/27/2024] [Accepted: 03/07/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Many disease-causing variants in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene remain uncharacterized and untreated. Restoring the function of the impaired CFTR protein is the goal of personalized medicine, particularly in patients carrying rare CFTR variants. In this study, functional defects related to the rare R334W variant were evaluated after treatment with CFTR modulators or Roflumilast, a phosphodiesterase-4 inhibitor (PDE4i). METHODS Rectal organoids from subjects with R334W/2184insA and R334W/2183AA > G genotypes were used to perform the Forskolin-induced swelling (FIS) assay. Organoids were left drug-untreated or treated with modulators VX-770 (I), VX-445 (E), and VX-661 (T) mixed, and their combination (ETI). Roflumilast (R) was used alone or as a combination of I + R. RESULTS Our data show a significant increase in FIS rate following treatment with I alone. The combined use of modulators, such as ETI, did not increase further swelling than I alone, nor in protein maturation. Treatment with R shows an increase in FIS response similar to those of I, and the combination R + I significantly increases the rescue of CFTR activity. CONCLUSIONS Equivalent I and ETI treatment efficacy was observed for both genotypes. Furthermore, significant organoid swelling was observed with combined I + R used that supports the recently published data describing a potentiating effect of only I in patients carrying the variant R334W and, at the same time, corroborating the role of strategies that include PDE4 inhibitors further to potentiate the effect of I for this variant.
Collapse
Affiliation(s)
- Roberta Valeria Latorre
- Department of Medicine, University of Verona, Division of General Pathology, Cystic Fibrosis Laboratory D. Lissandrini, Strada le Grazie 8, 37134, Verona, Italy
| | - Martina Calicchia
- Department of Medicine, University of Verona, Division of General Pathology, Cystic Fibrosis Laboratory D. Lissandrini, Strada le Grazie 8, 37134, Verona, Italy
| | - Martina Bigliardi
- Department of Medicine, University of Verona, Division of General Pathology, Cystic Fibrosis Laboratory D. Lissandrini, Strada le Grazie 8, 37134, Verona, Italy
| | - Jessica Conti
- Department of Medicine, University of Verona, Division of General Pathology, Cystic Fibrosis Laboratory D. Lissandrini, Strada le Grazie 8, 37134, Verona, Italy
| | - Karina Kleinfelder
- Department of Medicine, University of Verona, Division of General Pathology, Cystic Fibrosis Laboratory D. Lissandrini, Strada le Grazie 8, 37134, Verona, Italy
| | - Paola Melotti
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, Piazzale A. Stefani 1, 37126, Verona, Italy
| | - Claudio Sorio
- Department of Medicine, University of Verona, Division of General Pathology, Cystic Fibrosis Laboratory D. Lissandrini, Strada le Grazie 8, 37134, Verona, Italy.
| |
Collapse
|
5
|
Crocetti L, Floresta G, Cilibrizzi A, Giovannoni MP. An Overview of PDE4 Inhibitors in Clinical Trials: 2010 to Early 2022. Molecules 2022; 27:4964. [PMID: 35956914 PMCID: PMC9370432 DOI: 10.3390/molecules27154964] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Since the early 1980s, phosphodiesterase 4 (PDE4) has been an attractive target for the treatment of inflammation-based diseases. Several scientific advancements, by both academia and pharmaceutical companies, have enabled the identification of many synthetic ligands for this target, along with the acquisition of precise information on biological requirements and linked therapeutic opportunities. The transition from pre-clinical to clinical phase was not easy for the majority of these compounds, mainly due to their significant side effects, and it took almost thirty years for a PDE4 inhibitor to become a drug i.e., Roflumilast, used in the clinics for the treatment of chronic obstructive pulmonary disease. Since then, three additional compounds have reached the market a few years later: Crisaborole for atopic dermatitis, Apremilast for psoriatic arthritis and Ibudilast for Krabbe disease. The aim of this review is to provide an overview of the compounds that have reached clinical trials in the last ten years, with a focus on those most recently developed for respiratory, skin and neurological disorders.
Collapse
Affiliation(s)
- Letizia Crocetti
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King’s College London, Stamford Street, London SE1 9NH, UK
| | - Maria Paola Giovannoni
- NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Goonathilake MR, Waqar S, George S, Jean-Baptiste W, Yusuf Ali A, Inyang B, Koshy FS, George K, Poudel P, Chalasani R, Mohammed L. Can Phosphodiesterase 4 Inhibitor Therapy Be Used in Respiratory Diseases Other Than Chronic Obstructive Pulmonary Disease? Cureus 2022; 14:e27132. [PMID: 36017299 PMCID: PMC9392891 DOI: 10.7759/cureus.27132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 11/05/2022] Open
Abstract
Selective phosphodiesterase 4 (PDE4) inhibitors have been extensively studied for the treatment of various respiratory diseases due to their broad anti-inflammatory and/or bronchodilator effects. Roflumilast, an oral selective PDE4 inhibitor, is currently used as a second-line treatment in patients with chronic obstructive pulmonary disease (COPD) with chronic bronchitis. Despite its proven efficacy in other respiratory disorders, including asthma, no other PDE4 inhibitor is approved for respiratory pathologies. This systematic review summarizes the therapeutic action of PDE4 inhibitors, their limitations, recent therapeutic success, and future targets for their use in respiratory diseases other than COPD. An electronic literature search was conducted on four databases, namely, PubMed, PubMed Central, Google Scholar, and ScienceDirect, to collect data on related studies done in humans and published in the English language in the last five years. After extensive analysis and quality appraisal, 11 studies were eligible and thus included in this review, consisting of two randomized controlled trials (RCT), one systematic review and meta-analysis, and eight literature reviews. Roflumilast is not approved for the treatment of asthma due to associated adverse effects and comparable efficacy to inhaled corticosteroids, which are considered the mainstay of asthma maintenance therapy. Hence, the importance of balancing the efficacy with minimizing the side effects is highlighted. Tanimilast (CHF6001), an inhalational selective PDE4 inhibitor, and ensifentrine, a combined PDE3/4 inhibitor, demonstrate the recent therapeutic success in asthma and warrant further large-scale clinical studies. Future researchers will focus on the specific endotype than the phenotype in asthma as a meaningful therapeutic approach due to the high heterogeneity noted in asthma. Current evidence suggests the possibility of PDE4 inhibitors as a novel therapeutic option for chronic cough, allergic rhinitis, and cystic fibrosis. Further evidence from new studies is eagerly anticipated to better understand the efficacy and safety of PDE4 inhibitors in these respiratory diseases.
Collapse
Affiliation(s)
| | - Sara Waqar
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sheeba George
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Wilford Jean-Baptiste
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Amina Yusuf Ali
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Bithaiah Inyang
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Feeba Sam Koshy
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Kitty George
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Prakar Poudel
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Roopa Chalasani
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
7
|
Diver S, Brightling CE, Greening NJ. Novel Therapeutic Strategies in Asthma-Chronic Obstructive Pulmonary Disease Overlap. Immunol Allergy Clin North Am 2022; 42:671-690. [DOI: 10.1016/j.iac.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Agache I, Antolin‐Amerigo D, Blay F, Boccabella C, Caruso C, Chanez P, Couto M, Covar R, Doan S, Fauquert J, Gauvreau G, Gherasim A, Klimek L, Lemiere C, Nair P, Ojanguren I, Peden D, Perez‐de‐Llano L, Pfaar O, Rondon C, Rukhazde M, Sastre J, Schulze J, Silva D, Tarlo S, Toppila‐Salmi S, Walusiak‐Skorupa J, Zielen S, Eguiluz‐Gracia I. EAACI position paper on the clinical use of the bronchial allergen challenge: Unmet needs and research priorities. Allergy 2022; 77:1667-1684. [PMID: 34978085 DOI: 10.1111/all.15203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 12/22/2022]
Abstract
Allergic asthma (AA) is a common asthma phenotype, and its diagnosis requires both the demonstration of IgE-sensitization to aeroallergens and the causative role of this sensitization as a major driver of asthma symptoms. Therefore, a bronchial allergen challenge (BAC) would be occasionally required to identify AA patients among atopic asthmatics. Nevertheless, BAC is usually considered a research tool only, with existing protocols being tailored to mild asthmatics and research needs (eg long washout period for inhaled corticosteroids). Consequently, existing BAC protocols are not designed to be performed in moderate-to-severe asthmatics or in clinical practice. The correct diagnosis of AA might help select patients for immunomodulatory therapies. Allergen sublingual immunotherapy is now registered and recommended for controlled or partially controlled patients with house dust mite-driven AA and with FEV1 ≥ 70%. Allergen avoidance is costly and difficult to implement for the management of AA, so the proper selection of patients is also beneficial. In this position paper, the EAACI Task Force proposes a methodology for clinical BAC that would need to be validated in future studies. The clinical implementation of BAC could ultimately translate into a better phenotyping of asthmatics in real life, and into a more accurate selection of patients for long-term and costly management pathways.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine Transylvania University Brasov Romania
| | - Dario Antolin‐Amerigo
- Servicio de Alergia Hospital Universitario Ramón y Cajal Instituto Ramón y Cajal de Investigación Sanitaria Madrid Spain
| | - Frederic Blay
- ALYATEC Environmental Exposure Chamber Chest Diseases Department Strasbourg University Hospital University of Strasbourg Strasbourg France
| | - Cristina Boccabella
- Department of Cardiovascular and Thoracic Sciences Università Cattolica del Sacro Cuore Fondazione Policlinico Universitario A. Gemelli ‐ IRCCS Rome Italy
| | | | - Pascal Chanez
- Department of Respiratory CIC Nord INSERMINRAE C2VN Aix Marseille University Marseille France
| | - Mariana Couto
- Centro de Alergia Hospital CUF Descobertas Lisboa Portugal
| | - Ronina Covar
- Pediatrics National Jewish Health Denver Colorado USA
| | | | | | - Gail Gauvreau
- Division of Respirology Department of Medicine McMaster University Hamilton Ontario Canada
| | - Alina Gherasim
- ALYATEC Environmental Exposure Chamber Strasbourg France
| | - Ludger Klimek
- Center for Rhinology and Allergology Wiesbaden Germany
| | - Catherine Lemiere
- Research Centre Centre Intégré Universitaire de santé et de services sociaux du Nord‐de‐l'île‐de‐Montréal Montréal Quebec Canada
- Faculty of Medicine Université de Montreal Montreal Quebec Canada
| | - Parameswaran Nair
- Department of Medicine Firestone Institute of Respiratory Health at St. Joseph's Healthcare McMaster University Hamilton Ontario Canada
| | - Iñigo Ojanguren
- Departament de Medicina Servei de Pneumología Hospital Universitari Valld´Hebron Universitat Autònoma de Barcelona (UAB) Institut de Recerca (VHIR) CIBER de Enfermedades Respiratorias (CIBERES) Barcelona Spain
| | - David Peden
- Division of Pediatric Allergy and Immunology Center for Environmental Medicine, Asthma and Lung Biology The School of Medicine The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Luis Perez‐de‐Llano
- Department of Respiratory Medicine University Hospital Lucus Augusti Lugo Spain
| | - Oliver Pfaar
- Section of Rhinology and Allergy Department of Otorhinolaryngology, Head and Neck Surgery University Hospital Marburg Philipps‐Universität Marburg Marburg Germany
| | - Carmen Rondon
- Allergy Unit Hospital Regional Universitario de Malaga Instituto de Investigacion Biomedica de Malaga (IBIMA) Malaga Spain
| | - Maia Rukhazde
- Center of Allergy & Immunology Teaching University Geomedi LLC Tbilisi Georgia
| | - Joaquin Sastre
- Allergy Unit Hospital Universitario Fundación Jiménez Díaz Center for Biomedical Network of Respiratory Diseases (CIBERES) Instituto de Salud Carlos III (ISCIII) Madrid Spain
| | - Johannes Schulze
- Department for Children and Adolescents, Division of Allergology Pulmonology and Cystic Fibrosis Goethe‐University Hospital Frankfurt am Main Germany
| | - Diana Silva
- Basic and Clinical Immunology Unit Department of Pathology Faculty of Medicine University of Porto and Serviço de Imunoalergologia Centro Hospitalar São João, EPE Porto Portugal
| | - Susan Tarlo
- Respiratory Division Department of Medicine University Health Network, Toronto Western Hospital University of Toronto Department of Medicine, and Dalla Lana Department of Public Health Toronto Ontario Canada
| | - Sanna Toppila‐Salmi
- Haartman Institute, Medicum, Skin and Allergy Hospital Hospital District of Helsinki and Uusimaa Helsinki University Hospital and University of Helsinki Helsinki Finland
| | - Jolanta Walusiak‐Skorupa
- Department of Occupational Diseases and Environmental Health Nofer Institute of Occupational Medicine Łódź Poland
| | - Stefan Zielen
- Department for Children and Adolescents, Division of Allergology Pulmonology and Cystic Fibrosis Goethe‐University Hospital Frankfurt am Main Germany
| | - Ibon Eguiluz‐Gracia
- Allergy Unit Hospital Regional Universitario de Malaga Instituto de Investigacion Biomedica de Malaga (IBIMA) Malaga Spain
| |
Collapse
|
9
|
Cazzola M, Rogliani P, Naviglio S, Calzetta L, Matera MG. An update on the currently available and emerging synthetic pharmacotherapy for uncontrolled asthma. Expert Opin Pharmacother 2022; 23:1205-1216. [PMID: 35621331 DOI: 10.1080/14656566.2022.2083955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION : The treatment of uncontrolled asthma has improved because of triple therapy that includes a long-acting muscarinic antagonist (LAMA) and biological drugs, but several patients are resistant to corticosteroids and/or cannot achieve adequate asthma control using such therapies. AREAS COVERED : Herein, the authors review the current and emerging synthetic pharmacotherapy for uncontrolled asthma to overcome obstacles and limitations of biological therapies. The authors also provide their expert perspectives and opinion on the treatment of uncontrolled asthma. EXPERT OPINION : LAMAs should be added to inhaled corticosteroid/long-acting β2-agonist combinations much earlier than currently recommended by the Global Initiative for Asthma strategy because they can influence the course of small airways disease, reducing lung hyperinflation and improving asthma control. Biological therapies are a major advance in the treatment of severe asthma, but their use is still very limited for several reasons. An alternative to overcome the use of biological therapies is to synthesise compounds that target inflammation-signalling pathways. Several pathways have been identified as potential targets to design either therapeutic or prophylactic drugs against asthma. Some new compounds have already been tested in humans, but results have often been disappointing probably because existing phenotypic and endotypic variants may unpredictably limit the therapeutic value of blocking a specific pathway in most asthmatics, although there may be a substantial benefit for a subgroup of patients.
Collapse
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvio Naviglio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
10
|
Nguyen HO, Salvi V, Tiberio L, Facchinetti F, Govoni M, Villetti G, Civelli M, Barbazza I, Gaudenzi C, Passari M, Schioppa T, Sozio F, Del Prete A, Sozzani S, Bosisio D. The PDE4 inhibitor tanimilast shows distinct immunomodulatory properties associated with a type 2 endotype and CD141 upregulation. J Transl Med 2022; 20:203. [PMID: 35538539 PMCID: PMC9092691 DOI: 10.1186/s12967-022-03402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/20/2022] [Indexed: 12/01/2022] Open
Abstract
Background Tanimilast is a novel and selective inhaled inhibitor of phosphodiesterase-4 in advanced clinical development for chronic obstructive pulmonary disease (COPD). Tanimilast is known to exert prominent anti-inflammatory activity when tested in preclinical experimental models as well as in human clinical studies. Recently, we have demonstrated that it also finely tunes, rather than suppressing, the cytokine network secreted by activated dendritic cells (DCs). This study was designed to characterize the effects of tanimilast on T-cell polarizing properties of DCs and to investigate additional functional and phenotypical features induced by tanimilast. Methods DCs at day 6 of culture were stimulated with LPS in the presence or absence of tanimilast or the control drug budesonide. After 24 h, DCs were analyzed for the expression of surface markers of maturation and activation by flow cytometry and cocultured with T cells to investigate cell proliferation and activation/polarization. The regulation of type 2-skewing mediators was investigated by real-time PCR in DCs and compared to results obtained in vivo in a randomized placebo-controlled trial on COPD patients treated with tanimilast. Results Our results show that both tanimilast and budesonide reduced the production of the immunostimulatory cytokine IFN-γ by CD4+ T cells. However, the two drugs acted at different levels since budesonide mainly blocked T cell proliferation, while tanimilast skewed T cells towards a Th2 phenotype without affecting cell proliferation. In addition, only DCs matured in the presence of tanimilast displayed increased CD86/CD80 ratio and CD141 expression, which correlated with Th2 T cell induction and dead cell uptake respectively. These cells also upregulated cAMP-dependent immunosuppressive molecules such as IDO1, TSP1, VEGF-A and Amphiregulin. Notably, the translational value of these data was confirmed by the finding that these same genes were upregulated also in sputum cells of COPD patients treated with tanimilast as add-on to inhaled glucocorticoids and bronchodilators. Conclusion Taken together, these findings demonstrate distinct immunomodulatory properties of tanimilast associated with a type 2 endotype and CD141 upregulation in DCs and provide a mechanistic rationale for the administration of tanimilast on top of inhaled corticosteroids.
Collapse
Affiliation(s)
- Hoang Oanh Nguyen
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabrizio Facchinetti
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Mirco Govoni
- Global Clinical Development, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Gino Villetti
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Maurizio Civelli
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Ilaria Barbazza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Carolina Gaudenzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mauro Passari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy. .,IRCCS Neuromed, Pozzilli, IS, Italy.
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
11
|
Neutrophils and Asthma. Diagnostics (Basel) 2022; 12:diagnostics12051175. [PMID: 35626330 PMCID: PMC9140072 DOI: 10.3390/diagnostics12051175] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Although eosinophilic inflammation is characteristic of asthma pathogenesis, neutrophilic inflammation is also marked, and eosinophils and neutrophils can coexist in some cases. Based on the proportion of sputum cell differentiation, asthma is classified into eosinophilic asthma, neutrophilic asthma, neutrophilic and eosinophilic asthma, and paucigranulocytic asthma. Classification by bronchoalveolar lavage is also performed. Eosinophilic asthma accounts for most severe asthma cases, but neutrophilic asthma or a mixture of the two types can also present a severe phenotype. Biomarkers for the diagnosis of neutrophilic asthma include sputum neutrophils, blood neutrophils, chitinase-3-like protein, and hydrogen sulfide in sputum and serum. Thymic stromal lymphoprotein (TSLP)/T-helper 17 pathways, bacterial colonization/microbiome, neutrophil extracellular traps, and activation of nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 pathways are involved in the pathophysiology of neutrophilic asthma and coexistence of obesity, gastroesophageal reflux disease, and habitual cigarette smoking have been associated with its pathogenesis. Thus, targeting neutrophilic asthma is important. Smoking cessation, neutrophil-targeting treatments, and biologics have been tested as treatments for severe asthma, but most clinical studies have not focused on neutrophilic asthma. Phosphodiesterase inhibitors, anti-TSLP antibodies, azithromycin, and anti-cholinergic agents are promising drugs for neutrophilic asthma. However, clinical research targeting neutrophilic inflammation is required to elucidate the optimal treatment.
Collapse
|
12
|
Nguyen HO, Schioppa T, Tiberio L, Facchinetti F, Villetti G, Civelli M, Del Prete A, Sozio F, Gaudenzi C, Passari M, Barbazza I, Sozzani S, Salvi V, Bosisio D. The PDE4 Inhibitor Tanimilast Blunts Proinflammatory Dendritic Cell Activation by SARS-CoV-2 ssRNAs. Front Immunol 2022; 12:797390. [PMID: 35140709 PMCID: PMC8818995 DOI: 10.3389/fimmu.2021.797390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/31/2021] [Indexed: 12/20/2022] Open
Abstract
Phosphodiesterase 4 (PDE4) inhibitors are immunomodulatory drugs approved to treat diseases associated with chronic inflammatory conditions, such as COPD, psoriasis and atopic dermatitis. Tanimilast (international non-proprietary name of CHF6001) is a novel, potent and selective inhaled PDE4 inhibitor in advanced clinical development for the treatment of COPD. To begin testing its potential in limiting hyperinflammation and immune dysregulation associated to SARS-CoV-2 infection, we took advantage of an in vitro model of dendritic cell (DC) activation by SARS-CoV-2 genomic ssRNA (SCV2-RNA). In this context, Tanimilast decreased the release of pro-inflammatory cytokines (TNF-α and IL-6), chemokines (CCL3, CXCL9, and CXCL10) and of Th1-polarizing cytokines (IL-12, type I IFNs). In contrast to β-methasone, a reference steroid anti-inflammatory drug, Tanimilast did not impair the acquisition of the maturation markers CD83, CD86 and MHC-II, nor that of the lymph node homing receptor CCR7. Consistent with this, Tanimilast did not reduce the capability of SCV2-RNA-stimulated DCs to activate CD4+ T cells but skewed their polarization towards a Th2 phenotype. Both Tanimilast and β-methasone blocked the increase of MHC-I molecules in SCV2-RNA-activated DCs and restrained the proliferation and activation of cytotoxic CD8+ T cells. Our results indicate that Tanimilast can modulate the SCV2-RNA-induced pro-inflammatory and Th1-polarizing potential of DCs, crucial regulators of both the inflammatory and immune response. Given also the remarkable safety demonstrated by Tanimilast, up to now, in clinical studies, we propose this inhaled PDE4 inhibitor as a promising immunomodulatory drug in the scenario of COVID-19.
Collapse
Affiliation(s)
- Hoang Oanh Nguyen
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Gino Villetti
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Parma, Italy
| | - Maurizio Civelli
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Parma, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Carolina Gaudenzi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mauro Passari
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Ilaria Barbazza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- *Correspondence: Daniela Bosisio,
| |
Collapse
|
13
|
Liu Z, Liu M, Cao Z, Qiu P, Song G. Phosphodiesterase‑4 inhibitors: a review of current developments (2013-2021). Expert Opin Ther Pat 2022; 32:261-278. [PMID: 34986723 DOI: 10.1080/13543776.2022.2026328] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Cyclic nucleotide phosphodiesterase 4 (PDE4) is responsible for the hydrolysis of cAMP, which has become an attractive therapeutic target for lung, skin, and severe neurological diseases. Here, we review the current status of development of PDE4 inhibitors since 2013 and discuss the applicability of novel medicinal-chemistry strategies for identifying more efficient and safer inhibitors. AREAS COVERED This review summarizes the clinical development of PDE4 inhibitors from 2013 to 2021, focused on their pharmacophores, the strategies to reduce the side effects of PDE4 inhibitors and the development of subfamily selective PDE4 inhibitors. EXPERT OPINION To date, great efforts have been made in the development of PDE4 inhibitors, and researchers have established a comprehensive preclinical database and collected some promising data from clinical trials. Although four small-molecule PDE4 inhibitors have been approved by FDA for the treatment of human diseases up to now, further development of other reported PDE4 inhibitors with strong potency has been hampered due to the occurrence of severe side effects. There are currently three main strategies for overcoming the dose limitation and systemic side effects, which provide new opportunities for the clinical development of new PDE4 inhibitors.
Collapse
Affiliation(s)
- Zhihao Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Mingjian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Zhenqing Cao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Pengsen Qiu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Facchinetti F, Civelli M, Singh D, Papi A, Emirova A, Govoni M. Tanimilast, A Novel Inhaled Pde4 Inhibitor for the Treatment of Asthma and Chronic Obstructive Pulmonary Disease. Front Pharmacol 2021; 12:740803. [PMID: 34887752 PMCID: PMC8650159 DOI: 10.3389/fphar.2021.740803] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic respiratory diseases are the third leading cause of death, behind cardiovascular diseases and cancer, affecting approximately 550 million of people all over the world. Most of the chronic respiratory diseases are attributable to asthma and chronic obstructive pulmonary disease (COPD) with this latter being the major cause of deaths. Despite differences in etiology and symptoms, a common feature of asthma and COPD is an underlying degree of airways inflammation. The nature and severity of this inflammation might differ between and within different respiratory conditions and pharmacological anti-inflammatory treatments are unlikely to be effective in all patients. A precision medicine approach is needed to selectively target patients to increase the chance of therapeutic success. Inhibitors of the phosphodiesterase 4 (PDE4) enzyme like the oral PDE4 inhibitor roflumilast have shown a potential to reduce inflammatory-mediated processes and the frequency of exacerbations in certain groups of COPD patients with a chronic bronchitis phenotype. However, roflumilast use is dampened by class related side effects as nausea, diarrhea, weight loss and abdominal pain, resulting in both substantial treatment discontinuation in clinical practice and withdrawal from clinical trials. This has prompted the search for PDE4 inhibitors to be given by inhalation to reduce the systemic exposure (and thus optimize the systemic safety) and maximize the therapeutic effect in the lung. Tanimilast (international non-proprietary name of CHF6001) is a novel highly potent and selective inhaled PDE4 inhibitor with proven anti-inflammatory properties in various inflammatory cells, including leukocytes derived from asthma and COPD patients, as well as in experimental rodent models of pulmonary inflammation. Inhaled tanimilast has reached phase III clinical development by showing promising pharmacodynamic results associated with a good tolerability and safety profile, with no evidence of PDE4 inhibitors class-related side effects. In this review we will discuss the main outcomes of preclinical and clinical studies conducted during tanimilast development, with particular emphasis on the characterization of the pharmacodynamic profile that led to the identification of target populations with increased therapeutic potential in inflammatory respiratory diseases.
Collapse
Affiliation(s)
| | | | - Dave Singh
- Medicines Evaluation Unit, Manchester University NHS Foundation Hospital Trust, Manchester, United Kingdom
| | - Alberto Papi
- Respiratory Medicine, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Aida Emirova
- Global Clinical Development, Chiesi, Parma, Italy
| | - Mirco Govoni
- Global Clinical Development, Chiesi, Parma, Italy
| |
Collapse
|
15
|
Singh D, Lea S, Mathioudakis AG. Inhaled Phosphodiesterase Inhibitors for the Treatment of Chronic Obstructive Pulmonary Disease. Drugs 2021; 81:1821-1830. [PMID: 34731461 DOI: 10.1007/s40265-021-01616-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Phosphodiesterase (PDE) 4 inhibitors prevent the metabolism of cyclic adenosine monophosphate, thereby reducing inflammation. Inhaled PDE4 inhibitors aim to restrict systemic drug exposure to enhance the potential for clinical benefits (in the lungs) versus adverse events (systemically). The orally administered PDE4 inhibitor roflumilast reduces exacerbation rates in the subgroup of chronic obstructive pulmonary disease patients with a history of exacerbations and the presence of chronic bronchitis, but can cause PDE4 related adverse effects due to systemic exposure. CHF6001 is an inhaled PDE4 inhibitor, while inhaled ensifentrine is an inhibitor of both PDE3 and PDE4; antagonism of PDE3 facilitates smooth muscle relaxation and hence bronchodilation. These inhaled PDE inhibitors have both reported positive findings from early phase clinical trials, and have been well tolerated. Longer term trials are needed to firmly establish the clinical benefits of these drugs.
Collapse
Affiliation(s)
- Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK.
- Medicines Evaluation Unit, University of Manchester, Manchester University NHS Foundation Hospital Trust, The Langley Building, Southmoor Road, Manchester, M23 9QZ, UK.
| | - Simon Lea
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Alexander G Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
16
|
Kawamatawong T. Phosphodiesterase-4 Inhibitors for Non-COPD Respiratory Diseases. Front Pharmacol 2021; 12:518345. [PMID: 34434103 PMCID: PMC8381854 DOI: 10.3389/fphar.2021.518345] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/04/2021] [Indexed: 12/19/2022] Open
Abstract
Selective phosphodiesterase (PDE) inhibitors are a class of nonsteroid anti-inflammatory drugs for treating chronic inflammatory diseases. Modulation of systemic and airway inflammation is their pivotal mechanism of action. Furthermore, PDE inhibitors modulate cough reflex and inhibit airway mucus secretion. Roflumilast, a selective PDE4 inhibitor, has been extensively studied for the efficacy and safety in chronic obstructive pulmonary disease (COPD) patients. According to the mechanisms of action, the potential roles of PDE inhibitors in treating chronic respiratory diseases including severe asthma, asthma-COPD overlap (ACO), noncystic fibrosis bronchiectasis, and chronic cough are discussed. Since roflumilast inhibits airway eosinophilia and neutrophilia in COPD patients, it reduces COPD exacerbations in the presence of chronic bronchitis in addition to baseline therapies. The clinical studies in asthma patients have shown the comparable efficacy of roflumilast to inhaled corticosteroids for improving lung function. However, the clinical trials of roflumilast in severe asthma have been limited. Although ACO is common and is also associated with poor outcomes, there is no clinical trial regarding its efficacy in patients with ACO despite a promising role in reducing COPD exacerbation. Since mucus hypersecretion is a result of neutrophil secretagogue in patients with chronic bronchitis, experimental studies have shown that PDE4s are regulators of the cystic fibrosis transmembrane conductance regulator (CFTR) in human airway epithelial cells. Besides, goblet cell hyperplasia is associated with an increased expression of PDE. Bronchiectasis and chronic bronchitis are considered neutrophilic airway diseases presenting with mucus hypersecretion. They commonly coexist and thus lead to severe disease. The role of roflumilast in noncystic fibrosis bronchiectasis is under investigation in clinical trials. Lastly, PDE inhibitors have been shown modulating cough from bronchodilation, suppressing transient receptors potential (TRP), and anti-inflammatory properties. Hence, there is the potential role of the drug in the management of unexplained cough. However, clinical trials for examining its antitussive efficacy are pivotal. In conclusion, selective PDE4 inhibitors may be potential treatment options for chronic respiratory diseases apart from COPD due to their promising mechanisms of action.
Collapse
Affiliation(s)
- Theerasuk Kawamatawong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
17
|
Matera MG, Ora J, Cavalli F, Rogliani P, Cazzola M. New Avenues for Phosphodiesterase Inhibitors in Asthma. J Exp Pharmacol 2021; 13:291-302. [PMID: 33758554 PMCID: PMC7979323 DOI: 10.2147/jep.s242961] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Phosphodiesterases (PDEs) are isoenzymes ubiquitously expressed in the lungs where they catalyse cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (GMP), which are fundamental second messengers in asthma, thereby regulating the intracellular concentrations of these cyclic nucleotides, their signaling pathways and, consequently, myriad biological responses. The superfamily of PDEs is composed of 11 families with a distinct substrate specificity, molecular structure and subcellular localization. Experimental studies indicate a possible role in asthma mainly for PDE3, PDE4, PDE5 and PDE7. Consequently, drugs that inhibit PDEs may offer novel therapeutic options for the treatment of this disease. Areas Covered In this article, we describe the progress made in recent years regarding the possibility of using PDE inhibitors in the treatment of asthma. Expert Opinion Many data indicate the potential benefits of PDE inhibitors as an add-on treatment especially in severe asthma due to their bronchodilator and/or anti-inflammatory activity, but no compound has yet reached the market as asthma treatment mainly because of their limited tolerability. Therefore, there is a growing interest in developing new PDE inhibitors with an improved safety profile. In particular, the research is focused on the development of drugs capable of interacting simultaneously with different PDEs, or to be administered by inhalation. CHF 6001 and RPL554 are the only molecules that currently are under clinical development but there are several new agents with interesting pharmacological profiles. It will be stimulating to assess the impact of such agents on individual treatable traits in specially designed studies.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Josuel Ora
- Respiratory Diseases Unit, "Tor Vergata" University Hospital, Rome, Italy
| | - Francesco Cavalli
- Respiratory Diseases Unit, "Tor Vergata" University Hospital, Rome, Italy
| | - Paola Rogliani
- Respiratory Diseases Unit, "Tor Vergata" University Hospital, Rome, Italy.,Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
18
|
Lin WC, Fessler MB. Regulatory mechanisms of neutrophil migration from the circulation to the airspace. Cell Mol Life Sci 2021; 78:4095-4124. [PMID: 33544156 PMCID: PMC7863617 DOI: 10.1007/s00018-021-03768-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
The neutrophil, a short-lived effector leukocyte of the innate immune system best known for its proteases and other degradative cargo, has unique, reciprocal physiological interactions with the lung. During health, large numbers of ‘marginated’ neutrophils reside within the pulmonary vasculature, where they patrol the endothelial surface for pathogens and complete their life cycle. Upon respiratory infection, rapid and sustained recruitment of neutrophils through the endothelial barrier, across the extravascular pulmonary interstitium, and again through the respiratory epithelium into the airspace lumen, is required for pathogen killing. Overexuberant neutrophil trafficking to the lung, however, causes bystander tissue injury and underlies several acute and chronic lung diseases. Due in part to the unique architecture of the lung’s capillary network, the neutrophil follows a microanatomic passage into the distal airspace unlike that observed in other end-organs that it infiltrates. Several of the regulatory mechanisms underlying the stepwise recruitment of circulating neutrophils to the infected lung have been defined over the past few decades; however, fundamental questions remain. In this article, we provide an updated review and perspective on emerging roles for the neutrophil in lung biology, on the molecular mechanisms that control the trafficking of neutrophils to the lung, and on past and ongoing efforts to design therapeutics to intervene upon pulmonary neutrophilia in lung disease.
Collapse
Affiliation(s)
- Wan-Chi Lin
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC, 27709, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
19
|
Singh D, Bassi M, Balzano D, Lucci G, Emirova A, Anna Nandeuil M, Jellema G, Afolabi EK, Leaker B, Kornmann O, Michael Beeh K, Watz H, Govoni M. COPD patients with chronic bronchitis and higher sputum eosinophil counts show increased type-2 and PDE4 gene expression in sputum. J Cell Mol Med 2020; 25:905-918. [PMID: 33295083 PMCID: PMC7812250 DOI: 10.1111/jcmm.16146] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/22/2020] [Indexed: 12/18/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) patients with higher eosinophil counts are associated with increased clinical response to phosphodiesterase‐4‐inhibitors (PDE4i). However, the underlying inflammatory mechanisms associated with this increased response is not yet elucidated. This post hoc analysis focused on sputum gene expression in patients with chronic bronchitis who underwent 32‐day treatment with two doses of the inhaled PDE4i CHF6001 (tanimilast) or placebo on top of triple therapy. Biological characterization and treatment effects were assessed between patients with different sputum eosinophil levels (eosinophilhigh ≥ 3%; eosinophillow < 3%) at baseline (primary samples) or at the end of the treatment of the placebo arm (validation samples). Forty‐one genes were differentially expressed in primary samples (p‐adjusted for false discovery rate < 0.05); all up‐regulated in eosinophilhigh patients and functionally enriched for type‐2 and PDE4 inflammatory processes. Eleven out of nineteen genes having immune system biological processes annotations including IL5RA, ALOX15, IL1RL1, CLC, GATA1 and PDE4D were replicated using validation samples. The expression of a number of these inflammatory mediators was reduced by tanimilast treatment, with greater effects observed in eosinophilhigh patients. These findings suggest that type‐2 and PDE4 overexpression in COPD patients with higher sputum eosinophil counts contribute to the differential clinical response to PDE4i observed in previous clinical trials.
Collapse
Affiliation(s)
- Dave Singh
- Medicines Evaluation Unit, The University of Manchester, Manchester University NHS Foundation Hospital Trust, Manchester, UK
| | | | | | | | - Aida Emirova
- Global Clinical Development, Chiesi, Parma, Italy
| | | | | | | | | | - Oliver Kornmann
- IKF Pneumologie Frankfurt, Clinical Research Centre Respiratory Diseases, Frankfurt, Germany
| | | | - Henrik Watz
- Pulmonary Research Institute at Lung Clinic Grosshansdorf, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Mirco Govoni
- Global Clinical Development, Chiesi, Parma, Italy
| |
Collapse
|
20
|
Salvator H, Buenestado A, Brollo M, Naline E, Victoni T, Longchamp E, Tenor H, Grassin-Delyle S, Devillier P. Clinical Relevance of the Anti-inflammatory Effects of Roflumilast on Human Bronchus: Potentiation by a Long-Acting Beta-2-Agonist. Front Pharmacol 2020; 11:598702. [PMID: 33363471 PMCID: PMC7754640 DOI: 10.3389/fphar.2020.598702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/30/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Roflumilast is an option for treating patients with severe COPD and frequent exacerbations despite optimal therapy with inhaled drugs. The present study focused on whether the phosphodiesterase (PDE) 4 inhibitor roflumilast and its active metabolite roflumilast N-oxide affect the release of tumor necrosis factor (TNF)-α and chemokines by lipopolysaccharide (LPS)-stimulated human bronchial explants. We also investigated the interactions between roflumilast, roflumilast N-oxide and the β2-agonist formoterol with regard to cytokine release by the bronchial preparations. Methods: Bronchial explants from resected lungs were incubated with roflumilast, roflumilast N-oxide and/or formoterol and then stimulated with LPS. An ELISA was used to measure levels of TNF-α and chemokines in the culture supernatants. Results: At a clinically relevant concentration (1 nM), roflumilast N-oxide and roflumilast consistently reduced the release of TNF-α, CCL2, CCL3, CCL4, CCL5 and CXCL9 (but not CXCL1, CXCL5, CXCL8 and IL-6) from human bronchial explants. Formoterol alone decreased the release of TNF-α, CCL2, and CCL3. The combination of formoterol with roflumilast (1 nM) was more potent than roflumilast alone for inhibiting the LPS-induced release of TNF-α, CCL2, CCL3, CCL4, and CXCL9 by the bronchial explants. Conclusions: At a clinically relevant concentration, roflumilast N-oxide and its parent compound, roflumilast, reduced the LPS-induced production of TNF-α and chemokines involved in monocyte and T-cell recruitment but did not alter the release of chemokines involved in neutrophil recruitment. The combination of formoterol with roflumilast enhanced the individual drugs’ anti-inflammatory effects.
Collapse
Affiliation(s)
- Hélène Salvator
- Laboratory of Research in Respiratory Pharmacology, V2I - UMR-0092, Université Paris Saclay, Suresnes, France.,Department of Airway Diseases, Hôpital Foch, Suresnes, France
| | - Amparo Buenestado
- Laboratory of Research in Respiratory Pharmacology, V2I - UMR-0092, Université Paris Saclay, Suresnes, France
| | - Marion Brollo
- Laboratory of Research in Respiratory Pharmacology, V2I - UMR-0092, Université Paris Saclay, Suresnes, France
| | - Emmanuel Naline
- Laboratory of Research in Respiratory Pharmacology, V2I - UMR-0092, Université Paris Saclay, Suresnes, France.,Department of Airway Diseases, Hôpital Foch, Suresnes, France
| | - Tatiana Victoni
- Laboratory of Research in Respiratory Pharmacology, V2I - UMR-0092, Université Paris Saclay, Suresnes, France
| | | | | | - Stanislas Grassin-Delyle
- Department of Airway Diseases, Hôpital Foch, Suresnes, France.,INSERM U1173, Infection and Inflammation, Département de Biotechnologie de la Santé, Université Paris-Saclay, Montigny-le-Bretonneux, France
| | - Philippe Devillier
- Laboratory of Research in Respiratory Pharmacology, V2I - UMR-0092, Université Paris Saclay, Suresnes, France.,Department of Airway Diseases, Hôpital Foch, Suresnes, France
| |
Collapse
|
21
|
Janosova V, Calkovsky V, Pedan H, Behanova E, Hajtman A, Calkovska A. Phosphodiesterase 4 Inhibitors in Allergic Rhinitis/Rhinosinusitis. Front Pharmacol 2020; 11:1135. [PMID: 32792957 PMCID: PMC7387511 DOI: 10.3389/fphar.2020.01135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
Allergic rhinitis/rhinosinusitis (AR) is the most common allergic disease. It affects patients’ quality of life and may influence the severity of lower airway disease such as asthma. Therefore, its treatment is of great importance. AR is treated by a combination of effective approaches; however, in some patients, the disease is uncontrolled. In the last several years, the concept of AR has shifted from increased T helper 2 (Th2) cell signaling and downstream inflammation to disease phenotypes with non-Th2-mediated inflammation. AR is a largely heterogenous group of airway diseases, and as such, research should not only focus on immunosuppressive agents (e.g., corticosteroids) but should also include targeted immunomodulatory pathways. Here, we provide an overview of novel therapies, focusing on the role of phosphodiesterase-4 (PDE4) inhibitors in AR. PDE4 inhibitors are potent anti-inflammatory agents that are used for the treatment of inflammatory airway diseases including AR. The PDE4 inhibitor roflumilast was shown to effectively control symptoms of AR in a randomized, placebo-controlled, double-blinded, crossover study in patients with a history of AR. However, only a few PDE4 inhibitors have proceeded to phase II and III clinical trials, due to insufficient clinical efficacy and adverse effects. Research is ongoing to develop more effective compounds with fewer side effects that target specific inflammatory pathways in disease pathogenesis and can provide more consistent benefit to patients with upper airway allergic diseases. Novel specific PDE4 inhibitors seem to fulfill these criteria.
Collapse
Affiliation(s)
- Viera Janosova
- Clinic of Otorhinolaryngology and Head and Neck Surgery, Jessenius Faculty of Medicine, Comenius University in Bratislava, and Martin University Hospital, Martin, Slovakia
| | - Vladimir Calkovsky
- Clinic of Otorhinolaryngology and Head and Neck Surgery, Jessenius Faculty of Medicine, Comenius University in Bratislava, and Martin University Hospital, Martin, Slovakia
| | - Heiko Pedan
- Clinic of Otorhinolaryngology and Head and Neck Surgery, Jessenius Faculty of Medicine, Comenius University in Bratislava, and Martin University Hospital, Martin, Slovakia
| | - Estera Behanova
- Clinic of Otorhinolaryngology and Head and Neck Surgery, Jessenius Faculty of Medicine, Comenius University in Bratislava, and Martin University Hospital, Martin, Slovakia
| | - Andrej Hajtman
- Clinic of Otorhinolaryngology and Head and Neck Surgery, Jessenius Faculty of Medicine, Comenius University in Bratislava, and Martin University Hospital, Martin, Slovakia
| | - Andrea Calkovska
- Department of Physiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
22
|
Sabogal Piñeros YS, Dekker T, Smids B, Majoor CJ, Ravanetti L, Villetti G, Civelli M, Facchinetti F, Lutter R. Phosphodiesterase 4 inhibitors attenuate virus-induced activation of eosinophils from asthmatics without affecting virus binding. Pharmacol Res Perspect 2020; 8:e00557. [PMID: 32447834 PMCID: PMC7245579 DOI: 10.1002/prp2.557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 11/11/2022] Open
Abstract
Acute respiratory virus infections, such as influenza and RSV, are predominant causes of asthma exacerbations. Eosinophils act as a double-edged sword in exacerbations in that they are activated by viral infections but also can capture and inactivate respiratory viruses. Phosphodiesterase type 4 (PDE4) is abundantly expressed by eosinophils and has been implicated in their activation. This exploratory study aims to determine whether these opposing roles of eosinophils activation of eosinophils upon interaction with virus can be modulated by selective PDE4 inhibitors and whether eosinophils from healthy, moderate and severe asthmatic subjects respond differently. Eosinophils were purified by negative selection from blood and subsequently exposed to RSV or influenza. Prior to exposure to virus, eosinophils were treated with vehicle or selective PDE4 inhibitors CHF6001 and GSK256066. After 18 hours of exposure, influenza, but not RSV, increased CD69 and CD63 expression by eosinophils from each group, which were inhibited by PDE4 inhibitors. ECP release, although not stimulated by virus, was also attenuated by PDE4 inhibitors. Eosinophils showed an increased Nox2 activity upon virus exposure, which was less pronounced in eosinophils derived from mild and severe asthmatics and was counteracted by PDE4 inhibitors. PDE4 inhibitors had no effect on binding of virus by eosinophils from each group. Our data indicate that PDE4 inhibitors can attenuate eosinophil activation, without affecting virus binding. By attenuating virus-induced responses, PDE4 inhibitors may mitigate virus-induced asthma exacerbations.
Collapse
Affiliation(s)
- Yanaika Shari Sabogal Piñeros
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdamThe Netherlands
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tamara Dekker
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdamThe Netherlands
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Barbara Smids
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdamThe Netherlands
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Christof J. Majoor
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Lara Ravanetti
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdamThe Netherlands
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Gino Villetti
- Corporate Pre‐Clinical R&DChiesi Farmaceutici S.p.A.ParmaItaly
| | | | | | - René Lutter
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdamThe Netherlands
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
23
|
The PDE4 inhibitor CHF6001 affects keratinocyte proliferation via cellular redox pathways. Arch Biochem Biophys 2020; 685:108355. [DOI: 10.1016/j.abb.2020.108355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/11/2020] [Accepted: 03/31/2020] [Indexed: 11/22/2022]
|
24
|
Phillips JE. Inhaled Phosphodiesterase 4 (PDE4) Inhibitors for Inflammatory Respiratory Diseases. Front Pharmacol 2020; 11:259. [PMID: 32226383 PMCID: PMC7080983 DOI: 10.3389/fphar.2020.00259] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/24/2020] [Indexed: 01/09/2023] Open
Abstract
PDE4 inhibitors can suppress a variety of inflammatory cell functions that contribute to their anti-inflammatory actions in respiratory diseases like chronic obstructive pulmonary disease (COPD) and asthma. The systemically delivered PDE4 inhibitor roflumilast has been approved for use in a subset of patients with severe COPD with chronic bronchitis and a history of exacerbations. Use of systemically delivered PDE4 inhibitors has been limited by systemic side effects. Inhaled PDE4 inhibitors have been considered as a viable alternative to increase tolerability and determine the maximum therapeutic potential of PDE4 inhibition in respiratory diseases.
Collapse
Affiliation(s)
- Jonathan E. Phillips
- Department of Inflammation Research, Amgen Research, Thousand Oaks, CA, United States
| |
Collapse
|
25
|
The PDE4 inhibitor CHF6001 modulates pro-inflammatory cytokines, chemokines and Th1- and Th17-polarizing cytokines in human dendritic cells. Biochem Pharmacol 2019; 163:371-380. [PMID: 30851246 DOI: 10.1016/j.bcp.2019.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors are used to treat autoimmune and inflammatory diseases, such as psoriasis and chronic obstructive pulmonary disease (COPD). CHF6001 is a novel, potent and selective inhaled PDE4 inhibitor in development for the treatment of COPD. When tested in vitro on human dendritic cells (DCs), CHF6001 decreased the release of pro-inflammatory cytokines (TNF-α and IL-6), chemokines (CXCL8, CCL3, CXCL10 and CCL19) and of Th1- and Th17-polarizing cytokines (IL-12, IL-23 and IL-1β). In contrast to β-methasone, a reference steroid anti-inflammatory drug, CHF6001 increased the secretion of CCL22, a Th2 recruiting chemokine, and the expression of the lymph node homing receptor CCR7. Accordingly, the migration of DCs to CCR7 ligands was increased, while migration to pro-inflammatory chemokines was decreased. Of note, the action of CHF6001 was apparently mediated by a promoter-specific decrease in NF-κB p65 recruitment, independent of perturbation of LPS signalling or NF-κB nuclear translocation. Our results indicate that CHF6001 can modulate DC pro-inflammatory Th1/Th17 polarizing potential by fine tuning the transcriptional activity of the master inflammatory transcription factor NF-κB. Therefore, CHF6001 may prove useful to control Th1/Th17-polarized inflammatory diseases such as COPD.
Collapse
|
26
|
Zuo H, Cattani-Cavalieri I, Musheshe N, Nikolaev VO, Schmidt M. Phosphodiesterases as therapeutic targets for respiratory diseases. Pharmacol Ther 2019; 197:225-242. [PMID: 30759374 DOI: 10.1016/j.pharmthera.2019.02.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma, affect millions of people all over the world. Cyclic adenosine monophosphate (cAMP) which is one of the most important second messengers, plays a vital role in relaxing airway smooth muscles and suppressing inflammation. Given its vast role in regulating intracellular responses, cAMP provides an attractive pharmaceutical target in the treatment of chronic respiratory diseases. Phosphodiesterases (PDEs) are enzymes that hydrolyze cyclic nucleotides and help control cyclic nucleotide signals in a compartmentalized manner. Currently, the selective PDE4 inhibitor, roflumilast, is used as an add-on treatment for patients with severe COPD associated with bronchitis and a history of frequent exacerbations. In addition, other novel PDE inhibitors are in different phases of clinical trials. The current review provides an overview of the regulation of various PDEs and the potential application of selective PDE inhibitors in the treatment of COPD and asthma. The possibility to combine various PDE inhibitors as a way to increase their therapeutic effectiveness is also emphasized.
Collapse
Affiliation(s)
- Haoxiao Zuo
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Isabella Cattani-Cavalieri
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nshunge Musheshe
- Department of Molecular Pharmacology, University of Groningen, the Netherlands
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; German Center for Cardiovascular Research (DZHK), 20246 Hamburg, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
27
|
Al-Sajee D, Yin X, Gauvreau GM. An evaluation of roflumilast and PDE4 inhibitors with a focus on the treatment of asthma. Expert Opin Pharmacother 2019; 20:609-620. [PMID: 30722707 DOI: 10.1080/14656566.2019.1570132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Asthma is a common chronic airway inflammatory disease characterized by diverse inflammatory events leading to airway hyperresponsiveness and reversible airflow obstruction. Corticosteroids have been the mainstay for asthma treatment due to their broad anti-inflammatory actions; however, other medications such as phosphodiesterase 4 inhibitors also demonstrate anti-inflammatory activity in the airways. AREAS COVERED This review describes tissue expression of phosphodiesterase 4 in the airways, the different phosphodiesterase 4 isoenzymes identified, and the anti-inflammatory activities of phosphodiesterase 4 inhibition in asthma and related findings in chronic obstructive pulmonary disease (COPD). The authors further review clinical trials demonstrating that drugs such as roflumilast have an excellent safety profile and efficacy in patients with asthma and COPD. EXPERT OPINION Phosphodiesterase 4 inhibitors suppress the activity of immune cells, an effect similar to corticosteroids although by acting through different anti-inflammatory pathways and uniquely blocking neutrophilic inflammation. Roflumilast and other phosphodiesterase 4 inhibitors have been shown to provide additive protection in asthma when added to corticosteroid and anti-leukotriene treatment. Developmental drugs with dual phosphodiesterase 3 and 4 inhibition are thought to be able to provide bronchodilation and anti-inflammatory activities and will consequently be pushed forward in their clinical development for the treatment of asthma and COPD.
Collapse
Affiliation(s)
- Dhuha Al-Sajee
- a Department of Medicine , McMaster University , Hamilton , ON , Canada
| | - Xuanzhi Yin
- a Department of Medicine , McMaster University , Hamilton , ON , Canada
| | - Gail M Gauvreau
- a Department of Medicine , McMaster University , Hamilton , ON , Canada
| |
Collapse
|
28
|
Ntontsi P, Detta A, Bakakos P, Loukides S, Hillas G. Experimental and investigational phosphodiesterase inhibitors in development for asthma. Expert Opin Investig Drugs 2019; 28:261-266. [PMID: 30678501 DOI: 10.1080/13543784.2019.1571582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Severe, inadequately-controlled asthma remains a clinical challenge. For this reason, clinical trials and preclinical experimental studies on novel agents as an add-on therapies continue emerge. Phosphodiesterases (PDEs) are enzymes that regulate the function of immune cells by hydrolyzing cyclic guanosine monophosphate/cGMP and cyclic adenosine monophosphate/cAMP. PDEs are divided into subfamilies [PDE3, PDE4, PDE5 and PDE7] which are mainly found in the respiratory tract. Inhibitors of PDEs have already been approved for COPD and pulmonary hypertension. AREAS COVERED The role of PDE inhibitors in asthma treatment and the possible mechanism of action via their anti-inflammatory and/or bronchodilating effect are discussed. EXPERT OPINION Novel PDE inhibitors exhibiting fewer adverse events may have a role as add-on therapies in asthma treatment in the future. More clinical trials are necessary to prove their efficacy and evaluate their safety profile before approval by regulatory bodies is granted.
Collapse
Affiliation(s)
- Polyxeni Ntontsi
- a 2nd Respiratory Medicine Department , National and Kapodistrian University of Athens, Medical School, Attikon Hospital , Athens , Greece
| | - Aggeliki Detta
- b 1st Respiratory Medicine Department , National and Kapodistrian University of Athens, Medical School, Sotiria Chest Hospital , Athens , Greece
| | - Petros Bakakos
- b 1st Respiratory Medicine Department , National and Kapodistrian University of Athens, Medical School, Sotiria Chest Hospital , Athens , Greece
| | - Stelios Loukides
- a 2nd Respiratory Medicine Department , National and Kapodistrian University of Athens, Medical School, Attikon Hospital , Athens , Greece
| | - Georgios Hillas
- c 5th Pulmonary Department , "Sotiria" Chest Diseases Hospital , Athens , Greece
| |
Collapse
|
29
|
Li H, Zuo J, Tang W. Phosphodiesterase-4 Inhibitors for the Treatment of Inflammatory Diseases. Front Pharmacol 2018; 9:1048. [PMID: 30386231 PMCID: PMC6199465 DOI: 10.3389/fphar.2018.01048] [Citation(s) in RCA: 352] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/30/2018] [Indexed: 12/25/2022] Open
Abstract
Phosphodiesterase-4 (PDE4), mainly present in immune cells, epithelial cells, and brain cells, manifests as an intracellular non-receptor enzyme that modulates inflammation and epithelial integrity. Inhibition of PDE4 is predicted to have diverse effects via the elevation of the level of cyclic adenosine monophosphate (cAMP) and the subsequent regulation of a wide array of genes and proteins. It has been identified that PDE4 is a promising therapeutic target for the treatment of diverse pulmonary, dermatological, and severe neurological diseases. Over the past decades, numerous PDE4 inhibitors have been designed and synthesized, among which roflumilast, apremilast, and crisaborole were approved for the treatment of inflammatory airway diseases, psoriatic arthritis, and atopic dermatitis, respectively. It is regrettable that the dramatic efficacies of a drug are often accompanied by adverse effects, such as nausea, emesis, and gastrointestinal reactions. However, substantial advances have been made to mitigate the adverse effects and obtain better benefit-to-risk ratio. This review highlights the dialectical role of PDE4 in drug discovery and the disquisitive details of certain PDE4 inhibitors to provide an overview of the topics that still need to be addressed in the future.
Collapse
Affiliation(s)
- Heng Li
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Jianping Zuo
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wei Tang
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
30
|
Anti-inflammatory effects of the phosphodiesterase type 4 inhibitor CHF6001 on bronchoalveolar lavage lymphocytes from asthma patients. Cytokine 2018; 113:68-73. [PMID: 29934047 DOI: 10.1016/j.cyto.2018.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/09/2018] [Accepted: 06/07/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Lymphocytes play a key role in asthma pathophysiology, secreting various cytokines involved in chronic inflammation. CHF6001 is a highly potent and selective phosphodiesterase type 4 (PDE4) inhibitor designed for inhaled administration and has been shown to reduce the late asthmatic response. However, the effect of PDE4 inhibition on the different cytokines produced by lung lymphocytes from asthma patients has not been examined. METHODS This study investigated the anti-inflammatory effects of CHF6001 and the corticosteroid, 17-BMP, on T-cell receptor (TCR) stimulated Th1, Th2 and Th17 cytokine release from bronchoalveolar lavage (BAL) cells from mild (n = 12) and moderate asthma (n = 12) patients. RESULTS CHF6001 inhibited IFNγ, IL-2 and IL-17, but not IL-13, secretion from both mild and moderate asthma patient BAL cells; there was a greater effect on IFNγ and IL-2 than IL-17. The corticosteroid inhibited all four cytokines from both patient groups, but was less effective in cells from more severe patients. CHF6001 had a greater inhibitory effect on IFNγ and IL-2 than 17-BMP. CONCLUSION The PDE4 inhibitor CHF6001 had a greater effect on Th1 cytokines from TCR-stimulated BAL cells than corticosteroid. This pharmacological effect suggests the therapeutic potential for PDE4 inhibitors to be used in the subset of more severe asthma patients with increased airway levels of IFNγ.
Collapse
|
31
|
Southworth T, Mason S, Bell A, Ramis I, Calbet M, Domenech A, Prats N, Miralpeix M, Singh D. PI3K, p38 and JAK/STAT signalling in bronchial tissue from patients with asthma following allergen challenge. Biomark Res 2018; 6:14. [PMID: 29651336 PMCID: PMC5896031 DOI: 10.1186/s40364-018-0128-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/02/2018] [Indexed: 01/01/2023] Open
Abstract
Background Inhaled allergen challenges are often used to evaluate novel asthma treatments in early phase clinical trials. Current novel therapeutic targets in asthma include phosphoinositide 3-kinases (PI3K) delta and gamma, p38 mitogen-activated protein kinase (p38) and Janus kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signalling pathways. The activation of these pathways following allergen exposure in atopic asthma patients it is not known. Methods We collected bronchial biopsies from 11 atopic asthma patients at baseline and after allergen challenge to investigate biomarkers of PI3K, p38 MAPK and JAK/STAT activation by immunohistochemistry. Cell counts and levels of eosinophil cationic protein and interleukin-5 were also assessed in sputum and bronchoalvelar lavage. Results Biopsies collected post-allergen had an increased percentage of epithelial cells expressing phospho-p38 (17.5 vs 25.6%, p = 0.04), and increased numbers of sub-epithelial cells expressing phospho-STAT5 (122.2 vs 540.6 cells/mm2, p = 0.01) and the PI3K marker phospho-ribosomal protein S6 (180.7 vs 777.3 cells/mm2,p = 0.005). Type 2 inflammation was increased in the airways post allergen, with elevated levels of eosinophils, interleukin-5 and eosinophil cationic protein. Conclusions Future clinical trials of novel kinase inhibitors could use the allergen challenge model in proof of concept studies, while employing these biomarkers to investigate pharmacological inhibition in the lungs.
Collapse
Affiliation(s)
- Thomas Southworth
- 1Division of Infection, Immunity & Respiratory Medicine, The Medicines Evaluation Unit, The University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK.,3The University of Manchester, 2nd Floor Education and Research Center, Wythenshawe Hospital, Southmoor Road, Manchester, M23 9LT UK
| | - Sarah Mason
- 1Division of Infection, Immunity & Respiratory Medicine, The Medicines Evaluation Unit, The University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Alan Bell
- 1Division of Infection, Immunity & Respiratory Medicine, The Medicines Evaluation Unit, The University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Isabel Ramis
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Marta Calbet
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Anna Domenech
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Neus Prats
- Almirall R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | | | - Dave Singh
- 1Division of Infection, Immunity & Respiratory Medicine, The Medicines Evaluation Unit, The University of Manchester, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
32
|
Roberts RS, Sevilla S, Ferrer M, Taltavull J, Hernández B, Segarra V, Gràcia J, Lehner MD, Gavaldà A, Andrés M, Cabedo J, Vilella D, Eichhorn P, Calama E, Carcasona C, Miralpeix M. 4-Amino-7,8-dihydro-1,6-naphthyridin-5(6 H)-ones as Inhaled Phosphodiesterase Type 4 (PDE4) Inhibitors: Structural Biology and Structure-Activity Relationships. J Med Chem 2018; 61:2472-2489. [PMID: 29502405 DOI: 10.1021/acs.jmedchem.7b01751] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rational design of a novel template of naphthyridinones rapidly led to PDE4 inhibitors with subnanomolar enzymatic potencies. X-ray crystallography confirmed the binding mode of this novel template. We achieved compounds with double-digit picomolar enzymatic potencies through further structure-based design by targeting both the PDE4 enzyme metal-binding pocket and occupying the solvent-filled pocket. A strategy for lung retention and long duration of action based on low aqueous solubility was followed. In vivo efficacies were measured in a rat lung neutrophilia model by suspension microspray and dry powder administration. Suspension microspray of potent compounds showed in vivo efficacy with a clear dose-response. Despite sustained lung levels, dry powder administration performed much less well and without proper dose-response, highlighting clear differences between the two formulations. This indicates a deficiency in the low aqueous solubility strategy for long duration lung efficacy.
Collapse
Affiliation(s)
- Richard S Roberts
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| | - Sara Sevilla
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| | - Manel Ferrer
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| | - Joan Taltavull
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| | - Begoña Hernández
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| | - Victor Segarra
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| | - Jordi Gràcia
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| | - Martin D Lehner
- Bionorica SE , Kerschensteinerstraße 11-15 , 92318 Neumarkt , Germany
| | | | - Miriam Andrés
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| | - Judit Cabedo
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| | - Dolors Vilella
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| | | | | | | | - Montserrat Miralpeix
- Medicinal Chemistry & Screening , ‡Pharmacokinetics & Metabolism , and §Experimental Dermatology , Almirall S.A., Centro de Investigación y Desarrollo , Crta. Laureà Miró 408-410 , Sant Feliu de Llobregat, 08980 Barcelona , Spain
| |
Collapse
|
33
|
Gross NJ, Barnes PJ. New Therapies for Asthma and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2017; 195:159-166. [PMID: 27922751 DOI: 10.1164/rccm.201610-2074pp] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Nicholas J Gross
- 1 University Medical Research LLC, St. Francis Hospital, Hartford, Connecticut; and
| | - Peter J Barnes
- 2 Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
34
|
Carzaniga L, Amari G, Rizzi A, Capaldi C, De Fanti R, Ghidini E, Villetti G, Carnini C, Moretto N, Facchinetti F, Caruso P, Marchini G, Battipaglia L, Patacchini R, Cenacchi V, Volta R, Amadei F, Pappani A, Capacchi S, Bagnacani V, Delcanale M, Puccini P, Catinella S, Civelli M, Armani E. Discovery and Optimization of Thiazolidinyl and Pyrrolidinyl Derivatives as Inhaled PDE4 Inhibitors for Respiratory Diseases. J Med Chem 2017; 60:10026-10046. [PMID: 29200281 DOI: 10.1021/acs.jmedchem.7b01044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Phosphodiesterase 4 (PDE4) is a key cAMP-metabolizing enzyme involved in the pathogenesis of inflammatory disease, and its pharmacological inhibition has been shown to exert therapeutic efficacy in chronic obstructive pulmonary disease (COPD). Herein, we describe a drug discovery program aiming at the identification of novel classes of potent PDE4 inhibitors suitable for pulmonary administration. Starting from a previous series of benzoic acid esters, we explored the chemical space in the solvent-exposed region of the enzyme catalytic binding pocket. Extensive structural modifications led to the discovery of a number of heterocycloalkyl esters as potent in vitro PDE4 inhibitors. (S*,S**)-18e and (S*,S**)-22e, in particular, exhibited optimal in vitro ADME and pharmacokinetics properties and dose-dependently counteracted acute lung eosinophilia in an experimental animal model. The optimal biological profile as well as the excellent solid-state properties suggest that both compounds have the potential to be effective topical agents for treating respiratory inflammatory diseases.
Collapse
Affiliation(s)
- Laura Carzaniga
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Gabriele Amari
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Andrea Rizzi
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Carmelida Capaldi
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Renato De Fanti
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Eleonora Ghidini
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Gino Villetti
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Chiara Carnini
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Nadia Moretto
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Fabrizio Facchinetti
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Paola Caruso
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Gessica Marchini
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Loredana Battipaglia
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Riccardo Patacchini
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Valentina Cenacchi
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Roberta Volta
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Francesco Amadei
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Alice Pappani
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Silvia Capacchi
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Valentina Bagnacani
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Maurizio Delcanale
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Paola Puccini
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Silvia Catinella
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Maurizio Civelli
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Elisabetta Armani
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| |
Collapse
|
35
|
Thomson NC. New and developing non-adrenoreceptor small molecule drugs for the treatment of asthma. Expert Opin Pharmacother 2017; 18:283-293. [PMID: 28099820 DOI: 10.1080/14656566.2017.1284794] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Inhaled corticosteroids (ICS) alone or in combination with an inhaled long-acting beta2-agonist (LABA) are the preferred long-term treatment for adults and adolescents with symptomatic asthma. Additional drugs include leukotriene-receptor antagonists, slow-release theophylline and the long-acting muscarinic antagonist (LAMA) tiotropium (approved in 2015). There is a need for more effective therapies, as many patients continue to have poorly controlled asthma. Areas covered: New and developing long-acting non-adrenoreceptor synthetic drugs for the treatment of symptomatic chronic asthma despite treatment with an ICS alone or combined with a LABA. Data was reviewed from studies published up until November 2016. Expert opinion: Tiotropium improves lung function and has a modest effect in reducing exacerbations when added to ICS alone or ICS and LABA. The LAMAs umeclidinium and glycopyrronium are under development in fixed dose combination with ICS and LABA. Novel small molecule drugs, such as CRTH2 receptor antagonists, PDE4 inhibitors, protein kinase inhibitors and nonsteroidal glucocorticoid receptor agonists and 'off-label' use of licensed drugs, such as macrolides and statins are under investigation for asthma, although their effectiveness in clinical practice is not established. To better achieve the goal of developing effective novel small molecule drugs for asthma will require greater understanding of mechanisms of disease and the different phenotypes and endotypes of asthma.
Collapse
Affiliation(s)
- Neil C Thomson
- a Institute of Infection, Immunity & Inflammation , University of Glasgow , Glasgow , UK
| |
Collapse
|
36
|
Thomson NC. New and developing non-adrenoreceptor small molecule drugs for the treatment of asthma. Expert Opin Pharmacother 2017. [DOI: 10.10.1080/14656566.2017.1284794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Neil C Thomson
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
37
|
Abstract
Theophylline is an orally acting xanthine that has been used since 1937 for the treatment of respiratory diseases including asthma and chronic obstructive pulmonary disease (COPD). However, in most treatment guidelines, xanthines have now been consigned to third-line therapy because of their narrow therapeutic window and propensity for drug-drug interactions. However, lower than conventional doses of theophylline considered to be bronchodilator are now known to have anti-inflammatory actions of relevance to the treatment of respiratory disease. The molecular mechanism(s) of action of theophylline are not well understood, but several potential targets have been suggested including non-selective inhibition of phosphodiesterases (PDE), inhibition of phosphoinositide 3-kinase, adenosine receptor antagonism and increased activity of certain histone deacetylases. Although theophylline has a narrow therapeutic window, other xanthines are in clinical use that are claimed to have a better tolerability such as doxofylline and bamifylline. Nonetheless, xanthines still play an important role in the treatment of asthma and COPD as they can show clinical benefit in patients who are refractory to glucocorticosteroid therapy, and withdrawal of xanthines from patients causes worsening of disease, even in patients taking concomitant glucocorticosteroids.More recently the orally active selective PDE4 inhibitor, roflumilast, has been introduced into clinical practice for the treatment of severe COPD on top of gold standard treatment. This drug has been shown to improve lung function in patients with severe COPD and to reduce exacerbations, but is dose limited by a range side effect, particularly gastrointestinal side effects.
Collapse
Affiliation(s)
- D Spina
- The Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK
| | - C P Page
- The Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, Franklin Wilkins Building, London, SE1 9NH, UK.
| |
Collapse
|