1
|
Suvac A, Ashton J, Bristow RG. Tumour hypoxia in driving genomic instability and tumour evolution. Nat Rev Cancer 2025; 25:167-188. [PMID: 39875616 DOI: 10.1038/s41568-024-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/30/2025]
Abstract
Intratumour hypoxia is a feature of all heterogenous solid tumours. Increased levels or subregions of tumour hypoxia are associated with an adverse clinical prognosis, particularly when this co-occurs with genomic instability. Experimental evidence points to the acquisition of DNA and chromosomal alterations in proliferating hypoxic cells secondary to inhibition of DNA repair pathways such as homologous recombination, base excision repair and mismatch repair. Cell adaptation and selection in repair-deficient cells give rise to a model whereby novel single-nucleotide mutations, structural variants and copy number alterations coexist with altered mitotic control to drive chromosomal instability and aneuploidy. Whole-genome sequencing studies support the concept that hypoxia is a critical microenvironmental cofactor alongside the driver mutations in MYC, BCL2, TP53 and PTEN in determining clonal and subclonal evolution in multiple tumour types. We propose that the hypoxic tumour microenvironment selects for unstable tumour clones which survive, propagate and metastasize under reduced immune surveillance. These aggressive features of hypoxic tumour cells underpin resistance to local and systemic therapies and unfavourable outcomes for patients with cancer. Possible ways to counter the effects of hypoxia to block tumour evolution and improve treatment outcomes are described.
Collapse
Affiliation(s)
- Alexandru Suvac
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jack Ashton
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert G Bristow
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Lee SCES, Pyo AHA, Koritzinsky M. Longitudinal dynamics of the tumor hypoxia response: From enzyme activity to biological phenotype. SCIENCE ADVANCES 2023; 9:eadj6409. [PMID: 37992163 PMCID: PMC10664991 DOI: 10.1126/sciadv.adj6409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Poor oxygenation (hypoxia) is a common spatially heterogeneous feature of human tumors. Biological responses to tumor hypoxia are orchestrated by the decreased activity of oxygen-dependent enzymes. The affinity of these enzymes for oxygen positions them along a continuum of oxygen sensing that defines their roles in launching reactive and adaptive cellular responses. These responses encompass regulation of all steps in the central dogma, with rapid perturbation of the metabolome and proteome followed by more persistent reprogramming of the transcriptome and epigenome. Core hypoxia response genes and pathways are commonly regulated at multiple inflection points, fine-tuning the dependencies on oxygen concentration and hypoxia duration. Ultimately, shifts in the activity of oxygen-sensing enzymes directly or indirectly endow cells with intrinsic hypoxia tolerance and drive processes that are associated with aggressive phenotypes in cancer including angiogenesis, migration, invasion, immune evasion, epithelial mesenchymal transition, and stemness.
Collapse
Affiliation(s)
- Sandy Che-Eun S. Lee
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Hye An Pyo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Ray SK, Mukherjee S. Interaction Among Noncoding RNAs, DNA Damage Reactions, and Genomic Instability in the Hypoxic Tumor: Is it Therapeutically Exploitable Practice? Curr Mol Med 2023; 23:200-215. [PMID: 35048804 DOI: 10.2174/1566524022666220120123557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023]
Abstract
Hypoxia is a classical function of the tumor's microenvironment with a substantial effect on the development and therapeutic response of cancer. When put in hypoxic environments, cells undergo several biological reactions, including activation of signaling pathways that control proliferation, angiogenesis, and death. These pathways have been adapted by cancer cells to allow tumors to survive and even develop in hypoxic conditions, and poor prognosis is associated with tumor hypoxia. The most relevant transcriptional regulator in response to hypoxia, Hypoxia-inducible factor-1 alpha (HIF-1α), has been shown to modulate hypoxic gene expression and signaling transduction networks significantly. The significance of non-coding RNAs in hypoxic tumor regions has been revealed in an increasing number of studies over the past few decades. In regulating hypoxic gene expression, these hypoxia-responsive ncRNAs play pivotal roles. Hypoxia, a general characteristic of the tumor's microenvironment, significantly affects the expression of genes and is closely associated with the development of cancer. Indeed, the number of known hypoxia-associated lncRNAs has increased dramatically, demonstrating the growing role of lncRNAs in cascades and responses to hypoxia signaling. Decades of research have helped us create an image of the shift in hypoxic cancer cells' DNA repair capabilities. Emerging evidence suggests that hypoxia can trigger genetic instability in cancer cells because of microenvironmental tumor stress. Researchers have found that critical genes' expression is coordinately repressed by hypoxia within the DNA damage and repair pathways. In this study, we include an update of current knowledge on the presentation, participation, and potential clinical effect of ncRNAs in tumor hypoxia, DNA damage reactions, and genomic instability, with a specific emphasis on their unusual cascade of molecular regulation and malignant progression induced by hypoxia.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020. India
| |
Collapse
|
4
|
Zaim Ö, Doğanlar O, Banu Doğanlar Z, Özcan H, Zreigh MM, Kurtdere K. Novel synthesis naringenin-benzyl piperazine derivatives prevent glioblastoma invasion by inhibiting the hypoxia-induced IL6/JAK2/STAT3 axis and activating caspase-dependent apoptosis. Bioorg Chem 2022; 129:106209. [DOI: 10.1016/j.bioorg.2022.106209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2022]
|
5
|
Lehman SL, Wechsler T, Schwartz K, Brown LE, Porco JA, Devine WG, Pelletier J, Shankavaram UT, Camphausen K, Tofilon PJ. Inhibition of the Translation Initiation Factor eIF4A Enhances Tumor Cell Radiosensitivity. Mol Cancer Ther 2022; 21:1406-1414. [PMID: 35732578 PMCID: PMC9452469 DOI: 10.1158/1535-7163.mct-22-0037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/12/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
A fundamental component of cellular radioresponse is the translational control of gene expression. Because a critical regulator of translational control is the eukaryotic translation initiation factor 4F (eIF4F) cap binding complex, we investigated whether eIF4A, the RNA helicase component of eIF4F, can serve as a target for radiosensitization. Knockdown of eIF4A using siRNA reduced translational efficiency, as determined from polysome profiles, and enhanced tumor cell radiosensitivity as determined by clonogenic survival. The increased radiosensitivity was accompanied by a delayed dispersion of radiation-induced γH2AX foci, suggestive of an inhibition of DNA double-strand break repair. Studies were then extended to (-)-SDS-1-021, a pharmacologic inhibitor of eIF4A. Treatment of cells with the rocaglate (-)-SDS-1-021 resulted in a decrease in translational efficiency as well as protein synthesis. (-)-SDS-1-021 treatment also enhanced the radiosensitivity of tumor cell lines. This (-)-SDS-1-021-induced radiosensitization was accompanied by a delay in radiation-induced γH2AX foci dispersal, consistent with a causative role for the inhibition of double-strand break repair. In contrast, although (-)-SDS-1-021 inhibited translation and protein synthesis in a normal fibroblast cell line, it had no effect on radiosensitivity of normal cells. Subcutaneous xenografts were then used to evaluate the in vivo response to (-)-SDS-1-021 and radiation. Treatment of mice bearing subcutaneous xenografts with (-)-SDS-1-021 decreased tumor translational efficiency as determined by polysome profiles. Although (-)-SDS-1-021 treatment alone had no effect on tumor growth, it significantly enhanced the radiation-induced growth delay. These results suggest that eIF4A is a tumor-selective target for radiosensitization.
Collapse
Affiliation(s)
- Stacey L. Lehman
- Radation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Theresa Wechsler
- Radation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Kayla Schwartz
- Radation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Lauren E. Brown
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - John A. Porco
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - William G. Devine
- Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA, USA
| | - Jerry Pelletier
- Department of Biochemistry, Oncology and Goodman Cancer Centre, McGill University, Montreal, H3G 1Y6, QC, Canada
| | | | - Kevin Camphausen
- Radation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Philip J. Tofilon
- Radation Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
6
|
Sugimoto Y, Ratcliffe PJ. Isoform-resolved mRNA profiling of ribosome load defines interplay of HIF and mTOR dysregulation in kidney cancer. Nat Struct Mol Biol 2022; 29:871-880. [PMID: 36097292 PMCID: PMC9507966 DOI: 10.1038/s41594-022-00819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/15/2022] [Indexed: 11/18/2022]
Abstract
Hypoxia inducible factor (HIF) and mammalian target of rapamycin (mTOR) pathways orchestrate responses to oxygen and nutrient availability. These pathways are frequently dysregulated in cancer, but their interplay is poorly understood, in part because of difficulties in simultaneous measurement of global and mRNA-specific translation. Here, we describe a workflow for measurement of ribosome load of mRNAs resolved by their transcription start sites (TSSs). Its application to kidney cancer cells reveals extensive translational reprogramming by mTOR, strongly affecting many metabolic enzymes and pathways. By contrast, global effects of HIF on translation are limited, and we do not observe reported translational activation by HIF2A. In contrast, HIF-dependent alterations in TSS usage are associated with robust changes in translational efficiency in a subset of genes. Analyses of the interplay of HIF and mTOR reveal that specific classes of HIF1A and HIF2A transcriptional target gene manifest different sensitivity to mTOR, in a manner that supports combined use of HIF2A and mTOR inhibitors in treatment of kidney cancer.
Collapse
Affiliation(s)
| | - Peter J Ratcliffe
- The Francis Crick Institute, London, UK.
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Bova V, Filippone A, Casili G, Lanza M, Campolo M, Capra AP, Repici A, Crupi L, Motta G, Colarossi C, Chisari G, Cuzzocrea S, Esposito E, Paterniti I. Adenosine Targeting as a New Strategy to Decrease Glioblastoma Aggressiveness. Cancers (Basel) 2022; 14:cancers14164032. [PMID: 36011024 PMCID: PMC9406358 DOI: 10.3390/cancers14164032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Given the rising mortality rate caused by GBM, current therapies do not appear to be effective in counteracting tumor progression. The role of adenosine and its interaction with specific receptor subtypes in various physiological functions has been studied for years. Only recently, adenosine has been defined as a tumor-protective target because of its accumulation in the tumor microenvironment. Current knowledge of the adenosine pathway and its involvement in brain tumors would support research in the development of adenosine receptor antagonists that could represent alternative treatments for glioblastoma, used either alone and/or in combination with chemotherapy, immunotherapy, or both. Abstract Glioblastoma is the most commonly malignant and aggressive brain tumor, with a high mortality rate. The role of the purine nucleotide adenosine and its interaction with its four subtypes receptors coupled to the different G proteins, A1, A2A, A2B, and A3, and its different physiological functions in different systems and organs, depending on the active receptor subtype, has been studied for years. Recently, several works have defined extracellular adenosine as a tumoral protector because of its accumulation in the tumor microenvironment. Its presence is due to both the interaction with the A2A receptor subtype and the increase in CD39 and CD73 gene expression induced by the hypoxic state. This fact has fueled preclinical and clinical research into the development of efficacious molecules acting on the adenosine pathway and blocking its accumulation. Given the success of anti-cancer immunotherapy, the new strategy is to develop selective A2A receptor antagonists that could competitively inhibit binding to its endogenous ligand, making them reliable candidates for the therapeutic management of brain tumors. Here, we focused on the efficacy of adenosine receptor antagonists and their enhancement in anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Valentina Bova
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Lelio Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Gianmarco Motta
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Cristina Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Giulia Chisari
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
- Correspondence: ; Tel.: +39-090-676-5208
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31-98166 Messina, Italy
| |
Collapse
|
8
|
Dimitriou ID, Meiri D, Jitkova Y, Elford AR, Koritzinsky M, Schimmer AD, Ohashi PS, Sonenberg N, Rottapel R. Translational Control by 4E-BP1/2 Suppressor Proteins Regulates Mitochondrial Biosynthesis and Function during CD8 + T Cell Proliferation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2702-2712. [PMID: 35667842 DOI: 10.4049/jimmunol.2101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
CD8+ T cell proliferation and differentiation into effector and memory states are high-energy processes associated with changes in cellular metabolism. CD28-mediated costimulation of T cells activates the PI3K/AKT/mammalian target of rapamycin signaling pathway and induces eukaryotic translation initiation factor 4E-dependent translation through the derepression by 4E-BP1 and 4E-BP2. In this study, we demonstrate that 4E-BP1/2 proteins are required for optimum proliferation of mouse CD8+ T cells and the development of an antiviral effector function. We show that translation of genes encoding mitochondrial biogenesis is impaired in T cells derived from 4E-BP1/2-deficient mice. Our findings demonstrate an unanticipated role for 4E-BPs in regulating a metabolic program that is required for cell growth and biosynthesis during the early stages of CD8+ T cell expansion.
Collapse
Affiliation(s)
- Ioannis D Dimitriou
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David Meiri
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yulia Jitkova
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alisha R Elford
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada;
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; and
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Grist SM, Bennewith KL, Cheung KC. Oxygen Measurement in Microdevices. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:221-246. [PMID: 35696522 DOI: 10.1146/annurev-anchem-061020-111458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oxygen plays a fundamental role in respiration and metabolism, and quantifying oxygen levels is essential in many environmental, industrial, and research settings. Microdevices facilitate the study of dynamic, oxygen-dependent effects in real time. This review is organized around the key needs for oxygen measurement in microdevices, including integrability into microfabricated systems; sensor dynamic range and sensitivity; spatially resolved measurements to map oxygen over two- or three-dimensional regions of interest; and compatibility with multimodal and multianalyte measurements. After a brief overview of biological readouts of oxygen, followed by oxygen sensor types that have been implemented in microscale devices and sensing mechanisms, this review presents select recent applications in organs-on-chip in vitro models and new sensor capabilities enabling oxygen microscopy, bioprocess manufacturing, and pharmaceutical industries. With the advancement of multiplexed, interconnected sensors and instruments and integration with industry workflows, intelligent microdevice-sensor systems including oxygen sensors will have further impact in environmental science, manufacturing, and medicine.
Collapse
Affiliation(s)
- Samantha M Grist
- School of Biomedical Engineering, Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada;
| | - Kevin L Bennewith
- Integrative Oncology Department, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Karen C Cheung
- School of Biomedical Engineering, Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada;
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Tamai S, Ichinose T, Tsutsui T, Tanaka S, Garaeva F, Sabit H, Nakada M. Tumor Microenvironment in Glioma Invasion. Brain Sci 2022; 12:brainsci12040505. [PMID: 35448036 PMCID: PMC9031400 DOI: 10.3390/brainsci12040505] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
A major malignant trait of gliomas is their remarkable infiltration capacity. When glioma develops, the tumor cells have already reached the distant part. Therefore, complete removal of the glioma is impossible. Recently, research on the involvement of the tumor microenvironment in glioma invasion has advanced. Local hypoxia triggers cell migration as an environmental factor. The transcription factor hypoxia-inducible factor (HIF) -1α, produced in tumor cells under hypoxia, promotes the transcription of various invasion related molecules. The extracellular matrix surrounding tumors is degraded by proteases secreted by tumor cells and simultaneously replaced by an extracellular matrix that promotes infiltration. Astrocytes and microglia become tumor-associated astrocytes and glioma-associated macrophages/microglia, respectively, in relation to tumor cells. These cells also promote glioma invasion. Interactions between glioma cells actively promote infiltration of each other. Surgery, chemotherapy, and radiation therapy transform the microenvironment, allowing glioma cells to invade. These findings indicate that the tumor microenvironment may be a target for glioma invasion. On the other hand, because the living body actively promotes tumor infiltration in response to the tumor, it is necessary to reconsider whether the invasion itself is friend or foe to the brain.
Collapse
|
11
|
Wegge M, Dok R, Nuyts S. Hypoxia and Its Influence on Radiotherapy Response of HPV-Positive and HPV-Negative Head and Neck Cancer. Cancers (Basel) 2021; 13:5959. [PMID: 34885069 PMCID: PMC8656584 DOI: 10.3390/cancers13235959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cancers are a heterogeneous group of cancers that arise from the upper aerodigestive tract. Etiologically, these tumors are linked to alcohol/tobacco abuse and infections with high-risk human papillomavirus (HPV). HPV-positive HNSCCs are characterized by a different biology and also demonstrate better therapy response and survival compared to alcohol/tobacco-related HNSCCs. Despite this advantageous therapy response and the clear biological differences, all locally advanced HNSCCs are treated with the same chemo-radiotherapy schedules. Although we have a better understanding of the biology of both groups of HNSCC, the biological factors associated with the increased radiotherapy response are still unclear. Hypoxia, i.e., low oxygen levels because of an imbalance between oxygen demand and supply, is an important biological factor associated with radiotherapy response and has been linked with HPV infections. In this review, we discuss the effects of hypoxia on radiotherapy response, on the tumor biology, and the tumor microenvironment of HPV-positive and HPV-negative HNSCCs by pointing out the differences between these two tumor types. In addition, we provide an overview of the current strategies to detect and target hypoxia.
Collapse
Affiliation(s)
- Marilyn Wegge
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven, 3000 Leuven, Belgium; (M.W.); (R.D.)
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven, 3000 Leuven, Belgium; (M.W.); (R.D.)
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven, 3000 Leuven, Belgium; (M.W.); (R.D.)
- Department of Radiation Oncology, Leuven Cancer Institute, UZ Leuven, 3000 Leuven, Belgium
| |
Collapse
|
12
|
Le N, Hufford TM, Park JS, Brewster RM. Differential expression and hypoxia-mediated regulation of the N-myc downstream regulated gene family. FASEB J 2021; 35:e21961. [PMID: 34665878 PMCID: PMC8573611 DOI: 10.1096/fj.202100443r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/09/2023]
Abstract
Many organisms rely on oxygen to generate cellular energy (adenosine triphosphate or ATP). During severe hypoxia, the production of ATP decreases, leading to cell damage or death. Conversely, excessive oxygen causes oxidative stress that is equally damaging to cells. To mitigate pathological outcomes, organisms have evolved mechanisms to adapt to fluctuations in oxygen levels. Zebrafish embryos are remarkably hypoxia-tolerant, surviving anoxia (zero oxygen) for hours in a hypometabolic, energy-conserving state. To begin to unravel underlying mechanisms, we analyze here the distribution of the N-myc Downstream Regulated Gene (ndrg) family, ndrg1-4, and their transcriptional response to hypoxia. These genes have been primarily studied in cancer cells and hence little is understood about their normal function and regulation. We show here using in situ hybridization that ndrgs are expressed in metabolically demanding organs of the zebrafish embryo, such as the brain, kidney, and heart. To investigate whether ndrgs are hypoxia-responsive, we exposed embryos to different durations and severity of hypoxia and analyzed transcript levels. We observed that ndrgs are differentially regulated by hypoxia and that ndrg1a has the most robust response, with a ninefold increase following prolonged anoxia. We further show that this treatment resulted in de novo expression of ndrg1a in tissues where the transcript is not observed under normoxic conditions and changes in Ndrg1a protein expression post-reoxygenation. These findings provide an entry point into understanding the role of this conserved gene family in the adaptation of normal cells to hypoxia and reoxygenation.
Collapse
Affiliation(s)
- Nguyet Le
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Timothy M. Hufford
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Jong S. Park
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Rachel M. Brewster
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| |
Collapse
|
13
|
Fernandes MT, Calado SM, Mendes-Silva L, Bragança J. CITED2 and the modulation of the hypoxic response in cancer. World J Clin Oncol 2020; 11:260-274. [PMID: 32728529 PMCID: PMC7360518 DOI: 10.5306/wjco.v11.i5.260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/13/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
CITED2 (CBP/p300-interacting transactivator with Glu/Asp-rich C-terminal domain, 2) is a ubiquitously expressed protein exhibiting a high affinity for the CH1 domain of the transcriptional co-activators CBP/p300, for which it competes with hypoxia-inducible factors (HIFs). CITED2 is particularly efficient in the inhibition of HIF-1α-dependent transcription in different contexts, ranging from organ development and metabolic homeostasis to tissue regeneration and immunity, being also potentially involved in various other physiological processes. In addition, CITED2 plays an important role in inhibiting HIF in some diseases, including kidney and heart diseases and type 2-diabetes. In the particular case of cancer, CITED2 either functions by promoting or suppressing cancer development depending on the context and type of tumors. For instance, CITED2 overexpression promotes breast and prostate cancers, as well as acute myeloid leukemia, while its expression is downregulated to sustain colorectal cancer and hepatocellular carcinoma. In addition, the role of CITED2 in the maintenance of cancer stem cells reveals its potential as a target in non-small cell lung carcinoma and acute myeloid leukemia, for example. But besides the wide body of evidence linking both CITED2 and HIF signaling to carcinogenesis, little data is available regarding CITED2 role as a negative regulator of HIF-1α specifically in cancer. Therefore, comprehensive studies exploring further the interactions of these two important mediators in cancer-specific models are sorely needed and this can potentially lead to the development of novel targeted therapies.
Collapse
Affiliation(s)
- Mónica T Fernandes
- School of Health, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - Sofia M Calado
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - Leonardo Mendes-Silva
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
| | - José Bragança
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
| |
Collapse
|
14
|
Cadmium Uptake, MT Gene Activation and Structure of Large-Sized Multi-Domain Metallothioneins in the Terrestrial Door Snail Alinda biplicata (Gastropoda, Clausiliidae). Int J Mol Sci 2020; 21:ijms21051631. [PMID: 32120996 PMCID: PMC7084494 DOI: 10.3390/ijms21051631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Terrestrial snails (Gastropoda) possess Cd-selective metallothioneins (CdMTs) that inactivate Cd2+ with high affinity. Most of these MTs are small Cysteine-rich proteins that bind 6 Cd2+ equivalents within two distinct metal-binding domains, with a binding stoichiometry of 3 Cd2+ ions per domain. Recently, unusually large, so-called multi-domain MTs (md-MTs) were discovered in the terrestrial door snail Alinda biplicata (A.b.). The aim of this study is to evaluate the ability of A.b. to cope with Cd stress and the potential involvement of md-MTs in its detoxification. Snails were exposed to increasing Cd concentrations, and Cd-tissue concentrations were quantified. The gene structure of two md-MTs (9md-MT and 10md-MT) was characterized, and the impact of Cd exposure on MT gene transcription was quantified via qRT PCR. A.b. efficiently accumulates Cd at moderately elevated concentrations in the feed, but avoids food uptake at excessively high Cd levels. The structure and expression of the long md-MT genes of A.b. were characterized. Although both genes are intronless, they are still transcribed, being significantly upregulated upon Cd exposure. Overall, our results contribute new knowledge regarding the metal handling of Alinda biplicata in particular, and the potential role of md-MTs in Cd detoxification of terrestrial snails, in general.
Collapse
|
15
|
|
16
|
Bhalla K, Jaber S, Nahid M N, Underwood K, Beheshti A, Landon A, Bhandary B, Bastian P, Evens AM, Haley J, Polster B, Gartenhaus RB. Role of hypoxia in Diffuse Large B-cell Lymphoma: Metabolic repression and selective translation of HK2 facilitates development of DLBCL. Sci Rep 2018; 8:744. [PMID: 29335581 PMCID: PMC5768748 DOI: 10.1038/s41598-018-19182-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/22/2017] [Indexed: 02/08/2023] Open
Abstract
Published molecular profiling studies in patients with lymphoma suggested the influence of hypoxia inducible factor-1 alpha (HIF1α) targets in prognosis of DLBCL. Yet, the role of hypoxia in hematological malignancies remains unclear. We observed that activation of HIF1α resulted in global translation repression during hypoxic stress in DLBCL. Protein translation efficiency as measured using 35S-labeled methionine incorporation revealed a ≥50% reduction in translation upon activation of HIF1α. Importantly, translation was not completely inhibited and expression of clinically correlated hypoxia targets such as GLUT1, HK2, and CYT-C was found to be refractory to translational repression under hypoxia in DLBCL cells. Notably, hypoxic induction of these genes was not observed in normal primary B-cells. Translational repression was coupled with a decrease in mitochondrial function. Screening of primary DLBCL patient samples revealed that expression of HK2, which encodes for the enzyme hexokinase 2, was significantly correlated with DLBCL phenotype. Genetic knockdown studies demonstrated that HK2 is required for promoting growth of DLBCL under hypoxic stress. Altogether, our findings provide strong support for the direct contribution of HK2 in B-cell lymphoma development and suggest that HK2 is a key metabolic driver of the DLBCL phenotype.
Collapse
Affiliation(s)
- Kavita Bhalla
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Department of Medicine, Baltimore, MD, 21201, USA.
| | - Sausan Jaber
- University of Maryland, Department of Biochemistry and Molecular Biology, Baltimore, MD, 21201, USA
| | - Nanaji Nahid M
- Veterans Administration Medical Center, Baltimore, MD, 21201, USA
| | - Karen Underwood
- University of Maryland, Flow Cytometry Core, Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA
| | | | - Ari Landon
- Yale School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Binny Bhandary
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Department of Medicine, Baltimore, MD, 21201, USA
| | - Paul Bastian
- National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | | | - John Haley
- Department of Pathology, Stony Brook Medicine, Stony Brook, NY, 11794-8691, USA
| | - Brian Polster
- University of Maryland, Department of Biochemistry and Molecular Biology, Baltimore, MD, 21201, USA
| | - Ronald B Gartenhaus
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Department of Medicine, Baltimore, MD, 21201, USA.
- Veterans Administration Medical Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
17
|
Hypoxia-mediated translational activation of ITGB3 in breast cancer cells enhances TGF-β signaling and malignant features in vitro and in vivo. Oncotarget 2017; 8:114856-114876. [PMID: 29383126 PMCID: PMC5777738 DOI: 10.18632/oncotarget.23145] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/14/2017] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most prevalent malignancy in women and there is an urgent need for new therapeutic drugs targeting aggressive and metastatic subtypes, such as hormone-refractory triple-negative breast cancer (TNBC). Control of protein synthesis is vital to cell growth and tumour progression and permits increased resistance to therapy and cellular stress. Hypoxic cancer cells attain invasive and metastatic properties and chemotherapy resistance, but the regulation and role of protein synthesis in this setting is poorly understood. We performed a polysomal RNA-Seq screen in non-malignant breast epithelial (MCF10A) and TNBC (MDA-MB-231) cells exposed to normoxic or hypoxic conditions and/or treated with an mTOR pathway inhibitor. Analysis of both the transcriptome and the translatome identified mRNA transcripts translationally activated or repressed by hypoxia in an mTOR-dependent or -independent manner. Integrin beta 3 (ITGB3) was translationally activated in hypoxia and its knockdown increased apoptosis and reduced survival and migration, particularly under hypoxic conditions. Moreover, ITGB3 was required for sustained TGF-β pathway activation and for the induction of Snail and associated epithelial-mesenchymal transition markers. ITGB3 downregulation significantly reduced lung metastasis and improved overall survival in mice. Collectively, these data suggest that ITGB3 is translationally activated in hypoxia and regulates malignant features, including epithelial-mesenchymal transition and cell migration, through the TGF-β pathway, revealing a novel angle for the treatment of therapy-resistant hypoxic tumours.
Collapse
|
18
|
Jiang Z, Yang J, Dai A, Wang Y, Li W, Xie Z. Ribosome profiling reveals translational regulation of mammalian cells in response to hypoxic stress. BMC Genomics 2017; 18:638. [PMID: 28826393 PMCID: PMC5563900 DOI: 10.1186/s12864-017-3996-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/01/2017] [Indexed: 12/30/2022] Open
Abstract
Background Retinal pigment epithelium (RPE) cells transfer oxygen and nutrients from choroid to the neural retina. Reduced oxygen to RPE perturbs development and functions of blood vessels in retina. Previous efforts of genome-wide studies have been largely focused on transcriptional changes of cells in response to hypoxia. Recently developed ribosome profiling provides an opportunity to study genome-wide translational changes. To gain systemic insights into the transcriptional and translational regulation of cellular in response to hypoxic stress, we used simultaneous RNA sequencing and ribosome profiling on an RPE cells line, ARPE-19, under hypoxia condition. Results Both HIF-1α and EPAS1 (HIF-2α) proteins were stabilized in ARPE-19 under hypoxic stress treatment at 1 h, 2 h and 4 h. Analysis of simultaneous RNA sequencing and ribosome profiling data showed genome-wide gene expression changes at both transcriptional and translational levels. Comparative analysis of ribosome profiling and RNA-seq data revealed that hypoxia induced changes of more genes at the translational than the transcriptional levels. Ribosomes densities at 5′ untranslated region (UTR) significantly increased under hypoxic stress. Interestingly, the increase in ribosome densities at 5′ UTR is positively correlated with the presence of upstream open reading frames (uORFs) in the 5′ UTR of mRNAs. Conclusion Our results characterized translational profiles of mRNAs for a RPE cell line in response to hypoxia. In particular, uORFs play important roles in the regulation of translation efficiency by affecting ribosomes loading onto mRNAs. This study provides the first attempt to understand translational response of mammalian cells under hypoxic condition. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3996-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiwen Jiang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Yang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Aimei Dai
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuming Wang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wei Li
- Retinal Neurobiology Section, National Eye Institute, Bethesda, MD, USA
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
19
|
Gao Z, Luo G, Ni B. Progress in mass spectrometry-based proteomic research of tumor hypoxia (Review). Oncol Rep 2017; 38:676-684. [PMID: 28656308 DOI: 10.3892/or.2017.5748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/31/2017] [Indexed: 11/06/2022] Open
Abstract
A hypoxic microenvironment effects various signaling pathways in the human body, including those that are critical for normal physiology and those that support tumorigenesis or cancer progression. A hypoxic tumor microenvironment, in particular, modulates cell migration, invasion and resistance to radiotherapy and chemotherapy. Development of the mass spectrometry (MS) technique has allowed for expansion of proteomic study to a wide variety of fields, with the study of tumor hypoxia being among the latest to enjoy its benefits. In such studies, changes in the proteome of tumor tissue or cells induced by the hypoxic conditions are analyzed. A multitude of hypoxic regulatory proteins have already been identified, increasing our understanding of the mechanisms underlying tumor occurrence and development and representing candidate reference markers for tumor diagnosis and therapy. The present review provides the first summary of the collective studies on tumor microenvironment hypoxia that have been completed using MS-based proteomic techniques, providing a systematic discussion of the benefits and current challenges of the various applications.
Collapse
Affiliation(s)
- Zhiqi Gao
- Department of Pathophysiology and High Altitude Pathology/Key Laboratory of High Altitude Environment Medicine (Third Military Medical University), Ministry of Education/Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Gang Luo
- Department of Pathophysiology and High Altitude Pathology/Key Laboratory of High Altitude Environment Medicine (Third Military Medical University), Ministry of Education/Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| | - Bing Ni
- Department of Pathophysiology and High Altitude Pathology/Key Laboratory of High Altitude Environment Medicine (Third Military Medical University), Ministry of Education/Key Laboratory of High Altitude Medicine, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
20
|
Zhu H, Leiss L, Yang N, Rygh CB, Mitra SS, Cheshier SH, Weissman IL, Huang B, Miletic H, Bjerkvig R, Enger PØ, Li X, Wang J. Surgical debulking promotes recruitment of macrophages and triggers glioblastoma phagocytosis in combination with CD47 blocking immunotherapy. Oncotarget 2017; 8:12145-12157. [PMID: 28076333 PMCID: PMC5355332 DOI: 10.18632/oncotarget.14553] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/26/2016] [Indexed: 02/04/2023] Open
Abstract
Surgical resection is a standard component of treatment in the clinical management of patients with glioblastoma multiforme (GBM). However, experimental therapies are rarely investigated in the context of tumor debulking in preclinical models. Here, a surgical debulking GBM xenograft model was developed in nude rats, and was used in combination with CD47 blocking immunotherapy, a novel treatment strategy that triggers phagocytosis of tumor cells by macrophages in diverse cancer types including GBM. Orthotopic patient-derived xenograft tumors expressing CD47 were resected at 4 weeks after implantation and immediately thereafter treated with anti-CD47 or control antibodies injected into the cavity. Debulking prolonged survival (median survival, 68.5 vs 42.5 days, debulking and non-debulking survival times, respectively; n = 6 animals/group; P = 0.0005). Survival was further improved in animals that underwent combination treatment with anti-CD47 mAbs (median survival, 81.5 days vs 69 days, debulking + anti-CD47 vs debulking + control IgG, respectively; P = 0.0007). Immunohistochemistical staining of tumor sections revealed an increase in recruitment of cells positive for CD68, a marker for macrophages/immune cell types, to the surgical site (50% vs 10%, debulking vs non-debulking, respectively). Finally, analysis of tumor protein lysates on antibody microarrays demonstrated an increase in pro-inflammatory cytokines, such as CXCL10, and a decrease in angiogenic proteins in debulking + anti-CD47 vs non-debulking + IgG tumors. The results indicated that surgical resection combined with anti-CD47 blocking immunotherapy promoted an inflammatory response and prolonged survival in animals, and is therefore an attractive strategy for clinical translation.
Collapse
Affiliation(s)
- Huaiyang Zhu
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Oncology, Shandong Chest Hospital, Jinan, China
| | - Lina Leiss
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Neuro Clinic, Haukeland University Hospital, Bergen, Norway
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
- Brain Science Research Institute, Shandong University, Jinan, China
| | - Cecilie B. Rygh
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Siddhartha S. Mitra
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, USA
| | - Samuel H. Cheshier
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Stanford University, USA
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, USA
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
- Brain Science Research Institute, Shandong University, Jinan, China
| | - Hrvoje Miletic
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Rolf Bjerkvig
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Per Ø. Enger
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
- Brain Science Research Institute, Shandong University, Jinan, China
| | - Jian Wang
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China
- Brain Science Research Institute, Shandong University, Jinan, China
| |
Collapse
|
21
|
Chowdhury S, Yung E, Pintilie M, Muaddi H, Chaib S, Yeung M, Fusciello M, Sykes J, Pitcher B, Hagenkort A, McKee T, Vellanki R, Chen E, Bristow RG, Wouters BG, Koritzinsky M. MATE2 Expression Is Associated with Cancer Cell Response to Metformin. PLoS One 2016; 11:e0165214. [PMID: 27959931 PMCID: PMC5154501 DOI: 10.1371/journal.pone.0165214] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/16/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND There is great interest in repurposing the commonly prescribed anti-diabetic drug metformin for cancer therapy. Intracellular uptake and retention of metformin is affected by the expression of organic cation transporters (OCT) 1-3 and by multidrug and toxic compound extrusion (MATE) 1-2. Inside cells, metformin inhibits mitochondrial function, which leads to reduced oxygen consumption and inhibition of proliferation. Reduced oxygen consumption can lead to improved tumor oxygenation and radiation response. PURPOSE Here we sought to determine if there is an association between the effects of metformin on inhibiting oxygen consumption, proliferation and expression of OCTs and MATEs in a panel of 19 cancer cell lines. RESULTS There was relatively large variability in the anti-proliferative response of different cell lines to metformin, with a subset of cell lines being very resistant. In contrast, all cell lines demonstrated sensitivity to the inhibition of oxygen consumption by metformin, with relatively small variation. The expression of OCT1 correlated with expression of both OCT2 and OCT3. OCT1 and OCT2 were relatively uniformly expressed, whereas expression of OCT3, MATE1 and MATE2 showed substantial variation across lines. There were statistically significant associations between resistance to inhibition of proliferation and MATE2 expression, as well as between sensitivity to inhibition of oxygen consumption and OCT3 expression. One cell line (LNCaP) with high OCT3 and low MATE2 expression in concert, had substantially higher intracellular metformin concentration than other cell lines, and was exquisitely sensitive to both anti-proliferative and anti-respiratory effects. In all other cell lines, the concentration of metformin required to inhibit oxygen consumption acutely in vitro was substantially higher than that achieved in the plasma of diabetic patients. However, administering anti-diabetic doses of metformin to tumor-bearing mice resulted in intratumoral accumulation of metformin and reduced hypoxic tumor fractions. CONCLUSIONS All cancer cells are susceptible to inhibition of oxygen consumption by metformin, which results in reduced hypoxic tumor fractions beneficial for the response to radiotherapy. High MATE2 expression may result in resistance to the anti-proliferative effect of metformin and should be considered as a negative predictive biomarker in clinical trials.
Collapse
Affiliation(s)
- Sanjana Chowdhury
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Eric Yung
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Melania Pintilie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Hala Muaddi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Selim Chaib
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- University of Maastricht, Maastricht, The Netherlands
| | - ManTek Yeung
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Manlio Fusciello
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- University of Maastricht, Maastricht, The Netherlands
| | - Jenna Sykes
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Bethany Pitcher
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Anna Hagenkort
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- University of Maastricht, Maastricht, The Netherlands
| | - Trevor McKee
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ravi Vellanki
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Eric Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Robert G. Bristow
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Bradly G. Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- University of Maastricht, Maastricht, The Netherlands
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
22
|
Jain CV, Jessmon P, Kilburn BA, Jodar M, Sendler E, Krawetz SA, Armant DR. Regulation of HBEGF by Micro-RNA for Survival of Developing Human Trophoblast Cells. PLoS One 2016; 11:e0163913. [PMID: 27701455 PMCID: PMC5049799 DOI: 10.1371/journal.pone.0163913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/17/2016] [Indexed: 11/30/2022] Open
Abstract
Introduction The growth factor HBEGF is upregulated post-transcriptionally in the low O2 environment of the human placenta during the first 10 weeks of pregnancy. We have examined the possible roles of HBEGF turnover and micro-RNA (miRNA) in its regulation by O2 in human first trimester trophoblast. Methods HTR-8/SVneo trophoblast cells were cultured at 2% or 20% O2. The cells were transfected with a dual luciferase reporter construct (psiCHECK-2) containing no insert (control), the HBEGF 3’ untranslated region (3’UTR), or sub-regions of the 3’UTR, as well as with siRNA for DGCR8. RNA was extracted from trophoblast cells cultured at 2% O2 for 0–4 h for next-generation sequencing. HBEGF was quantified by ELISA. HBEGF, DGCR8, and β–actin were examined by western blotting. Results Protein turnover studies, using 10 μg/ml cyclohexamide, 1 μg/ml lactocystin, or 100 μg/ml MG132, demonstrated faster HBEGF degradation at 20% O2 than 2% O2, mediated by the proteasome. However, proteasome inhibition failed to initiate HBEGF accumulation at 20% O2. Reporter assays, comparing to empty vector, demonstrated that the intact HBEGF 3’ UTR inhibited expression (0.26), while fragments containing only its flanking regions increased reporter activity (3.15; 3.43). No differential expression of miRNAs was found in trophoblast cells cultured at 2% and 20% O2. Nevertheless, HBEGF upregulation at 2% O2 was blocked when the miRNA-processing protein DGCR8 was silenced, suggesting a role for miRNA. Conclusion Our findings suggest involvement of flanking regions of the 3’UTR in activating HBEGF protein synthesis in response to 2% O2, possibly through a miRNA-mediated mechanism.
Collapse
Affiliation(s)
- Chandni V. Jain
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Philip Jessmon
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Brian A. Kilburn
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Meritxell Jodar
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Edward Sendler
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Stephen A. Krawetz
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - D. Randall Armant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
23
|
Hypoxia Induces Autophagy through Translational Up-Regulation of Lysosomal Proteins in Human Colon Cancer Cells. PLoS One 2016; 11:e0153627. [PMID: 27078027 PMCID: PMC4831676 DOI: 10.1371/journal.pone.0153627] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/02/2016] [Indexed: 12/11/2022] Open
Abstract
Hypoxia occurs in a wide variety of physiological and pathological conditions, including tumorigenesis. Tumor cells have to adapt to hypoxia by altering their gene expression and protein synthesis. Here, we showed that hypoxia inhibits translation through activation of PERK and inactivation of mTOR in human colon cancer HCT116 cells. Prolonged hypoxia (1% O2, 16 h) dramatically inhibits general translation in HCT116 cells, yet selected mRNAs remain efficiently translated under such a condition. Using microarray analysis of polysome- associated mRNAs, we identified a large number of hypoxia-regulated genes at the translational level. Efficiently translated mRNAs during hypoxia were validated by polysome profiling and quantitative real-time RT-PCR. Pathway enrichment analysis showed that many of the up-regulated genes are involved in lysosome, glycan and lipid metabolism, antigen presentation, cell adhesion, and remodeling of the extracellular matrix and cytoskeleton. The majority of down-regulated genes are involved in apoptosis, ubiquitin-mediated proteolysis, and oxidative phosphorylation. Further investigation showed that hypoxia induces lysosomal autophagy and mitochondrial dysfunction through translational regulation in HCT116 cells. The abundance of several translation factors and the mTOR kinase activity are involved in hypoxia-induced mitochondrial autophagy in HCT116 cells. Our studies highlight the importance of translational regulation for tumor cell adaptation to hypoxia.
Collapse
|
24
|
Scanlon SE, Glazer PM. Multifaceted control of DNA repair pathways by the hypoxic tumor microenvironment. DNA Repair (Amst) 2015; 32:180-189. [PMID: 25956861 DOI: 10.1016/j.dnarep.2015.04.030] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypoxia, as a pervasive feature in the microenvironment of solid tumors, plays a significant role in cancer progression, metastasis, and ultimately clinical outcome. One key cellular consequence of hypoxic stress is the regulation of DNA repair pathways, which contributes to the genomic instability and mutator phenotype observed in human cancers. Tumor hypoxia can vary in severity and duration, ranging from acute fluctuating hypoxia arising from temporary blockages in the immature microvasculature, to chronic moderate hypoxia due to sparse vasculature, to complete anoxia at distances more than 150 μM from the nearest blood vessel. Paralleling the intra-tumor heterogeneity of hypoxia, the effects of hypoxia on DNA repair occur through diverse mechanisms. Acutely, hypoxia activates DNA damage signaling pathways, primarily via post-translational modifications. On a longer timescale, hypoxia leads to transcriptional and/or translational downregulation of most DNA repair pathways including DNA double-strand break repair, mismatch repair, and nucleotide excision repair. Furthermore, extended hypoxia can lead to long-term persistent silencing of certain DNA repair genes, including BRCA1 and MLH1, revealing a mechanism by which tumor suppressor genes can be inactivated. The discoveries of the hypoxic modulation of DNA repair pathways have highlighted many potential ways to target susceptibilities of hypoxic cancer cells. In this review, we will discuss the multifaceted hypoxic control of DNA repair at the transcriptional, post-transcriptional, and epigenetic levels, and we will offer perspective on the future of its clinical implications.
Collapse
Affiliation(s)
- Susan E Scanlon
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA; Department of Experimental Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
25
|
Dennis MD, Kimball SR, Fort PE, Jefferson LS. Regulated in development and DNA damage 1 is necessary for hyperglycemia-induced vascular endothelial growth factor expression in the retina of diabetic rodents. J Biol Chem 2014; 290:3865-74. [PMID: 25548280 DOI: 10.1074/jbc.m114.623058] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is considered a major role player in the pathogenesis of diabetic retinopathy, yet the mechanisms regulating its expression are not fully understood. Our laboratory previously demonstrated that diabetes-induced VEGF expression in the retina was dependent on the repressor of mRNA translation 4E-BP1. Interaction of 4E-BP1 with the cap-binding protein eIF4E regulates protein expression by controlling the selection of mRNAs for translation. The process is regulated by the master kinase mTOR in complex 1 (mTORC1), which phosphorylates 4E-BP1, thus promoting its disassociation from eIF4E. In the present study, we investigated the role of the Akt/mTORC1 repressor REDD1 (regulated in development and DNA damage) in diabetes-induced VEGF expression. REDD1 expression was induced by hyperglycemia in the retina of diabetic rodents and by hyperglycemic conditions in Müller cells concomitant with increased VEGF expression. In Müller cells, hyperglycemic conditions attenuated global rates of protein synthesis and cap-dependent mRNA translation concomitant with up-regulated cap-independent VEGF mRNA translation, as assessed by a bicistronic luciferase reporter assay. Hyperglycemic conditions also attenuated mTORC1 signaling and enhanced 4E-BP1 binding to eIF4E. Furthermore, ectopic expression of REDD1 in Müller cells was sufficient to promote both increased 4E-BP1 binding to eIF4E and VEGF expression. Whereas the retina of wild-type mice exhibited increased expression of VEGF and tumor necrosis factor alpha (TNF-α) 4 weeks after streptozotocin administration, the retina of REDD1 knock-out mice failed to do so. Overall, the results demonstrate that REDD1 contributes to the pathogenesis of diabetes in the retina by mediating the pathogenic effects of hyperglycemia.
Collapse
Affiliation(s)
- Michael D Dennis
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033 and
| | - Scot R Kimball
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033 and
| | - Patrice E Fort
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan 48105
| | - Leonard S Jefferson
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033 and
| |
Collapse
|
26
|
Leprivier G, Rotblat B, Khan D, Jan E, Sorensen PH. Stress-mediated translational control in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:845-60. [PMID: 25464034 DOI: 10.1016/j.bbagrm.2014.11.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 12/22/2022]
Abstract
Tumor cells are continually subjected to diverse stress conditions of the tumor microenvironment, including hypoxia, nutrient deprivation, and oxidative or genotoxic stress. Tumor cells must evolve adaptive mechanisms to survive these conditions to ultimately drive tumor progression. Tight control of mRNA translation is critical for this response and the adaptation of tumor cells to such stress forms. This proceeds though a translational reprogramming process which restrains overall translation activity to preserve energy and nutrients, but which also stimulates the selective synthesis of major stress adaptor proteins. Here we present the different regulatory signaling pathways which coordinate mRNA translation in the response to different stress forms, including those regulating eIF2α, mTORC1 and eEF2K, and we explain how tumor cells hijack these pathways for survival under stress. Finally, mechanisms for selective mRNA translation under stress, including the utilization of upstream open reading frames (uORFs) and internal ribosome entry sites (IRESes) are discussed in the context of cell stress. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Gabriel Leprivier
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L4, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Barak Rotblat
- Department of Life Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Debjit Khan
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L4, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L4, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada.
| |
Collapse
|
27
|
Pettersen EO, Ebbesen P, Gieling RG, Williams KJ, Dubois L, Lambin P, Ward C, Meehan J, Kunkler IH, Langdon SP, Ree AH, Flatmark K, Lyng H, Calzada MJ, Peso LD, Landazuri MO, Görlach A, Flamm H, Kieninger J, Urban G, Weltin A, Singleton DC, Haider S, Buffa FM, Harris AL, Scozzafava A, Supuran CT, Moser I, Jobst G, Busk M, Toustrup K, Overgaard J, Alsner J, Pouyssegur J, Chiche J, Mazure N, Marchiq I, Parks S, Ahmed A, Ashcroft M, Pastorekova S, Cao Y, Rouschop KM, Wouters BG, Koritzinsky M, Mujcic H, Cojocari D. Targeting tumour hypoxia to prevent cancer metastasis. From biology, biosensing and technology to drug development: the METOXIA consortium. J Enzyme Inhib Med Chem 2014; 30:689-721. [PMID: 25347767 DOI: 10.3109/14756366.2014.966704] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/15/2014] [Indexed: 01/06/2023] Open
Abstract
The hypoxic areas of solid cancers represent a negative prognostic factor irrespective of which treatment modality is chosen for the patient. Still, after almost 80 years of focus on the problems created by hypoxia in solid tumours, we still largely lack methods to deal efficiently with these treatment-resistant cells. The consequences of this lack may be serious for many patients: Not only is there a negative correlation between the hypoxic fraction in tumours and the outcome of radiotherapy as well as many types of chemotherapy, a correlation has been shown between the hypoxic fraction in tumours and cancer metastasis. Thus, on a fundamental basis the great variety of problems related to hypoxia in cancer treatment has to do with the broad range of functions oxygen (and lack of oxygen) have in cells and tissues. Therefore, activation-deactivation of oxygen-regulated cascades related to metabolism or external signalling are important areas for the identification of mechanisms as potential targets for hypoxia-specific treatment. Also the chemistry related to reactive oxygen radicals (ROS) and the biological handling of ROS are part of the problem complex. The problem is further complicated by the great variety in oxygen concentrations found in tissues. For tumour hypoxia to be used as a marker for individualisation of treatment there is a need for non-invasive methods to measure oxygen routinely in patient tumours. A large-scale collaborative EU-financed project 2009-2014 denoted METOXIA has studied all the mentioned aspects of hypoxia with the aim of selecting potential targets for new hypoxia-specific therapy and develop the first stage of tests for this therapy. A new non-invasive PET-imaging method based on the 2-nitroimidazole [(18)F]-HX4 was found to be promising in a clinical trial on NSCLC patients. New preclinical models for testing of the metastatic potential of cells were developed, both in vitro (2D as well as 3D models) and in mice (orthotopic grafting). Low density quantitative real-time polymerase chain reaction (qPCR)-based assays were developed measuring multiple hypoxia-responsive markers in parallel to identify tumour hypoxia-related patterns of gene expression. As possible targets for new therapy two main regulatory cascades were prioritised: The hypoxia-inducible-factor (HIF)-regulated cascades operating at moderate to weak hypoxia (<1% O(2)), and the unfolded protein response (UPR) activated by endoplasmatic reticulum (ER) stress and operating at more severe hypoxia (<0.2%). The prioritised targets were the HIF-regulated proteins carbonic anhydrase IX (CAIX), the lactate transporter MCT4 and the PERK/eIF2α/ATF4-arm of the UPR. The METOXIA project has developed patented compounds targeting CAIX with a preclinical documented effect. Since hypoxia-specific treatments alone are not curative they will have to be combined with traditional anti-cancer therapy to eradicate the aerobic cancer cell population as well.
Collapse
|
28
|
Chan N, Ali M, McCallum GP, Kumareswaran R, Koritzinsky M, Wouters BG, Wells PG, Gallinger S, Bristow RG. Hypoxia provokes base excision repair changes and a repair-deficient, mutator phenotype in colorectal cancer cells. Mol Cancer Res 2014; 12:1407-15. [PMID: 25030372 DOI: 10.1158/1541-7786.mcr-14-0246] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
UNLABELLED Regions of acute and chronic hypoxia exist within solid tumors and can lead to increased rates of mutagenesis and/or altered DNA damage and repair protein expression. Base excision repair (BER) is responsible for resolving small, non-helix-distorting lesions from the genome that potentially cause mutations by mispairing or promoting DNA breaks during replication. Germline and somatic mutations in BER genes, such as MutY Homolog (MUTYH/MYH) and DNA-directed polymerase (POLB), are associated with increased risk of colorectal cancer. However, very little is known about the expression and function of BER proteins under hypoxic stress. Using conditions of chronic hypoxia, decreased expression of BER proteins was observed because of a mechanism involving suppressed BER protein synthesis in multiple colorectal cancer cell lines. Functional BER was impaired as determined by MYH- and 8-oxoguanine (OGG1)-specific glycosylase assays. A formamidopyrimidine-DNA glycosylase (Fpg) Comet assay revealed elevated residual DNA base damage in hypoxic cells 24 hours after H2O2 treatment as compared with normoxic controls. Similarly, high-performance liquid chromatography analysis demonstrated that 8-oxo-2'-deoxyguanosine lesions were elevated in hypoxic cells 3 and 24 hours after potassium bromate (KBrO3) treatment when compared with aerobic cells. Correspondingly, decreased clonogenic survival was observed following exposure to the DNA base damaging agents H2O2 and MMS, but not to the microtubule interfering agent paclitaxel. Thus, a persistent downregulation of BER components by the microenvironment modifies and facilitates a mutator phenotype, driving genetic instability and cancer progression. IMPLICATIONS Aberrant BER is a contributing factor for the observed genetic instability in hypoxic tumor cells.
Collapse
Affiliation(s)
- Norman Chan
- Princess Margaret Cancer Centre (University Health Network), Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Mohsin Ali
- Princess Margaret Cancer Centre (University Health Network), Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Gordon P McCallum
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Ramya Kumareswaran
- Princess Margaret Cancer Centre (University Health Network), Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre (University Health Network), Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Bradly G Wouters
- Princess Margaret Cancer Centre (University Health Network), Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Wells
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | - Steven Gallinger
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Robert G Bristow
- Princess Margaret Cancer Centre (University Health Network), Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Abstract
SIGNIFICANCE Most solid tumors contain regions of low oxygenation or hypoxia. Tumor hypoxia has been associated with a poor clinical outcome and plays a critical role in tumor radioresistance. RECENT ADVANCES Two main types of hypoxia exist in the tumor microenvironment: chronic and cycling hypoxia. Chronic hypoxia results from the limited diffusion distance of oxygen, and cycling hypoxia primarily results from the variation in microvessel red blood cell flux and temporary disturbances in perfusion. Chronic hypoxia may cause either tumor progression or regressive effects depending on the tumor model. However, there is a general trend toward the development of a more aggressive phenotype after cycling hypoxia. With advanced hypoxia imaging techniques, spatiotemporal characteristics of tumor hypoxia and the changes to the tumor microenvironment can be analyzed. CRITICAL ISSUES In this review, we focus on the biological and clinical consequences of chronic and cycling hypoxia on radiation treatment. We also discuss the advanced non-invasive imaging techniques that have been developed to detect and monitor tumor hypoxia in preclinical and clinical studies. FUTURE DIRECTIONS A better understanding of the mechanisms of tumor hypoxia with non-invasive imaging will provide a basis for improved radiation therapeutic practices.
Collapse
Affiliation(s)
- Chen-Ting Lee
- 1 Department of Radiation Oncology, Duke University Medical Center , Durham, North Carolina
| | | | | |
Collapse
|
30
|
da Costa MR, Pizzatti L, Lindoso RS, Sant'Anna JF, DuRocher B, Abdelhay E, Vieyra A. Mechanisms of kidney repair by human mesenchymal stromal cells after ischemia: a comprehensive view using label-free MS(E). Proteomics 2014; 14:1480-93. [PMID: 24723500 DOI: 10.1002/pmic.201300084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 02/24/2014] [Accepted: 03/27/2014] [Indexed: 01/08/2023]
Abstract
Acute kidney injury (AKI) is one of the more frequent and lethal pathological conditions seen in intensive care units. Currently available treatments are not totally effective but stem cell-based therapies are emerging as promising alternatives, especially the use of mesenchymal stromal cells (MSC), although the signaling pathways involved in their beneficial actions are not fully understood. The objective of this study was to identify signaling networks and key proteins involved in the repair of ischemia by MSC. Using an in vitro model of AKI to investigate paracrine interactions and label-free high definition 2D-NanoESI-MS(E) , differentially expressed proteins were identified in a human renal proximal tubule cell lineage (HK-2) exposed to human MSC (hMSC) after an ischemic insult. In silico analysis showed that hMSC stimulated antiapoptotic activity, normal ROS handling, energy production, cytoskeleton organization, protein synthesis, and cell proliferation. The proteomic data were validated by parallel experiments demonstrating reduced apoptosis in HK-2 cells and recovery of intracellular ATP levels. qRT-PCR for proteins implicated in the above processes revealed that hMSC exerted their effects by stimulating translation, not transcription. Western blotting of proteins associated with ROS and energy metabolism confirmed their higher abundance in HK-2 cells exposed to hMSC.
Collapse
Affiliation(s)
- Milene R da Costa
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
Martin RM, Kerr M, Teo MTW, Jevons SJ, Koritzinsky M, Wouters BG, Bhattarai S, Kiltie AE. Post-transcriptional regulation of MRE11 expression in muscle-invasive bladder tumours. Oncotarget 2014; 5:993-1003. [PMID: 24625413 PMCID: PMC4011600 DOI: 10.18632/oncotarget.1627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/14/2014] [Indexed: 01/08/2023] Open
Abstract
Predictive assays are needed to help optimise treatment in muscle-invasive bladder cancer, where patients can be treated by either cystectomy or radical radiotherapy. Our finding that low tumour MRE11 expression is predictive of poor response to radiotherapy but not cystectomy was recently independently validated. Here we investigated further the mechanism underlying low MRE11 expression seen in poorly-responding patients. MRE11 RNA and protein levels were measured in 88 bladder tumour patient samples, by real-time PCR and immunohistochemistry respectively, and a panel of eight bladder cancer cell lines was screened for MRE11, RAD50 and NBS1 mRNA and protein expression. There was no correlation between bladder tumour MRE11 protein and RNA scores (Spearman's rho 0.064, p=0.65), suggesting MRE11 is controlled post-transcriptionally, a pattern confirmed in eight bladder cancer cell lines. In contrast, NBS1 and RAD50 mRNA and protein levels were correlated (p=0.01 and p=0.03, respectively), suggesting primary regulation at the level of transcription. MRE11 protein levels were correlated with NBS1 and RAD50 mRNA and protein levels, implicating MRN complex formation as an important determinant of MRE11 expression, driven by RAD50 and NBS1 expression. Our findings of the post-transcriptional nature of the control of MRE11 imply that any predictive assays used in patients need to be performed at the protein level rather than the mRNA level.
Collapse
Affiliation(s)
- Rebecca M Martin
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Leithner K, Wohlkoenig C, Stacher E, Lindenmann J, Hofmann NA, Gallé B, Guelly C, Quehenberger F, Stiegler P, Smolle-Jüttner FM, Philipsen S, Popper HH, Hrzenjak A, Olschewski A, Olschewski H. Hypoxia increases membrane metallo-endopeptidase expression in a novel lung cancer ex vivo model - role of tumor stroma cells. BMC Cancer 2014; 14:40. [PMID: 24460801 PMCID: PMC3905926 DOI: 10.1186/1471-2407-14-40] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 01/23/2014] [Indexed: 01/12/2023] Open
Abstract
Background Hypoxia-induced genes are potential targets in cancer therapy. Responses to hypoxia have been extensively studied in vitro, however, they may differ in vivo due to the specific tumor microenvironment. In this study gene expression profiles were obtained from fresh human lung cancer tissue fragments cultured ex vivo under different oxygen concentrations in order to study responses to hypoxia in a model that mimics human lung cancer in vivo. Methods Non-small cell lung cancer (NSCLC) fragments from altogether 70 patients were maintained ex vivo in normoxia or hypoxia in short-term culture. Viability, apoptosis rates and tissue hypoxia were assessed. Gene expression profiles were studied using Affymetrix GeneChip 1.0 ST microarrays. Results Apoptosis rates were comparable in normoxia and hypoxia despite different oxygenation levels, suggesting adaptation of tumor cells to hypoxia. Gene expression profiles in hypoxic compared to normoxic fragments largely overlapped with published hypoxia-signatures. While most of these genes were up-regulated by hypoxia also in NSCLC cell lines, membrane metallo-endopeptidase (MME, neprilysin, CD10) expression was not increased in hypoxia in NSCLC cell lines, but in carcinoma-associated fibroblasts isolated from non-small cell lung cancers. High MME expression was significantly associated with poor overall survival in 342 NSCLC patients in a meta-analysis of published microarray datasets. Conclusions The novel ex vivo model allowed for the first time to analyze hypoxia-regulated gene expression in preserved human lung cancer tissue. Gene expression profiles in human hypoxic lung cancer tissue overlapped with hypoxia-signatures from cancer cell lines, however, the elastase MME was identified as a novel hypoxia-induced gene in lung cancer. Due to the lack of hypoxia effects on MME expression in NSCLC cell lines in contrast to carcinoma-associated fibroblasts, a direct up-regulation of stroma fibroblast MME expression under hypoxia might contribute to enhanced aggressiveness of hypoxic cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 20, A-8036 Graz, Austria.
| |
Collapse
|
33
|
Van Elzen R, Moens L, Dewilde S. Expression profiling of the cerebral ischemic and hypoxic response. Expert Rev Proteomics 2014; 5:263-82. [DOI: 10.1586/14789450.5.2.263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Clanton TL, Hogan MC, Gladden LB. Regulation of cellular gas exchange, oxygen sensing, and metabolic control. Compr Physiol 2013; 3:1135-90. [PMID: 23897683 DOI: 10.1002/cphy.c120030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells must continuously monitor and couple their metabolic requirements for ATP utilization with their ability to take up O2 for mitochondrial respiration. When O2 uptake and delivery move out of homeostasis, cells have elaborate and diverse sensing and response systems to compensate. In this review, we explore the biophysics of O2 and gas diffusion in the cell, how intracellular O2 is regulated, how intracellular O2 levels are sensed and how sensing systems impact mitochondrial respiration and shifts in metabolic pathways. Particular attention is paid to how O2 affects the redox state of the cell, as well as the NO, H2S, and CO concentrations. We also explore how these agents can affect various aspects of gas exchange and activate acute signaling pathways that promote survival. Two kinds of challenges to gas exchange are also discussed in detail: when insufficient O2 is available for respiration (hypoxia) and when metabolic requirements test the limits of gas exchange (exercising skeletal muscle). This review also focuses on responses to acute hypoxia in the context of the original "unifying theory of hypoxia tolerance" as expressed by Hochachka and colleagues. It includes discourse on the regulation of mitochondrial electron transport, metabolic suppression, shifts in metabolic pathways, and recruitment of cell survival pathways preventing collapse of membrane potential and nuclear apoptosis. Regarding exercise, the issues discussed relate to the O2 sensitivity of metabolic rate, O2 kinetics in exercise, and influences of available O2 on glycolysis and lactate production.
Collapse
Affiliation(s)
- T L Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | |
Collapse
|
35
|
Cojocari D, Vellanki RN, Sit B, Uehling D, Koritzinsky M, Wouters BG. New small molecule inhibitors of UPR activation demonstrate that PERK, but not IRE1α signaling is essential for promoting adaptation and survival to hypoxia. Radiother Oncol 2013; 108:541-7. [DOI: 10.1016/j.radonc.2013.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/29/2013] [Accepted: 06/05/2013] [Indexed: 12/26/2022]
|
36
|
PERK/eIF2α signaling protects therapy resistant hypoxic cells through induction of glutathione synthesis and protection against ROS. Proc Natl Acad Sci U S A 2013; 110:4622-7. [PMID: 23471998 DOI: 10.1073/pnas.1210633110] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hypoxia is a common feature of tumors and an important contributor to malignancy and treatment resistance. The ability of tumor cells to survive hypoxic stress is mediated in part by hypoxia-inducible factor (HIF)-dependent transcriptional responses. More severe hypoxia activates endoplasmatic reticulum stress responses, including the double-stranded RNA-activated protein kinase (PKR)-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2α (eIF2α)-dependent arm of the unfolded protein response (UPR). Although several studies implicate important roles for HIF and UPR in adaption to hypoxia, their importance for hypoxic cells responsible for therapy resistance in tumors is unknown. By using isogenic models, we find that HIF and eIF2α signaling contribute to the survival of hypoxic cells in vitro and in vivo. However, the eIF2α-dependent arm of the UPR is uniquely required for the survival of a subset of hypoxic cells that determine tumor radioresistance. We demonstrate that eIF2α signaling induces uptake of cysteine, glutathione synthesis, and protection against reactive oxygen species produced during periods of cycling hypoxia. Together these data imply that eIF2α signaling is a critical contributor to the tolerance of therapy-resistant cells that arise as a consequence of transient changes in oxygenation in solid tumors and thus a therapeutic target in curative treatments for solid cancers.
Collapse
|
37
|
Yang L, Lin C, Wang L, Guo H, Wang X. Hypoxia and hypoxia-inducible factors in glioblastoma multiforme progression and therapeutic implications. Exp Cell Res 2012; 318:2417-26. [PMID: 22906859 DOI: 10.1016/j.yexcr.2012.07.017] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 02/05/2023]
Abstract
Glioblastoma multiforme (GBM) is the most malignant and aggressive primary brain tumor in humans, with a uniformly poor prognosis. Hypoxia is a predominant feature in GBM and its microenvironment; it is associated with the tumor growth, progression and resistance to conventional therapy of cancers. Hypoxia-inducible factors (HIFs) are the master regulators of the transcriptional response to hypoxia in tumor cells and their microenvironment. Numerous studies indicated that hypoxia and HIFs played pivotal roles in the initiation, progression, therapy resistance and recurrence of GBM and maintained the phenotype of glioma stem cells (GSCs), which makes the prognosis of GBM patients worse. This review summarized the current research advance of hypoxia and HIFs in GBM progression and therapeutic implications, which will provide a better understanding of the contribution of hypoxia and HIFs to GBM initiation and progression and highlight that HIFs might be taken as the attractive molecular target approaches for GBM therapeutics.
Collapse
Affiliation(s)
- Liuqi Yang
- Laboratory of Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | | | | | | | | |
Collapse
|
38
|
Stummer W, Meinel T, Ewelt C, Martus P, Jakobs O, Felsberg J, Reifenberger G. Prospective cohort study of radiotherapy with concomitant and adjuvant temozolomide chemotherapy for glioblastoma patients with no or minimal residual enhancing tumor load after surgery. J Neurooncol 2012; 108:89-97. [PMID: 22307805 PMCID: PMC3337400 DOI: 10.1007/s11060-012-0798-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/07/2012] [Indexed: 11/24/2022]
Abstract
Survival of glioblastoma patients has been linked to the completeness of surgical resection. Available data, however, were generated with adjuvant radiotherapy. Data confirming that extensive cytoreduction remains beneficial to patients treated with the current standard, concomitant temozolomide radiochemotherapy, are limited. We therefore analyzed the efficacy of radiochemotherapy for patients with little or no residual tumor after surgery. In this prospective, non-interventional multicenter cohort study, entry criteria were histological diagnosis of glioblastoma, small enhancing or no residual tumor on post-operative MRI, and intended temozolomide radiochemotherapy. The primary study objective was progression-free survival; secondary study objectives were survival and toxicity. Furthermore, the prognostic value of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation was investigated in a subgroup of patients. One-hundred and eighty patients were enrolled. Fourteen were excluded by patient request or failure to initiate radiochemotherapy. Twenty-three patients had non-evaluable post-operative imaging. Thus, 143 patients qualified for analysis, with 107 patients having residual tumor diameters ≤1.5 cm. Median follow-up was 24.0 months. Median survival or patients without residual enhancing tumor exceeded the follow-up period. Median survival was 16.9 months for 32 patients with residual tumor diameters >0 to ≤1.5 cm (95% CI: 13.3-20.5, p = 0.039), and 13.9 months (10.3-17.5, overall p < 0.001) for 36 patients with residual tumor diameters >1.5 cm. Patient age at diagnosis and extent of resection were independently associated with survival. Patients with MGMT promoter methylated tumors and complete resection made the best prognosis. Completeness of resection acts synergistically with concomitant and adjuvant radiochemotherapy, especially in patients with MGMT promoter methylation.
Collapse
Affiliation(s)
- Walter Stummer
- Department of Neurosurgery, University of Münster, Albert-Schweitzer Campus 1, Geb. 1 A, 48149, Münster, Germany,
| | | | | | | | | | | | | |
Collapse
|
39
|
Ramaekers CH, van den Beucken T, Meng A, Kassam S, Thoms J, Bristow RG, Wouters BG. Hypoxia disrupts the Fanconi anemia pathway and sensitizes cells to chemotherapy through regulation of UBE2T. Radiother Oncol 2011; 101:190-7. [DOI: 10.1016/j.radonc.2011.05.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 11/25/2022]
|
40
|
Zhao H, Luoto KR, Meng AX, Bristow RG. The receptor tyrosine kinase inhibitor amuvatinib (MP470) sensitizes tumor cells to radio- and chemo-therapies in part by inhibiting homologous recombination. Radiother Oncol 2011; 101:59-65. [PMID: 21903282 DOI: 10.1016/j.radonc.2011.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/17/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND AND PURPOSE RAD51 is a key protein involved in homologous recombination (HR) and a potential target for radiation- and chemotherapies. Amuvatinib (formerly known as MP470) is a novel receptor tyrosine kinase inhibitor that targets c-KIT and PDGFRα and can sensitize tumor cells to ionizing radiation (IR). Here, we studied amuvatinib mechanism on RAD51 and functional HR. MATERIALS AND METHODS Protein and RNA analyses, direct repeat green fluorescent protein (DR-GFP) assay and polysomal fractioning were used to measure HR efficiency and global translation in amuvatinib-treated H1299 lung carcinoma cells. Synergy of amuvatinib with IR or mitomycin c (MMC) was assessed by clonogenic survival assay. RESULTS Amuvaninib inhibited RAD51 protein expression and HR. This was associated with reduced ribosomal protein S6 phosphorylation and inhibition of global translation. Amuvatinib sensitized cells to IR and MMC, agents that are selectively toxic to HR-deficient cells. CONCLUSIONS Amuvatinib is a promising agent that may be used to decrease tumor cell resistance. Our work suggests that this is associated with decreased RAD51 expression and function and supports the further study of amuvatinib in combination with chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Helen Zhao
- Campbell Family Cancer Research Institute, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
41
|
Deregulation of cap-dependent mRNA translation increases tumour radiosensitivity through reduction of the hypoxic fraction. Radiother Oncol 2011; 99:385-91. [PMID: 21665307 DOI: 10.1016/j.radonc.2011.05.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/19/2011] [Accepted: 05/19/2011] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND PURPOSE Tumour hypoxia is an important limiting factor in the successful treatment of cancer. Adaptation to hypoxia includes inhibition of mTOR, causing scavenging of eukaryotic initiation factor 4E (eIF4E), the rate-limiting factor for cap-dependent translation. The aim of this study was to determine the effect of preventing mTOR-dependent translation inhibition on hypoxic cell survival and tumour sensitivity towards irradiation. MATERIAL AND METHODS The effect of eIF4E-overexpression on cell proliferation, hypoxia-tolerance, and radiation sensitivity was assessed using isogenic, inducible U373 and HCT116 cells. RESULTS We found that eIF4E-overexpression significantly enhanced proliferation of cells under normal conditions, but not during hypoxia, caused by increased cell death during hypoxia. Furthermore, eIF4E-overexpression stimulated overall rates of tumour growth, but resulted in selective loss of hypoxic cells in established tumours and increased levels of necrosis. This markedly increased overall tumour sensitivity to irradiation. CONCLUSIONS Our results demonstrate that hypoxia induced inhibition of translational control through regulation of eIF4E is an important mediator of hypoxia tolerance and radioresistance of tumours. These data also demonstrate that deregulation of metabolic pathways such as mTOR can influence the proliferation and survival of tumour cells experiencing metabolic stress in opposite ways of nutrient replete cells.
Collapse
|
42
|
van den Beucken T, Magagnin MG, Jutten B, Seigneuric R, Lambin P, Koritzinsky M, Wouters BG. Translational control is a major contributor to hypoxia induced gene expression. Radiother Oncol 2011; 99:379-84. [DOI: 10.1016/j.radonc.2011.05.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 05/23/2011] [Accepted: 05/26/2011] [Indexed: 01/18/2023]
|
43
|
Stummer W, van den Bent MJ, Westphal M. Cytoreductive surgery of glioblastoma as the key to successful adjuvant therapies: new arguments in an old discussion. Acta Neurochir (Wien) 2011; 153:1211-8. [PMID: 21479583 DOI: 10.1007/s00701-011-1001-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 03/16/2011] [Indexed: 11/25/2022]
Abstract
BACKGROUND This article discusses data from 3 randomized phase 3 trials, supporting a role for surgery in glioblastoma. METHODS Data were reviewed by extent of resection during primary surgery from the ALA-Glioma Study (fluorescence-guided versus conventional resection), the BCNU wafer study (BCNU wafer versus placebo), and the EORTC Study 26981-22981 (radiotherapy versus chemoradiotherapy with temozolomide). RESULTS For glioblastoma patients in the ALA study, median survival was 16.7 and 11.8 months for complete versus partial resection, respectively (P < 0.0001). Survival effects were maintained after correction for differences in age and tumor location. For glioblastoma patients who received ≥90% resection in the BCNU wafer study, median survival increased for BCNU wafer versus placebo (14.5 versus 12.4 months, respectively; P = 0.02), but no survival increase was found for <90% resection (11.7 versus 10.6 months, respectively; P = 0.98). In the EORTC study, absolute median gain in survival with chemoradiotherapy versus radiotherapy was greatest for complete resections (+4.1 months; P = 0.0001), compared with partial resections (+1.8 months; P = 0.0001), or biopsies (+1.5 months; P = 0.088), suggesting surgery enhanced adjuvant treatment. CONCLUSION Complete resection appears to improve survival and may increase the efficacy of adjunct/adjuvant therapies. If safely achievable, complete resection should be the surgical goal for glioblastoma.
Collapse
Affiliation(s)
- Walter Stummer
- Department of Neurosurgery, University of Münster, Albert-Schweitzer-Str. 33, 48149, Münster, Germany.
| | | | | |
Collapse
|
44
|
Spriggs KA, Bushell M, Willis AE. Translational regulation of gene expression during conditions of cell stress. Mol Cell 2010; 40:228-37. [PMID: 20965418 DOI: 10.1016/j.molcel.2010.09.028] [Citation(s) in RCA: 547] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/10/2010] [Accepted: 09/28/2010] [Indexed: 01/17/2023]
Abstract
A number of stresses, including nutrient stress, temperature shock, DNA damage, and hypoxia, can lead to changes in gene expression patterns caused by a general shutdown and reprogramming of protein synthesis. Each of these stress conditions results in selective recruitment of ribosomes to mRNAs whose protein products are required for responding to stress. This recruitment is regulated by elements within the 5' and 3' untranslated regions of mRNAs, including internal ribosome entry segments, upstream open reading frames, and microRNA target sites. These elements can act singly or in combination and are themselves regulated by trans-acting factors. Translational reprogramming can result in increased life span, and conversely, deregulation of these translation pathways is associated with disease including cancer and diabetes.
Collapse
Affiliation(s)
- Keith A Spriggs
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | |
Collapse
|
45
|
Bronson MW, Hillenmeyer S, Park RW, Brodsky AS. Estrogen coordinates translation and transcription, revealing a role for NRSF in human breast cancer cells. Mol Endocrinol 2010; 24:1120-35. [PMID: 20392875 DOI: 10.1210/me.2009-0436] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Posttranscriptional regulation may enhance or inhibit estrogen transcriptional control to promote proliferation of breast cancer cells. To understand how transcriptome and translational responses coordinate to drive proliferation, we determined estrogen's global and specific effects on translation regulation by comparing the genome-wide profiles of total mRNA, polysome-associated mRNA, and monosome-associated mRNAs in MCF-7 cells after stimulation by 1 h of 10 nm 17beta-estradiol (E2). We observe three significant, novel findings. 1) E2 regulates several transcripts and pathways at the translation level. 2) We find that polysome analysis has higher sensitivity than total RNA in detecting E2-regulated transcripts as exemplified by observing stronger E2-induced enrichment of E2 expression signatures in polysomes more than in total RNA. This increased sensitivity allowed the identification of the repression of neural restrictive silencing factor targets in polysome-associated RNA but not total RNA. NRSF activity was required for E2 stimulation of the cell cycle. 3) We observe that the initial translation state is already high for E2 up-regulated transcripts before E2 treatment and vice versa for E2 down-regulated transcripts. This suggests that the translation state anticipates potential E2-induced transcriptome levels. Together, these data suggest that E2 stimulates breast cancer cells by regulating translation using multiple mechanisms. In sum, we show that polysome profiling of E2 regulation of breast cancer cells provides novel insights into hormone action and can identify novel factors critical for breast cancer cell growth.
Collapse
Affiliation(s)
- Michael W Bronson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship Street, Box G, Providence, Rhode Island 02903, USA
| | | | | | | |
Collapse
|
46
|
Rouschop KMA, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, Keulers T, Mujcic H, Landuyt W, Voncken JW, Lambin P, van der Kogel AJ, Koritzinsky M, Wouters BG. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest 2009; 120:127-41. [PMID: 20038797 DOI: 10.1172/jci40027] [Citation(s) in RCA: 657] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 10/14/2009] [Indexed: 12/18/2022] Open
Abstract
Tumor hypoxia is a common microenvironmental factor that adversely influences tumor phenotype and treatment response. Cellular adaptation to hypoxia occurs through multiple mechanisms, including activation of the unfolded protein response (UPR). Recent reports have indicated that hypoxia activates a lysosomal degradation pathway known as autophagy, and here we show that the UPR enhances the capacity of hypoxic tumor cells to carry out autophagy, and that this promotes their survival. In several human cancer cell lines, hypoxia increased transcription of the essential autophagy genes microtubule-associated protein 1 light chain 3beta (MAP1LC3B) and autophagy-related gene 5 (ATG5) through the transcription factors ATF4 and CHOP, respectively, which are regulated by PKR-like ER kinase (PERK, also known as EIF2AK3). MAP1LC3B and ATG5 are not required for initiation of autophagy but mediate phagophore expansion and autophagosome formation. We observed that transcriptional induction of MAP1LC3B replenished MAP1LC3B protein that was turned over during extensive hypoxia-induced autophagy. Correspondingly, cells deficient in PERK signaling failed to transcriptionally induce MAP1LC3B and became rapidly depleted of MAP1LC3B protein during hypoxia. Consistent with these data, autophagy and MAP1LC3B induction occurred preferentially in hypoxic regions of human tumor xenografts. Furthermore, pharmacological inhibition of autophagy sensitized human tumor cells to hypoxia, reduced the fraction of viable hypoxic tumor cells, and sensitized xenografted human tumors to irradiation. Our data therefore demonstrate that the UPR is an important mediator of the hypoxic tumor microenvironment and that it contributes to resistance to treatment through its ability to facilitate autophagy.
Collapse
Affiliation(s)
- Kasper M A Rouschop
- Department of Radiation Oncology (Maastro Lab), GROW School for Oncology and Developmental Biology, Maastricht University,Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Mujcic H, Rzymski T, Rouschop KMA, Koritzinsky M, Milani M, Harris AL, Wouters BG. Hypoxic activation of the unfolded protein response (UPR) induces expression of the metastasis-associated gene LAMP3. Radiother Oncol 2009; 92:450-9. [PMID: 19726095 DOI: 10.1016/j.radonc.2009.08.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 08/12/2009] [Accepted: 08/13/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND PURPOSE Tumour hypoxia contributes to failure of cancer treatment through its ability to protect against therapy and adversely influence tumour biology. In particular, several studies suggest that hypoxia promotes metastasis. Hypoxia-induced cellular changes are mediated by oxygen-sensitive signaling pathways that activate downstream transcription factors. We have investigated the induction and transcriptional regulation of a novel metastasis-associated gene, LAMP3 during hypoxia. MATERIALS AND METHODS Microarray, quantitative PCR, Western blot analysis and immunohistochemistry were used to investigate hypoxic regulation of LAMP3. The mechanism for LAMP3 induction was investigated using transient RNAi and stable shRNA targeting components of the hypoxic response. Endoplasmic reticulum stress inducing agents, including proteasome inhibitors were assessed for their ability to regulate LAMP3. RESULTS LAMP3 is strongly induced by hypoxia at both the mRNA and protein levels in a large panel of human tumour cell lines. Induction of LAMP3 occurs as a consequence of the activation of the PERK/eIF2alpha/ATF4 arm of the unfolded protein response (UPR) and is independent of HIF-1alpha. LAMP3 is expressed heterogeneously within the microenvironment of tumours, overexpressed in breast cancer, and increases in tumours treated with avastin. CONCLUSIONS These data identify LAMP3 as a novel hypoxia-inducible gene regulated by the UPR. LAMP3 is a new candidate biomarker of UPR activation by hypoxia in tumours and is a potential mediator of hypoxia-induced metastasis.
Collapse
Affiliation(s)
- Hilda Mujcic
- Maastricht Radiation Oncology (MaastRO) Lab, Maastricht University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Cells can survive hypoxia/anoxia by metabolic rate depression, which involves lowering of mRNA translation rates in an ATP-dependent manner. By activating anaerobic ATP production (glycolysis), the inhibitory influence on mRNA translation in hypoxia can be abolished. In severe hypoxia, glycolysis cannot fully restore the ATP demand, thus causing a long-lasting inhibition of global protein synthesis. During moderate hypoxia, fermentative ATP production may maintain normal ATP levels. However, an activation of hypoxia tolerance mechanisms, including specific mRNA translation, also takes place. The latter may be attributed to oxygen-dependent (but not ATP dependent) processes such as the activation of the hypoxia-inducible factor cascade. In summary, hypoxia-induced decline in cellular ATP level can be counteracted by suppression of global mRNA translation rate. Sustained protein synthesis seems to be attributed to the activation of specific mRNA translation under long-term hypoxic conditions.
Collapse
Affiliation(s)
- Michael Fähling
- Charité, Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Berlin, Germany.
| |
Collapse
|
50
|
Ebbesen P, Pettersen EO, Gorr TA, Jobst G, Williams K, Kieninger J, Wenger RH, Pastorekova S, Dubois L, Lambin P, Wouters BG, Van Den Beucken T, Supuran CT, Poellinger L, Ratcliffe P, Kanopka A, Görlach A, Gasmann M, Harris AL, Maxwell P, Scozzafava A. Taking advantage of tumor cell adaptations to hypoxia for developing new tumor markers and treatment strategies. J Enzyme Inhib Med Chem 2009; 24 Suppl 1:1-39. [PMID: 19005871 DOI: 10.1080/14756360902784425] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cancer cells in hypoxic areas of solid tumors are to a large extent protected against the action of radiation as well as many chemotherapeutic drugs. There are, however, two different aspects of the problem caused by tumor hypoxia when cancer therapy is concerned: One is due to the chemical reactions that molecular oxygen enters into therapeutically targeted cells. This results in a direct chemical protection against therapy by the hypoxic microenvironment, which has little to do with cellular biological regulatory processes. This part of the protective effect of hypoxia has been known for more than half a century and has been studied extensively. However, in recent years there has been more focus on the other aspect of hypoxia, namely the effect of this microenvironmental condition on selecting cells with certain genetic prerequisites that are negative with respect to patient prognosis. There are adaptive mechanisms, where hypoxia induces regulatory cascades in cells resulting in a changed metabolism or changes in extracellular signaling. These processes may lead to changes in cellular intrinsic sensitivity to treatment irrespective of oxygenation and, furthermore, may also have consequences for tissue organization. Thus, the adaptive mechanisms induced by hypoxia itself may have a selective effect on cells, with a fine-tuned protection against damage and stress of many kinds. It therefore could be that the adaptive mechanisms may take advantage of for new tumor labeling/imaging and treatment strategies. One of the Achilles' heels of hypoxia research has always been the exact measurements of tissue oxygenation as well as the control of oxygenation in biological tumor models. Thus, development of technology that can ease this control is vital in order to study mechanisms and perform drug development under relevant conditions. An integrated EU Framework project 2004-2009, termed EUROXY, demonstrates several pathways involved in transcription and translation control of the hypoxic cell phenotype and evidence of cross-talk with responses to pH and redox changes. The carbonic anhydrase isoenzyme CA IX was selected for further studies due to its expression on the surface of many types of hypoxic tumors. The effort has led to marketable culture flasks with sensors and incubation equipment, and the synthesis of new drug candidates against new molecular targets. New labeling/imaging methods for cancer diagnosing and imaging of hypoxic cancer tissue are now being tested in xenograft models and are also in early clinical testing, while new potential anti-cancer drugs are undergoing tests using xenografted tumor cancers. The present article describes the above results in individual consortium partner presentations.
Collapse
Affiliation(s)
- Peter Ebbesen
- Laboratory for Stem Cell Research, Aalborg University, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|